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Abstract 

Modular programs are built as a combination of separate modules, which may 
be developed and verified separately. Therefore, in order to reason over such 
programs, compositionality plays a crucial role: the semantics of the whole 
program must be obtainable as a simple function from the semantics of its 
individual modules. In this paper we propose a compositiona.! semantics for 
first-order programs. This semantics is correct with respect to the set of 
logical consequences of the program. Moreover, - in contrast with other ap
proaches - it is always computable. Furthermore, we show how our results on 
first-order programs may be applied in a straightforward way to normal logic 
programs, in which case our semantics might be regarded as a compositional 
counterpart of Kunen 's semantics. Finally we discuss and show how these 
results have to be modified in order to be applied to normal CLP. 

1 Introduction 

Modularity in Logic Programming. Modularity is a crucial feature of 
most modern programming languages. It allows one to construct a program 
out of a number of separate modules, which can be developed, optimized and 
verified separately. Indeed, the incremental and modular design is by now a 
well established software-engineering methodology which helps to verify and 

maintain large applications. 
In the logic programming field, modularity has received a considerable 

attention (see for instance [6]), and has generated two distinct approaches: 
the first one is inspired by the work of O'Keefe [25] and is based on the 
consideration that module composition is basically a metalinguistic operation, 
in which the modular construct should be independent from the logic language 
being used; the second one originated with the work of Miller [23, 24], and is 
obtained by using a logical system richer than Horn clauses, thus providing a 
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linguistic approach. 

In this paper we follow the first approach. Viewing modularity in terms 
of meta-linguistic operations on programs has several advantages. In fact it 

leads to the definition of a simple and powerful methodology for structuring 
programs which does not require to extend the underlying language's syntax~ 
This is essential if we want to compose modules written in different languages. 
Furthermore, the typical mechanisms of the object-oriented paradigm. such 
as encapsulation and information hiding can be easily realized within this 
framework [2]. 

The Need for a Compositional Semantics. In order to deal with modu
lar programs, it is crucial that the semantics we refer to is compositional, i.e. 
that the semantics of the whole program is a (simple) function of the semantics 
of its modules. The need for a compositional semantics becomes even more 
pressing if one wants to build applications in which logic modlllt•s are com

bined with modules that are not logic programs themselves, such as constraiiat 

solvers, imperative programs, neural networks, etc. In such a situation, rom
positionality enables one to reason about the logic module in isolation. while 
the reference to knowledge provided by other modules is maintain('d intact. 

In logic programming, this need for a compositional semantics has been 

long recognized. For definite (i.e. negation-free) logic programs a few se

mantics have been proposed. To the best of our knowledge, the first papt>rs 
to discuss various forms of compositional semantic characterizations of deffo .. 
ite logic programs were the ones of Lassez and l\laher [18, 20]. Furtl!Pr work 
has been done by Mancarella and Pedreschi [22] and Brogi et. al. (4]. In [ 12] 

Gaifman and Shapiro proposed a compositional semantics, which was further 
extended in [3] and - for CLP programs - in [11]. 

Compositionality vs. Non-Monotonicity. However, in the development 
of semantics for normal logic programs, (which employ the negation operator) 
compositionality has been widely disregarded. Notable exception to this are 
the papers by Ma.her [21] and Ferrand and Lallouet [9). The reason of thi::; 
disattention is that, because of the presence of the negation-as-failure mech
anism, the semantics of normal logic programs is typically no1Hnonotonic. 
Now, compositionality and non-monotonicity are (almost) im•cmKi!able as

pects. Compositionality implies that the 'old knowledge' it; maintained when 
new knowledge is added. Non-monotonicity is defined as exactly the op

posite. Thus, it seems that one can have either compositionality or non

monotonicitv, but not both. Still, we need both asp<•cts. On the one hand. the 

non-monoto~1icity that arises from the use of negation as failure is ... 
we want in our logic programming language, because it (•nable~ us Iv dehue 
relations in a natural and succinct manner. On the other hand. 
and therefore compositionality of the declarative semantic:::, is essential when 

one wants to use a logic programming language in real life aoom.«L""''" 

Contribution of this Paper. In this paper we propose a semantics for 
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modular logic programs. This semantics is compositional while remammg 
non-monotonic to a certain extent. In essence, the semantics is compositional 
and monotonic on the level of composition of modules, while addition of 
clauses to modules remains a non-monotonic operation. 

We carry out our task by first providing a compositional semantics for 
first-order programs, which extends the semantics given by Sato [27] (which 
in turn can be regarded as an extension to first-order programs of Kunen's 
[17] semantics). In a second stage we show how this can be naturally used to 
provide a compositional semantics for normal logic programs and normal CLP. 
In the end, the semantics we propose can also be regarded as a compositional 
extension of Kunen 's semantics [17]. 

2 Preliminaries 

We assume that the reader is familiar with the basic concepts of logic pro
gramming; throughout the paper we use the standard terminology of [1, 19]. 
Symbols with a "" on top denote tuples of objects, for instance x denotes a 
tuple of variables Xi, .•• , Xn, and x = fj stands for X1 =Yi /I. ••. /I. Xn = Yn· 

Throughout the paper we will work with three valued logic: the truth 
values are then t, f and u, which stand, respectively, for true, false and 
undefined. We adopt the Kleene's truth tables of [16]. 

Three valued logic allows us to define connectives that do not exist in two 
valued logic. In particular in the sequel we use the symbol <==? corresponding 
to the operator of "having the same truth value": a<==? b is t if a and b are 
both t, both for both u; in any other case a{::} bis f. As opposed to it, the 
usual tt is u when one of its arguments is u. In most cases we restrict our 
attention to formulas which we consider "well-behaving" in the three valued 
semantics. A logic connective <> is allowed iff the following property holds: 
when a<>b is t or f then its truth value does not change if the interpretation 
of one of its argument is changed from u tot or f. A first order formula is 
allowed iff it contains only allowed connectives. 

Notice that any formula containing the connective <==? is not allowed, 
while formulas built with the three-valued counterpart of the "usual" logic 
connectives are allowed. Allowed formulas can be seen as monotonic functions 
over the lattice on the set { u, t, f} which has u as bottom element and t and 
f are not comparable. Finally, in what follows we always assume the equality 
symbol = to be part of the language of the programs and modules we deal 
with, so - in some cases - in order to avoid confusion we will use = to denote 
equality at the meta-level. 

First-Order Programs and Modules. Let us now recall the definition of 
a modular logic program. Intuitively, a modular logic program consists of 
a number of logic modules, each of which consists of a number of predicate 
definitions. The definition (of a predicate p) is a formula of the form 

p( x) {::} 4>[x] 



471 

where x is a tuple of distinct variables, and <f>[x] is a first order (allowed) 
formula whose free variables are exactly the variables of x (the notation 4>[x] 
is used to emphasize this fact). p(x) and <f>[x] are usually referred to as the 
head and the body of the definition. 

Modules are defined within the context ofa fixed base language LB, which 
contains all the constants and function symbols which may occur in the mod
ule itself, and the predicate symbols of those relations which have some pre
defined meaning. We assume that .CB always contains the equality symbol 
and (with a harmless overload of notation), three predicative constants t, f, u, 
corresponding to the truth values t, f, u. The primitive predicate symbols in 
.Cs\ { t, f, u} are assumed to be defined in a fixed first-order consistent base 
theory ~- Typical choices for~ are for example the set of equality axioms 
together with Clark's equality theory, the domain closure axiom, or axioms 
defining arithmetic primitives. A relation we will always assume being part 
of the language is equality (=);its meaning may be either the identity over 
the domain of discourse or - if one prefers - it may be given by a suitable 
complete theory, in which case it is assumed to be incorporated in f... 

Then, a module M on a base language .CB is a collection of predicate 
definitious such that each predicate is defined at most once, and none of the 
predicates in .CB is defined in M. 

We define Def(M) to be the set of predicates that are defined in M, and 
Open(M) to be the set of predicates which are in neither Def(.M) nor .CB 
(of course we assume that Def(M) n .CB = 0). Predicates in Open(M) are 
supposed to be imported, i.e. defined in some other - maybe unspecified 
- module lvf'. Those predicates are also referred to as the are the ope_n 
predicates of M. If Open(M) is empty then the module is said to be closed. 
A closed module corresponds to a classical first-order program. Also, we 
define Pred(M) as Def(M) U Open(M). 

Semantics. A three-valued structure~ for the language CB is a pair (D, J), 
where D (the domain) is a non-empty set, and I is an interpretation over D, 
which is two valued for the predicates in .CB\ {u}, and three valued for the 
other predicate symbols. We also assume t, f and u always take the value 
true, false and undefined. Given a sentence S, we use the notation Val(S, .E) 
to denote the truth value of S in I:. Furthermore we say that .E is a model of 
the set of sentences r if for each sentence S E r we have that Val(S, ~) = t; 
consequently, the three-valued logical consequence relation I= is defined as 
follows: r f= F iff Val(F, E) == t for every model E of r. 

2.1 The unfolding operator 

The semantics we are going to give is based on the unfolding operation, there
fore we start with recalling its definition. 

Definition 2.1 (Unfolding) Let cl : p(x) <=> <P[x] and d : q(Y) <=> 'l/i[y] be 
two predicate definitions (which we assume to be standardized apart). Let 
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q(i) be an atomic subformula of q'>[x]. Then, by unfolding q(i) in cl (via 
d) we mean substituting q(i) with 1)1[i/y] in cl. In this case cl is called the 
unfolded definition while d is the unfolding one. D 

If M and N are modules, by unfolding M with N, l\1 o N, we naturally mean 
applying the unfolding operation (in parallel) to all the atoms in the bodies of 
the definitions of Jvl which are defined in N, using clauses of N as unfolding 
clauses. As usual, we associate the o operator to the left. Thus, A1oNo0 

should be read as (Mo N) o 0. Now, for a module M, we adopt the following 
notation: 

Mn= { {p(i) {::;> p(i) [ p E De!(M)} , if n =? 
Atn-l o M , otherwise 

So, intuitively, Mn is obtained from M by unfolding n times all its atoms 
(using the definitions of M as unfolding definitions). Notice that M := M 1 = 
MoM 0 := M 0 oM. 

The unfolding operation, when applied to a closed module is correct, in 
the sense that it maintains the set of (allowed) logical consequences. This is 
the content of the following Lemma, which is due to Sato [27]. 

Lemma 2.2 Let Iv! be a closed module on the base language LB. Suppose 
that M' is obtained from M by (repeatedly) applying the unfolding operation, 
using the definitions of M as unfolding definitions. Then, f 01' any allowed 

formula </>, we have that MU t. I= </> iff M' U 6 I= <f;. 0 

3 A Compositional Semantics 

Following the original paper of R. O'Keefe [25], the approach to modular 
programming we consider here is based on a meta-linguistic programs com
position mechanism. In this framework, logic programs are seen as elements 
of an algebra and the composition operation is modeled by an operator on the 
algebra. 

Viewing modularity in terms of meta-linguistic operations on programs 
has several advantages. In fact it leads to the definition of a simple and 
powerful methodology for structuring programs which does not require to 
extend the underlying language's syntax. This is not the case if one tries 
to extend programs by linguistic mechanisms, an approach which originated 
with the work of Miller [23, 24]. Moreover, rneta-ling11istic operations are 
quite powerful. For instance, the compositional systems of Mancarella and 
Pedreschi [22], Gaifman and Shapiro [12], Bossi et. al. [2] and Brogi et. al. 
[4, 5] can be seen as different instances of this idea. Furthermore, the typical 
mechanisms of the object-oriented paradigm, such as encapsulation and in
formation hiding, as well as more complex form of composition mechanisms -
in which we may distinguish between imported, exported, an<l local (hidden) 
predicates - can be easily realized within this framework. These mechanisms 



473 

are implemented - for instance - in the language Godel [13], in Quintus Pro
log [26] and in SICStus Prolog [7]. For a more detailed analysis we refer to 
the survey of Bugliesi et. al. [6]. 

3.1 Module Composition 

To compose first-order modules we follow the same approach of [3] and use a 
simple program union operator. 

Definition 3.1 (Module Composition) Let M1 and M 2 be modules on 
the base language .Cs. We define 

provided that Def(lvl1) n Def(lvh) = 0. Otherwise M 1 © M2 is undtfined. D 

This definition extends in a straightforward way to the case of several mod
ules: M1 Ell ... Ell kh is defined naturally as (.M1 (:fl ... ff\ Ah-i) ?fJ Ah. Note 
that, in the definition we use, we require Def(l14i) n De/(Mj) = 0, for all dis
tinct i and j. This condition allows us to circumvent a number of unnecessary 
technicalities, and, in particular, to keep modules composition a monotonic 
operation. At first, the condition seems rather restrictive, in that it prevents 
one from refining a predicate pin a module !vl, by composing it with some 
module M' also containing a definition for p. However, part of the problem 
can be easily solved by the use of some renaming and an additional 'interface' 
module. Consider a predicate p, defined in both N 1 and N 2 • We rename p 

to PI (resp. P2) in the head of the definition of p in N1 (resp. N2), result
ing in a module N{ (resp. N!2 ). Additionally, we define an interface module 
I= {p(x) -R p1(x) V pz(x)} Now observe that I w 1Vf tfl Nf is well-defined 
(provided there are no other name clashes) and behaves exactly the way we 
would expect N 1 EB N2 to. Finally, it is worth noticing that mutual recursion 
among modules is allowed. 

3.2 Expressiveness of Modules 

Now, we have to give a formal definition to the abstract concept of (se
mantical) expressiveness of modules, for this we have to take into account 
the fact that modules are meant to be composed together. In the rest of this 
section, we always assume that all the modules are given on the same fixed 
base language .CB, and that the meaning of the predicates and functions in 
LB is provided by a fixed base theory .6.. 

Definition 3.2 Let M and N be two modules such that Def(Af) = Def(N). 
We say that 

M is (compositionally) more expressive than N, Af '.::: N, 



474 

iff for any other module Q such that M EB Q and N EB Q are defined, we have 
that for any allowed formula</>, if N EB Q U ~ f= </> then M Efl Q U ~ f= </J. We 
also say that 

M and N are (compositionally) equivalent, M"" N 

iff Mt N t M. D 

In other words, we say that two first-order modules are compositionally equi
valent if they have the same set of logical consequences in every possible 
context. Therefore, - according to the notation of [6] - "" is actually a congru
ence relation. The following lemma states an obvious yet important property 
oft_. 

Lemma 3.3 Let M, N and Q be modules such that M EB Q is defined. If 
M t N then M EB Q t N EB Q. D 

3.3 A Compositional Semantics for First-Order Modules 

We start by defining the skeleton of a module. For a module M, we denote 
Dummy(M) = {p(x) ~ u Ip E Def(M)}. Then, the skeleton of Mis defined 
as 

[M] =:Mo Dummy(M) 

Using the skeleton and the unfolding operator, we can generate an infinite 
chain as follows: [M0], [M1], [M2],.... Now, it can be proven that, inde
pendently from the base theory~. for any n, we have that [Mn] :::5 [Mn+l]. 
Thus the chain is of increasing expressiveness. Next theorem shows that the 
semantics of the chain converges to the semantics of the module. 

Theorem 3.4 (Main) Let Mi, ... , Mk be first-order logic modules such that 
M1 EB ••. EB Mk is defined. Then, for any allowed formula </>, 

• M1 EB ... $ Mk U ~ f= </> iff 3n [Mf] $ ... Efl [Mf] U ~ f= </> D 

This theorem might be regarded as a compositional counterpart of [27, The
orem 3.3] (which, in turn, is the first-order version of [17, Theorem 6.3]). 
Notice that, if M is a module, then [Mn] is a collection of formulae of the 
form p(x) ~ <f>[x], where <f>[x] is an allowed formula containing only open or 
base predicates (for instance, in [Mn], recursion is impossible). In a way, 
we could say that each [Mn] is an elementary module; using this notation 
the above theorem states that the semantics of a module M is given by the 
:::5-increa.sing sequence of elementary modules [M0], [M 1], [M2], .... 

Let us now work out a small example. The following program verifies, 
given a directed graph, whether a certain node is critical, i.e. whether by 
removing that node from the graph, some other nodes in the network become 
disconnected. We assume that the graph is represented in a module Al9 • This 
module defines only the predicate arc/2 in such a way that arc(x, y) is t in 
M9 iff there is a (direct) link from x toy in the graph. 
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Further, we have a module Mp which, referring to arc/2 as an open pre
dicate, defines the predicate path/3 as follows 

path(x, z, a){;=> arc(x, z) V 

3y arc(x, y) /\ •member(y, a)/\ path(y, z, [y/a]) 

Thus, path(.r,z,a) is true iff there exists an acyclic path from x toy that 

avoids all the nodes in a. The predicate member/2 is assumed to be defined 

in the usual way in a separate module Airn. Finally, we have a module lvfc 

that defines the predicate critical/1; it contains the single definition 

critical ( x) {::} 3y,z x /= y /\ x f= z /\ path (y, z, []) /\ -.path (y, z, [x]) 

which states that x is critical if we can find a path from some node y to 

some node z, both different from x, but we cannot find a path from y to z 

that avoids :r. If we want to compute critical nodes of different graphs, we 

compose this module with different graph modules. 
Now, let us see how these modules behave under unfolding. Consider 

module fvfp. The following table shows the body of the definition of path/3 in 

Mg, in MJ(= Alp) and in Mi. 
n body of path/3 in Af;1 

0 u 
1 arc(x,z) V 

3u arc(x, y) /\ -.member(y, a)/\ path(y, z, [y/a]) 
2 arc(;c, z) V 

3y( arc(:r, y) /\ -.member(y, a)/\ 
( arc(y,z) V 

30 , arc(y, y') /\ -.member(y', [y/a]) /\ path(y1, z, [y'[y/a]]) ) ) 

The definition of path/3 in [Mg], in [M;J and in [Mi] can simply be 

obtained by replacing with the constant u all the atoms in the above table 

which have path as predicate symbol (path is the only non-open predicate 

symbol occurring in Mp)· 
Finally, it is worth noticing that, since the body of the definition of 

critical/ l does not contain any non-open predicate, we have that, for all n, 

Mc=: M'(! =: (l\JcnJ. 

4 Normal (Constraint) Logic Programs 

In this section we show how the results provided in the previous section may be 

used in a straightforward way in order to provide a compositional semantics to 

normal logic programs (i. e. logic progra,ms with negation). Normal modules 
are finite collections of normal clauses, .4 +-Li, ... , Lm. where A is an atom 

and each L; is a literal (i.e. an atom or a negated atom). \Ve adopt the usual 
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logic programming notation that uses ",'' instead of/\., hence a conjunction 
of literals L1 /\. .•• /\. Ln will be denoted by L1, ... , Ln or by l. 
Completion for Normal Modules. Since negative information cannot 
follow from a set of clauses, in order to provide a sound semantics to a normal 
module we follow [8] and refer to the module's completion. This is a standard 
approach, and - among the "standard" approaches - it is the only one that 
allows one to remain within first-order logic. When dealing with three-valued 
logic the definition of completion is given using the operator {:} instead of 
t-+ , as follows. 

Definition 4.1 Let M be a normal module and p(t1) +- fJi, ... ,p(tr) +-Er 
be all the clauses which define the predicate symbol p in M. The completed 
definition of p is 

r 

p(x) <=:? V 3yi (x = i;) 11 B;. 
i=l 

where x are new variables and y; are the variables in p(l;) +- B;. 
The completion of M, Comp(M) consists in the conjunction of the com

pleted definition of all the predicates defined in M. D 

It is important to notice that here we depart from [8] in the fact that we do 
not close those definitions which are not explicitly given in M. In a modular 
context, these predicates need to remain open. 

The completed definition of a predicate is a first order formula that con
tains the equality symbol; hence, in order to interpret "=" correctly, we also 
need an equality theory. 

In particular, we will refer to CETc, Clark's Equality Theory for the 
language C, which consists of the following axioms: 

- f(xi, .. .,xn) =f g(y1, .. . ,ym) for all distinct J and gin£; 
- f(xi, ... ,xn) = f(y1, ... ,yn) -+ (x1 = Y1) /\. ... II (xn = Yn) VJ EC; 
- x 'f. t(x) for all terms t(x) distinct from x in which x occurs; 

together with the usual equality axioms, i. e. reflexivity, symmetry, transitiv
ity, and (x = y) -+ (f(x) = f(Y)) for all functions symbols fin C. Notice 
that that "=" is always interpreted as two valued. Obviously, CET c depends 
on the underlying language£, which we assume to be fixed and to contain all 
the functions symbols occurring in all the modules we consider. 

A known problem that semantics based on program completion face is 
that when .C is finite (that is, when it contains only a finite number of func
tions symbols) CET c is not a complete theory. Typically, this problem is 
solved by adopting one of the following solutions: (a) adding to CET c some 
domain closure axioms which are intended to restrict the interpretation of 
the quantification to £-terms (as in [28]), or (b) assuming that the language 
contains always an infinite set of function symbols (as in [17]) or ( c) by con
sidering only interpretations and models over a specific fixed domain D (as in 
[10]). This latter solution requires the adoption of axioms which are usually 
not first order (unless all the functions symbols are 0-ary, i.e. constants), 
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and consequently leads to a semantics which is (usually) noncomputable. For 
these reasons we adopt either solutions (a) or (b}. Luckily, these two solutions 
yield basically the same semantics. For an extended discussion of the subject, 
we refer to [17, 28]. 

Let .C be a finite language (i.e. a language with a finite set of predicate 
symbols). The Domain Closure Axiom for the language£, DCAc, is 

where Ji, ... , fr are all the function symbols in [., and Yi are tu pies of variables 
of the appropriate arity. This axiom is also referred to as the weak domain 
closure axiom1 • 

A Compositional Semantics for Normal Programs. It is now easy to 
see that in this context, the semantics for open normal logic modules finds a 

natural embedding in the one proposed for first order modules in Section ;3 
(the underlying language lB contains only the equality predicate). Modules 
composition is defined exactly as for the case of first-order modules: if M 1 

and M2 are normal modules. We define M1 EV M2 = M1 U M2 provided that 
Def(Mi) n Def(Af2 ) = 0 holds. Otherwise M1 EV M2 is undefined. 

Corollary 4.2 Let M1 , ..• , Mk be normal modules such that Mi cf< .•• i? Ah 
is defined. Then, for each allowed </> there exists an integer n such that tit<· 

fallowing statements are equivalent: 

1. Comp(.M1 6'.J ... ffiJ\,h)UCET.c f=</> 

2. [Comp(Mi)n] EB ..• EB [Comp(Afk)n] u CETc f= 4> 

where we assume that, if .C is finite, CETc incorpomtes DC4c. 0 

As an example, let us consider again the problem of deciding whether a 
node in a graph is critical. The program given in the previous section can also 
be written as a modular normal program composed by the modules defining 

arc, member, together with the following two modules. 

Np:= path(x, z, a) ,.._ arc(x, z). 
path(x, z, a) ,.._ arc(x, y), -.member(y, a), path(y, ::, [yla]). 

Ne= critical(x) ,.._ x f y,x f z,path(y,z,Q).•palfl(y, ::,[x]). 

In fact it is easy to check that Mp and .~t- coincide with the complf.'tion of Np 

and Ne. 

l As opposed to it, the strong domain closure <Uiom for the language C is 
x = t 1 v x = t2 v ... where t 1 , t2 , . .. is the (usually mfuute) seque~1ce of a.II tlit.• groun~ 
C-terms. This axiom is equivalent to choice (c) above, and det.ermmes wuquely the wu
verse of the possible interpretation. Again, if C contains a non-constant fundmn symbol 
then the above axiom is not a first order formula, and leads to a noucomputable semant!Cs. 
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Compositionality vs. Non-Monotonicity. In the introduction, we re
ferred to the fact that - to a certain extent - we manage to combine com
positionality and non-monotonicity. More precisely, we have that within a 
module the addition of a clause is a non-monotonic operation, while at the 
meta-level module composition is a monotonic one. To illustrate this point, 
we give a simple example. Consider two normal modules M = {q(a).} and 
Q = {p f- •q(b).}, with [ 8 consisting of equality and the constants a and b. 
Now, suppose we want to add to the database the fact that q(b) holds. If we 
do this by simply adding a clause to M we have a non-monotonic behavior, 
which implies a defeat of compositionality. For instance we have that 

Comp(M) (] Comp(Q) U CETt.:s f= p 

while 

Comp(M U {q(b).}) EEl Comp(Q) U CETcs ~ p 

Now, it is important to notice that we are not allowed to add the clause q(b) 
via a module composition operation. In fact M ff> {q(b)} is not defined, as 
the condition on name dashes is violated. 

If we wanted to be able to add the knowledge q(b) via a module composi
tion operation (thus in a compositional way) we would have had to start with 
a modified version of M, namely with the following: 

N = { q(a). } 
- q(x) f- q'(x). 

Here the predicate q' is an open predicate which can be used to extend our 
knowledge on q. Now, N EB{q'(b) .} i:; defined and going from N to N'J;{ q'(b).} 
we have a monotonic behavior. In fact 

Comp(N) e] Comp(Q) U CETt.:8 &i: p 

Comp(N) (fl Comp( {q'(b).}) EB Comp(Q) U CETt.:8 ~ p 

Thus, the negation-as-failure mechanism can still be profitably employed in 
a non-monotonic manner, as long as the negated atom a.nd its descendants 
in the proof tree are not open. This has to be so: the failure of proving an 
atom whose proof tree could be augmented by module's composition can not 
be taken as "sufficient evidence" for assuming true the negation of the atom 
itself (as usually done by negation as failure). 

4.1 Normal CLP Modules 

For obvious space limitations we only give a brief sketch of how the results of 
the previous section may be applied to CLP programs. 

The Constrnint Logic Programming paradigm (CLP for short) ha:; been 
proposed by Jaffar and Lassez [14] in order to integrate a generic computa
tional mechanism based on constraints with the logic programming frame
work. Such an integration results in a framework which - for programs 
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without negation - preserves the existence of equivalent operational, model
theoretic and fixpoint semantics. Indeed, as discussed in (21), most of the res
ults which hold for definite (i.e. negation-free) constraint logic programs can 
be lifted to CLP in a quite straightforward way. We refer to the recent survey 
[1.5] by Jaffar and Maher for the notation and the necessary background mater
ial about CLP. A CLP clause is a formula of the form At- c A L1 A ..• A Lk 
where A is an atom, Li, ... Lk are literals and c is a constraint, i. e. a first 
order formula in a specific language Cc. Historically, the semantics of the 
constraints is determined in either one of the following two ways: 

1. by providing a consistent Theory, that their interpretation has to satisfy 
(like Peano's arithmetic); or 

2. by giving structure E over which they have to be interpreted, (for in-
stance, the natural numbers). 

It is clear that if we follow the first approach then the results of the previous 
section can be naturally used to provide a semantics to normal CLP. All we 
have to do is to incorporate in the base theory .6. the theory that provides a 
meaning to the constraints and to refer to the modules completion (which is 
defined exactly as in the case of normal logic programs). The rest is straight
forward. 

Regrettably, the second approach is certainly more popular in the CLP 
community (even though also the first one is considered standard [15]). The 
problem with this approach is that the given structure determines uniquely 
the universe of the models, and this - in presence of negation - leads to a 
semantics which is again usually noncomputable. As already done in [17, 27], 
we can avoid this problem by referring to some elementary extension of the 
structure itself. In the rest of this section we briefly sketch how this may be 
done. First, we have to establish some notation. 

Let M be a first-order module on the base language LB- Let E == (D, /) 
be a structure for LB We say that the first-order allowed formula </>follows 
from M under the structure E, we write M Fl: </>, if Val(</>, E') = t for every 
model :E' == (D', I') of M for which D' ==DU Pred(M) and I'ln =I; i.e. if 
</>is true in all the models of M whose universe coincides with D, and whose 
interpretation of functions and predicates in LB coincides with the one given 
by E. Now, let E = (D, /), E' == (D', !'),be two structures for CB, we say that 
E' is an elementary extension of E if D' 2 D and, for any allowed formula 
</>[x·] in CB, we have that Val(</>[t],E) = Val(</>[t],E'), for any t E D. Thus, 
reasoning over E' is basically like reasoning over E. 

We are now able to state the counterpart of Corollary 4.2. 

Corollary 4.3 Let Cl> ... , Ck be CLP modules such that C1 lfl ... If> Ck is 
defined. If Cc is the language of the constraints and E is a structure for Cc, 
then theT'e exists an elementary extension E' of E such that, for each allowed 
</> the following statements are equivalent 
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1. Comp(C1 EB ... E6 Ck) FE'</> 

2. 3n [Comp(C1)n] © ... Efl [Comp(Ck)n] FE'</> 0 

The need to refer to an enriched structure I;' is shown by the following 
example. Consider the following CLP modules over the language of integer 
arithmetics 

N1:::: {p f- -in(x).} 

N2 :::: {n(O)., n(x) f- x = y + 1 /\ n(y).} 

If the interpretation of the constraint is determined by the standard struc
ture Nat, with the set f:l of natural numbers as universe, then we have that 
Cornp(Ni) \Xl Comp(N2) FNat -ip, while for no natural n we will have that 
[Comp(N1)n] d:l [Comp(N2)n] FNat -ip. This shows the need of extending the 
extend the structure Nat. Further, in our opinion, p should not be considered 
false in the semantics of N 1 Efl N2: firstly because if we take any non-trivial 
extension Nat' of Nat, Comp(N1) Efl Comp(N2) ff:Nat' •p, so the falsehood of 
p depends in a way from the limits of the universe of Nat, and, secondly, be
cause the falsehood of p is in any case not computable (one would need w + 1 
computation steps in order to calculate it). 

5 Conclusions 

In thb paper we propose a semantics for first order programs which is compos
itional with respect to the$ (module composition) operator. This semantics 
ia built via a first-order unfolding operator and allows to characterize ( com
positionally) the set of logical consequences of the module in three valued 
logics. Further, we have shown how our results may be applied to modular 
normal programs and normal CLP. The semantics we have proposed may 
be regarded as a compositional counterpart of Kunen's semantics for normal 
programs [17] and its first-order version due to Sato [27]. 

Another recent proposal for a compositional semantics for logic programs 
is the one of G. Ferrand and A. Lallouet [9]. In this paper, Ferrand and Lal
louet propose two compositional semantics, one based on Fitting semantics 
and one based on well-founded semantics. The notion of program unit they 
use is similar to the notion of (open) module. The differences between their 
approach and ours stem mostly from the kind of models that are considered. 
111 both Fitting semantics and well-founded semantics for normal logic pro
gram;;, interpretations are only considered over a fixed universe (typically, 
the Herbrand universe of the program). As a result, these ;;emantics cannot 
be axiomatiied within first-order logic;;. Consequently, - and we think this is 
even more important - these ;;emantics are in general noncomputable (they 
may require more than w iterations in order to be built). In contrast, our 
semantics for modular normaJ and first-order logic programs is based upon 
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arbitrary three-valued models and characterized by a countably infinite se
quence of approximations, and is thus recursively enumerable. 

In [21] Maher presents a transformation system for normal programs with 
respect to a compositional version of the perfect model semantics, which is 
defined in the same paper. From the point of view of modularity the main 
difference between this paper and (21] is that in (21] modules are also required 
to have a hierarchical calling pattern. For instance mutual recursion among 
modules is prohibited (this can be seen as a consequence of the fact that 
the Perfect Model Semantics itself requires the program to be stratified). 
From the purely semantics point of view the differences between this paper 
and [21] may be assimilated to the differences between the perfect model 
semantics and Kunen's semantics (the first is based on two-valued logics, 
imposes some syntactic restriction on the syntax of modules (stratification, 
or local stratification), and, in particular, it is usually not computable). 
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