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ABSTRACT 

In this paper we investigate the effects of variable infectivity on the spread of 
HIV in a heterosexual population where pair formation and separation are taken 
into account. We calculate the basic reproduction ratio as a function of the number 
of new partners during the infectious period, keeping the total number of contacts 
fixed. Numerical evidence suggests that the basic reproduction ratio decreases for 
variable infectivity if the average infectivity is kept constant. 

1. INTRODUCTION 

In a previous paper [3] we described how to calculate the basic 
reproduction ratio R 0 for infectious disease models where an arbitrary 
but finite number of infection states are recognized and the processes 
of pair formation and separation are taken into account. The model in 
[3] is a pair formation analog of a multistage variable infectiousness 
model first developed by Blythe and Anderson [1] and Jacquez et al. [6], 
and a generalisation of [2]. In the present paper we apply that method 
of calculation to study the effects on the spread of HIV of variable 
infectivity. Remember that, because we want to calculate R0 , we only 
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keep track of the partnerships of infected individuals formed during 
their remaining lifetime after they become infected, and we may assume 
that all new partners are susceptible [2]. 

2. DESCRIPTION OF MODEL AND CALCULATION OF R0 

We start this section by giving a concise description of the model 
assumptions in [3] and indicating which modifications and concretiza­
tio11s were carried out for the present paper. 

In [3] every pair initially passed through a courtship period character­
ized by the absence of sexual contacts. Given that the pa ir had not yet 
separated, the first sexual contact marked the end of the courtship 
period and the beginning of the sexually active phase. For the sake of 
simplicity, we neglect the courtship period in the present paper, that is, 
we take it to be infinitely short. This implies that a pair is initiated by a 
sexu al contact. 

We recognize the following characteristics of a n infected individual: 

Infection state: i E { 1, ... , n} , 
Partnership state: j E { - 1, 0 , 1, . .. , n} . 

Here - 1 means that the individual is single (no p artner a t the moment 
of observation); 0 means that the individual is p aired with a susceptible; 
partnership state j E {1, ... , n} means that the individual is paired with 
an infected individual who has infection state j. Together the two 
characteristics determine the type (i, j) of an infected individual. For 
subsequent numerical calculations we choose n = 4. The infection states 
1 -4 are assumed to correspond to the possible phases in the develop­
ment of HIV infection: an initial burst of infectiousness, followed by a 
(possibly long) period of virtual noninfectiousness, then a new infectious 
period in a pre-AIDS phase, and finally the disease phase of full-blown 
AIDS. 

Now we extend our notation by taking the male/fem ale dichotomy 
into account. We indicate the sex of an individual by k E {1,2}, where 1 
indicates male and 2 indicates female. We restrict our attention to 
heterosexual contacts. The type of an infected ind ividual is then written 
as 

(i ,j; k) , i E {1 , . . . ,4}; j E { - 1,0, ... ,4}; k E {1,2} , 
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where k is the sex of the individual, who has infection state z and 
partnership state j. Singles are of type (i, -1; k). 

We make the following assumptions: 

(1) The infection states are passed through in natural order, always 
beginning with state 1. Thus, a newly infected individual of sex k whose 
partner is in infection state j has the type (l,j;k). 

(2) µ.,0 is the death rate of susceptible males and females; µ.,i is the 
death rate of infected male or female individuals with infection state i. 

(3) The transition rates from state i to state i + 1, i = 1, 2, 3, are 
denoted by fJi. Then the time spent in infection state i is exponentially 
distributed with parameter o,. + µ,i. 

(4) The infectivity of an individual of sex k in infection state i is 
d~scribed by the probability p/k) that an unprotected sexual contact 
with a susceptible of the opposite sex leads to transmission. 

(5) Every single individual of sex k with infection state not equal to 
4 has a constant rate p(k) of acquiring new partners. We assume that 
individuals in infection state 4 do not establish new sexual relationships. 
These rates must satisfy the consistency condition p(l)x(l) = p(2)x(2), 
where x(k) denotes the number of susceptibles of sex k in the popula­
tion. In other words, the ratio of the partner acquisition rates equals the 
reciprocal of the sex ratio in the susceptible population. The divorce 
rate is u. We assume that each time an infected individual in infection 
state i , i E{l,2,3,4}, with a partner in state j,j E{0, . .. ,4}, becomes 
single, either by divorce or by the partner's death, there is a probability 
sij that this individual stays sexually active (i.e., a probability 1- sii of 
becoming permanently sexually inactive). 

(6) By definition a partnership starts with one sexual contact. 
(7) Following the initiating contact, there are f3 sexual contacts per 

unit of time during the partnerships if none of the partners has 
infection state 4. If one of the partners has infection state 4, we assume 
that there are no sexual contacts. 

Let J\ == {(i, j; k): 1 ~ i ~ 4, -1 ~ j ~ 4, k E {1, 2}} be the set of all 
possible types. Then IAI = 48 and consequently our type space is ~48 • 
Let L == {1,2, ... , 48}. We will call L the state space of infectives, and 
the elements of L are called states. Let L : A ~ ~ describe the ordering 
on /\. where we first take the lexicographic order of the types that an 
infected male can have and subsequently the lexicographic order of the 
female types. 

We describe the changes in infection state and partnership state of 
male and female individuals as a Markov process on 2:. Let the matrix 
G: ~48 

_,, ~48 describe the transition rates between the states; that is, 
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grs gives the rate of leaving state s E ~ to go to state r E ~. On the basis 
of the assumptions stated above, G is given by 

G=(G(
0
1) 0 ) 

G(2) ' 

where G(k) : iR24 ~ IR 24 describes how the type of an infected individual 
of sex k changes; 0 denotes the 24 X 24 zero matrix. 

It follows from the assumptions that there are only six types with 
which an infected individual can be "born" (from the point of view of 
the infection): (1,j; l) for males and (1,j;2) for females, l~j~3. To 
calculate R0 for each of the possible types at birth, we follow the 
remainder of the life of the corresponding individuals and count how 
many individuals of the different birth types he/ she produces on the 
average. It was argued in [3] that R 0 is then given by the dominant 
eigenvalue of the matrix M: IR6 ~ IR6 (the so-called next-generation 
operator) 

( 
0 M2 ) 

M 0 ' 1 

where the Mk =(mi/k))1 ~i,j~ 3, k E{l,2}, describe the average number 
of new cases caused by the different male (female) types among the 
different female (male) types, respectively. For these we can derive 
expressions 

mij(l) = - Pi(l)f3(G(l)-
1
)Ui,O; l)L(l,j;l) 

- Pi(l)p(l)( G(l)-
1
)L(i,-l ;l)L(l,j;O' 

mi/2) = - Pi(2) /3( G(2) -l ) LU.a; 2)L(l ,j;2) 

- P;(2) p(2)( G(2) - l) L(i, -1;2)L(l,j;2), 

for 1 ~ i , j ~ 3 (see [3]). These formulas have the following interpreta­
tion. The second term of mij(l) describes the expected number of first 
contacts (pair establishing), where the infection is successfully transmit­
ted by an infected male who was " born" with type (1, j; 1), while he is of 
type (i , - 1; 1). The first term of mii(l) describes the average number of 
females that become infected while a partner of an infected male with 
infection state i who was "born" with type (1, j; 1). 
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Next let us describe G(k), k E {1,2}: 

Al 0 0 0 

D I A i 0 0 
G(k) = 

0 Di A3 0 

0 0 D3 A4 

where 0 is the 6X6 zero matrix, D1 = diag(8), and A;, i E{l,2,3,4}, is 
given by 

a 1( i) S;o( µ.() + CF) 5;1( JL1 + <7) sa( JL2 + u) S;3( JL3 + <7 ) S;4( }L4 + a) 

(1 - P;(k))p(k) a2(i) 0 0 0 0 

P;(k)p(k) P;( k ){3 a3(i) 0 0 0 

0 0 8 1 a 4(i) 0 0 

0 0 0 82 a5(i ) 0 
0 0 0 0 83 a 6( i ) 

where a1(i) = - JL; - 8; - p(k); a 2(i) = - JL; - µ 0 - 8; - CT - p;(k)/3; 
a3(i) = - JL; - µ.1 - 8; - 81 - a ; a/i) = - /L; - µ 2 - O; - 82 - a-; a5(i) = 

- JJ,; - µ 3 - 8; - 83 - u; a6(i)= - JJ,; - µ,4 - 8; ~ a. For A 4 we have to 
read zero for f3 and p(k) because of the assumptions. 

It is easily verified that G(k) - 1 can be expressed in the 6 x 6 
matrices that constitute G(k) as follows: 

G(k)- 1 

A -I 
I 0 0 0 

- D A- 1A - 1 
I 2 I A21 0 0 

= 
- D D A - IA - 1A - I 

I 2 3 2 I -D2 A 3 1A21 A- 1 
3 0 

- D D D A - IA - 1A - 1A - I 
1234 3 2 I 

D D A - 1A - 1A - I 
2 3 4 3 2 

- D A - 1A - 1 
3 4 3 

A-I 
4 

The matrix M can now be determined. For the special case p 2(k) = 0, 
for k E {1,2}, we find that 

0 

0 
0 

In terms of the elements of G(k )- 1 we can write 
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m 13(k) = - p 1(k)f3(G(k) -
1

) 2, 5 -p1(k)p(k)(G(k)-
1
) 1•5 , 

m31(k) = - p 3(k)f3(G(k)- 1
) 14•3 - p 3(k)p( k)(G(k) -

1
) 13, 3 , 

m33 (k) = -pJ(k)f3(G(k) - 1
) 14 •5 -p3(k)p(k)(G(k) -

1
) 13, 5 , 

Then the spectral radius r(M)=Jr(M1M2 ) = Jr(M~M~ ), where 

kE{l ,2}, 

see [3]. 
Finally we find that 

with 

(a+ d) + V (a - d)2 + 4cb 
R o= 2 ' 

a== m 11( 1)m11( 2) + m13(1) m 31 (2) , 

b == m 11(1)m 13(2) + m 13(1)m 33 (2), 

c == m 31(l)m 11(2) + m33(l)m 31(2), 

d == m 31 (l)m 13(2) + m33(1)m 33(2). 

3. DESCRIPTION OF THE CALCULATIONS 

We define N to be the average number of new sexual partners and C 
the average number of sexual contacts that a newly infected individual 
will have in the remainder of his or her lifetime. 

Let P be the right eigenvector of matrix M corresponding to the 
dominant eigenvalue ·R0 : Mr= R0 f . Then f can be interpreted as the 
asymptotic distribution of infected individuals over the six types at birth. 
We normalize f = (r1, ••• , r6 )T to obtain the probability distribution of 
infected individuals over the six possible birth types (l,j; k), j E {1, 2,3}, 
k E { 1, 2} (which we number 1-6). 

Denote by Ni the average number of new sexual partners that a 
just-infected individual born with birth type l E{l , .. . , 6} has during the 
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remainder of his or her lifetime. Then 

The numbers N1 are given by 

3 

IVi,1 ,j;k) = - L p(k)(G(k) -
1

) L(i,-l;k)L(l,j;k)' 
i =I 

41 

where L describes the lexicographic ordering of types as explained in 
Section 2. 

To calculate C, let C1 denote the average total number of sexual 
contacts the individual will have after becoming infected as birth type 
l E {1, ... , 6}. Then C1 is given by 

being the sum of the number of " first contacts" and the average future 
time T1 a newly infected individual with birth type l will spend with a 
partner multiplied by the frequency f3 of sexual contacts within a 
partnership. T1 can be written as 

3 

1<1.j;kJ = - L { ( G(k) -
1 

)Lu.o;k>LC1 .j;k)+ ( G(k) -
1

) u;,1;k)LO,j;ki 
i = 1 

+ ( G( k) - I) L(i ,2; k )L(l ,j; k) + ( G( k) - L) L(i,3; k )LU ,j; k)} . 

The quantity C is then given by the sum of the six C/s weighted 
according to birth type: 

We want to investigate R 0 as a function of the number N of new 
sexual partners after infection. Of particular interest is the threshold 
value N for which R 0 = 1. If we want to ensure uniqueness of this 
threshold value, to make the results comparable, we are not free to 
choose any combination of the pair formation parameters p and u. If a 
is allowed to increase while all other parameters are held constant, then 
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the graph R 0 = f(N) need not be monotonically increasing, and there­
fore the threshold value may not be unique [4]. The reason for this lack 
of monotonicity is that for increasing separation rate, other parameters 
remaining constant, the infected individual spends less and less time in 
partnerships. Hence, the average total number of contacts will decrease, 
which in turn results in a smaller value of R0 . Therefore, to ensure 
monotonicity, and hence uniqueness of the threshold value, we keep the 
total number of contacts after infection C constant when we vary N. 

It is worthwhile to explain how the graphs of R 0 as a function of N 
were made. In the numerical calculations we consider only the case that 
the sex ratio in the susceptible population is 1. From the consistency 
requirement mentioned earlier, we then obtain that p(l) = p(2) == p. 
We want to plot R 0 = f( N), for NE [1, 20] say, with C = c a prechosen 
constant. Both N and C are functions of a and p:N = g 1(a, p) and 
C = g/u, p), say. If p = p has been chosen, then we can determine 
a =a such that g2(a, p) = c [formally write a = h(c, p)] by the secant 
method. Now calculate R 0 =f(g 1(h(c, p), p)), plot the result against 
g ra-' p), and choose a new p. 

4. NUMERICAL RESULTS 

The following parameter values are held fixed throughout all compu­
tations: 8 1 = 4.0 per year, 82 = 83 = 0.2 per year; /Li= 0.02 per year 
(i * 4), µ,4 = 0.5 per year; f3=100 per year; C = 500. We assume that 
sij=l for iE{l,2,3}, jE{O,l,2,3} because in our model we disregard 
testing for seropositivity, and therefore infected individuals who do not 
have AIDS and whose current partners also do not have AIDS have no 
way of knowing that they are infected. Things are different if the 
current partner of our index case (the infected individual we follow) has 
AIDS. Then, if this partnership breaks up, our index case will know that 
he or she has a high probability of being infected. We choose si4 == 0, 
i={l,2,3}. The remaining s4/s, jE{0,1,2,3}, do not require special 
treatment. In these cases the index case himself has AIDS, and because 
of our assumptions this individual will then not have any sexual contacts 
or new sexual partners for the remaining time of his infectious period. 
The behavior of these individuals, and the value of s4j, will not influ­
ence R0 , nor does it influence the calculation of N for the population. 
In our calculations below we have set s4j = 1. One could argue that 
the value of sij can depend on the reason (separation or death of 
the partner) that a partnership of the index case breaks up. However, as 
all these influences are unknown, there is really no point to such 
generality. 
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In a series of four graphs, we evaluate the effect of the dependence 
of the infection probabilities per sexual contact on infection state and 
sex. We want to study four situations (the numbers correspond to the 
graphs in Figure 1): 

(1) Infection state-dependent and sex-dependent Pi · 
(2) Infection state-dependent and sex-independent Pi· 
(3) Infection state-independent and sex-dependent Pi· 
(4) Infection state-independent and sex-independent Pi· 

We have to be careful in gauging the four situations if we want to be 
able to compare the results. We calibrate situations 2-4 using our 
choice for the most general situation 1. 

For situation 1 we choose p 1(1) = 0.05, pil) = 0.001, p 3(1) = 0.01, 
pil ) = 0 for the male or female probabilities and p 1(2) = 0.025, pi2) = 
0.0005, p 3(2) = 0.005, p4(2) = 0 for the female to male probabilities. 
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For situations 3 and 4 we first calculate duration of infectivity D: 
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FIG. 1. The basic reproduction ratio R0 as a function of the number N of new 
partners during the infectious period for four different assumptions about the 
infection probabilities per contact. (-·-) time- and sex-independent (4); ( · .. ) 
time-independent, sex-dependent {3); (---) time-dependent, sex-dependent (2); 
(-) time- and sex-dependent (1). For parameter values see text. 
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Then the mean infectivity p is 

(1) 

We can use (1), with appropriate placing of k's, to calculate, from the 
original pi(k )'s, a p(l) for males and a p(2) for females. This leads to 
p(l) = 0.00654 and p(2) = 0.00327. We use these in situation 3. For 
situation 4 we take the geometric mean VP( I) p(2) = 0.00462. 

Finally, in situation 2, we take for i = 1, 2 the geometric mean over 
the sexes, Pi =Jpi(l)pi(2). This leads to p 1 =0.0354, p2 = 0.0007. 
Now, to gauge all situations we demand that p 1, p 2 , and p 3 are such 
that p from (1) is equal to the geometric mean of p(l) and p(2). This 
requirement leads to p 3 = 0.0071. 

For given values of p, a corresponding value for a was calculated to 
obtain a total of 500 contacts during the infectious period. For p values 
ranging from 0.75 to 5.25 per year, the corresponding a values range 
from 0.36 to 4.35 per year in situations 1 and 2 and from 0.18 to 4.32 in 
situations 3 and 4. The resulting four graphs are shown in Figure L The 
ordering of the four situations is 

We see from Figure 1 that the sex dependence does not appear to 
have a marked influence on R0 • This would suggest that the often-made 
distinction between "male to female" and "female to male" infection 
probabilities is not so relevant for questions involving the basic repro­
duction ratio. Dependence on the infection state, however, does have a 
marked influence on R0 , and the use of an infection state-independent 
infection probability would lead to an overestimation of the basic 
reproduction ratio. The effect of dependence on infection state on R 0 is 
larger for higher values of N. In any case, the numerical computations 
suggest that the introduction of variance in infectivity results in a 
decrease in the predicted R 0 value for a given value of N if the average 
infectivity is kept constant. Repeating the calculations with differe'nt 
distributions of infectivity over the infection states while keeping the 
(weighted) integral over the entire infectious period constant did not 
lead to qualitatively different results. 
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The threshold values N* for the number of partners during the 
infectious period of D = 8.88 years satisfy the inequalities 

N* ( 4) < N* ( 3) < N* ( 2) < N * ( 1), 

where N*(4) = 2.42, N*(3) = 2.49, N*(2) = 4.28, and N*(l) = 4.42 [note 
that N*(l) is 83% larger than N*(4)]. The critical number of partners 
N* can be even larger if one increases the variability of the infection 
probabilities. For P 1 = 0.165 and p2 = p3 = 0, such that p remains the 
same, one gets N* = 75.8. 

If we let N tend to the maximum value that corresponds to the 
condition C = 500-in other words, if we set N = 500 while letting 
a --Hlo-we obtain the same value for all four curves: R0 = 2.31. The 
curves differ primarily for intermediate values of N. This is easy to 
explain. For large values of N they agree because the number of 
contacts per partner tends to 1, so the infection probability per partner 
equals the infection probability per contact and the average infection 
probabilities all agree. Here we note that with respect to sex differences 
one has to take the geometric average, and with respect to time 
differences the integral over the infectious period. For small values of 
N, the curves agree because the number of contacts per partner is large 
so the infection probability per partner tends to 1 in all four cases. 

If only individuals in the initial phase of the incubation period are 
infectious, then one has the intuitive feeling that R0 will strongly 
depend on the length of this initial phase for a given average infectivity 
and fixed rates p and u describing the formation and separation of 
pairs. If the infectious phase is shorter than the duration of a partner­
ship plus the subsequent time between partnerships, then serial 
monogamy cannot sustain HIV transmission. This is illustrated in Fig­
ure 2, which shows R 0 as a function of the duration of the infectious 
phase, keeping the average infectivity fixed at 0.005. The length of the 
incubation period is 10 years. 

For u = p = 1 per year, we find that the index case acquires about 
4.3 new partners with 93 contacts per new partner. For a constant 
infection probability we expect R 0 to be 1.60 according to the formula 

where c denotes the number of contacts per partner. The corresponding 
values for u = p = 2 are 48 contacts per new partner, 9.3 partners, and 
R

0 
= 2.0. Figure 2 shows R 0 as a function of the duration of the 

infectious phase. We see that R0 > 1 would require a dur~tion of about 
5 years for O" = p = 1 and 2.5 years for u = p = 2. This result may 
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F10. 2. The basic reproduction ratio R0 as a function of the duration of the 
infectious phase in years, keeping the average infectivity per contact p fixed at 0.005. 
The upper curve refers to an average duration of a partnership of half a year 
followed by an interval between partnerships of half a year. T he corresponding 
durations for the lower curve are both 1 year. 

provide one explanation for the slow spread of HIV in the heterosexual 
population in Europe outside the group of IV drug users. 

The following argument demonstrates the plausibility that variability 
of infectivity during the infectious period decreases the infection proba­
bility per partner. Let w(p) be the probability density function for the 
infection probability per contact p. In our model this distribution is 
concentrated on a finite number of different values. Let the 
probability-generating function for the number of contacts per partner 
be denoted by F. Then the infection probability per partner is given by 

1 - j 1 F ( 1 - p) w ( p) dp, 
0 

since for a fixed number n of contacts per partner the infection 
probability per partner is 1 - (1- p yi for a given infection probability p 
per partner. If we expand F, we get 

pc - ( 1 / 2) ( p 2 + a/ ) ( c 2 
- c + a/ ) + · · · , 

where p is the average infectivity, CJ"/ is the variance of the infectivity, 



EFFECTS OF VARIABLE HIV INFECTIVITY 47 

c is the mean number of contacts per partner, and ac 2 is the variance of 
the number of contacts per partner. In the epidemiological models that 
do not incorporate the possibility of longer lasting partnerships, exactly 
one contact takes place per partner. Therefore in those models c = 1 
and CT/ = 0 and the infection probability per partner equals the average 
infection probability p per contact. The expansion given above indicates 
that the decrease in the infection probability depends on both the 
variability of infectivity and the variability of the number of contacts per 
partner. A similar argument was used by Dietz and Tudor [5] in 
describing the effects of concurrent partnerships on the calculation of 
Ro. 
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