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Fundamentals of Partial Modal Logic

JaN JASPARS AND Erias THIJSSE

1 Introduction

This chapter gives a picture of the happy marriage of partial and modal
logic. Rather than presenting a survey of the entire field!, we focus on one
type of partial modal logic. Here the models are the usual possible worlds
structures (also known as Kripke models) where only the valuation function
is partial. Validity can be characterized as relative truth. This paradigm
is perhaps the most obvious way to combine the ideas of partiality and
modality; most other approaches are variants of the one we are about to
discuss. This style of partial modal logic is in our view perfectly suited
for a whole range of applications. It should be noticed, however, that
although only one way to do partial modal logic, our logic is still as flexible
as normal modal logic, allowing for many different systems such as the
“partial” counterparts of K, S4 and S5.

Partiality and modality compared

The contributions of Langholm and Meyer and Van Der Hoek (this volume,
Chapters 1 and 3, respectively), provide sufficient motivation for the two
relevant phenomena: partiality and modality. We now highlight some of
the resemblances and differences between these aspects.

Partiality and modality express two different dimensions of uncertainty
with respect to a given piece of information. Partiality, the idea of not
giving a (classical) truth value to every proposition, is at least different
from modality in that it may not be reflected in the language: standard
logical languages such as that of predicate calculus may be given a partial
interpretation. So the basic inspiration for partial logic is semantic. On

1See the historical notes at the end for bibliographical information.
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FIGURE 1 Partial model for Gip v q)

the other hand, modality, the idea of expressing the status of a proposition
as necessary or possible {or some combination thereof), can and should
be reflected in the logical language. Originally, modal logic was an en-
tirely syntactic marter (cf. Lewis 1918). Through the work of Stig Kanger,
Jaakko Hintikka and Saul Kripke in the late fifties, modal logic was finally
given a set-theoretic semantics, using the idea of possible worlds. Since the
language of partial logic has also been extended in order to deal with some
of its peculiarities (see e.g Langholm, Chapter 1), the difference between
“syntactic” modality and “semantic” partiality is more or less cancelled,
though it should be kept in mind that the basic motivation is different.
[Jne to the completeness results for elementary and modal logic, the
distinetion between syntax (deduction) and semantics (consequence) is,
in some sense, a superficial one. More essential is the difference on the
semantic level. Consider several cases of incomplete information:

Example 1.1 Assume you know p. but you don’t know anything about
4. Then a very sunple model verifving this situation is the one in which
only p is true: E;ﬂ, Indeed the partial model adequately represents the
information contained in the non-modal formula p.

Example 1.2 Next supposc you know ‘pVv¢’, without knowing p or know-
ing g. For example, vou have been told that either Pat or Sue will come to
your party. but not which of the two. A propositional model such as Lp1 or
q | now does not fit the situation, and in fact it can easily be shown that no
such model exists: every propositional model that verifies p v ¢ either ver-
ifies p or verifies ¢, and therefore would imply too much knowledge. Here
a Kripke model is called for, see figure 1.

These examples might indicate that partiality and modality are appro-
priate in distinct circumstances, but do not provide suflicient motivation
for combining the two into one single system. Perhaps even the modal
stance is the more general one?

Why combine partiality and modality?
It is true that the knowledge contained in example 1.1 conld also be modeled
1 a possible world structure such as in Figure 2,

Yet it should be noted at this point that the two structures do not really
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FIGURE 2 Partial Kripke model for p

model the same thing: the propositional structure models the plain
informalion p, the above possible world structure the agent’s knowledge
0ip. Apart from the gap between a simple proposition and the knowledge
chereof, and differences of propositional theory (for example, whereas the
latter model verifies ~pV ¢, the former does not) the distinction is relatively
harmless in the present case. But in general there is a clear difference
botween the two. This is not only clear from our second example, but
particularly in cases where the two are compared (e.g. in Op = p), when
some form of introspection is required (e.g. Op = 0O0p), and in cases
involving several agents (e.g. 7,0,p).

Still, this only proves the need for modal logic. Why partialize it? There
are some very good reasons for doing so:

Naturalness We believe the partial approach to be much more intuitive,
not only in its basic elements (partial worlds as mental reconstruc-
tions of the real world), but also in its behavior with respect to differ-
ent phenomena. Partial Kripke-style semantics has been proposed for
logic programming (see Przymusinski 1989 and Gelfond 1992), where
a natural interpretation is provided for logic programs with explicit
negation (Pearce and Wagner 1990) and disjunction (Minker 1982).
See also. Busch’s contribution in Chapter 2 of this volune, where
both three-valued and intuitionistic logic are used as a basis for logic
programming semanties.

Efficiency Classical possible world semantics leads to a combinatorial ex-
plosion: the less one kuows, the bigger the model. For example, com-
plete ignorance of n propositional variables leads to at least 2" differ-
ent worlds needed for a model that only represents what one knows.
See Thijsse (1992) for a study of partial models that characterize
a certain amount of knowledge In addition, we refer to Levesque
(1981) and Lakemeyer (1987) for tractable reasoning in other partial
modal logics.

Flexibility Addition of (consistent) information can be accounted for in
two ways: elimination of possible worlds and extension of proposi-
tional valuation. (see Jaspars 1991).

Adequacy Although classical and partial modal logic are similar to some
extent, there are some interesting differences regarding the deductive
systems. For a number of applications, such as natural langnage
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semantics {cf. Barwise 1981 and Muskens 1995) and awareness logic
(see Thijsse, Chapter 8 of this volume), these differences make partial
semantics preferable.

Partial and classical logic compared

Though quite similar to the modal system K, the partial modal logic M
presented here is different in a number of ways.

Perhaps the most cssential difference is that M has (almost) no vahd
formulas. This can be illustrated using the classical tautology p v —p:
tertiuwm non datur does not hold, since the formula is not true when p is
undefined. As we will see, it can easily be shown that hardly any formula
is always true, for the “empty” valuation, which leaves all propositional
variables undefined, also produces a gap for every formula in some standard
(modal} language.

Now where is the similarity between classical and partial logic? Notice
that though (standard) formulas are not valid, inference rules may still
apply. TFor cxample, the rule exr contradictione sequitur quodlibet {also
known as ‘ex falso’) ¢ A =¢ = 10 still holds: if the premise is true, so is
the consequent (for this premise cannot be triue). Indeed most classical
rules transfer to partial (modal) logic. One noticeable exception is the
riule of excluded middle: ¥ # ¢ v —¢. Since the De Morgan property
={@ A =p) ¢ @V~ is valid, all this implies that contraposition does not
hold.? Although this is a major departure from classical logic, we do not
see any a priori reason why contraposition should be a necessary ingredient
of a logical system.

The asymmetry in the inferential system, revealed by the abseuce of
contraposition, has the effect that contraposition has to be explicitly stated
in each case where it applies. For example, to formulate the (epistemic)
logic of pre-ordered (reflexive + transitive) frames, the basic rule system
M has to be extended with the rules:

(T) Op = . ¢ = Cp
(4) O¢ = OUyg, OOp = Op.

Such so-called frame completeness therefore usually involves pairs of
dual rules. Exceptions are cx falso, of course, and self-dual rules such
as D¢ = Oy (D) and OO¢ = 0O0yp (G), which appear as single rules.
By turning to the weaker notion of model completeness, we will show in
section 5 how to capture other single rules, such as Ogp = .

For several applications, such as modelling explicit knowledge and be-
lief, absence of contraposition is an advantage of partial modal logic. com-
pared with classical modal logic. If Oy is interpreted as ‘knowing that ',
we would like to have the veridicality principle Op = . saying that all
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one (really) knows is true. Nevertheless p = g seems 10 be 160 strong in
such an epistemic interpretation of modal operators. The latter rule says
that anvthing which is true is considered possible by every agent. It wimid
require full awareness of such agents to reason about the pc\mi%)ihty of ob-
jective truths. Without this strong requirement. which clearly does ‘nut
hold for conscious knowledge. ¢ = &y is uo longer a tenable assumption.
Before we return to this ssue, we will define the language. semantics and
inference system for partial modal logic.

2 Syntax and semantics

2.1 The modal language
As noticed in the introduction. the core language is just the usual one for

modal logic. Let P be a {denumerable) set of propositional variables, and

T, -, 4.0 the logical constants. The language L, the set of well-formed
formulas over this vocabulary, is then defined recursively by

e T e[l

s PCL

o il pe Lthen ~p e Land Op € L

o if puwe Lthen{grpiel
s no other elements occur in £ than these produced by the clauses

above
Or, in concise BNE-style: (where p € 2y
pa=Tiplow O e h )

This is the basic language, which can be extended in two ways: (i} with
symbols that serve as abbreviations and (i} with new symbols. As for {1},
the following definitions apply:

-

&_4,4

D

W gj‘ o= q(*«’: A=)

e o @
Ot

P o= =~y

As for (ii), the language can be extended with the exclusion negation ~
resulting in £.. In addition. constants may be removed from the language,
for example, removing T results in £ 1.

Finally, the fullowing notation will be useful. The conjunction (dis-
junction) over all elements of a finite set I' will be written as MT WL
respectively): MA@ = T and \W @ = L. If cis a unary logical constant (for
example —, 03, 0) then o = {cx g € [fand i T ={¢|cpel}

2.2 Partial models and their properties

In partial modal semanties one often speaks of ‘partial worlds’ (or ‘coherent
e ety wavher than of nossible worlds: the valuation i supnoged to
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semantics (cf. Barwise 1981 and Muskens 1995) and awareness logic
(see Thijsse, Chapter 8 of this volume), these differences make partial
semantics preferable.

Partial and classical logic compared

Though quite similar to the modal system K, the partial modal logic M
presented here is different in a number of ways.

Perhaps the most essential difference is that M has (almost) no valid
formulas. This can be illustrated using the classical taumlugj' PV oop
tertium non daetur does not hold, since the formula is not true when p is
undefined. As we will see, it can easily be shown that hardly any formula
is always true, for the “empty” valuation, which leaves all propositioual
variables undefined, also produces a gap for every formula in some standard
(modal} language.

Now where is the similarity between classical and partial logic? Notice
that though (standard) formulas are not valid, inference rules may still
apply. For example, the rule ex contradictione sequitur quodbibet {also
known as ‘ex falso’) ¢ 2 —¢ => 7 still holds: if the premise is true. so is
the consequent {for this premise cannot be true). Indeed most classical
rules transfer to partial {modal) logic. One noticeable exception is the
rule of excluded middle: v # » v =¢. Since the De Morgan property
(g A=)« @V ~yp is valid, all this implies that contraposition does not
hold.? Although this is a major departure from classical logic, we do not
see any a prior: reason why contraposition should be a necessary ingredient
of a logical system.

The asymmetry in the inferential system, revealed by the absence of
contraposition, has the effect that contraposition has to be explicitly stated
in each case where it applies. For example, to formulate the (epistemic)
logic of pre-ordered (reflexive + transitive) frames, the basic rule system
M has to be extended with the rules:

(T) Do = ¢, ¢ = Oy
(4) Og = O0¢, O0p = Op.

Such so-called frame completeness therefore usually involves pairs of
dual rules. Exceptions are ex falso, of course, and self-dual rules such
as Og = Cy¢ (D) and O0¢ = O%¢ (G), which appear as single rules.
By turning to the weaker notion of model completeness, we will show in
section 5 how to capture other single rules, such as Og = .

For several applications, such as modelling explicit knowledge and be-
lief, absence of contraposition is an advantage of partial modal logic. com-
pared with classical modal logic. If Dy is interpreted as ‘knowing that ',
we would like to have the veridicality principle Oy = . saying that all

2Gee Blamey (1986). See also Langholm, Chapter 1 of this volume.
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one (really) knows is true. Nevertheless ¢ = Oy seems to be too strong in
such an epistemic interpreration of modal operators. The latter rule says
that anything which is true is cousidered possible by every agent. It would
require full awareness of such agents to reason about the pussibilitv of ob-
jective truths. Without this stropg requirement, which clearly does not
hold for conscious knowledge, ¢ = Oy 1s no longer a tenable assumption.
Before we return to this issue, we will define the language. semantics and
inference system for partial modal logic.

2 Syntax and semantics

2.1 The modal language
As noticed in the introduction, the core language is just the usual one for
modal logic. Let P be a {denumerable) set of propositional variables, and
T, =, A, 0 the logical constants. The language L. the set of well-formed
formulas over this vocabulary, is then defined recursively by:

e T &L
PCL
e if pe L then ~p € Land Oy € L
o if ;b € Lthen (y A W) €L
e no other elements occur in £ than those produced by the clauses

above
Or, in concise RNE-style: (where p € P)
)

A

=T ipl=|O¢ iy Ay
This is the basic language, which can be extended in two ways: {1} with
symbols that serve as abbreviations and (ii} with new symbols. As for {i).
the following definitions apply:

o L= 7

o p Vi = s Ay

e Ty o= =0y
As for (ii), the language can be extended with the exclusion negation ~,
resulting in £... In addition. constants may be removed from the language,
for example, removing T results in £ 7.

Finally, the following notation will be useful. The conjunction (dis-
junction) over all elements of a finite set I' will be written as MT W,
respectively); M@= T and W@ = L. If ¢ is a unary logical constant (for
example —, 12, ©) then oI = {cy |y € I'} and = {plcgel}

2.2 Partial models and their properties

In partial modal semantics one often speaks of ‘partial worlds” (or ‘coherent
situations’) rather than of possible worlds: the valuation is supposed to
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maunifest itself in the worlds. However, we usually refer to these indices
as ‘worlds’ stmpliciter. As in classical possible world semantics. a partig]
Kripke model M is a triple (W, R, V'), where W is the set of worlds. R ¢
W x W an accessibility relation between worlds, and the valuation V i
now a partial function from P x W into the set of classical truth values
{0,1}. The graph (W, R) is called the frame of the model.

Since a formula may be neither true nor false, the meaning of logical
constants cannot be spelled out by truth conditions alone, and falsity cond-
tions have to be added: apart from the restriction of coherence. truth and
falsity are independent. Here the partial truth relation between worlds and
formulas is denoted by [=. the falsity relation by = .* The truth and falsity
conditions for L are recursively defined by: (for arbitrary M = (W, R, V),
weW,peP,and p,w € L)

Mwp T

MwkEpe Vipuw) =1

M,ow b —p e M w= ¢

Muwk gry e Mowtpand M ow = w
MuwA¢grve MwsporMuw-uw

M ow k= Op < Yo wHo = Mo b=
Mow= Of « “v:-wRvand M v - ¢

AI,iL'-A T
Muw=gpeVipw =0
MwAd-peMuwlkyg

From these Tarskian conditions the truth and falsity clauses for the other
connectives immediately follow.

M, u'bﬁ 1

Mulevee MwEgorMukgEd
Muw= gvie Mw=gand Mow=p

Muwhk ©pe»Jv:wRvand Mv = ¢
Mw=<CpeJv:wRr= Muv-y

Moaw= L

M wverifies (or satisfies, supports) ¢ in w whenever M, w b= . M falsifies
(or rejects) o in w whenever M, w = v When M, w /- ¢ and M.w A ».
0 is said to be undefined on M in w. If I' € £ then M, w |= I’ means that
foral vy I': M, w .

A number of observations may help to gain some insight into this matter.
Semantic properties

First, notice that the given form of partial semantics is a correct gener-
alization of classical semantics, since a partial model is a genuine Kripke
model when V is a total function.

Observation 2.1 (Classicality) If M = (W, R, V) s bivalent, 1.6. V : P«
W — {01}, then Mw <> M, wA ¢ forall g € L.

(The proof is by induction on the structure of .}

3 Alternative notations for = and = are: =" and =", b=7 and f=p, and | and = .
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FIGURE 3 Propositional extension vs accessibility

One property for classical models is even transferred to the given partial
semantics: the assignment of truth or falsity to a formula still takes place
consistently.

Observation 2.2 (Coherence} Forno M w, o M w b= ¢ and M ow = ¢

‘Lo avoid the impression that partial logic is not really that muach differ-
ent from classical logic, we note a simple but general case of undefinedness:

Observation 2.3 (Partiality) There s a model Al and a world we such
that for all formulas ¢ € L_v: M wg F o and Mg A ¢

Proof Consider a “no information” model with a single (self-accessible)
empty world: let W = {wq}, woRwy and V(p, wa} be undefined for all
p & P. The observation then follows by induction on the strueture of ¢ =

So there are no so-called free formulas (built up from the given constants.
except for T) which are valid. Iu other words, all tautologies essentially
derive from 7

A final important property of partial semantics is related to extension
of information. ie. further specification of truth values for propositional
variables. So. we might introduce a relation of {propositional) extension
< by wyy < whyy & Vip,w') = Vip,w) for p € T such that Vip.w) s
defined. This definition, however, does not suit the modal language very
well, for we would like this extension to hold for arbitrarv modal formulas
(so-called persistence.)

To see that < does not produce the desired persistence, suppose for
simplicity's sake that we have a model in which w = Tp. w < w' and
there is only one v such that wRv. So v = p. Then for any ¢’ which 15
R-accessible from w', v’ k= p should hold, but nothing forces v < ¢’ there
is no compelling reason why the relations in the diagram of Figure 3 should
commmte.

One way to solve this is to strengthen the relation of extension. bor
example, we may define a global extension of one model to ancther based on
the same frame. Le., if M = (W R V), M = (W R V") and wy; < wy,
for all w € W, then by induction for all formulas ¢:
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FIGURE 4 Bisimulation diagram

1

MwlEg= M sky and Mw= ¢= M s4y¢

A more flexible solution, also useful for mnternal persistence which fails
in the above counter-example, is to move to the more subtle relation of
bisimulation extension. This notion is in between the entirely local propo-
sitional extension and the fully global extension. The intermediate notion
relates two worlds if their respective (n-step) alternatives are related by
propositional extension. To be more precise, we reintroduce the notion of
bisimulation.

Definition 2.1 A relation Z C W x W' is a bistmulation (or ‘zigzag con-
nection’) between two frames (W, R} and (W', R') iff

1. (wZw' and whv) = ' : (vZv" and w'R'v') for all w.v € W, w e W’
2. (wZu' and w'R'v') = Jv: (vZv" and wRo) forallw € W w',v' € W’

This definition may be clarified by reformulating the conditions in rela-
tional algebra. If the relational composition Ry e Ry denotes {{zx.y) | 32 :
R,z and zRay}, and the reversal Z7 = {{y,z) | (z,y) € Z}, then the
above conditions amount to: Z~" e RC R eZ and Ze R C Re Z. The
back-and-forth nature of bisimulation can be seen as two ways to draw the
arrows in the diagram of Figure 4.

Bisimulation or modal extension can now be structurally defined.

Definition 2.2 (Modal extension C) Let M = (W,R,V) and M' =
(W', R, V') be partial Kripke models. Then wy C wiy, (ie. win M
is extended to w' in M’') iff there exists a bisimulation Z between (W, R)
and (W', R') such that wZw’ and

vee W' c W ivZe' = vy < vy

When M = M', wy, C w), is written as w L u’.
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Observation 2.4 In general, C w5 a preorder, e a veflerive and transitive
relation, on the class of model-world pairs. This follows from three facts:
the wdentity relation rZy < = y 15 a bisvmulation on M, the composition
of two hisimulations s a histmulation. and < 1s a presrder. Consequently,
for a gwen model M, Tag 15 a preorder on 1V

Now for bistmulation extension we have the desired preservation pruperty

Observation 2.5 (Persistence) Ifw,, T wy, then M.ouw = &= M uw' =
o forall peL?
{As usual in partial logic. the proof proceeds by simuitaneous nduction
over the claim above together with M, w3 ¢ = M w' = 2

Without going very deeply into this matter. we natice that bisimulations
between models. where Z is a frame-bisimulation such that wZw' implies
Viw) = Viw'). yield an inportant definability result. Bisimulation invart-
ance is considered 1o be the characteristic of the modal language. compared
to the fragment of the first order language which contamns translations of
modal formulas, based on the standard truth and falsity couditions. The
latter translations., and therefore the definability result. also have prac-
tical significance. For example, a similar formalization of the semantic
meta-language has been used in one of the first studies of knowledge in al
Moore (1950},

Logical consequence

So far, we have only defined the models and their properties, but not the
notion of logical consequence. The notion of valid consequence that we
consider particularly intuitive and useful for applications is what is calied
strong ronsequence. which amounts to relative verification {(of one of the
conclusions, given the truth of the premises). In general the class of relevant
models matters. Let M be the class of partial kripke models. and C be an
arbitrary subclass of M.

Definition 2.3 (Strong consequence &=} 1" =¢ A iff for all M & C and w
in M: if M.w =1 then M, w }= 8 for some 4 € A

Here are a nnmber of typical examples, some of which have already been
mentioned in the introduction: (by default, Fp is written as =)

@k T (= T for short) and = 07, but = &7

®

o o, oy b= U, but o B U,

o O(p A =yg) b w, but ¢ OV -w)

o D ADY F O(p Av) and Slg V) b= Gp v Oy
e Op A Su k= Cle Ay} and O{g VoY) b= Op v Oy

4The converse resuit can also be shown when the maodels are finite of Thijsse (1992}
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3 Derivation

We will use a sequential formulation for deduction in partial modal logic.
The derivability relation & is a relation between two sets of formulas. T+ A
denotes that A is derivable from I'. Such an expression is called a sequent ®

3.1 Sequential rules for M

The hasic logic corresponding to strong consequence on arbitrary partial
Kripke models is called M. System M is triggered by the following sequen-
tial rules. The only structural rules are the START rule and two mounotonic-
ity rules, L-MON and R-MON. Furthermore the CUT rule is present.

I'mA#@ T FA (START)

r-A 1rcr 'cA ACA .
= (L-MON) T AT (R-MON)

I'Hp. A Tk A
' A
As usual. the introduction rules for the logical constants are not only sep-
arated into left and right rules, but due to partiality now also into TRUE
and FALSE rules.

(cury ®

:
|
R
|
|

T+ 7. A (R-TRUE 1)

[+ e A

T (srg) A& (L-FALSE /)

Uk -4
{__K?JF, -0 - ~CA

(L-FALSE 1)

e A {L-TRVE —)
_Ler s ALS Y- .
. p- A (L-FALSE =) FFoop A~ (R-FALSE =)
'y, = A ' A Ty, A .
PRl . {1- EA . -TRU .
Fzrur A (L-TRUE ~) T,/ oA (R-TRUE £}
F—ptA T.-¢g-A e —p, . A

W {R-FALSE /)

I'=¢.=A

—ﬁ—f:m (R-TRUE )

FALSE rules have a negation preceding the constant introduced. So
every constant may have four sequential rules. Yet not all such rules are
present: sometimes such absence hints at an essential departure of partial

%Te reduce the number of structural rules, the arguments of & are taken to be sets

rather than sequences.

Sinstead of ' {p} and T o A we write I', £ and [, A respectively.
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from classical logic: sometimes a {(weaker) rule may be derivable, e.g. from
the structural rules.

Definition 3.1 A set of formulas A is M-dermvable from another set of
formulas I’ whenever I' + A, following a finite number of applications of
(only) the rules abave. The corresponding relation 1s denoted as I =pp A,

Theorem 3.2 (Soundness of M) I'tag A = Ty A

Proof. We have to show that the rules of M preserve valid consequence.
To illustrate the procedure we check the R-TRUE U rude. Let T gy 2, —AL
This says that all worlds which support the premises {1.e I') verify ¢ or
falsify at least one of the elements of A, Suppose that M/ = (W R V)
contains a world w € W which supports T/ So all v € W which are
accessible from w support all elements of ' Because I =y ¢ —A. we
know that all accessible v must support . or there exists an accessible v
which falsifies some element of A. In the former case we obtain M, &= D
in the latter M, u }= —1368 for some 6 € A Hence O = O ~0A -

3.2 Some properties of M
The given sequent system clearly marks the difference with clussical modal
logic. This boils down to the absence of the R-TRUE ~-rule

Lok A

e = A
Consequently, the law of excluded middle {(tertium non datur} does not
hold: ¥m « v —. Nevertheless there still are a lor of classieally vahd
principles. such as De Morgan's laws. distributivity. associativity, commu-
tativity. absorption and idempotence. Soume mmportant principles which
will be used in this chapter are listed in Observation 3.1

Observation 3.1

o I'Fag A and A finte = T irpg WA

o I'p A and | finite = MF M A

e [y A = UL Cprpm CA /L-TRUE <}

e Iy A = O by Op.OA

e Sl

o~ OT
The transformation of L-FALSE O into L-TRUE <& will also be nsed fre-
quently. Recall that some sequent rules are not included in the list of rules
for M because thev are redundant: for example (1L-FaLsE T30, -T = A is
derivable (from R-TRUE T and L-TRUE —).

Another important property of M is its finiteness. This leads to what
we will call the finiteness property throughout this chapter.
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Observation 3.2 (Finiteness property) If I'tag A then there crist Jinite
subsets I' C I and A" € A such that T’ M A

Since M-derivability is defined by making only a finite number of derivation
steps, this can be proved by induction on the length of derivations.

3.3 Another sequential format

Instead of separating the introduction rules into TRUE and FALSE rules,
we could also define two derivation relations, or use the four-place noya.
tion used by Langholm in Chapter 1 of this volume. In addirtion to tru'e
premises and true consequences, Langholm’s quadrants couta:n two posi-
tions indicating falsity of other premises and consequences. 5o a sequent
I-A+F % -0 (in our notation) is reformulated as

ris
PR

The obvious effect of the four-place notation is that the extra n’fagat.ir.ms
featuring in our FALSE-rules are eliminated in the quadr'ant nrnt.auor} ‘ The
price to pay is that in the latter notation one has to specify more positions.

while departing from the traditional two-place notacion.. .
An inference rule in the quadrant notation has the following format:

vy
I'i |5, rn!Eﬂ_:‘} l;:.
__Ax ‘BTand...and An?en A'iH

In our sequential format the rule is expressed as:
r;,’Ax g };1,‘*@1 I‘n.“An"’ Zn.-@n -
I =AT+ 5, -6
For example, L-FALSE [J corresponds to the following four-place inference

rule;
r iz or | ox
Sele CA.Op DO

The L-TRUE - can even be incorporated as a structural rule:
T %, - T [Sa
AT e AT e
An advantage of this four-place variant is that the other introduction
rules of system M show a njce symmetry. For example, L-TRLE A and
R-FALSFE /; reappear as “north-west” and “south-east” rules:

- s i r Z
Teov|x Dpry | ! b2 S
:; 36 = A e and Ale v T A B pnp
It is a matter of taste which notation is preferable— we will stick to the
explicit TRUE-FALSE distinction in sequential rules.
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4 Saturation, completeness and decidability

In classical logic the notion of a marnimally consistent set ig an essential
ingredient of Henkin-style completeness proafs. This s also the case for
classical moda] logic. Such a set of formulas is consistent with respect 1o
the underlying logic. and it is marimal in the sense that it does not have
consistent extensions. Maximally consistent sets enable us to get 5 grip on
the semantic units, such as worlds i modal logic or Interpretations and
assigniments in predicate logic. In other words, maximally consistent sers
relate syntax and semantics. Completeness is then derived by making two
steps.

One of these Steps guarantees thar » maximally consistent ser verifies
the formulas which are contained by it. This ensures that such a set does
indeed behave like a world. This resuit is called the truth lemma.

The other step, which is normally made first, is alted the Lindenbaym
Lemma, and states that every consistent set can be extended to a maxi.
mally consistent set. The proof of this resyir proceeds by adding as muych
information to a given COBSIStENT Se1 as possible. Le without 10siny consis-
tency

Then the penera) strategy of the Henkin cutnpleteness proof is as follow s
In order to show thar T By T v We prove that I't oo o By
So assume that ¥ 18 not derivable from I'. Then. still in classical logic,
U'Ud=p} is consistent. By the Lindenbaum lemma we know that there
exists a maximally cousistent extension of [' {~¢} say =, The truth
lemma tells us that 1* verifies all elements of I bt not ¥. Therefore I'*.
interpreted as a world. shows that o is not a valid consequence of |

Although the general structure of the Henkin completeness proof for
partial logic is the same, there are a number of differences due to the
absence of tertium non datur. For example, if Ut/ - they T {~¢} may be
inconsistent. To wit P qv g bm {p, “lgv-gi}is ineonsistent Therefore
we need a generalization of the Lindenbaum Lemma: if I'% o then T ean
be extended 1o a canonical set I'* which does Lot include 2. Now what
precisely are the canonical sets of partial logic”

4.1 Saturated sets

In partial logic maximal consistency is not the correct characteristic of
the syntactic counterparts of worlds. In fact we have to be more liberal in
accepting sets of formulas as valuations or worlds It could be the case thar
a formula  is neither verified nor falsified. So., if we want t,, imitate such
a phenomenon by means of sets of formuias, then these canonical sets do
not have to bhe maximally consistent. The following definition of saturated
Sets gives the correct syntactic analogue of partial worlds.

Definition 4.1 Let § be & sequential derivation system for a language (.



.

e A set of formulas [ C L issaid to be S-saturated iff for all A © L
1'%5!.\:>Aﬂ1“%®,
o A set of formulas [ C L is said 1o be S-consistent iff s @

It turns out that in classical logic gaturafion boils down to maximal con-
sistency, SO ‘saturation’ generalizes ‘maximal consistency’. Before giving a
reformulation of the notion of *saturated set’, we note that consistency can
be expressed i many different ways. for example:

Observation 4.1 If a sequent systemn § contans R=-MON and uses language
L. then [ C L1 consistent ff 'Y A for some & & L. If S extends M
then T 15 consistent «» 1/ L L' Ay

An alternative formulation of gaturated sets nses a combination of perhaps
more familiar copeepts.
e I is a theory (deduutively closed) it T+ % implies ¢ € U for all v
o I"is prime (of 'disjuucti(m—satummd') o for all ¢ and v it [V
then I oy or T 4.

Now notice that the three smallest cardinalities for A in the definition of
saturated sets lead to three characteristic properties. Let T be saturated
If #A -~ 0, ie A is empty. then @l = shows 1’ g B ie s consistent.
To see that any saturated ' 15 a theory, let ' ™ then I' 0 [p} # 050
g e I (in thic case #A = 1). Finally, T vy then I' b 2 0 thus
Inigv} # 0,50 Loty el e T —ygor I+ w. and therefore [is
prime (here HA =2) To suminarize. saturated set is & consistent prime
theory. The CONVErse also holds. for if T is a consistent prime theory then
I+ A implies (by consistency and the finitencss property) that there are
Bre .. 0n € A such that I'+ Sy V(B2 v oY 8.)- ). BY induction L'+ &
for some 1 < Ti and s0 8, € T

Observation 4.2 For any scquent system S that has the finteness prop:
erty and i1 which the conclusions functron as & disjunction, a set s satu-
rated iff it 15 a consistent prime theory.

Sarurated sets are smaller than (or equal t0) maximally cunsistent sets.
Indeed the construction of a masamally consistent set out of a given con-
sistent set, as in the proof of the Lindenbaum Lemma for classical logic,
nsnally does not ipvolve limitatious on shuilding-materials” . Maximal-
ity is just the final stage of piling up arbitrary formulas, while preserving
consistency. 1D partial logic the construction of saturated sets is often
more restricted. As we will see in the completeness proof for M. satnrated
sets can be built into another set. The generalization of the Lindenbaum
Lemma which we arc about Lo give. guarantees a successful construction
whenever this upper bound is rich enough to intersect all sequences which

e e

JE—
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are derivable from a given set. Here is the formal {mplementation of this
idea.

Definition 4.2 AC LS called an S-saturato” of aset T C L for all
AC L F#’*SA%A”‘A%@,

Observation 4.3 Note that whenever a set 1 has an §.saturator it must be

;

§.consistent. I/ B Also note that a set s contained m all its saturators.

The reader should keep in mind that a saturatet does not have 10 be con-
sistent itself, and thus need not be saturated either. A saturator merely
helps to generate a saturated expansion.

The next result formally expresses the Lindenbaum-like result which we
were looking for
Lemma 4.3 (Generalized Lindenbaum Lemma, GLL) Let S be a sequen-
tial derwvation system int which sequences are taken to be sets Suppose S
contaims the structural rules GTART, L-MON. Rr-MON and CUT and salis-
fies the finiteniess property I[fAC Lo an §.saturator of T C L. then A
contains an §.saturated set ™ such that | S G
Proof. Let {fi}icw Dean ennmeration of A such that every element of A
Geeurs infinitely many times. We define a sequence {1, }oo o such that A s
a saturatur of vach T, The it of {0 s is the desired G-sarurated .

o = I
T, ulyat if for all finite & oL
ru~1 = Yn-'wr‘-vik‘SA-"}A;—"-\,‘é'@
1. otherwise.
r* = U Tn .

As an jmmediate consequence of this definition. notice that
(HTLrsd then A A F O fer Al finite A O

By the finiteness property this amounts to A heing a saturator of each Ty
and so, by Observation 43, T, CA and therefore <A

To establish the saturation of [T we prove by induction on the cardi-
pality of ATTA that

21 Ters B and A is finite = AT # 8 for all k € w.

s IfAMA= ? then Tk Vs A, hecause of (11 Se (2} holds trivially for
the basic step.

e Suppose {2) hotds for all f[inite A such that AN =0 {the
induction hypothesis). Now let Abea finite set with #{A0 Ay=n+l
and {¥k- o Pkas, ) DeanR enumeration of A A such rhat k< Kk
for all i € {1.....n+ 1}. The enumeration exists because all these
formulas appear infinitely many times in fob- ™



126 / JAN JASPARS AND Evrias THLISSE

immediately have the desired result. So. suppose that o, 28
Then there exists a finite set A’ C £ such that

iy ok Fs A and A M A =0
The cuT-rule entails
Doy Tebs & A~ {on, b

we derive
Uiy Fs AL A = {on, -

The induction hypothesis can be applied, because

#UA VA ~{on DA = #{o ek ) =0

Thus (A" UA — {gk.., )T # B Because I'" T A, we obtain

(A UA ~{pu, NI C {ee,. .. ¢k, . and therefore there is a

wr, €™ for some 1 € {1,...,n}. So AnT* #£ 0.

Because of the finiteness property of the derivation system S. we may
conclude that if T'* 4 ¥ then there exist finite subsets 1" € ' and 57 € ¥
such that T’ by ¥/, Thus. according to the definition of I'", there exists an
n € wsuch that T, Fg ¥, and because of (2] we conclude X' 1™ # @, and
therefore LT 4§ O
GLL turns out to be extremely useful in proving completeness results on the
basis of canonical Henkin models. such as for M. The upper bound method
also applies to completeness proofs for extensions of M, e.g. constructive
logic with extra non-persistent connectives.

An important corollary of GLL is the (generalized) saturation lemma.
which is in fact equivalent to GLL in every sequential system that contains
R-MON.

ntl

E

Because ', € T,

el

Corollary 4.4 (Saturation lemma) If S is a derwalional system as in
GLL and T %s A, then there exists an S-saturated superset I'* of T such
that " N A =@

Proof. Notice that T i/ A iffl A® = L — A is a saturator of I'. For A® is not
asaturator of P& X : I Y and ENA“ =0 e 38 IF'-Zand X C A &
{rR-mON) T~ AL

So, if I' ¥s A then GLL shows that there is a saturated I'" such that
I € I'* C A® and therefore [* 7 A = 0. Conversely, assume the saturation
lemma and A to be a saturator of I'. Then by the above remark IT' 7 A°, so
there is a saturated I'* D I' such that [N A° = @, L.e. ['* C A 0

One useful case of the saturation lemma is when A is a singleton set. If a
formula ¢ € £ is not S-derivable from a set of assumptions I', then there
exists a saturated extension of I' that does not contain ¢. In the following
section we will show how these lemmas help us to obtain completeness for
the partial system M.

P~
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4.2 Completeness

In classical modal logics the maximally consistent worlds are all put into
one Kripke model: the so-called canonical or Henkin model. This is essen-
tiallv what we will do with saturated sets in the case of partial modal logic.
Apart from the obvious deviation from the classical case for the definition
of the canonical valuation function. which now has to define both truth
and falsity of propositional variables. the definition of the canonical acces-
sibility relation is also different. In classical modal logic A is canonically
accessible from [ if 07T € A, or, equivalentiv if ©A C ' In partial logic
these conditions are not equivalent, vet both are required to arrive at an
accessible saturated set.

Definition 4.5 The M-canomcal model is the triple My = (Wa Ry
Vaq, where

Wiy is the set of all M-saturated sets
TARuA « T T CACS |
Vmip Dy =tlespcland Viulp. T}y =0 pel

The definition of Va ensures the basic step for the mductive proof of the
truth lemma. Ry that of the induction step for the intensional connective
r1. The definition of Ry explicitly states that z saturated set accessible
from T is contained in the upper bound © I The intuitive idea behind
this upper bound is the requirement that an accessible world should never
contain more wformation than what is determined as being possible by the
original world. GLL will ginde us whenever we luok for particular accessible
saturated sets m the truth lemma. The essence of proving completeness for
intensional partial systems on the basis of GLL often boils down o finding
a suitable saturator.

Since A © < 1 is not equivalent to 07 ' € A, we need both the upper
and the lower hound for canonical accessibility. Nevertheless. if only one
of these conditions holds. we can prove that there is a subset or superset
of A which is accessible from ' in the canonical model.

Lemma 4.6 Let I € Wy and & € Wi
If O T 2 A then there exists a A" C A such that Tl A"

If A < &°T then there exists a A" 3 A such that [ Hy A"

Proof Let I'|A € Wy, For the first implication assume 071 € A We
will show that A1 < T is an M-saturator of 17T, Then because of GLL
there is a A’ such that 07T € A" C A< T We will prove that for all
finite L C L

(O TrME=ESNANOTT#8
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The finiteness property of M then guarantees that A M &7 is an M-
saturator of 0T

Suppose O T =p X for finite . Because O T'C A and A € Wiy, we
certainly have X A # 0. We split ¥ into a A-part, and a non-A part:
O Thp Z--AXNA, and define 0 := \W/(X - A). Application of R-TRUE
0 and L-MON yields:

I'bpy Do, C(ANE).

Because I' € Wy, we obtain Oo € T or C(ANY)NA T £ @ The former
disjunct contradicts 1" C A, because 0 ¢ A (A € Wy). This means
the latter disjunct should hold. which is just a reformulation of the desired
conclusion in (3).

For the second implication assume that A € < I, We will show that
< Tis an M-saturator of O ' T'UA. and so by GLL there is a A’ such that
MTUACA COT.

Suppose 07T, A a0 2. By the finiteness property there exists a finite
A’ C A such that O T, Ay . So, if 6 = M\ A M entails O 1.0 g
3. L-TRUE € and 1.-MON entail
[, Gy OF.

Furthermore § € A, because A is M-saturated. Since A € ¢ T'. we have
OGS e, and so T by O, implying NG £ 8. 0

Observation 4.4 Note that the first result of the previous lemma also
holds whenever A is an M-saturator of O°T for I' € Wy The condi-
tion of the second result can analogously bc wenkened: lel T € Wy and
&1 be a saturator of A. These results also hold for all inferential exten-
sions S of M., where the canonical model for S, Mg s defined i the same
way as for M, but then restricted to the collection of S-saturated sets.

We now have the auxiliary results to give a relatively fast proof of the
truth lemma for system M.

Lemma 4.7 For all ¢ € £ and all M-saturated sets 1':
Mu,l'Eyve el and MmTTH oo —pel

Proof. The proof is by induction on the structure of ¢». The basic step
p € P is immediate by the definition of V. Since I' is deductively closed,
we know by R-TRUE T that T € I' and by Observation 1.1 that =T ¢ [’
which implies that the truth lemma also holds for the basic step » — 1.

The induction steps for the connectives — and A are also straightfor-
ward. Only the case of O is left. Assume the truth lemma to hold for ¢
and consider Og. There are four different cases.
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o First suppose Og & 1. The definition of Rag tells us that all A such
that I RpA contain . The induction hypothesis shows My A =
for any accessible set A, and therefore M. T = Uy

¢ Suppose Uy € I'. Clearly O T #am 9. by R-1TRUF T and L-MON. The
saturation lemma ensures the existence of an M-saturated set A such
that 0 7" C A and 2 ¢ A. Lemma 4.6 tells us that there exists an
M-saturated subset A’ of A such that TRy’ Clearly ¢ ¢ &) The
induction hypothesis entails Muy, A" £ 2, hence My T Dp.

e Suppose =1z ¢ I So for all A with I'ApmA that —¢ ¢ A By
the induction hypothesis Mpg, A # 2 for all such A, and therefore
1‘1M. I ?3 i,u},:,

s Finally, let =0y € [, thus ~p € O T Suppose 07T~z ayg ¥
By L-TRUE < and L-MON we have I' bpg ©¥. This implies that
e T #0 So & I is an M-saturator of 07T U {=}. Therefore
GLL ensures the existence of an M-saturated set A such that O [0
{=¢} © AT O thus TRMA and ~p € A So by the indnction

hypothesis My, A ¢, hence My, I = Uy

L

Theorem 4.8 (Completeness Mj The systern M s complete with respeet
to partial Kripke models. 16, TlEp A > TR A foralil. A C L

Proof. Suppose I /a1 A, The saturation lemma gives us an M-saturared
set Y such that I' € ¥ and A Y — @ Because of Lemma 4.7 My. ¥ ¥ o
for all 8 € A, and Mp. X = v for all v € T, and therefore I' g A -

4.3 Finite models

The decidability of a modal logic (i.e. of its consequence relation for 8-
nite sets} is mostly shown by proving the so-called finite model property
(FMDP) for this logic (see e.g. Hughes & Cresswell 19%4). This means that
every non-derivable finite sequence (‘non-sequent’. for short) has a finite
countermodel, 1.c. a model which shows the argnment to be invalid. The
combination of completeness and FMP establishes decidability.

The completeness proof of M in the previous section not only helps
to draw the last conclusion (decidability}), it also presents a way to gener-
ate finite countermodels. We only have to modify the coustrction of the
canonical model for M slightly., The (infinite} model Afyg is essentially a
countermodel for all non-sequents, whereas each finite countermodel wil
be constructed for just one non-sequent. The latter construction is possible
since we only have to consider a certain class of relevant formulas. If this
restricted class is (essentially) finite, this will result in a finite model. This
selection, or filtration in technical rerms, therefore depends on the set of
relevant formulas, the filtration set in our terminology. The universe of the
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finite countermodel will consist of subsets of the filtration set which are
saturated with respect to this filtration set.

Definition 4.9 Let S be a sequential derivation system for a language £,
and & C L.
e Aset ' C @ is S-saturated up to ¢ iff for all A C &
g A= ANT #0.
e AC Lisan S-saturator up to ® of ' C & iff for all A C &
Fs A= ANAL£D

Observation 4.5

o All S-saturated sets up to & are S-consistent.

o All S-consistent sets are S-saturated up to §.

e If O C & C Loand I C & s S-saturated up to ', then I' 01 @ 1
S-saturaled up to $.

So, in particular, all saturated sets are saturated np to its supersets. We
arrive at restricted forms of GLL. a saturation lemma and a completencss
theorem.

Lemma 4.10 (Filtered GLL) Let S be a sequent system as in GLL and
let ® < L. If A C & 15 an S-saturator up to @ of a set I C &, then A
conlains an extension of I which 1s S-saturated up to .

Proof. By the same construction as in GLL, where {2, }.c., is an enumera-
tion of ® such that every member occurs infinitely many times. Let I'g = T'
and Mooy = Dnu{ent U Dnye bs A = AN A # 0 for all finite A C @,
and else I',,,; = I',,. Analogousiy to the proof of GLL we can show thar
the limit of this sequence {I'; }.c. is S-saturated up to ®. O

Again we can rephrase this Lindenbaum Lemma as a saturation lemma for
filtrations, which, modulo R-MON, is equivalent to the filtered GLL. We now
explicitly state the relationship between a saturator and non-derivability
already used implicitly in the proof of coroliary 4.4.

Lemma 4.11 If sequent systemn S contains rule R-MON, then I' / A 4ff
& ~ A 13 a saturalor up to ® of .

Proof ®-Aisnotasaturatorof [« 3L C ¢ T'FTand ENP-A =0 <
WCH: I'-Land TCAUP 3L CA:TFHE & (rR-MON) [F A,
O

Corollary 4.12 (Filtered saturation lemma)
Let' S be as in GLL. Assume ® C L and I, A C ®. IfT' /s A then there
erists a set ¥ which is S-saturated up to © such that I' C ¥ and LNA = §.

To use the techniques which were developed in the preceding sections we
would like to be able to switch from filtered saturated sets to ordinary
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saturated sets if necessary. The following lemma will justify this switch in
the sense: every set which is S-saturated up to ¢ can be considered as the
&-part of an S-saturated set

Lemma 4.18 Let 8 be a sequential derivation system as in GLL, and & C
L. T is S-saturated up to & 1ff there exists an S-saturated set T* such that
~né=r.

Proof 1f F is an S-saturated set up to & it is its own saturator up to &,
so by Lemma 4.11 [ % ® — I'. The ordinary saturation lemma produces
an S-saturated set 1™ 2 1 such that [ 7 (¢ -~y = @ In all by a
simple set-theoretic argument I' = ['* 11 @ The converse is a special case
of Observarion 4.5, taking & = L. n

Observation 4.6 By the last lemma, of & © @ C £ and I s S-saturated
up to & then there esists a set I which s S-saturated up to &' and for
which T" 7 = T . To get such a set, use I'* as in the proof above, and put
I =T

Theorem 4.14 (FMP M} M fas the finite maodel property.

FProof Let I i/pg A for finite I')A C £ Call the set of all subformulas of 1
and A: Sub{l',A}. Let the filtration set § be the sct of all subformulas of
elements of I and A. and their negations. 1.e © = Sub{l. Ayu=Subi[ A}

We will show that there exists a finite model M = (WH RE VY e M
which contains a world that verifies all formulas in I' and does not venify
any element of A, This can be established by taking Mzﬁ to be the @§-
filtration of the M-canonical model My, Define U 'fi to be the set of all
sets that are M-saturated up to &. Because ® is finite H»";‘T, is also fnite.
Farthermore. let Vi(p,E) = 1iff pc ¥ and ViE(p. ¥) =0 iff —-p € T and
finally put

(i) SRYO =0 L CO and (i) €O = -Opel forall pe T &
We will prove the truth lemma for this filtration

MYy Srmpepe Land My Y= ¢ @ —¢ € forall g Subl. )

Apart from the restriction to Sub(l', Aj-elements, the inductive proof is
similar to that of the preceding truth lemmas. The basic step for elements
of P is immediate by the definition of V. If T ¢ Subll', A} the result is
obtained by ¥ g T and £ t/g —T for all elements ¥ of Wk For negation
and conjunction the induction steps are also quite easy, by the induction

hypothesis and the chosen filtration. The only step left is for the modal
operator. Suppose Oy & Sub{I', A} Again we consider four separate cases.

o 1f 0z € 3 then, by the definition of RY;. for all © which are accessible
from ¥ we infer that ¢ & ©. The induction hypothesis gives M,'f,s SN
¢ for all such ©, and thercfore M. 5 = O,
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o If Op ¢ ¥, take &’ to be an M-saturated set such that ¥ = £'nd. By
Lemma 4.13 there is such a set ¥'. Clearly ¥’ I/ Oy and therefore
O 2 %M . As in the truth lemma proof for M, there must be an
M-saturated set ©' such that 072 C ©° C &Y' with ¢ ¢ ', Take
© = ©' " d. Then, by Lemma 4.13, © € W Because 0°Y =
OE'Nnd)=0 0 d C O X Nd, we have on the one hand
0N Cend =6 Onthe other hand. if —y € © and Oy ¢ &
we obtain Oy € ¥’ and -~Uy € &, and therefore =03 € 5. This
implies that O is accessible from ¥ in M. Y R§©. Since ¢ ¢ O, the
induction hypothesis shows My, © = ¢ consequently MY ¥ £ O,

¢ If ~O¢ # L then we may conclude, by the definition of Ry, and the
induction hypothesis, that A«{f&. YA .

e If =0 3 then ~Cip must be a member of every S-saturated exten-
sion of ¥, and certainly for an S-saturated ¥’ with ' N ¢ = ¥,
which exists by Lemma 4.13.  So. by the proof of the ordinary
truth lemma of M, there exists an M-saturated set ©' such that
O-E U~} €O C O 5 Again, take © = ©' 0 & € Wk, By the
same argument as in the case Uy ¢ £, we have S, 0. Moreover,
- € O, because —p € . Since ¢ C Sub{l', A), we infer by mduction
that Affi,(-) = ¢, and so M. ¥ = Op.

This completes the truth lemma restricted to Sub(I', A) ou the finite model
ME.

)

Because I A C @ and I' #n A, there exists an M-saturated set 2 up to @
such that I' € ¥ and ANY = @, according to the filtered saturation lemma.
Also because I', A © Sub(I', A} we conclude. by the restricted trath lemma
above, that M. S k= for all v € I and MJ, T j= 0 for all § € A, O

By the completeness and the finite model property of M we couclude that
Corollary 4.15 }—p s a decidable relation on finite arguments.

If, on the one hand, I’ &=y A for finite I and A, then. by the completeness
theorem for M, I' =y A, thus by enumerating proofs of possible sequents
the valid inference will eventually turn up. If. on the other hand, I' &y A
for finite I" and A. then by the FMP there is a finite countermodel A
which verifies all of I and nothing of A. Since the finite models for the
language restricted 1o the propositional variables occurring iu I' and A (i.e.
P i Sub(l', A)) can also be enumerated, the invalid argument will turn up
as well.

We have proved a so-called strong finite model property. This means
that we do not need completeness here becanse the above countermodel can
never be larger than 2#5u(T3141 G4 e can give a strict upper bound for
finding a countermodel for I a1 A. We only need to check models with
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less worlds than this upper bound. The only valuations over these models
are valuations which determine the propositional variables appearing in

Sub(l', &).

5 Inferential extensions

In this section we will be concerned with a class of schematic extensions
of M and with finding corresponding model-theoretic characterizations.
In classical modal logic well-known schemes such as {T) Up = 2, (4]
O kA0, (B) Gy F 00g, (B) = 002 and (G) ¢0¢ r UG are char-
acterized by well-defined classes of frames. For example, T corresponds to
reflexive frames, and B to symmetric frames. These logics all fall within
a wide and well-characterizable class of modal logics, where the added
schematic extensions are of the form
=;>"£J‘<,; - Dm@uﬁ

Such a schema is denoted as G:“{n and is calied a (generalized) Geach rule

The indices refer to the corresponding mnumber of J- and O-iterativns So
for example i
SLLN i 0
T=Gy4=G, and 5 = G}

G5! can be characterized by the class of frames with an accessibiliry

LI

relation K such that
vroy.z xRy and rR™: = o yRu and : R
Here R* is defined recursively by:
I{'“ o= {‘».’__YL’, ll"} W e H’}
RY - REeR
It can be proved that all these logics are frame-complete. that is complete
with respect to the class of models which share the frame property In
other words. every non-sequent has a countermaodel in the corresponding
frame class.

In the sequel we will try to find similar characterizations for extensions
of M. Partial modal logic will turn out to be quite different from classical
modal logic in some respects. For example, in partial modal logic there
is in general no frame completeness with respect to a single rule such as

G5! but there is frame completeness with respect to
k.0 m.n
Gon += G

Also, there is model completeness with respect to GE!, (withour its con-
trapositive}. So we believe it is fair to say that, although the overall picture
of completeness in partial modal logic is somewhat more complicated, it
is also more subtle and interesting than in normal modal logic. Before we
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turn to Geach extensions, we will briefly view extensions of M from a more
general point of view.

From now on, let S be a finite schematic extension of M. ln particular,
the extended system is assumed to satisfy the finiteness property. Notice
that GLL and the saturation lemima still hold. Define the S-canonical
model Mg like Mpg. but now with respect to S, of course. The universe
W of the model consists of all S-saturated sets. Since every S-saturated
set is an M-saturated set, Mg is a submodel of My." The accessibility
relation g and valuation function Vg are thus, respectively, fip and 1y
restricted to Wg. Finally we note that the counterpart of the comparison
Lemma 4.6 holds for 8 as well. So we can prove the truth lemma for Mg
and finally establish a very general and strong completeness theorem for S,

Theorem 5.1 (Completeness S} A system S extending M 1s sound and
complete with respect to S-models, in particular with respect to Mg I kg
AT Eug Aforadll,ACL.

Proof. For the soundness in the general proposition. we find that, by defiui-
tion. S-models preserve the rules of S. The completeness half for the special
case of the canonical model follows {rom the earlier argument, which shows
that Ms is a countermodel to each non-sequent. To prove the missing parts,
it suffices to show that Mg is an S-model. So, let I' = A and Mg L =T,
then by the truth lemma I' C X, so (L-\ioN) 3+ A, and hence by §-
saturation, there is a § € A such that 4 £ %, and s again by the truth
lemma Mg, L = 6. ]

Although this strong completeness theorem is perfectly general, it has the
disadvantage that the resulting canonical model (or the class of S-models,
for that matter) may be entirely chaotic. We would like to give character-
istics of the models, preferably in terms of frames, or otherwise structural
properties. This is what we will look for in the next few subsections. To
make the exploration of such frame and structure properties possible. one
more lemma is extremely useful. The lemma identifies Ty on canonical
maodels as set inclusion.

Lemma 5.2 Let S be a schematic extension of M which satisfies the finite-
ness property., and Mg = (Ws, Rg,Vs) its canonical model as described
above. If T and A are S-saturated sets, then

TCA <« I'Cuys A
Proof. We will prove, for the =--result, that the relation C is a bisimulation

over Als:
(C eRg) C (Hse C) and (2 eRg) C (Rge ).

In the first case we need to show that for all T, A’ in Ws such that

7Technically speaking it is even a generated submodel of My, generated by Ws
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FIGURE 5 An instructive partial model

I'C 1" and I"RgA'. there exists a A € Wy such that [RsA and A © A
Lemma 4.6 {for 8) guarantees this existence. because

grcorocal
The second case follows from the second property in Lemma 4.6 If[7 2
and I RgA then we know

AcoTCco 1

and therefore, according to Lemma 1.6, there vﬁziﬁts A’ & Wy such thar
A CA and I"HsA'. The definition of Vs gives T Ty M.

The other direction of rhe lemma. < s just a copsequence of the persis-
rence for Cpg and the truth lemma for S n

5.1 A simple example
In the minimal systemn M of partial modal Jogic the law of contraposition
s lackimg: T g A # —A =pm 1 This creates an interesting perspective
on its modal extensions. Adding a modal rule such as Tg = 2 does not
imply its contrapositive =~ = =g, For example, consider the simple two
world M-model of Figure 5.

All worlds in M that verify Tl also verify s, Therefore the model
satistics rule [y = ¢, which we will call ’I‘”" henceforth. However. the maodsl
does not satisfv the rule ¢ = G = (ru which we will call TS henceforth
So T is lagically lﬂd“pf"ldt‘h' of TO. when we compare them as extensions
of M. Consequently Oy¢ - ¢ defines a wider class than reflexive models only

In order to find (‘mres:punding model-theoretic conditions for the ex-
tensions of M with rules such as TU, we need, apart from accessibility
constraints, a structural comparison of the informational content of worlds
in a partial Kripke model. In the example in figure 5. ¢ is true on all
worlds which verify Oy for arbitrary ¢ € L. because the left-hand world is
a modal extension of the right-hand world. Informally, every world “sees a
part” of itself. A corresponding constraint for £ = Oy singles out models
in which every world extends at least one arcesﬂb e world.

In fact the notion of modal ﬁxt@nsxon T m enables us to formulate dif-
ferent forms of “pseudo-reflexivity”. as were conceptually described before.

Definition 5.3 A partial Kripke model M = (W, R.V} is said to be small-
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reflezive iff
vr 3y rRy and y Cm T

Such a model is called big-reflexve iff

vr 4y :xRyand rCm y.
The class of small-reflexive models are denoted by TC and the big-reflexive
models are written as TS,

Theorem 5.4 T =M + Uyp - ¢ 18 sound and complete with respect to
TO. TS = M + ¢+ Gp is sound and complete with respect to TS,

Proof. Soundness is straightforward and thus left to the reader. For com-
pleteness, Theorem 5.1 tells us that it suffices to show that

Mya € TO and My € TO.

First we prove that Mryc is small-reflexive. This can be done by an
application of Lenma 4.6. Let T € Wye. By Op Fre ¢ we conclude that
- T, which means, according to Observation 4.4, that Ry (I'. A} and
A © T for some A € Wrg. The latter conclusion also vields & Ty T
(Lemma 5.2), and so Ay, is small reflexive,

Big reflexivity for My can be obtained in the same fashion, using the
fact that T € &~ for all T ¢ W and application of Lemma 4.6 and its
generalization in QObservation 1.4, O

5.2 Geach rules

A completeness result for the full class of partial Geach systems M +
G:;l,.‘, using T, is presented in Jaspars (1994). We will not go into the
technicalities of the proof, but simply present the result in the following
theorem.

Theorem 5.5 The logic Gf,;‘_n is sound and complete unth respect lo the
collection of models Al = (W. RV} which are ‘semi-k,l,m,n confluent’

Yryz ¢ W zRYy and xR™z = Jvw € W v Dm w, yRi v and zR"w.

Though quite gencral, the completeness theorem for Geach rules supplies
sufficient information about the structure of the models. Insight into its
applicability may be facilitated by the following examples. In Table 1, the
left column lists the names of some Geach extensions of M, given in the
middle column. The right column gives the corresponding constraints on
the order within the models M = (W, R, V).

In agreement with our earlier terminology for pseudo-reflexivity, the
four listed properties may be baptized small-symmetry, small-Euclidicity,
small-transitivity and big-transitivity, respectively.
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TABLE 1 Some conditions for geach extensions

MBI | ¢+ 0%; | vry rRy = Jz:yR: and ripg: g
i ) ~ N . _ i
‘ MS5C | ©pr UGy | vo,y.z:zRyand 2R: = Sw zRwand y Ty w. |
! M4 | M= L0y | Yooy .z zHy and yR: = 3w rRw and w gz

i {
l M4< | SOpk Op iv’r.y,: crlty and yR: = cxRw oand =z Uazgw

5.3 Intermediate worlds .

There is an easv completeness proof for the system T = M + TG = T<
with 1espect to the class of partial models with a reflexive frame, for note
that if I’ is a T-saturated set, then O T’ C by TO and I' £ &1 by TS,
so 'Rt Notice that, in comparison with our present set-up, reﬂéxivity
is a stronger restriction than small- and big-reflexivity together. The pos-
sibility of restricting to the class of reflexive models can be understond by
the following observation. It turns out that partial Kripke models are ix{~
sensitive to adding and removing so-called mtermedinte worlds Whenever
a world w in a partial Kripke model Al has two accessible worlds » and «,
then everv intermediate world zr of v and u in M meaning » Ty Tpg 1,
can be taken to be accessible from w as well, without changing truth and
falsity in w.

Observation 5.1 For M = (W R V) € M, let w & W be such that for
certain v.u € W, whRoe and wRu. Suppose there 1s an v & M such that
v Cpm o Ty ou, and let M = (W R V) wheve B = R {{w.x)}. Then
MuwkEyaesMweEyeforalo el

{The proof 1s by induction on the structure of formulas: the T and ~DO-steps
follow from the persistence result for Lag )

In a model which is both big- and small-reflexive. every world has access
to a larger and a smaller world. That is, the oniginal world is an interme-
diate world. and could therefore be assumed to be self-accessible as well
without losing or gaining information. In this straightforward way we can
transform every model which is big- and small-reflexive into a reflexive ane.

6 Summary

We have illustrated the idea of partial modal logic {1.e. modal togic with a
partial semantics} using one basic system, called M here, and its various
extensions. Although the subject is not classical, the presentation was
highly classical. After defining the language and its semantics, we gave a
seqquential inference system. Completeness of the sequent system was shown
using a canonical Henkin model with sarurated sets linking {inferential}
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syntax and semantics. Then decidability of the inference relatioy followed
by means of the finite model property,

Finally, we showed how to extend the sequent system; and restrict the
class of admissible models in order to Imcorporate so-called Geach ruleg,
Most applications related to belief and knowledge. for example, only g0
Geach rules, thus showing the significance of these extensions,

As was pointed out in the introduction, we restricted ourselves teo Jjust
one type of partial modal logic. but the following notes SUEEest some other
directions in this area.

7 Historical notes

The roots of partiality and the link to three-valued logic will have been
made clear in the other “fundamental” contributions to this volume. Apare
from the comprehensive introduction by Van der Hoek and Meyer (see
Chapter 3, this volume), standard texis on modal logic are Hughes ang
Cresswel{ ( 1984), Chellas (19%0) and Bull and Svgerberg (1984). in order
of increasing intricacy. Here we focus ou partial modal logic,

An early combination of partial and modal logic is Segerberg ( 1967),
where the connectives are characterized by ‘weak Kleene' truth tables, and
several non-standard interpretations are given to necessity.  Schoteh at
al. (1978) present a system in which the underlying propositional logic
is Lukasiewics’ (hree-valued logic Lg. althongh Necessity is given the text
interpretation, Finally Morikawa {1989) proposes a family of moda] log-
ics based on arbitrary threc-valued propositional logics and various non-
standard interpretations for necessity (yet different from Segerberg’s). one
with only classical out put vahies, another which is “weak”™ in the sense that
Uy is undefined when ¥ is undefined iy some alternative,

The move to partialize the worlds was made independently by several
authors, most explicitly by Humberstone ( 1981) and Barwise (1981). In
fact even Hintikka's original formulation (in Hintikka 1962) of his ‘mode]
sets’ had a partial element iy it, which, however, was soon eliminated,

An account of completeness and definability for partial modal logic is
given in Thijsse ( 1990} and Thijsse ( 1992, part 1), where the relevant pa-
rameters are valuation type (partial and/or incoherent ), truth/falsity con-
ditions, single or split accessibility, validity kind {(“always true” vs. *never
false™) and rule concept (‘absolute’, as in classical Necessitation. vs. ‘rela-
tive', as in strong consequence). In these terms the system presented here

Failure of contraposition. as in our system, is considered by Blamey
(1986) to be a good reason for replacing strong ( “positive”) consequence
"' harrelled (“full”) consequence. See also Muskens (1995} and

SR TV

Langholm ( Chapter 1}, W obviously de 1o agree To mentioy by one
strange effect of the iy posed Svmmetry. then (fr colierent models ;'1{53&:{*-*
er falso nor tertturn non datur ig valid, but the “unification” of (h;%m!m‘
holds in the form » A TR Y Y g ’ )
{)ur basic system M (withoyt rules for T wus called M+ Thijsse
11992). where the derivation SYstem resemphjey that of narural !imiizrt;yx
rather than the Sequential formas fromm Jaspars {1994 used !:9& T h*
completeness proof for M+ contained repeated Lindenbaum f:cmst»rumi:m;
which are avojded here by GGLL and the saturation, lemma. Thvhi atter ‘«:am
called ‘generalized Lindenbaum Lemma’ iy Thijsse (1992; but »isﬁi"x ;a(‘f a
‘;xighpgenpr:ilizatmm of the saturation lemmg iy 'l‘rrvél%tré and §'211; f;@eu
(1988). An alternative is 1, 158 normal forgs g inr Jaspars 11993} B
The concept of saturareq S€ts can be rraced back to Aczel (1968) and
Tt;o;z?a50t1 (1968}, where they are used 1o give completeness ‘pr«:zr}i; f'rs;
mtutionistie predicate Jogic Veltman (IU&‘;’)} US€S satiurated s’«t; F& a
i*t>1§1p1£*texz&ss pront of his dary logie, Ouy delinition of ‘5:1{241"&&655:;;;«1 f;ur
nution of S-saturator are from Jaspars | 16G4 ;. SEL e sﬁf‘ﬁ rz;:'z" df‘wl
be used in Cirr‘umm‘ribmg knﬂwlt‘dge‘ Lased on a bBarual logie (see V”i:’ J(
Hoek. Jaspars and Thijsse 1994, .
Other information orders are Teuired for prgdy) principles such as -
G e which is Captured by the ¢jqeq of parriag Kripke nmdt;i'& in ‘.;“1: h
avery world only has aACCeSs 1o worlds which are ceherent wik h imj: !
world. Two worlds wand ¢ in a mode M are I)Tf’[)(m)f.iuﬁ:'iih‘.‘ r;)imm“;li:
Thﬁna EXISts ne Propositional varigh)e b that has ha. differeg Y/tr»mh ;-a}:;rs
1; w and p Smffz a pair s {modally) coherent if hepe CXIsts 5 hiéi:x;uiét;‘ox;
e e
g re studied 1 Jaspars (1994
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