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Jacobi-Davidson Methods for Generalized MHD-Eigenvalue Problems 

A Jacobi-Davidson algorithm for computing selected eigenvalues and associated eigenvectors of the generalized eigen

value problem Ax = >.Bx is presented. In this paper the emphasis is put on the case where one of the matrices, 

say the B-matrix, is Hermitian positive definite. The method is an inner-outer iterative scheme, in which the inner 

iteration process consists of solving linear systems to some accuracy. The factorization of either matrix is avoided. 

Numerical experiments are presented for problems arising in magnetohydrodynamics (MHD}. 

1. Introduction and notation 

In this paper we are interested in the computation of accurate approximations of exact eigenvalues >. E C and 
associated eigenvectors x E en of the generalized eigenvalue problem 

Ax= >.Bx, (1) 

where A and B are n x n complex matrices. We assume that the matrices are very large, sparse and irregularly 

structured. In this case factorization of either matrix would be impractical for obvious reasons. In [9] the Jacobi

Davidson (JD) method for computing eigensolutions of the standard problem, B = I in (1), has been presented. 

Here we generalize this procedure in order to solve (1) for B =f. I. We will emphasize on the case where B is 

Hermitian positive definite. A more general treatment will be presented elsewhere, see [2]. 

Notation. The Euclidean inner product of two vectors v and w is denoted as (v,w) = w*v, the Euclidean 

norm of a vector v is indicated as llvll2 = ~· For a Hermitian positive definite matrix B we define the B-inner 

product of two vectors v and w by [v, w] = (Bv, w) and the B-norm of a vector v as ffvfls = J(Bv, v). Two vectors 
v and w are said to be B-orthogonal if [v, w] = 0. If S is a subspace, then the B-orthogonal complement of S is 

given by 51.a = {v E en I [v,w] = 0 'r/w Es}. 

2. Jacobi-Davidson for standard eigenproblems 

We assume for the moment that B = I. Suppose at a certain point in the iterative JD process we have obtained 

a (non-trivial) approximation u of the true eigenvector x associated with some true eigenvalue >.. We assume that 

llull2 = 1. The eigenvalue approximation is () = u* Au. The residual vector is denoted as r = Au - ()u. Consider 
the orthogonal projector P = uu* onto the subspace span{ u }. Then I - P is the projector onto the orthogonal 

complement of span{ u}, which we denote by ul.. Any vector v E en can be written as v = v1 + v2 with v1 E span{ u} 

and v2 E ul.. Note that we have the freedom to normalize x, such that x = u + z with z J_ u. This suggests to 

search for a correction vector z E ul.. The restriction of A to ul. is given by Ap =(I - P)A(I - P). Rewriting this 

equation, we obtain A = Ap + Auu• + uu* A - Ouu*. Substituting this relation into eq. (1) for B = I and writing 

x = u + z, we obtain, using some trivial expressions (e.g., Apu = 0): 

(Ap - M)z = -r + (>. - () - u• Az)u. (2) 

Since the left-hand side of (2) is orthogonal to u and also r is orthogonal to u, the factor in front of u on the right

hand side is equal to 0, or,>.=()+ u* Az. Therefore (2) reduces to (Ap - >.l)z = -r. The exact correction vector 

z cannot be computed, since we do not know the exact eigenvalue >.. However, an approximation () is available. 

Therefore, we replace >. by () and compute an approximate solution i of 

(Ap - el)z = -r, (3) 

for instance by performing a few steps of some iterative method including a suitable preconditioner. The updated 

eigenvector approximation is then given by u + z. This may lead to a very fast converging process, as can be 

seen by establishing its relation to the Rayleigh quotient iteration (RQI) method. Suppose we would solve eq. (3) 

exactly. The solution is then given by (see [9], or below) z = -u + 17(A - el)-1u, with TJ = [u*(A - ()J)- 1u]- 1 • 

The updated eigenvector approximation is then equal to TJ(A - ()1)- 1u, which implies that the JD method becomes 
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mathematically equivalent to RQI. This would lead to cubic convergence for Hermitian A, or quadratic convergence 
for non-Hermitian A, see [5,6]. In practice only a moderately accurate solution of (3) is often sufficient to retain fast 
convergence. 

Instead of performing a single-vector iteration, i.e., replacing u by u+z, the method is accelerated by searching 
for the best eigenvector approximation in a subspace, as will be explained in the next section. 

3. Jacobi-Davidson for generalized eigenproblems 

From now on we assume Bf. I and B to be Hermitian positive definite. Following the prescription of the previous 
section, we might search for a correction z in the orthogonal complement of span{u}. However, it is easily verified 
(see [2]) that this would lead to an iterative process that is not related to the RQI method. Instead we can look for 
a correction z in the B-orthogonal complement of span{u}, denoted as u.Ls. 

Definition 1. A projector Ponto a subspace Sis said to be aB-orthogonal projector ifKer(P) == Ran(P).Ls. 

Proposition 1. A pro}ector P onto a subspace S is B-orthogonal if and only if it is self-adjoint with respect 
to the B-inner product, i.e., [Pv, w] == [v, Pw] 'V v, w E en. 

Proof. If P is B-orthogonal, then by definition we have Ker(P) = Ran(! - P) = Ran(P)..l. 8 == 5..t.s. The 
space en can be decomposed as the direct sum en = Ran(P) EB Ker(P). Therefore, any vector v can be written 
uniquely as v = Pv + (I - P)v with Pv E S and (J - P)v J_B S. The self-adjointness is then easily verified, since 
for any two vectors v, w we have: 

[v, Pw] = [Pv +(I - P)v, Pw] = [Pv, Pw] = [Pv, Pw +(I - P)w] = [Pv, w] . 

Now we prove that the converse is true. Suppose v E Ker(P). If P is self-adjoint with respect to the B-inner product, 
then, for any vector w E Ran{P), we have [v, w] = [v, Pw] = [Pv, w] = 0. This implies that v E Ran(P).La, or 
Ker(P) ~ Ran(P).Ls. Now suppose v E Ran(P)..l. 8 • Then for any vector w E Ran(P) we obtain [v, w] = [v, Pw] = 
[Pv, w] = 0. This shows that Pv == 0, or v E Ker(P), or Ker(P) 2 Ran(P).Ls. This completes the proof, since we 
have Ker(P) = Ran(P).Ls, and therefore P is B-orthogonal. 

We assume u to be normalized such that l/ulls == 1. The eigenvalue approximation()== u• Au and the residual vector 
r =Au - BBu is orthogonal to u. Consider the projector P = uu* B. It is easy to show that P is a projector onto 
span{ u} and that P is self-adjoint with respect to the B-inner product. By the above proposition it follows that P 
is B-orthogonal. Therefore, we may write x as x = Px +(I - P)x =au+ z with z E u.Ls. Again we can normalize 
x such that a= 1. The restriction of A to u.Ls is given by Ap = (I - P)* A(! - P). Rewriting this equation for the 
matrix A and substituting the resulting expression for A into eq. (1), we obtain the equivalent of eq. (2): 

(Ap - >..B)z = -r +(.A - fJ - u• Az)Bu. (4) 

Premultiplication on both sides of eq. (4) with u* yields >. = () + u* Az. Again we replace >. by the current 
approximation B. Similarly to eq. (3), the correction vector z is now computed as the approximate solution of 

{(I - Buu*)A(J - uu• B) - BB}z = -r and [z, u] == 0. (5) 

Now we derive a more convenient formulation of eq. (5). First note that (J - uu• B)z = z. Then (5) is equivalent to 
the following equation: 

(A - BB)z + eBu = -r with e = -u* Az and [z, u] = 0. 

It easy to show that the solution z of this linear system in en is identical to the vector z obtained by solving the 
following system in en+!: 

(6) 

Suppose K is a non-singular n x n matrix and a, b are vectors in en. Then it is easily verified that in en+ 1 we have 

[ K b ]-i [ I -y ] [ I O ] [ K-i O ] with y = K- 1b and v = a'"y. 
a* O = O* 1 a*/v -1/v O* 1 (7) 
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Using eq. (7) with K = A - 8B and a = b = Bu, we obtain the exact solution vector z of eq. (6): z = -u + 
ry(A - BB)=~ Bu, wit~ 7] .= [u_* B(A - BB)-l Bu]- 1 = -E:. The u~date~ eigenvector approximation u + z is equal to 
ry(A - BB) Bu, which implies that the JD method for generalized e1genproblems becomes equivalent to the RQI 
method for the generalized case (see [5]). As for standard problems, the correction equation (6) often needs only to 
be solved to a moderate accuracy in order to retain reasonably fast convergence of the JD method. It should be noted 
that although the exact solution z of eq. (6) is B-orthogonal to u, this is of course not automatically guaranteed 
for an approximate solution i. However, the B-orthogonality can be nicely restored by a suitable preconditioner as 
shown by the following lemma. 

Le m m a l. Suppose an approximate solution of the augmented linear system (6) is computed by performing 
a few iteration steps of a K rylov subspace method, starting with initial guess 0. Assume the system to be left

preconditioned according to eq. (7) with a = b = Bu and K some approximation of A - 8 B. Then the approximate 
solution (z, .S)* of eq. (6) is such that z is B-orthogonal to u. 

pro 0 f. A straightforward calculation of the vectors spanning the Krylov subspace yields only vectors in cn·H 

of which the first n components form a vector in en that is B-orthogonal to u. Since the initial guess is O the vector 
(z, €)* is in the Krylov subspace and therefore the approximate solution z is B-orthogonal to u. 

The method is accelerated by searching for the best eigenvector approximation in the subspace spanned by the 
initial guess for the eigenvector and all the correction directions. If v1 , ... , Vk is a basis for this subspace obtained 
after k JD iterations and Vi denotes the n x k matrix with these basis vectors as its columns, then the eigenvector 
approximation u = Vis associated with the eigenvalue approximation 8 is obtained by solving the k x k projected 
generalized eigenvalue problem: 

(8) 

If B is Hermitian positive definite, we are able to construct a B-orthonormal basis, i.e., vk• BVk = h, and the 
generalized projected problem (8) reduces to a standard problem. We use modified Gram-Schmidt (see e.g. [3,6]) 
to B-orthogonalize vectors (denoted as MGSB in the algorithm below). To implement this efficiently we need to 
store the basis W f = BVi. The basis W k4 = A Vi is stored for the efficient computation of the projected matrix 
Hk = vk• AVk. The iteration process is restarted when the subspace dimension k has reached the maximum value 
m. The restart is carried out with the eigenvector approximation u. A possible outline of the JD procedure is given 
by the following algorithm. 

Algorithm Jacobi-Davidson for matrix pairs (A, B). 
0. Choose an initial vector v1 of B-norm unity; set Vi = [vi]; set k==l; 
I. Compute the last column of the matrix Wf := AVi; 
2. Compute the last column of the matrix Wf := BVk; 
3. Compute the last column and row of the projected matrix Hk := Vk•Wf; 

4. Compute a selected eigenpair (€1,s) of Hk with lls!l2 = 1; 
5. Compute the Ritz vector u :=Vis and the vectors p := W(s and q := Wf_s; 
6. Compute the residual vector r := p - (:)q and llrll2; if convergence then exit; 

7. Compute an approximate solution z of: [ A ~.88 6 ] [ ; ] = [ ~r ] ; 

8. if k < rn then 
k : = k + 1; compute Vi :=MGSB[Vi-1, z]; goto 1; 

else _ 
set Vi == [u], W 1A = [p], w1s = [q], H1 = [8]; set k = 2; compute Vi :=MGSB[Vk-1, z]; goto 1; 

end i:E 

· 11 · t d bl H - es This can In step 4 of the algorithm we need to compute eigenpairs (8,s) of the sma proJec e pro em ks. - . · . h 
be ,done by the QR algorithm (see e.g. [3]). The vectors s are normalized such that llsl!2 = 1, which implies t at 
llulls = 1. The selected eigenvalue may for example be the one with largest (smalles_t) absolute value or the one 

closest to a fixed point CJ in the complex plane. In the latter case we refer to CJ as a shift. . . 

We have tested the algorithm on a MHD generalized eigenvalue pro?lem taken fro~ [~]. T~e A-m,at~ix 18 

non-Hermitian and the B-matrix is Hermitian positive definite. Both matrices are. block tn-~1agon.al. ~he s.1ze o~ 
h t bl . - 416 the size of the blocks is 16. In MHD problems one is mterested m an mtenor part o 

t e tes pro em is n - ' h h b t d' d ·n detail with an 
the spectrum known as the Alfven branch. The test problem we examine ere as een s u ie . i d bt . 
Arnoldi meth~d in [4] and with a Lanczos procedure in [I]. We use the algorith_m giv.en above m. ~r er to d o·r ~~n 
an approximation for the eigenvalue closest to the shift IJ == -0.35 + 0.60i. The iterat10n process is stoppe I e 
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residual norm of the eigenpair approximation is below 10-8 . The correction equation in step 7 of the algorithm is 
solved approximately by performing a fixed number of GMRES [8] iteration steps, starting with initial guess 0. In 
three different runs of the algorithm the systems are solved to some accuracy with 5, 10 and 20 GMRES steps. For 
the three runs we employ the same preconditioning according to eq. (7): we use a= b = Bu and for Kan incomplete 
LU factorization of A - oB. Note that the preconditioner is computed only once and that it gets more effective 
during the JD process, once the eigenvalue approximation moves towards the shift. We compute an ILUT(l, r) 
factorization [7]. This is based on a dual dropping strategy: r denotes a relative drop tolerance [7], while l denotes 
the maximum number of elements kept in a row of the L- and U-factors (in addition to the diagonal element which 
is always kept). In the present example we set l = 25 and T = 10-4 . In all experiments the starting vector for the 
JD process is chosen as v1 = a(l, ... , l)t with a such that llv1 llB = 1. Finally we remark that the JD algorithm was 
not restarted in the experiments presented here. 

102 102 • 
(a) (b) 

10° . . ... ~············ 100 ........ ~~ . iir0 fl2 •e • • Ooo 
llrll2 .. ~ .. 10-2 • 0 10-2 * ooooo •t • • 
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** * * • 
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Figure 1: (a) Accuracy obtained for the approximate solutions of the linear systems: the reduction in the residual 
norm llr0 i12 is shown for solving the systems with 5 (•), 10 (o) and 20 (*) GMRES steps; (b) convergence history 
for the eigenpair approximation (same notation as for (a)). 

Figure 1 shows the results of our experiments: (a) displays the accuracy for the inner iteration process, while 
(b) shows the convergence history for the eigenvalue approximation. We observe that the eigenvalue is converged 
in fewer iterations if we increase the number of GMRES steps for the inner iteration process. For the run with 
GMRES(20) (denoted by* in the figure) we see that the systems are solved very well in the final iterations resulting 
in an (almost) asymptotically quadratic speed of convergence for the eigenvalue approximation, as was expected. 
However, in terms of CPU time this is not the fastest run. On a Silicon Graphics workstation we obtain: 10.8 s for 
GMRES(5), 10.0 s for GMRES(lO) and 13.3 s for GMRES(20). 
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