
BASIS3,

A Data Structure for 3-Dimensional Sparse Grids

P.W. Hemker and P.M. de Zeeuw
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

In this report a data structure and basic procedures are described, that can be used
for the implementation of adaptive sparse grid algorithms in three dimensions. The
basic elements are rectangular cells (cubes and parallelepipeds) that fit in a tree
type data structure. A cell can be split -in three ways- in two equal smaller cells.
In this way any grid cell in the structure can be refined. The data structure is
completely symmetric with respect to the 3 space dimensions.

Basis routines to handle the data structure are provided. The same software
can be used for the solution of 1- or 2-dimensional problems. In the appendix
a PASCAL prototype implementation is given and also the available FORTRAN
implementation is described.

1 The geometric structure

1.1 Coordinates, grids and cell elements

For the construction of discretisation schemes for the solution of PDEs, we may use
physical and computational coordinates. In this report, for the description of the data
structure, we only use computational coordinates in 3 space dimensions. We assume
a Cartesian coordinate system, and for convenience we distinguish the x-, y- and z
coordinate directions. Further we identify in this coordinate system an origin and a unit
length.

We will describe a data structure for handling adaptive sparse grids in 3 dimensions,
both for finite element and for finite volume type discretisation methods. For the sparse
grids we will need the simultaneous use of many different grids, cells, nodal points etc ..
However, there is only one basic grid, 'R-0,0,0 • This is the regular rectangular grid in the
3-dimensional space, consisting of all nodal points in Jm.3 that are located at points with
all integer coordinates in the computational space. Hence

'Ro,o,o = {(i,j,k)Elm.3 ; iEZ,jEZ,kEZ}. (1)

Similarly, we introduce many (infinite) grids with nodal points at dyadic points in im.3 .

For any (l, m, n)EZ3 we introduce a grid 'R-1,m,n C Jm. 3 as

(2)

443

We call (l, m, n) the level-vector of the grid. We also say that 'R-1,m,n is a grid on the
(l +m+n)-level. The 'Ri,m,n in (2) are all possible grids. For an impression of the relation
between these grids for l + m + n ;::: 0, we refer to Figure 1. On these grids we may
wish to handle all kinds of vertex- or box- centered discretisation methods, such as finite
element, mixed finite element or finite volume methods. I.e. we may wish to associate
numerical values with any kind of nodal point (=cell vertex), cell (or cell center), cell
face or cell edge. Of course, in practice only finite parts, and a selection of all possibilities
will be used.

(1,0,0)

r!:-:-1 1
H i 1

<0.0,11 L : _:_J- -J

~2.0) CJ~] ro·q;-J ~Olli ITE---w--r 111 ~-
(1.1,0) I J. co.1.11 . _-::-~~

mrtrf '"1 ~ :i' ._: ·1- ·. - - ':"_ •:· _·_ .• · __ · r1111] 1[11 ____ J
(2.a.1 L_0t::JJ (1P.1) L-~bh. (OU) E~ J

I 11 . r -ff . · ·-- ::j

{0,3,0)

0-level

1-level

2-level

3-level

(1.2.0) o __ (0~1) e
•····-·~·~ (2,0,1) ~ (1,021~ (O,U)~

---~~~----~~--------·---------·-------- - ----·· ------

Figure 1: An impression of the grids 'Ri,m,n with l, m, n 2:'.: O.
In this figure a cell on the basic grid 'R.o,o,o is shown, together with its refinements on

the grids 'R1,m,n1 l + m + n = e, on all the £-levels, e = 1, 2, 3.

L~t the discrete equations, that model the PDE, be defined on a computational
~om'.11n n. We as.sume ~hat the computational domain O, an open set in li3, is not
mfimte, but that 1t consists of only a finite number of cells in the basic grid n .
Withou~ loss of generality we may assume that the coordinates of all points in o~:e
closure 0 of n are non-negative.

444

For all grids we introduce the notion of nodal point (=cell vertex), cell, cell center,
cell face or cell edge with their obvious meaning:

• a nodal point or cell vertex is an element of 'R1,m,n:

V;J,k = V;J,k,1,m,n = (i2-1, j2-m, k2-n) .

• a cell is the interior of an elementary cube in the grid:

ci,j,k = ci,j,k,l,m,n

= {(x,y,z); l(i + t)2-1 - xl < 2-1- 1 ,

l(j + t)2-m - YI < 2-m-l '
l(k + t)2-n - zl < 2-n-l } .

We notice that a cell is an open set in B.3.

• a cell center is the center of gravity of a cell

t:i+!J+!,k+! = ((i + t)r1, (j + t)rm, (k + t)rn) .

• a cell edge is an open ended segment between two neighbouring nodal points. We
distinguish 3 types of edges:

- an x-edge

- any-edge

- a z-edge

t:iJ,k+i = { (i2-1,j2-m, z); l(k + !)2-n - zl < 2-n-l}.

• a cell face is an open rectangle between two neighbouring cells. We distinguish 3
types of cell faces:

- an x-face

£ . ..,..i Lol =
iu.-- 2 1R"f2

- any-face

e.....i .• ,)_ =
.-r21J1N"T"'2

{(x,j2-m,z); l(i+t)2-1-xl < 2-1- 1, l(k+t)2-n-zl < 2-n-1} ,

- a z-face

t:>+-*i k = 2UT2l

{(x,y,k2-n); l(i+t)2-l-xl < 2-1-1, IU+!)2-m-yl < 2-m-l} .

We call the cell interiors, cell faces, cell edges and cell vertices the cell elements in the
grid.

445

r

z-edgr l . I
~
~x-edge

Nodal point

y-face f z- ace

• • x-face

Figure 2: A patch: the nodal point, the cell edges and cell faces.

1 ~~- --- __ - -

(0,0,2)

Figure 3: Structure of the patches making a connected block [O, 3] x [O, 1] x [O, l].

1.2 Patches

The above considerations were independent of the realisation in a data structure. We
aim at the construction of a data structure for adaptive computations. This implies that
we are interested in all the possible grids 1?,1,m,n, with l, m, n ~ 0, as far as they cover
the domain IT. However, a priori we do not know what grids and what parts (what cell
elements) of these grids will be needed in a computation.

Therefore we realise a data structure in which all cell elements that cover TI" on the
basic grid 'Ro,o,o will be represented. Further, all cells on the grid 'R.1,m,n, l, m, n ~ 0,
may exist in the data structure, provided that there exist also cells that cover the same
space in the coarser grids 'R1-i,m,n, nz,m-i,n and n 1,m,n-i· Notice that, for each of these
3 grids these father cells are uniquely determined. However, if any of the indices l - 1,
m - 1 or n - 1, is negative, we do not require corresponding father cells to exist in the
coarser grid. We notice that in all aspects the data structure is (and remains) symmetric
with respect to the three coordinate directions.

As TI" is the union of the closure of a finite number of cells in 'Ro,0,0 , we see that for all
l, m, n;:::: 0 the closed domain n is exactly the union of a finite number of (open) cells, cell
faces, cell edges and cell vertices! We also see that the number of cell vertices is larger
than the number of cells (because n has boundaries on all sides), but asymptotically for.
fine grids or large domains the difference between these numbers becomes less significant.

446

Figure 4: All 16 patches in the block [O, 3] x [O, 1] x [O, lj, unused parts are not shown.

Figure 5: The 13 thin patches in the block [0, 3] x [O, 1] x [O, 1].

Asymptotically for fine grids, if the number of cells is O(N), also the number of cell
vertices is O(N), and the number of cell faces and cell edges is 0(3N).

Because we want to be able to handle all possible cell elements in the data structure
for adaptive computations, and because we want to minimise the number of pointers
necessary, we introduce the 'patch' as an elementary unit in the data structure.

With each nodal point ViJ,k in the grid 'R1,m,n we associate the patch, i.e. the union
of a vertex, 3 edges, 3 faces and the corresponding cell interior in the positive direction:
'Pi,j,k = PiJ1k,l,m 1n1

P;,i,k = V;J,k U l'i+!,i,k U l';J+i,k U l';J,k+i

u l';J+t,Hi u l';+tJ,k+t u l';+t,j+t,k u C;,i,k .
(3)

This implies that for each grid the domain n is fully covered by a union of patches,
whereas the domain n is covered exactly by the same union of patches, with the exception
of half of the boundary of n. In order to complete the covering of ri we have to add

447

' -"
I

{0,0,1)

{3,1,0)

~~,t__~~.t,__~---"'(3,0,0)
Figure 6: The 3 complete patches in the block [0,3] x [O, 1] x [O, 1].

XNL"~f i r:~~ l 1~11+1t~~1 Jc .. i . ~.rt~ I. I J · 1.

ZNL
Figure 7: The 6 neighbours and 6 kids of a cell.

partial patches, so called thin patches at the right-hand side of the domain (i.e. at the
side of the positive coordinate directions).

These thin patches only account for a vertex and possibly also edges and faces. They
don't have a corresponding volume.

The thin patches and the complete patches (i.e. the patches that represent a volume
C;J,k) are the basic elements of the data structure that is described in this report later.
Each patch is identified by the level and the coordinates of its vertex. Later we shall
also see that it can also be identified by its unique patch number.

It will be clear that a patch representing a volume C;,j,k, automatically also represents
all faces, edges and the vertex at the left-hand side of the volume. A patch P;J,k in
any case represents the vertex ViJ,k· However, if the volume is not represented (is not
present), a choice of faces and edges can be represented by the patch. Thus, different
types of thin patches are possible (see Figure 5). The book-keeping of what faces and/or
edges are represented by a particular the patch is stored in the data structure as a 'plain
patch property'. These patch properties are listed in Table 1.

Table 1: The plain properties of a patch.

for patch P;J,k
property code meaning
Complete C;,;,k c P;J,k
XWall eiJ+t,k+t c 1';,j,k
YWall ei+tJ."+t c 1';,j,k
ZWall e. I · I k C 'P· 'k t+211+21 ... ,,,

XEdge t';+tJ,k c P;J,k
YEdge t';J+t,k c P;J,k
ZEdge t';J,1c+! c P;J,1c

448

-
Table 2: The neighbours of a patch.

relative patch P;,j,k

relation code meaning
left x-neighbour XNL P;-1,j,k

right x-neighbour XNR pi+l,j,k

left y-neighbour YNL Pi,j-1,k

right y-neighbour YNR Pi,j+I,k

left z-neighbour ZNL P;,j,k-1

right z-neighbour ZNR Pi,j,k+I

Table 3: The kids of a patch.

for patch Pi,j,k,l,m,n

the following kids may exist
relation code meaning
left x-kid XKL P2i,j,k,l+l,m,n

right x-kid XKR P2i+l,j,k,l+l,m,n

left y-kid YKL Pi,2j,k,l,m+I,n

right y-kid YKR Pi,2j+I,k,l,m+l,n

left z-kid ZKL Pi,j,2k,l,m,n+ 1

right z-kid ZKR P;,j,2k+l,l,m,n+I

1.3 Neighbours and kids

Because all grids have a regular rectangular structure, each cell or patch in a grid has
at most six direct neighbours. For the patch P;J,k these are identified as the left- and
right-, x-, y- or z- neighbour. This is summarised in Table 2.

We call a cell (or patch) a kid of another cell (or patch), which is called the father,

if it represents a subset of the father and if it is obtained from the father by a single
step of refinement (one level difference). Similarly we introduce the notion of grandfather

and grandson. Since an elementary cube in the R 1,m,n-grid has dimension 2-1, 2-m and
2-n in the x-, y- and z-direction respectively, the volume of each father cell is double
the volume of the kid cell and each cell has at most six possible kids. Such kids can be
found by splitting the father cell in two equal blocks. This can be done in the x-, y- and
z-direction. Thus we can identify the left- and right-, x-, y- or z- kid of a patch. This is
summarised in Table 3.

We extend the requirement for a kid cell (at the beginning of Section 1.2) that each
cell on a mesh R1,m,n should have a father in the mesh R1-1,m,n, R1,m-1,n and R1,m,n-1

(unless a corresponding index becomes negative) to a similar requirement for patches.
Thus, we require that for l > 0 any patch on R1,m,n should have a corresponding father
in the 'R.1_ 1,m,n-mesh. This father is called the x-father. Similar relations should hold for
the y- and z-direction. This means that, if a patch is refined in some direction, then the
patch should have a father in that particular direction. This is summarised in Table 4.

1.4 Ghost patches, the root patch

We already noticed that the patches are the elementary unit in our data structure. They
are identified by their patch numbers (or by their level l, m, n and integer coordinates

449

Table 4: The fathers of a patch.

for patch 'P;,j,lr.,l,m,n

the following fathers should exist:
relation code meaning only if
x-father XF 'P[i/2J,j,lr.,1-l,m,n l>O
y-father YF 'Pi,l.:i/2J,k,1,m-l,n m>O
x-father XF 'Pi,j,[k/21,1,m,n-I n>O

i, j, k) and they are linked to each other by neighbour relations with patches that belong
to the same grid, and by father-kid relations between the different levels of refinement.
Until now, all patches were related to a grid 'R-1,m,n, l, m, n ~ 0. We extend this in this
section to some levels with l, m, n < 0.

By the requirement that for l > 0 any patch on 'R-1,m,n should have a corresponding
father in the 'Ri-i,m,n-mesh, and similar relations for the y- and z-direction, a straightfor
ward 3-fold intertwined bin-tree structure is created between all patches of the structure.
The roots of this tree structure are the patches on the no,0,0-grid.

In order to generate a unique root, instead of the multiple roots on the (0, 0, 0)-level,
we extend the data structure for grids 'R-1,m,n, for which l, m, n s; 0, as follows. For all
patches in the 0-level 'R-1,m,n (l, m, n = 0) we construct their x-, y- and z- father on the
level l+m+n = -1. Recursively we construct all fathers on levels with smaller l+m+n.
Because the domain i1 is finite, this process results eventually in one unique patch from
which all the patches on the ~o.o,0-grid are descendants. The level of this unique root
patch is simply identified as (lroot. mroot, nroot), i.e. the root level, with

lroot -r 2 logfS1.,f + 1 l,
mroot = -r 2 logfUyj + 1 l,
nroot = -r 2 1ogjnz1+11,

where f Odf is the length of the block i1 in the d-direction, d = x, y, z. Without loss of
generality the root patch can be identified as 'Po,o,o,1root•mroot•"root·

This construction of the unique root patch makes it possible to reach a patch from
the basic grid 'Ro,o,o starting from the root patch, in the same way as it is possible to
reach an arbitrary patch in the structure from the corresponding patch on the basic level
by stepping up in the tree. This implies that now all patches can be easily reached,
starting from the root patch.

Thus, all patches in the structure are related to each other by father-kid relations
in a simple 3-fold intertwined bin-tree structure with a unique root patch. All patches
on negative levels are introduced to create a consistent data structure, and we don't
associate them with a geometric meaning. These patches with a negative level are called
ghost patches.

1.5 Local refinements, boundaries

As mentioned before, on the basic level all the domain i1 is covered by patches: complete
patches and additional thin patches on the right-hand-side boundary. On a refined level
(l + m + n > 0) the patches do not necessarily cover all the domain n.

A local refinement on a grid 'R-1,m,n consists of the closure of the union of a number
of cells in this grid n1,m,n· To represent the local refinement, for each cell C;,j,k we have

450

Table 5: Levels in the data structure.

for a patch P;,j,k,l,m,n we distinguish
the following level properties:

l, m, n are either all non-negative, or
l, m, n are all non-positive.

Ifl+m+n=O P;,j,k,l,m,n is on the basic level
Ifl+m+n<O Pi,j,k,l,m,n is on a ghost level
Ifl+m+n>O Pi,j,k,l,m,n is on a refined level

l 2:: lroot, m?: mroot, n :'.'.'. nroot·

Table 6: The boundary properties of a patch.

for patch Pi,j,k

property code meaning
XBdyWall E; j+l k+l c an

1 2 1 2

YBdyWall E;+l j k+l c an
2 I I 2

ZBdyWall Ei+l j+l k c an
2 ! 2,

XBdyEdge E;+!,j,k c an
YBdyEdge ti,j+!,k can
ZBdyEdge &ijk+l can , , 2

BdyPoint Ei,j,k can

a patch Pi,j,k in the data structure. In addition we need a number of thin patches (at
right-hand-side boundary of the local refinement) in order to complete the closure of
the domain. We notice that also these thin patches (should) have there corresponding
fathers in the coarser grids.

Local refinements do not necessarily cover connected subdomains of IT. the only
requirement for the existence of a refinement is the existence of sufficient father cells
(father patches) on (all) coarser grids.

We emphasise that local refinements, as the original domain IT, are closed sets. They
include their boundaries. The boundary an of D is called the domain boundary or,
briefly, the boundary. This boundary is certainly represented by the patches in the basic
grid Ro,o,o· The boundary can also be represented (in part) on the refined grids. Patches
that contain part of the boundary are called boundary patches.

Different faces and/or edges of a patch can represent part of the boundary. It will be
clear that, if a face belongs to an, then at least two edges belong also to an; and if an
edge belongs to an , then also the vertex of the patch. In order to recognise which part
of a patch belongs to the boundary we distinguish several boundary properties. These
properties are summarised in Table 6.

On the refined levels, generally the local refinements will cover only part of the domain
D. This implies that parts of the boundary of the local refinements will be in the interior
of n. The boundary of a local refinement (as well as the boundary of n itself) is called
a green boundary and patches that represent part of the green boundary are called green
patches. This implies that all (sub)sets of TI that are represented at the basic or refined
levels are bounded by a green boundary. It will be clear that the family of all boundary
patches is a subset of the family of green patches.

451 I

Table 7: The green properties of a patch.

for patch 'Pi.i.k
property code meaning
XGrnWall e; ;+1 k+1 c ag

l 2 1 2

YGrnWall ei+tJ,k+t c ag
ZGrnWall &;+t,;+t.k c ag
XGrnEdge e·+1 ·kc ag i 2J,

YGrnEdge i. ·+1 kc ag
"" 21

ZGrnEdge £. ·k+1 c ag t.J, 2

GrnPoint e;.;,1c c ag

As for the domain boundary, different faces and/ or edges of a patch can represent part
of a green boundary. Therefore, we also recognise different possible green properties for a
patch. Let 91,m,n be the subset of n that is covered by a local refinement on 'R.1,m,n, then
BQ = Q1,m,n \Qi,m,n is the green boundary on level (l, m, n). Because of their location on a
green boundary, for green patches we speak of: green faces, green edges and green points,
in the same way as we speak of boundary faces, boundary edges and boundary points
for the boundary patches. The different green properties are summarised in Table 7.

2 The data structure

Although PASCAL, C++ and other, modern languages are really well suited to properly
implement a data structure as described in this report, for some practical reasons it has
been decided that it should also be implemented in FORTRAN. This infers restrictions
in the way a data structure can be implemented.

Our experience is that the construction of a FORTRAN implementation is enhanced if
first a prototype is made available in a better equipped language. Therefore, a prototype
of the essential parts of the data structure is built in PASCAL, taking into account the
restrictions that are inherent to the use of FORTRAN. This implies that the useful
features as pointers and recursive procedures, that are available e.g. in PASCAL but not
in FORTRAN, were abandoned in the prototype.

The PASCAL prototype is found in Appendix section A.l. In Appendix section A.3
and A.4 the user interface for the FORTRAN implementation is given.

2.1 Patch numbers and pointers

As we have coordinates, properties and neighbour- or father-kid- relations in the data
structure, with each patch we also associate coordinates, pointers and properties. Further
we want to provide a patch with a set of real numbers for the representation of the
numerical data: its data contents. These numerical data can be associated with the
vertex, the cell etc., as a user likes it.

All data are kept in 3 large arrays: an integer array (PNTR), a Boolean array (PPTY)
and a real array (DATA). These are all two-dimensional arrays with MNOP columns,
where MNOP is the maximum number of patches that is allowed in an implementation.
The p-th column of each of these arrays is associated with the p-th patch in the data
structure. This number p, the patch number is a unique natural number, identifying this

452

--
Table 8: The row numbers ('code') for the integer coordinates.

index meaning
XL l
YL m
ZL n
XJ i
YJ j
ZJ k

patch. However, the number p has no particular meaning and it may be changed during
the computation, provided that all references to this patch (by means of this number)
are changed correspondingly.

However, there are two exceptions: p = 0 and p = 1 are special patch numbers: p = 0
represents the nil pointer , a pointer which does not refer to a patch (or, refers to the
non-existence of a patch), p = 1 refers to the unique root patch.

For a patch the references to other patches, the pointers, are all found in the integer
array (PNTR), together with the integer coordinates l, m, n, i, j, k, which are also called
the indices of the patch 'P;,;,k,l,m,n· Different row-numbers are associated with the different
indices or different pointers. Row-numbers for the different indices (integer coordinates)
of a patch are summarised in Table 8. Which row numbers are associated with the
particular pointers to neighbours, fathers and kids are found as 'code' in the Tables 2,
4, 3. The 'code' represents a unique integer that serves as the row index for the array
PNTR.

Thus, the pointers of a patch are implemented as integers in the array PNTR, re
ferring to the corresponding (father-, neighbour- or kid-) patch number. Properties of
patches are implemented similarly as Booleans in the array PPTY.

2.2 Pointers and coordinates: the array PNTR

The integer array 'PNTR', at least dimensioned [FstPtr:LstPtr, O:MNOP], is used for
keeping the pointers. For each patch a set of 15 pointers is provided: XF, YF, ZF, XKL,
XKR, YKL, YKR, ZKL, ZKR, XNL, XNR, YNL, YNR, ZNL, ZNR. The meaning of
these pointers is found in the Tables 2, 3 and 4.

Another part of the same integer array PNTR, dimensioned as
[Fstldx:Lstldx, O:MNOPJ, is used for keeping the integer coordinates (i.e. the indices):
XL,YL,ZL, XJ,YJ,ZJ. E.g. the element PNTR[YNL,p] contains the patch-number of
the left-hand y-neighbour of the patch p (i.e. the patch with patch-number p) and
for the same patch 'P;J,k,l,m,n the index k, is found in PNTR[ZJ,p] and the index l
in PNTR[XL,p].

Remark:
Because the order of the row-indices has no intrinsic meaning, for the implementation
we use named integer constants (the 'code') to identify the row-number. For the array
PNTR, the names Fstldx, Lstldx, FstPtr (=Lastldx+l) and LstPtr are introduced to
indicate the first (last) pointer or integer coordinate present. These names facilitate
loops over row-elements.

In the actual implementation we take Fstldx=l, Lstldx=6, FstPtr=7, LstPtr=21.

453

We dimension the array PNTR as [Fstldx:LstPtr, O:MNOP]. The elements of PNTR[* ,O],
the nil patch, are all initialised (and kept) equal to zero. That makes that any pointer
from the nil patch is again the nilpointer. This simplifies the implementation because it
makes that "the kid or neighbour of a not-existing patch doesn't exist".

Remark:
During the computation we may expect that the maximum number of patches (MNOP)
is never used. The active patches present in the data structure are found for the patch
numbers 1 :::; p:::; NOP (number of patches). However, the integer variable NOP does not
(always) represent the number of patches that is active in the data structure, because -
previously living- patches may have disappeared from the data structure and still keep a
patch number. These empty patch numbers for dead patches can be re-used (for another
patch) in the sequel of a computation.

2.3 Properties: the array PPTY

Various properties of a patch are stored in the Boolean array: PPTY. Many of these
properties (e.g. whether the patch is located near a boundary) can be derived from
the pointer structure, but to avoid many trivial recomputations, some properties can
better be stored independently in the data structure. (A routine CHKPPT can be
made available to check the consistency of the data.) Also some other information in
the form of properties, is used in the data structure and additional properties, flags, can
be defined by the user.

Properties of a patch that are of interest are found in the Tables 1, 6 and 7. These.
tables give also the row-number (the 'code') where this information can be found in
the array. Other properties (flags) given to a patch are 'PregnantX', 'PregnantY' and
'PregnantZ', which indicate that the cell should be refined in the x-, y- or z-direction, at
the first possible occasion. The flag 'Sentenced' denotes that the cell should be removed
at the first possible occasion and the flag 'Dead' denotes that the patch has been removed
from the data structure (the patch number is free for re-use).

Remark:
While the order of the Boolean properties in the array has no intrinsic meaning, the
actual implementation is made by named integer constants. The first property is also
called 'FstPpt' and the last property 'LstPpt'. This means that the array PPTY should
be dimensioned at least as [FstPpt:LstPpt,O:MNOP]. The availability of 'FstPpt' and
'LstPpt' also enables the construction of loops over all row-elements of the array.

2.4 Data contents: the array DATA

The data contents of the data structure is contained in the real array DATA dimensioned
as [l:MNOD,l:MNOP], where MNOD is the maximum number of real data that can be
stored per patch. The choice ofMNOD depends on the application and is left to the user,
as is the distribution of the data over the different rows. In fact, the basic procedures
for handling the data structure do not refer to the array DATA.

Remark:
In addition to -or instead of- the array DATA, the user can introduce his own arrays as

454

(additional) storage, possibly of different data type, for any data he needs in the struc
ture. The only condition is that, in one of its indices, it should should be dimensioned
'l:MNOP'.

3 The actions on the data structure

3.1 Construction of the data structure

For the construction and the handling of the data structure, the following routines are
available to the user. Notice that routines are available both for creating parts of the
data structure, as well as removing parts of it. The space that is made free by the
removal of some parts will be used again by the newly generated parts.

It is useful to know that the active part of the data structure is always the closure of
a set of open cells. These cells are created and removed. The routines mentioned below
keep the data structure up-to-date. They take care of all actions necessary to represent
the closure of all active cells (they take care of green boundaries etc.).

Many routines get access to a cell through the pointer p of the corresponding patch.
This is the usual way to know a patch. If necessary, a routine 'GetPtr' can be used to
obtain this patch number p if the integer coordinates i, j, k, l, m and n are given.

• routine InizBasis3. This routine, which has no parameters, should be called once
before the data structure is used. This routine (re-) initialises the data structure.

• routine MakeBlock (dimx,dimy,dimz, xcycl,ycycl,zcycl). This routine has 3 inte
ger parameters: dimx, dimy and dimz, and 3 Boolean parameters xcycl, ycycl and
zcycl. This routine creates the data structure for the domain IT, where n is (topo
logically equivalent with) a rectangular parallelepiped on the basic grid 'Ro,0,0 .

A call of MakeBlock will result in active cells on the 0-level in a parallelepiped
0 = (O,dimx) x (O,dimy) x (O,dimz).

Remark:
To create a domain n with a different shape, first an enclosing block should be
created on the basic grid. Then, before further operations on the data structure are
made, the superfluous cells C;,j,k,o,o,o should be removed from the enclosing block
by the routine RemoveCelL

The parameters dcycl (d = x, y, z) denote the topological structure of the block.
To create a true topological block, all parameters dcycl should be set false. If dcycl
is true, then the domain will be periodic in the d-direction: then on the 0-level
the cells with d-coordinate 0 are identified with the corresponding cells with the
d-coordinate dimd. Then the cells with the centre at d-coordinate ~ are the right
neighbours of the corresponding cells with the centre at d-coordinate dimd - ~;

similarly the left-neighbours of the cells with the centre at d-coordinate t are cells
with the centre at d-coordinate dimd - t· In this way e.g. periodic boundary
conditions are easily realised and also 1- and 2-dimensional problems can easily be
simulated.

• routine MakeFamily (l,m,n, i,j,k). This routine has 6 integer parameters: the
integer coordinates of a cell that should become active in the structure. If possible,

455

/

this routine adds cell ci,j,k,l,m,n to the active part of the data structure, together
with all its necessary ancestors. It is possible to add the cell if it doesn't already
exist and if C;,j,k,l,m,n C !J.

• routine MakeOffspring (p). This routine has one pointer-parameter p. For patch
p this routine adds to the active structure all its kid-cells for which the creation is
possible. It is possible to create the (not already existing) kids in the d-direction
(d = x, y, z) only if the Pregnantd flag is true for patch p and if sufficient fathers
exist for the new cell.

• routine MakeCell (l,m,n,i,j,k, p). This routine has 6 integer parameters and one
pointer-parameter p. If possible, this routine adds the cell ci,j,k,l,m,n to the active
part of the data structure. It is possible to add a cell if it doesn't exist already
and if all its fathers (on non-negative levels) exist.

A user can always set the nil-pointer for p. (A sophisticated user may save some
computing time by setting p equal to the patch number of Pi,J,k,l,m,n)·

• routine RemoveOffspring (p). This routine has one pointer-parameter p. This
routine removes all kid-cells for the patch p, provided that this removal is possible.
The removal of a cell is possible if that cell is marked as 'Sentenced' and if it has
no kids.

• routine RemoveCell (p). This routine has one pointer-parameter p. If possible,
this routine removes the cell in patch p from the active structure. The removal is
possible if the cell has no kids.

• routine GetPtr (l,m,n,i,j,k). This routine has 6 integer parameters and it delivers
a pointer. The routine delivers the patch number (pointer) for P;,1,k,l,m,n·

3.2 Scanning the patches

All computations on the data structure are performed by scanning all necessary patches
and doing the computations for each patch when it is visited. Therefore, it is basic to
be able to visit a selected set of patches in a particular order and to perform an action
during that visit.

Below a routine is made available to visit the patches of a particular grid. Then it is
easy to create a routine that can perform an action on the patches from (part of) all grids
in a level. Further selection, within a grid, can be made part of the action performed.

The order in which all patches are visited is lexicographical (lexicographical in a spec
ified permutation of the indices i, j, k). However, the order can be either in the forward
or in the backward direction. Further, for the data structure there is no preference in
coordinate direction. This leaves us with 48 possibilities for scanning all patches in a
grid (any permutation of the coordinate directions can be chosen: x, y and z, and for any
coordinate direction there is the freedom of back- or forward scanning, i.e. 8 possibilities
for each permutation).

The choice between these orderings is made by a small input array 'myorder'. This
is an integer array dimensioned [1:3]. To specify the ordering, the array should contain
3 integers corresponding to the codes from Table 3, such that one code is chosen for
each coordinate direction (e.g. either YKL or YKR). The 3 resulting codes are placed in
'myorder' in any order. The codes denote from what side the scanning is started (YKL

456

means: in they-direction we start from the left), and their ordering in the array denotes
their ordering in the lexicographical treatment.

E.g., the array (YKL,XKR,ZKL) corresponds with 3 nested loops: scanning over the
y-direction in the outermost loop and scanning over the z-direction in the innermost loop;
the y-scanning is from left to right, the x-scanning from right to left and the z-scanning
from left to right.

For scanning the patches in this way, the following routine is available:

• routine ScanGrid (l,m,n, myorder, DoPatch). This routine has 3 integer param
eters to specify the grid and a parameter-array 'myorder' to specify the order by
which the scanning should take place. The last parameter DoPatch is the reference
to a routine that specifies what action has to be performed in each patch that is
visited.

• This routine 'DoPatch (p)' has one input parameter, viz. the pointer p that
indicates which patch is being visited. This routine should be provided by the user
to specify what action is wanted.

The routine ScanGrid scans all active patches in the set

{P;J,k,l,m,ni iEZ,jEZ, kEZ}

in the order as specified by myorder. When a patch is visited, a call to the routine
DoPatch is made.

457

I
·'

A Appendix: the implementation

A.1 The PASCAL prototype
In this section we give a full description of the data structure in PASCAL.

{

{
{

{

starting point for a FORTRAN 77 code
created: 13 August 1992
last corrections: 1992-11-16
author: P.W. Hemker

}

}
}

}

{ first a number of parameters for the include file -- }
const
{- MNOP = 320000; -} { -- MaxNumberOfPatches }
{- MNOD 4; -} { -- MaxNumberOfData }

MNDL 30; { MaxNumberDfLevels }
LNOL -12; { Lo'WestNumberOf Levels }
nihil = 0 · { the nil pointer }
no'Where= -999; { no place in structure }

{ DIRECTIONS }

{ x = 1; y = 2; z = 3; -- coordinate directions

{ INDICES -- }

XL = t · . YL 2; ZL = 3·
'

{ level indices
XJ = 4; YJ = 5; ZJ = 6; { coordinate indices

Fstidx = XL; Lstidx = ZJ;

{ -- POINTERS -- }
XF = 7; YF = 8· ZF = 9; { pointers to fathers

{ pointers to kids
XKL= 10; YKL= 11; ZKL= 12; { the kids (even coordinate)
XKR= 13; YKR= 14; ZKR= 15; { the kids (odd coordinate)

FstKid =XKL; LstKid = ZKR;

-- }

}
}

}

}
}

}

{ -- pointers to neighbours }
XNL= 16; YNL= 17; ZNL= 18; { -- in the negative direction }
XNR= 21; YNR= 20; ZNR= 19; { -- in the positive direction }

FstNgb
FstPtr

= XNL; LstNgb = XNR;
= XF; LstPtr = XNR;

{ -- PROPERTIES -- }
{ -- plain properties }

Complete 1;
XWall 2; YWall 3;
XEdge 5; YEdge 6;

{ -- boundary properties -- }

ZWall 4• .
ZEdge 7· .

XBdyWall 8; YBdyWall = 9; ZBdyWall = 10;
XBdyEdge 11; YBdyEdge = 12; ZBdyEdge = 13;
BdyPoint 14; { -- BdyCell = 15; -- }

{ -- green properties -- }
XGrnWall = 16; YGrnWall = 17; ZGrnWall = 18;

458

XGrnEdge
GrnPoint

19; YGrnEdge 20; ZGrnEdge 21;
22; GrnCell 23;

{ -- other properties -- }
PregnantX = 24; PregnantY = 25; PregnantZ = 26;
Sentenced 27; Dead 28;

FstBdyPpt
GrnShift
FstPpt

XBdyWall; LstBdyPpt BdyPoint;
GrnPoint - BdyPoint;
Complete; LstPpt Dead;

type
pointer
KidType
NgbType
order
strng

integer;
FstKid .. LstKid;

= FstNgb .. LstNgb;
array[l .. 3] of KidType;

= array[l .. 24] of char;

{ Global variables, suitable for a COMMON -- }

var
GeometryOK,
XCycl, YCycl, ZCycl
XSize, YSize, ZSize,
XRoot, YRoot, ZRoot,
RootPointer {= 1},

:boolean;

LastSpace, NumberOfPatches :integer;
TwoPow :array [O .. MNOL] of integer;
NormalOrder :order;

PNTR :array [Fstldx .. LstPtr,O .. MNOP] of integer;
PPTY :array [FstPpt .. LstPpt,O .. MNOP] of boolean;
DATA :array [1 .. MNOD,O .. MNOP] of real;

{ Survey of the data structure (BASIS3) routines }
{ The success of a data structure is its simplicity }
{ }

{ error (pointer,string,int) }
{ warning (pointer,string,int) }
{ }
{ InizBasis3 }
{ }

{ GetPtr (n,m,l, i,j,k :int)pointer; }
{ GetLocation (pointer, var n,m,l, i,j,k :int); }
{ GetKidType (pointer; var xtyp,ytyp,ztyp :KidType); }
{ }
{ SetPlnProperties (pointer); }
{ SetGrnProperties (pointer); }
{ SetBdyProperties (pointer); }
{ }
{ MakePatch(n,m,l, i,j,k :int; pointer)pointer; }
{ -- takes care for all the pointers }
{ MakeCell(n,m,l, i,j,k :int; pointer); }
{ -- takes care of all properties }
{ MakeKid(KidType; pointer); }
{ -- a cell is a complete patch with sufficient neighbours - }
{ MakeOffspring(pointer); }
{ -- all kids of a father }
{ MakeFamily(n,m,l, i,j,k :int); }

459

{
{
{

{
{
{
{

{
{

{
{
{
{
{

{
{
{

RemovePatch (pointer);
RemoveCell (pointer);
RemoveOffspring(pointer);

ScanGrid (n,m,l :int; order; DoPatch)
ScanLevel(lev, xmin,xma.x,ymin,ymax,zmin,zmax :int;

order; DoGrid)

HakeBlock (n,m,l, xcyclic,ycyclic,zcyclic :boolean);

ShowPatch (pointer);
ShowGrid (n,m,l:int);
ShowLevel (lev:int);
ShowAll;
DumpAll (name :strng);

procedure GetLocation (p :pointer; var n,m,l, i,j,k :integer); forward;
procedure ShowPatch (patch: pointer); forward;
procedure ShowAll; forward;

procedure error (p :pointer; name: strng; nr:integer);
begin { -- hard error message -- }

end;

vriteln('fatal error in routine ',name);
ShovPatch(p) ;
vriteln('error number= ',nr:O);

procedure warning (p :pointer; name: strng; nr:integer);
begin { -- soft error message -- }

end;

wri teln('message from routine ',name);
ShovPatch(p);
writeln('message number= ',nr:O);

procedure InizBasis3 ;
var { -- initialisation of the data structure }

i :integer;
begin

{ -- makes a pointer of the nil pointer the nil pointer! }
for i:= Fstldx to Lstldx do PNTR[i,nihil]:= nowhere;
for i:= FstPtr to LstPtr do PNTR[i,nihil]:= O;
for i:= FstPpt to LstPpt do PPTY[i,nihil]:= false;
for i:= 1 to HNDD do DATA[i,nihil]:= 0.0;

TwoPow[O]:= l; for i:= 1 to MNDL do TwoPov[i]:= TwoPow[i-1)•2;
GeometryDK:= false;
NormalDrder[l]:= XKL;
Normal0rder[2):= YKL;
Norma1Drder[3]:= ZKL;
NumberOfPatches:= O; LastSpace:= l;

end;

460

}
}
}
}

}
}
}
}

}

}
}
}
}

}
}
}

}

.... ~--
function GetPtr (n,m,l, i,j,k :integer):pointer;
var

p :pointer;
t, nn,mm,11 :integer;

begin
if XCycl then begin if n<O then else i:= i mod (XSize*TwoPow[n]) end;
if YCycl then begin if m<O then else j:= j mod (YSize*TwoPow[m]) end;
if ZCycl then begin if l<O then else k:= k mod (ZSize*TwoPow[l]) end;

if (n<XRoot) or (m<YRoot) or (l<ZRoot) then GetPtr:= nihil else
if (i<O) or (j<O) or (k<O) then GetPtr:= nihil else
if (trunc(i/TwoPow[n-XRoot])<>O) or (trunc(j/TwoPow[m-YRoot])<>O) or

(trunc(k/TwoPow[l-ZRoot])<>O) then GetPtr:= nihil else
begin

p:= 1; { -- i.e. RootPointer -- }
if n<O then nn:=n else nn:= O;
if m<O then mm:=m else mm:= O;
if l<O then 11:=1 else 11:= O;
if nn+mm+ll=O then else if nn+mm+ll<>n+m+l then p:= nihil;

{ -- first take care of the under world -- }
for t:=XRoot+1 to nn do

if odd(trunc(i/TwoPow[n-t])) then p:=PNTR[XKR,p] else p:=PNTR[XKL,p];
for t:=YRoot+l to mm do

if odd(trunc(j/TwoPow[m-t])) then p:=PNTR[YKR,p] else p:=PNTR[YKL,p];
for t:=ZRoot+1 to 11 do

if odd(trunc(k/TwoPow[l-t])) then p:=PNTR[ZKR,p] else p:=PNTR[ZKL,p];

{ and now the upper world -- }
for t:=1 to n do

if odd(trunc(i/TwoPow[n-t])) then p:=PNTR[XKR,p] else p:=PNTR[XKL,p];
for t:=1 tom do

if odd(trunc(j/TwoPow[m-t])) then p:=PNTR[YKR,p] else p:=PNTR[YKL,p];
for t:=1 to l do

if odd(trunc(k/TwoPow[l-t])) then p:=PNTR[ZKR,p] else p:=PNTR[ZKL,p];

GetPtr:= p;
{ -- ChkPtr(1, n,m,l, i,j,k, p); -- Chk***}

end;
end;

procedure GetLocation;
{ -- procedure GetLocation (p :pointer; var n,m,l, i,j,k :integer); -- }

{ -- Find the location for a patch in the grid -- }
begin n:= PNTR[XL,p]; m:= PNTR[YL,p]; l:= PNTR[ZL,p];

i:= PNTR[XJ,p]; j:= PNTR[YJ,p]; k:= PNTR[ZJ,p];
end;

procedure GetKidType -(patch :pointer; var xtyp,ytyp,ztyp :KidType);
begin

if odd(PNTR[XJ,patch]) then xtyp:=XKR else xtyp:= XKL;
if odd(PNTR[YJ,patch]) then ytyp:=YKR else ytyp:= YKL;
if odd(PNTR[ZJ,patch]) then ztyp:=ZKR else ztyp:= ZKL;

end;

procedure SetPlnProperties (p :pointer);
{ -- We use the location of the complete cells

461

/

/

-- to determine the location of wall and edges
-- }

begin
if (p=nihil) then else
begin

{ -- completeness is a gift, not a right -- }
if PPTY[Complete,p] then
begin

PPTY[XWall,p]:= true;
PPTY[YWall,p]:= true;
PPTY[ZWall,p]:= true;

end else
begin

PPTY[XWall,p]:= PPTY[Complete, PNTR[XNL,p]];
PPTY[YWall,p]:= PPTY[Complete, PNTR[YNL,p]);
PPTY[ZWall,p]:= PPTY[Complete, PNTR[ZNL,p]);

end;

PPTY[XEdge,p] := false; PPTY[YEdge,p] := false; PPTY[ZEdge,p] := false;

if PPTY[XWall,p] then
begin PPTY[YEdge,p] := true; PPTY[ZEdge,p] := true; end;

H PPTY[YWall,p] then
begin PPTY[ZEdge,p] := true; PPTY[XEdge,p] := true; end;

if PPTY[ZWall,p] then
begin PPTY[XEdge,p] := true; PPTY[YEdge,p] := true; end;

if not PPTY[XEdge,p] then
PPTY[XEdge,p] := PPTY[Complete,PNTR[YNL,PNTR[ZNL,p]]];

if not PPTY[YEdge,p] then
PPTY[YEdge,p] := PPTY[Complete,PNTR[ZNL,PNTR[XNL,p]]];

if not PPTY[ZEdge,p] then
PPTY[ZEdge,p] := PPTY[Complete,PNTR[XNL,PNTR[YNL,p]]];

{ --
if (PPTY[XEdge,p] or PPTY[YEdge,p] or PPTY[ZEdge,p]) then else

if PPTY[Complete,PNTR[XNL,PNTR[YNL,PNTR[ZNL,p]]]] then else
warning(p,'SetPlnPpties',1);

all true patches have the 'Point' property!! -- }
{ This patch apparently has no right of existence,

is it a virtual patch ??? -- }
end;

end;

procedure SetGrnProperties (p :pointer);
{ -- We use the location of the complete cells

-- to determine the location of (green) boundaries
-- }

begin
if (p=nihil) then else
begin

462

PPTY[XGrnWall,p]:= PPTY[Complete,p] <> PPTY[Complete,PNTR[XNL,p]];
PPTY[YGrnWall,p]:= PPTY[Complete,p] <> PPTY[Complete,PNTR[YNL,p]];
PPTY[ZGrnWall,p]:= PPTY[Complete,p] <> PPTY[Complete,PNTR[ZNL,p]];

PPTY[XGrnEdge,p]:= PPTY[YGrnWall,p] or PPTY[ZGrnWall,p];
PPTY[YGrnEdge,p]:= PPTY[XGrnWall,p] or PPTY[ZGrnWall,p];

..
PPTY[ZGrnEdge,p] := PPTY[YGrnWall,p] or PPTY[XGrnWall,p];

if (not PPTY[XGrnEdge,p]) then PPTY[XGrnEdge,p]
:= PPTY[Complete,p]<>PPTY[Complete,PNTR[ZNL,PNTR[YNL,p]]];

if (not PPTY[YGrnEdge,p]) then PPTY[YGrnEdge,p]
:= PPTY[Complete,p]<>PPTY[Complete,PNTR[XNL,PNTR[ZNL,p]]);

if (not PPTY[ZGrnEdge,p]) then PPTY[ZGrnEdge,p]
:= PPTY[Complete,p]<>PPTY[Complete,PNTR[YNL,PNTR[XNL,p]]];

PPTY[GrnPoint,p] := PPTY[XGrnEdge,p] or
PPTY[YGrnEdge,p] or PPTY[ZGrnEdge,p];

if not PPTY[GrnPoint,p] then
PPTY[GrnPoint,p] := PPTY[Complete,p]<>
PPTY[Complete,PNTR[XNL,PNTR[YNL,PNTR[ZNL,p)]]];

end;
end;

procedure SetGrnCell (p :pointer);
begin

PPTY[GrnCell,p]:= PPTY[Complete,p] and
((PPTY[XGrnWall,p] <> PPTY[XBdyWall,p] or

(PPTY[YGrnWall,p] <> PPTY[YBdyWall,p] or
(PPTY[ZGrnWall,p] <> PPTY[ZBdyWall,p]) or
(PPTY[XGrnWall,PNTR[XNR,p]] <> PPTY[XBdyWall,PNTR[XNR,p]]) or
(PPTY[YGrnWall,PNTR[YNR,p]] <> PPTY[YBdyWall,PNTR[YNR,p]]) or
(PPTY[ZGrnWall,PNTR[ZNR,p]] <> PPTY[ZBdyWall,PNTR[ZNR,p]]))

end;

procedure SetBdyProperties (p :pointer);
var

q, n,m,l, i,j,k :integer;
begin

SetGrnProperties(p);
{ -- GetLocation(p, n,m,l, i,j,k); -- }
n:= PNTR[XL,p]; m:= PNTR[YL,p]; l:= PNTR[ZL,p];
i:= PNTR[XJ,p]; j:= PNTR[YJ,p]; k:= PNTR[ZJ,p];

if (p=nihil) then else
if (n+m+l>O) then
begin { -- We use the boundary structure of the coarser grids -- }

{ -- to determine the boundary structure }
PPTY[XBdyWall,p]:=

(PPTY[XBdyWall,PNTR[XF,p]] and (i mod 2 = 0)) or
PPTY[XBdyWall,PNTR[YF,p]] or PPTY[XBdyWall,PNTR[ZF,p]];

PPTY[YBdyWall,p]:=
(PPTY[YBdyWall,PNTR[YF,p]] and (j mod 2 = 0)) or
PPTY[YBdyWall,PNTR[XF,p]] or PPTY[YBdyWall,PNTR[ZF,p]];

PPTY[ZBdyWall,p]:=
(PPTY[ZBdyWall,PNTR[ZF,p]] and (k mod 2 = 0)) or
PPTY[ZBdyWall,PNTR[YF,p]] or PPTY[ZBdyWall,PNTR[XF,p]];

{ -- this can be implemented more efficiently -- }

PPTY[XBdyEdge,p]:= PPTY[YBdyWall,p] or PPTY[ZBdyWall,p];
PPTY[YBdyEdge,p]:= PPTY[XBdyWall,p] or PPTY[ZBdyWall,p];
PPTY[ZBdyEdge,p]:= PPTY[YBdyWall,p] or PPTY[XBdyWall,p];
if not PPTY[XBdyEdge,p] then PPTY[XBdyEdge,p]:=

463

PPTY[XBdyEdge,PNTR[XF,p]] or
(PPTY[XBdyEdge,PNTR[YF,p]] and (j mod 2 = 0)) or
(PPTY[XBdyEdge,PNTR[ZF,p]] and (k mod 2 = O));

if not PPTY[YBdyEdge,p] then PPTY[YBdyEdge,p]:=
PPTY[YBdyEdge,PNTR[YF,p]] or
(PPTY[YBdyEdge,PNTR[XF,p]] and (i mod 2 = 0)) or
(PPTY[YBdyEdge,PNTR[ZF,p]] and (k mod 2 = O));

if not PPTY[ZBdyEdge,p] then PPTY[ZBdyEdge,p]:=
PPTY[ZBdyEdge,PNTR[ZF,p]] or
(PPTY[ZBdyEdge,PNTR[YF,p]] and (j mod 2 = 0)) or
(PPTY[ZBdyEdge,PNTR[XF,p]] and (i mod 2 = O));

PPTY[BdyPoint,p]:= PPTY[XBdyEdge,p] or
PPTY[YBdyEdge,p] or PPTY[ZBdyEdge,p];

if not PPTY[BdyPoint,p] then PPTY[BdyPoint,p]:=
(PPTY[BdyPoint,PNTR[XF,p]] and (i mod 2 = 0)) or
(PPTY[BdyPoint,PNTR[YF,p]] and (j mod 2 = 0)) or
(PPTY[BdyPoint,PNTR[ZF,p]] and (k mod 2 = O));

end
else if (n+m+l=O) then

for q:= FstBdyPpt to LstBdyPpt do PPTY[q,p]:= PPTY[q+GrnShift,p]
else

error(p,'SetBdyPpties',99);

SetGrnCell(p); for q:= XNL to ZNL do SetGrnCell(PNTR[q,p]);
end;

function MakePatch (n,m,l, i,j,k: integer; p :pointer): pointer;
{ -- The patch is made only if three parent patches are available -- }
{ -- Takes care for ALL the pointers }
{ -- Does NOT take care of any properties -- }
const nO=O; mO=O; 10=0;
var

q :integer;
xtyp,ytyp,ztyp :KidType;
dadX,dadY,dadZ, kid,
nxr, nxl, nyr, nyl, nzr, nzl :pointer;

begin
{ -- ChkPtr(2, n,m,l, i,j,k, p); Chk*** -- }
if (p=nihil) then
begin

{ -- We take care of possible cyclic numbering -- }
{ -- GetLocation(p, n,m,l, i,j,k); -- DOESN'T WORK HERE -- }
if XCycl then begin if n<O then else i:= i mod (XSize•TwoPow[n]) end;
if YCycl then begin if m<O then else j:= j mod (YSize•TwoPow[m]) end;
if ZCycl then begin if l<O then else k:= k mod (ZSize•TwoPow[l]) end;

{ -- determine the fathers -- }
kid:= nihil;
dadX:=GetPtr(n-1,m,l, trunc(i/2),j,k);
dadY:=GetPtr(n,m-1,1, i,trunc(j/2),k);
dadZ:=GetPtr(n,m,1-1, i,j,trunc(k/2));
if ((dadX=nihil) and (n>nO)) then else
if ((dadY=nihil) and (m>mO)) then else
if ((dadZ=nihil) and (1>10)) then else

{ -- recursive creation of parents is not feasible for various reasons -- }
begin

464

LastSpace:= LastSpace-1;
repeat LastSpace:= LastSpace+1

until PPTY[Dead,LastSpace] or (LastSpace>NumberOfPatches);
{ -- LastSpace nov points to the first empty space for a new patch -- }
if LastSpace>NumberOfPatches then NumberOfPatches:= LastSpace;

if NumberOfPatches > MNOP then error(O,'MakePatch',1)
else kid:= LastSpace;

{ -- NO kids, NO properties -- }
for q:= FstPtr to LstPtr do PNTR[q,kid]:= nihil;
for q:= FstPpt to LstPpt do PPTY[q,kid]:= false;
if n+m+l>O then GeometryOK:= true;

PNTR [XL,kid]:= n; PNTR [YL,kid] := m; PNTR [ZL,kid] := l;
PNTR [XJ,kid] := i; PNTR [YJ,kid] := j; PNTR [ZJ,kid] := k;
PNTR [XF,kid] := dadX; PNTR [YF,kid] := dadY; PNTR [ZF,kid] := dadZ;

GetKidType(kid,xtyp,ytyp,ztyp);
{ -- dat kan eff icienter -- }
if (dadX=nihil) then else PNTR[xtyp,dadX]:= kid;
if (dadY=nihil) then else PNTR[ytyp,dadY]:= kid;
if (dadZ=nihil) then else PNTR[ztyp,dadZ]:= kid;

{ -- Now ve take care of neighbours -- }
if n=nO then

begin nxr:= GetPtr(n,m,l, i+1,j,k);
nxl:= GetPtr(n,m,l, i-1,j,k);

end else { -- father exists -- }
case xtyp of
XKL:begin nxl:= PNTR[XKR,PNTR[XNL,dadX]];

nxr:= PNTR[XKR, dadX];
end;

XKR:begin nxr:= PNTR[XKL,PNTR[XNR,dadX]];
nxl:= PNTR[XKL, dadX];

end;
end;
if m=mO then

begin nyr:= GetPtr(n,m,l, i,j+l,k);
nyl:= GetPtr(n,m,l, i,j-1,k);

end else { -- father exists -- }
case ytyp of
YKL:begin nyl:= PNTR[YKR,PNTR[YNL,dadY]];

nyr: = ?NTR[YKR, dadY] ;
end;

YKR:begin nyr:= PNTR[YKL,PNTR[YNR,dadY]];
nyl:= PNTR[YKL, dadY];

end;
end;
if 1=10 then

begin nzr:= GetPtr(n,m,l, i,j,k+1);
nzl:= GetPtr(n,m,l, i,j,k-1);

end else { -- father exists -- }
case ztyp of
ZKL:begin nzl:= PNTR[ZKR,PNTR[ZNL,dadZ]];

nzr:= PNTR[ZKR, dadZ] ;
end;

ZKR:begin nzr:= PNTR[ZKL,PNTR[ZNR,dadZ]];

/

465

nzl:= PNTR[ZKL, dadZ];
end;

end;

if (PNTR[XNL,nxr]+PNTR[XNR,nxl]+PNTR[YNL,nyr]+
PNTR[YNR,nyl]+PNTR[ZNL,nzr]+PNTR[ZNR,nzl]<>O)

then error(kid,'MakePatch',12);
{ -- warning if the neighbours know each other already -- }

PNTR[XNR,kid]:= nxr; if nxr<>nihil then PNTR[XNL,nxr]:= kid;
PNTR[XNL,kid]:= nxl; if nxl<>nihil then PNTR[XNR,nxl]:= kid;
PNTR[YNR,kid]:= nyr; if nyr<>nihil then PNTR[YNL,nyr]:= kid;
PNTR[YNL,kid]:= nyl; if nyl<>nihil then PNTR[YNR,nyl]:= kid;
PNTR[ZNR,kid]:= nzr; if nzr<>nihil then PNTR[ZNL,nzr]:= kid;
PNTR[ZNL,kid]:= nzl; if nzl<>nihil then PNTR[ZNR,nzl]:= kid;

end;
MakePatch:= kid;
{ -- ChkPtr(44, n,m,l, i,j,k, kid); Chk*** -- }

end else
MakePatch:= p;

end;

procedure MakeCell (n,m,l, i,j,k :integer; patch :pointer);
{ -- A cell is a complete patch with sufficient neighbours. }
{ -- A cell can be made complete only if it has 3 complete fathers -- }
var

q :integer;
p :array[0 .. 7]of pointer;

begin
{ -- if patch<>nihil then ChkPtr(7, n,m,l, i,j,k, patch); Chk*** -- }
if patch=nihil then p[O]:= GetPtr(n,m,l, i,j,k) else p[O]:= patch;
{ -- that is the kid or nihil-- }
if PPTY[Complete,p[O]] then { -- the cell already exists -- } else
begin

466

p[O]:= MakePatch (n,m,l, i,j,k ,p[O]);
PPTY[Complete,p[O]] := ((n=O) or PPTY[Complete,PNTR[XF,p[O]]]) and

((m=O) or PPTY[Complete,PNTR[YF,p[O]]]) and
((l=O) or PPTY[Complete,PNTR[ZF,p[O]]]);

if PPTY[Complete,p[O]] then
begin

p[l):= MakePatch (n,m,l, i+l,j ,k ,PNTR[XNR,p[O]]);
p[2]:= MakePatch (n,m,l, i ,j+1,k ,PNTR[YNR,p[O]]);
p[3]:= MakePatch (n,m,l, i ,j ,k+l,PNTR[ZNR,p[O]]);
p[4]:= MakePatch (n,m,l, i ,j+1,k+1,PNTR[YNR,p[3]]);
p[5]:= MakePatch (n,m,l, i+l,j ,k+1,PNTR[ZNR,p[1]]);
p[6]:= MakePatch (n,m,l, i+1,j+1,k ,PNTR[XNR,p[2]]);
p[7]:= MakePatch (n,m,l, i+1,j+1,k+l,PNTR[XNR,p[4]]);
if p[O]•p[l]•p[2]•p[3]•p[4]•p[5]•p[6]•p[7] = nihil

then error(p[O),'MakeCell',3);

for q:=O to 7 do SetPlnProperties(p[q]);
for q:=O to 7 do SetBdyProperties(p[q]);

end
else

begin { -- this happens for GrnPoints --}
SetPlnProperties(p[O]);

SetBdyProperties(p[O]);
end;

end;
end;

procedure MakeKid (ktyp: KidType; daddy: pointer);
{ -- A cell is a complete patch with sufficient neighbours. }
{ -- A cell can be made complete only if it has 3 complete fathers }
var

i,j,k,n,m,l :integer;
begin

if (ktyp < FstKid) or (ktyp>LstKid) then error(daddy,'MakeKid',1);
GetLocation(daddy, n,m,l, i,j,k);
if (n<O) or (m<O) or (l<O) then error(daddy,'MakeKid',2);
case ktyp of

XKL: begin n:=n+l; i:= 2*i end;
XKR: begin n:=n+1; i:= 2*i+1; end;
YKL: begin m:=m+l; j:= 2•j end;
YKR: begin m:=m+l; j:= 2•j+1; end;
ZKL: begin l:=l+l; k:= 2•k end;
ZKR: begin 1:=1+1; k:= 2•k+1; end;

end;
MakeCell (n,m,l, i,j,k, PNTR[ktyp, daddy]);

end;

procedure MakeOffspring (patch: pointer);
{ -- Takes only care of all kids -- }
begin

if PPTY[Complete,patch] then
begin

if PPTY[PregnantX,patch] then
begin MakeKid(XKL, patch); MakeKid(XKR, patch);

PPTY[PregnantX,patch]:=false;
end;

if PPTY[PregnantY,patch] then
begin MakeKid(YKL, patch); MakeKid(YKR, patch);

PPTY[PregnantY,patch]:=false;
end;

if PPTY[PregnantZ,patch] then

end;

begin MakeKid(ZKL, patch); MakeKid(ZKR, patch);
PPTY[PregnantZ,patch]:=false;

end;

end;

procedure RemovePatch(patch :pointer);
{ If possible, this routine removes a patch from the system. -- }
{ -- It is possible if its point is not part of a (complete) cell -- }
{ -- and if it is not responsible for kid patches -- }
var

i :integer;
xtyp, ytyp, ztyp :KidType;

begin
if patch = nihil then else
if PPTY[Complete,patch] then else

467

if PPTY[GrnPoint,patch] then else
if ({PNTR[XKL,patch]:nihil) and (PNTR[XKR,patch):nihil) and

(PNTR[YKL,patch)=nihil) and (PNTR[YKR,patch)=nihil) and
{PNTR[ZKL,patch]=nihil) and (PNTR[ZKR,patchJ=nihil)) then

begin
{ -- The relation with Neighbours is closed -- }
PNTR[XNL,PNTR[XNR,patch)):= nihil;
PNTR[XNR,PNTR[XNL,patch)]:= nihil;
PNTR[YNL,PNTR[YNR,patch]]:= nihil;
PNTR[YNR,PNTR[YNL,patch]):= nihil;
PNTR[ZNL,PNTR[ZNR,patch]):= nihil;
PNTR[ZNR,PNTR[ZNL,patch]]:= nihil;

{ -- The relation with Parent is closed -- }
GetKidType{patch, xtyp,ytyp,ztyp);
PNTR[xtyp, PNTR[XF,patch]]:= nihil;
PNTR[ytyp, PNTR[YF,patch)]:= nihil;
PNTR[ztyp, PNTR[ZF,patch]]:= nihil;
if patch<LastSpace then LastSpace:=patch;

{ -- All indices, pointers and properties are removed -- }
for i:= Fst!dx to Lstldx do PNTR[i,patch]:= nowhere;
for i:= FstPtr to LstPtr do PNTR[i,patch):= nihil;
for i:= FstPpt to LstPpt do PPTY[i,patch]:= false;

PPTY[Dead,patch]:= true;
end;

end;

procedure RemoveCell(patch :pointer);
{ -- If possible {if there are no kid cells

-- this routine removes a cell from the system.
-- I.e. no longer a complete cell exists
-- possibly it remains as an incomplete patch -- }

var
skip :boolean;
n :integer;
p :array [0 .. 7)of pointer;

begin
skip:= not PPTY[Complete,patch];
for n:= FstKid to LstKid do skip:= skip or PPTY[Complete,PNTR[n,patch]];

if skip then else
if GeometryOK and (PNTR[XL,patch)+PNTR[YL,patch]+PNTR[ZL,patch]=O) then

{ -- if the geometry has been established,
-- no change has to be made on level 0 -- }

warning(patch,'RemoveCell',0)
else
begin

468

PPTY[Complete,patch]:= false;
p[O):= patch;
p[1):= PNTR[XNR,patch];
p[2]:= PNTR[YNR,patch];
p[3]:= PNTR[ZNR,patch];
p[4):= PNTR[YNR,PNTR[ZNR,patch]];
p[5]:= PNTR[ZNR,PNTR[XNR,patch]];
p[6]:= PNTR[XNR,PNTR[YNR,patch]];

end

p[7] := PNTR[XNR,PNTR[YNR,PNTR[ZNR,patch]]];
if p[O]*p[l]*p[2]*p[3]*p[4]*p[5]*p[6]*p[7]=nihil

then error(patch,'RemoveCell',1);

for n:= 0 to 7 do SetPlnProperties(p[n]);
for n:= 0 to 7 do SetBdyProperties(p[n]);
for n:= 0 to 7 do RemovePatch(p[n]);

end;

procedure RemoveDffspring(patch :pointer);
{ If possible this routine removes the 6 kids of daddy and it

adapts the data structure correspondingly. It is only possible
if the kids are sentenced. -- }

var
kt :KidType;

begin
for kt:= FstKid to LstKid do
if PPTY[Sentenced,PNTR[kt,patch]] then RemoveCell(PNTR[kt,patch]);

end;

procedure ScanGrid (n,m,l :integer; myorder :order;
procedure Doit (p:pointer));

var
RootLevel, ScanThisLevel, lev, nn, mm, 11,
id, chk, i,j :integer;
ii, IPTR: array[LNOL .. MNOL]of integer;
KeepScanOrder: array[LNOL .. MNOL,l .. 2]of KidType;

begin
chk:=O; { -- check if myorder is legal -- } for i:= 1 to 3 do
case myorder[i] of

XKL, XKR: chk:= chk+l; YKL, YKR: chk:= chk+2; ZKL, ZKR: chk:= chk+4;
end; if chk <> 7 then error(O,'ScanGrid',l);

ScanThisLevel:= n+m+l;
{ This first part constructs an array 'KeepScanOrder'

that determines the way in which the grid (n,m,l) is scanned -- }
id:=XRoot+YRoot+ZRoot;
if n<O then nn:=n else nn:= O;
if m<O then mm:=m else mm:= O;
if l<O then 11:=1 else 11:= O;
if nn+mm+ll=O then else if nn+mm+ll<>n+m+l then error(nihil,'ScanGrid',0);

for i:= 1 to 3 do
case myorder[i) of
XKL, XKR: for j:= XRoot+l to nn do

begin id:= id+l;

end;

KeepScanOrder[id,1] := myorder[i];
KeepScanDrder[id,2] := XKR+XKL-myorder[i];

YKL, YKR: for j:= YRoot+l to mm do
begin id:= id+l;

end;

KeepScanDrder[id,1] := myorder[i];
KeepScanDrder[id,2] := YKR+YKL-myorder[i];

ZKL, ZKR: for j:= ZRoot+l to 11 do

I

469

-
ScanGrid(0,0,0,NormalOrder,SetBdyProperties);

end;

procedure MakeFamily (n,m,l, i,j,k :integer);
{ -- this procedure creates a cell, together with }
{ -- all the necessary parents }
var lev :integer;

procedure Makeit (nn,mm,11 :integer);
begin MakeCell (nn,!Dlll,11,

trunc(i/TwoPow[n-nn]),trunc(j/TwoPow[m-mm]),trunc(k/TwoPow[l-11]),
nihil);

end;
begin for lev:=O to n+m+l do ScanLevel(lev,O,n,0,m,0,1,Makeit); end;

procedure ShowPtr (patch: pointer);
var

k :integer;
begin

write(patch:4,' ©');
for k:= Fstidx to Lstidx do if PNTR[k,patch]=nowhere

then write(' ***') else write(PNTR[k,patch]:4); write(',');
fork:= XF to ZF do write(PNTR[k,patch]:4); write(',');
fork:= FstKid to LstKid do write(PNTR[k,patch]:4); write(',');

writeln;
fork:= 1 to 44 do write(' ');
fork:= FstNgb to LstNgb do write(PNTR[k,patch]:4); write(',');

writeln;
end;

procedure ShowPpt (patch: pointer);
var

k :integer;
str:array[l .. 2] of char;

begin
write(patch:4,' ©');
for k:= FstPpt to LstPpt do

begin if PPTY[k,patch] then
case k of

1: str:= 'C_ '· ' 2: str:= 'WX'; 3: str:= 'WY'; 4: str:= 'WZ';
5: str:= 'EX';
8: str:= 'BX';

11: str:= 'bx';
14: str:= 'BP';
16: str:= 'GX';
19: str:= 'gx' i
22: str:= ,GP';
24: str:= 'Px';
27: str:= 'Sd';

end else str:= ' --
write(str);

end;
writeln;

end;

472

6: str:= 'EY'; 7: str:=
9: str:= 'BY'; 10: str:=

12: str:= 'by'; 13: str:=
15: str:= 'BC';
17: str:= 'GY'; 18: str:=
20: str:= 'gy'; 21: str:=
23: str:= 'GC';
25: str:= 'Py'; 26: str:=
28: str:= 'Dd';
'.
'

'EZ';
1BZ,;
'bz';

'GZ';
,gz';

'Pz';

procedure ShowPatch;
{ -- procedure ShowPatch (patch: pointer); -- }
begin if (patch=nihil)

then writeln('ShowPatch(NIHIL)')
else begin ShowPpt(patch); ShowPtr(patch); end;

end;

procedure ShowGrid (n,m,l :integer);
begin ScanGrid(n,m,l,NormalOrder,ShowPatch) end;

procedure ShowLevel(lev :integer);
begin ScanLevel(lev,XRoot,MNOL,YRoot,MNOL,ZRoot,MNOL,ShowGrid) end;

procedure ShowAll;
var p :pointer;
begin for p:= 1 to NumberOfPatches do ShowPatch(p); end;

procedure DumpAll (name strng);
var

k,p :integer;
dumpfile :text;

begin
rewrite(dumpfile,name);
for p:= 1 to NumberOfPatches do
if PPTY[Dead,p] then else
begin

write(dumpfile, PNTR[XL,p]:4,PNTR[YL,p]:4,PNTR[ZL,p]:4,
PNTR[XJ,p]:6,PNTR[YJ,p]:6,PNTR[ZJ,p]:6);

for k:= FstPpt to LstPpt do
if PPTY[k,p] then write(dumpfile,' T')

else write(dumpfile,' F');
fork:= 1 to MNOD do write (dumpfile,DATA[k,p]:8:4);
writeln(dumpfile);

end;
end;

A.2 About the FORTRAN implementation

In the Fortran implementation all data about the data structure are collected in a la
beled COMMON BLOCK labeled /DatGlb/. Together with other global variables (and
constants) this is housed within the include file 'basis3.i'. This include file is to be in
cluded in the main program and each routine that makes use of the data structure. The
arrays, declared in the include file, containing the bulk of the data structure, are: the
integer array PNTR, dimensioned PNTR (Fstldx:LstPtr, O:MNOP), the logical array
PPTY (FstPpt:LstPpt, O:MNOP); and the double precision array MYDATA (l:MNOD,
O:MNOP). These arrays contain the dynamic part of the data structure. The parameters
FstPtr, LstPtr, FstPpt, LstPpt, MNOD, and MNOP can be adapted by the user for his
own purposes. Other global variables, collected in the common block /DatGlb/, are a.o.
RtLv, LstSpa, NOP, XSize, YSize, ZSize1. The default ranking order in which the data
structure is scanned, is given by the order array NrmOrd (Normal Order).

1RtLv = RootLevel; LstSpa =Last Space; NOP= number of points; (XSize, YSize, ZSize) denotes
the number of cells on the zero level.

473

The routines that are to be used to handle the data structure are collected in the
file 'basis3.f'. The text of the include file is given in Section A.3. The meaning of the
constants and variables is explained in Section A.4, where also a description of important
subroutines is given in the form of Fortran comment lines.

A.3 The FORTRAN include file
c
c begin of include file for the data structure BASIS3

integer MNOP, MNOD,
+ MNOL, LNOL
parameter (MNOP = 30000, MNOD 15,

+ MNOL 30, LNOL -12)
c

integer nihil, void
parameter (nihil 0, void -999)

c
integer XL, YL, ZL,

+ XJ, YJ, ZJ
parameter (XL 1, YL 2, ZL 3,

+ XJ 4, YJ 5, ZJ 6)
c

integer Fst!dx, Lstidx
parameter (Fst!dx = XL, Lst!dx = ZJ)

c
integer XF, YF, ZF,

+ XKL, YKL, ZKL,
+ XKR, YKR, ZKR
parameter (XF 7, YF 8, ZF 9,

+ XKL 10, YKL 11, ZKL 12,
+ XKR 13, YKR 14, ZKR 15)

c
integer FstKid, LstKid
parameter (FstKid = XKL, LstKid = ZKR)

c
integer XNL, YNL, ZNL,

+ XNR, YNR, ZNR
parameter (XNL 16, YNL 17, ZNL 18,

+ XNR 21, YNR 20, ZNR 19)
c

integer FstNgb, LstNgb,
+ FstPtr, LstPtr
parameter (FstNgb = XNL, LstNgb = XNR,

+ FstPtr = XF, LstPtr = XNR)
c

integer Compl,
+ XWall, YWall, ZWall,
+ XEdge, YEdge, ZEdge
parameter (Compl 1,

+ XWall 2, YWall 3, ZWall 4,
+ XEdge 5, YEdge 6, ZEdge 7)

c
integer XBdyWa, YBdyWa, ZBdyWa,

+ XBdyEd, YBdyEd, ZBdyEd,
+ BdyPnt
parameter (XBdyWa = 8, YBdyWa = 9, ZBdyWa = 10,

+ XBdyEd = 11, YBdyEd = 12, ZBdyEd = 13,

474

.....
/

+ BdyPnt 14)
c
c integer BdyCel
c parameter (BdyCel 15)
c

integer XGrnWa, YGrnWa, ZGrnWa,
+ XGrnEd, YGrnEd, ZGrnEd,
+ GrnPnt, GrnCel
parameter (XGrnWa = 16, YGrnWa = 17, ZGrnWa = 18,

+ XGrnEd 19, YGrnEd = 20, ZGrnEd = 21,
+ GrnPnt = 22, GrnCel = 23)

c
integer PrgntX, PrgntY, PrgntZ,

+ Sntncd, Dead
parameter (PrgntX = 24, PrgntY = 25, PrgntZ = 26,

+ Sntncd = 27, Dead 28)
c

integer FstBPp, LstBPp,
+ GrnShi,
+ FstPpt, LstPpt
parameter (FstBPp XBdyWa,LstBPp = BdyPnt,

+ GrnShi GrnPnt - BdyPnt,
+ FstPpt Compl, LstPpt = Dead)

c
double precision MYDATA(1:MNOD, O:MNOP)
integer XSize, YSize, ZSize,

+ XRoot, YRoot, ZRoot,
+ RtPtr,
+ LstSpa, NOP
integer Nrm0rd(1:3)
integer TwoPow(O:MNOL)
integer PNTR(Fstidx:LstPtr, O:MNOP)
logical GeomOK,

+ XCycl, YCycl, ZCycl
logical PPTY(FstPpt:LstPpt, O:MNOP)
common /DatGlb/

+ MYDATA,
+ XSize, YSize, ZSize,
+ XRoot, YRoot, ZRoot,
+ RtPtr,
+ LstSpa, NOP,
+ NrmOrd,
+ TwoPow,
+ PNTR,
+ GeomOK,
+ XCycl, YCycl, ZCycl,
+ PPTY

c end of include file for the data structure BASIS3
c

A.4 The FORTRAN implementation manual
c
c DESCRIPTION OF INCLUDE FILE + + + + ++++++ +++++++ + + +
c
c In order to condense the code and to enhance its clarity, a so
c called include-statement has been used:
c include 'basis3.i'

475

c In this way, variables and constants introduced for the data
c structure, have the same symbolic name throughout the code.
c The include statement is nonstandard syntax and dependent on the
c FORTRAN-compiler in use. However, a version of the code, remaining
c within the constraints of the Fortran 77 standard, can easily be
c obtained by substituting the include file 'basis3.i' for the said
c include-statement in the subroutines.
c The include file includes the Labeled COMMON Block /DatGlb/.
c Firstly, we describe the meaning of important global parameters.
c Secondly, we describe the meaning of important global variables
c as they are found in /DatGlb/.
c
c
c DIMENSIONS TO BE ADJUSTED BY THE USER TO THE SIZE OF THE SYSTEM USED
c MNOP Maximum Number Of Patches
c MNOD Maximum Number Of Data at a patch
c The values MNOP, MNOD are integer parameter-values and should be set
c by the user, according to his needs.
c MNOL Maximum Number Of grid-Levels
c LNOL Lowest Number Of grid-Levels
c The values MNOL, LNOL are integer parameter-values and can, if needed,
c be adapted by the user.
c
c POINTER VALUES
c nihil
c void
c

the nil pointer
nowhere in the structure

c INTEGER ARRAY INDICES
c - these render geometric information about a patch -
c (see Table 8 in the report)
c XL
c YL
c ZL
c
c XJ
c YJ
c ZJ
c
c Fstidx
c
c Lstidx
c
c

Level index of refinement in the X-direction
Level index of refinement in the Y-direction
Level index of refinement in the Z-direction

Coordinate index - integer representation of X-coordinate
Coordinate index - integer representation of Y-coordinate
Coordinate index - integer representation of Z-coordinate

First Index
Lowest Index of the set (XL, YL, ZL, XJ, YJ, ZJ)
Last Index
Highest Index of the set (XL, YL, ZL, XJ, YJ, ZJ)

c more INTEGER ARRAY INDICES
c - these indicate pointers to related patches -
c (see the Tables 2, 3 and 4 in the report)
c XF pointer to X-Father
c YF pointer to Y-Father
c ZF pointer to Z-Father
c
c XKL
c YKL
c ZKL
c
c XKR
c YKR
c ZKR
c

476

pointer to Lefthand X-Kid (kid with even X-coordinate)
pointer to Lefthand Y-Kid (kid with even Y-coordinate)
pointer to Lefthand Z-Kid (kid with even Z-coordinate)

pointer to Righthand X-Kid (kid with odd X-coordinate)
pointer to Righthand Y-Kid (kid with odd Y-coordinate)
pointer to Righthand Z-Kid (kid with odd Z-coordinate)

c FstKid
c
c
c LstKid
c
c
c
c XNL
c YNL
c ZNL
c
c XNR
c YNR
c ZNR
c
c FstNgb
c
c
c LstNgb
c
c
c
c FstPtr
c
c
c
c LstPtr
c
c
c
c

First Kid
Lowest index of the set of indices for the Kids, i.e.
Minimum (XKL, YKL, ZKL, XKR, YKR, ZKR)
Last Kid
Highest index of the set of indices for the Kids, i.e.
Maximum (XKL, YKL, ZKL, XKR, YKR, ZKR)

pointer to Lefthand X-Neighbour (negative direction)
pointer to Lefthand Y-Neighbour (negative direction)
pointer to Lefthand Z-Neighbour (negative direction)

pointer to Righthand X-Neighbour (positive direction)
pointer to Righthand Y-Neighbour (positive direction)
pointer to Righthand Z-Neighbour (positive direction)

First Neighbour
Lowest index of the set of indices for pointers to the
Neighbours, i.e. Minimum (XNL, YNL, ZNL, XNR, YNR, ZNR)
Last Neighbour
Highest index of the set of indices for pointers to the
Neighbours, i.e. Maximum (XNL, YNL, ZNL, XNR, YNR, ZNR)

First Pointer
Lowest index of the set of indices for pointers to Fathers,
Kids and Neighbours, i.e.
Minimum (XF, YF, ZF, FstKid, FstNgb)
Last Pointer
Highest index of the set of indices for pointers to Fathers,
Kids and Neighbours, i.e.
Maximum (XF, YF, ZF, LstKid, LstNgb)

c LOGICAL ARRAY INDICES
c - These INDICES render whether the corresponding properties are
c satisfied (TRUE), or not (FALSE) -
c (see the Tables 6 and 7 in the report)
c Compl Complete
c the patch represents a volume with contents
c XWall a Wall perpendicular to X exists
c YWall a Wall perpendicular to Y exists
c ZWall a Wall perpendicular to Z exists
c
c XEdge
c YEdge
c ZEdge
c
c XBdyWa
c
c
c YBdyWa
c
c
c ZBdyWa
c
c
c
c XBdyEd
c
c YBdyEd

an Edge along X exists
an Edge along Y exists
an Edge along Z exists

X Boundary Wall
a Wall exists perpendicular to X and part of the Boundary
of the domain
Y Boundary Wall
a Wall exists perpendicular to Y and part of the Boundary
of the domain
Z Boundary Wall
a Wall exists perpendicular to Z and part of the Boundary
of the domain

X Boundary Edge
an Edge exists along X and part of the Boundary of the domain
Y Boundary Edge

477

c
c ZBdyEd
c
c BdyPnt
c
c
c XGrn\la
c
c
c
c
c YGrn\la
c
c
c
c
c ZGrn\la
c
c
c
c
c
c XGrnEd
c
c YGrnEd
c
c ZGrnEd
c
c
c GrnPnt
c
c
c GrnCel
c
c
c
c
c PrgntX
c
c
c PrgntY
c
c
c PrgntZ
c
c
c
c Sntncd
c
c
c
c Dead
c
c
c
c
c FstBPp
c

478

an Edge exists along Y and part of the Boundary of the
Z Boundary Edge
an Edge exists along Z and part of the Boundary of the
Boundary Point
a Point exists part of the Boundary of the domain

X Green Wall
the wall perpendicular to X is Green: i.e.
either this patch or its XNL-neighbour is not Complete
(e.g. at the boundary of the domain or of a local
refinement)
Y Green \/all
the wall perpendicular to Y is Green: i.e.
either this patch or its YNL-neighbour is not Complete
(e.g. at the boundary of the domain or of a local
refinement)
Z Green \/all
the wall perpendicular to Z is Green: i.e.
either this patch or its ZNL-neighbour is not Complete
(e.g. at the boundary of the domain or of a local
refinement)

X Green Edge
an Edge along X is part of a Green boundary
Y Green Edge
an Edge along Y is part of a Green boundary
Z Green Edge
an Edge along Z is part of a Green boundary

Green Point
Point at the patch is part of a Green boundary

Green Cell
a Complete Cell that is not at the domain boundary and
of which at least one of its six walls is Green

FLAGS
Pregnant in X
this flag :iJldicates that the cell should be refined in
the I-direction at the first opportunity
Pregnant in Y
this flag indicates that the cell should be refined in
the Y-direction at the first opportunity
Pregnant in Z
this flag indicates that the cell should be refined in
the Z-direction at the first opportunity

Sentenced
this flag indicates that the cell should be removed
at the first opportunity

Dead
the patch has passed away and its number is free for
re-use

BOUNDS AND SHIFT
First Boundary Property
Lowest index of the set of indices for the Boundary

domain

domain

c Properties
c LstBPp
c

Last Boundary Property
Highest index of the set of indices for the Boundary
Properties c

c
c GrnShi
c

Green Shift
Shift (integer number) between index to Boundary Wall/
Edge/Point property and the corresponding Green property,
e.g. GrnPnt = BdyPnt + GrnShi

c
c
c
c FstPpt
c

First Property
Lowest index of the set of indices for all Properties
Last Property c LstPpt

c Highest index of the set of indices for all Properties
c
c
c LABELED COMMON BLOCK FOR THE DATA STRUCTURE
c
c Global properties and the bulk of the data structure are passed on
c to different parts of the program by the Labeled COMMON Block /DatGlb/.
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

double precision MYDATA(1:MNOD, O:MNOP)
integer XSize, YSize,

+
+
+
integer
integer
integer
logical

+
logical
common /DatGlb/

+
+
+
+
+
+
+
+
+
+
+

XRoot,
RtPtr,

YRoot,

LstSpa, NOP
Nrm0rd(1:3)
TwoPow (0: MNOL)
PNTR(Fstidx:LstPtr, O:MNOP)
GeomOK,
XCycl, YCycl,
PPTY(FstPpt:LstPpt, O:MNOP)

MYDATA,
XSize,
XRoot,
RtPtr,
LstSpa,
NrmOrd,
TwoPow,
PNTR,
GeomOK,
XCycl,
PPTY

YSize,
YRoot,

NOP,

YCycl,

ZSize,
ZRoot,

ZCycl

ZSize,
ZRoot,

ZCycl,

c We now describe the meaning of the global variables as they are
c found in /DatGlb/.
c
c BULK
c The bulk of the data structure is kept in the arrays:
c
c
c
c
c
c
c
c

double precision MYDATA(1:MNOD, O:MNDP)

These are the numerical data (e.g. velocity, temperature,
etc.) residing in the patches.

The values MNOP, MNOD are integer parameter-values and
should be set by the user, according to his needs (see

479

Section 4.2 of the report). c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

integer PNTR(Fstldx:LstPtr, O:MNOP)

These are the pointers arising from the patches, pointing
to other patches like neighbours, kids and fathers.
Their actual values will be of no concern to the user of
the code.

logical PPTY(FstPpt:LstPpt, O:MNOP)

c
c
c
c
c

These are the properties of the patches. They hold
information on the discrete geometry (and possibly its
next update) of the problem.

The user can summon this values as a means to interrogate
the data structure about its status. The user is not
supposed to set or write these data, except for the
entries identified by the flags: PrgntX, PrgntY, PrgntZ
and Sntncd.
If needed, the user can introduce new flags for each patch
in the data structure by an extension of the array PPTY
with additional rows.

c DEFAULT SCANNING ORDER
c NrmOrd
c
c
c
c
c
c
c
c

A default ordering that can be used by the subroutine
'ScanGr'. This order is a proper actual value for the
parameter 'myord' of 'ScanGr'. The scanning procedure
is a recursive process: from the viewpoint of a parent-patch,
the kid-patches are visited in the order XKL, XKR, YKL,
YKR, ZKL, ZKR (the default ordering).
The user can choose his own favourite ordering by adapting
the parameter 'myord' (see section 3.2 of the report).

c Below we describe briefly the meaning of the remaining variables in
c the labeled COMMON Block /DatGlb/. However, they are meant for
c internal use within the code and therefore of no deep concern for
c the common user.
c
c DYNAMIC USE OF WORKSPACE
c LstSpa
c
c NOP
c
c SIZE
c XSize
c YSize
c ZSize
c

Points to the first empty space for a new patch to be
created.
Number of Patches in use.

Number of cells in the X-direction at zero X-level.
Number of cells in the Y-direction at zero Y-level.
Number of cells in the Z-direction at zero Z-level.

c
c
c
c
c
c

AT THE ROOTS
RtPtr
XRoot
YRoot
ZRoot

c GEOMETRY
c GeomOK
c

480

The Root Pointer.
The Root-level in the X-direction.
The Root-level in the Y-direction.
The Root-level in the Z-direction.

This flag denotes whether the geometry has already been
established on level (0,0,0).

c
c
c
c
c
c
c
c

XCycl

YCycl

ZCycl

'I/hen this flag is set
cyclic coordinates in
'I/hen this flag is set
cyclic coordinates in
'I/hen this flag is set
cyclic coordinates in

to .TRUE., it denotes the use of
the X-direction.
to .TRUE., it denotes the use of
the Y-direction.
to .TRUE., it denotes the use of
the Z-direction.

c MISCELLANEA
c TwoPow
c
c
c

This integer array contains the powers of 2 (after the
initialisation by subroutine 'IniBas').

c END OF DESCRIPTION OF INCLUDE FILE + + + + + + + + + + + + + + + + +

c
c DESCRIPTION OF SUBROUTINES AVAILABLE TO THE USER + + + + + + + + + +
c
c
c The data structure is handled by the following subroutines (see
c also Section 3.1 of the report):
c
c
c SUBROUTINE TO INITIALIZE THE DATA STRUCTURE
c
c Subroutine IniBas
c - Corresponds to the PASCAL procedure 'InizBasis3' -
c A subroutine to be called once, at the outset of a run,
c before the data structure is actually used. This subroutine
c initialises pointers, properties, scanning order etc.
c
c SUBROUTINES FOR THE CONSTRUCTION OF A DOMAIN
c
c Subroutine MkBloc(dimX,dimY,dimZ, xcycli,ycycli,zcycli)
c integer dimX,dimY,dimZ
c logical xcycli,ycycli,zcycli
c - Corresponds to the PASCAL procedure 'MakeBlock' -
c Firstly, this subroutine calls 'IniBas'. Secondly, it
c constructs a data structure corresponding to a particular
c domain. 'I/hen the input-parameters 'xcycli', 'ycycli' and
c 'zcycli' are all set to .FALSE., then the domain is a rectangular
c block. 'I/hen 'xcycli' is set to .TRUE., this creates cyclic
c coordinates in the X-direction (beginning and end of the X-interval
c are glued together, e.g. of use when applying periodic boundary
c conditions). The parameters 'ycycli' and 'zcycli' have an
c analogous meaning for the Y- and Z-direction respectively.
c The input-parameters 'dimX','dimY','dimZ' denote the number of
c cells in the X-, Y- and Z-direction. The cells created by MkBloc
c exist only on the (0,0,0)-level.
c To create more general domains on the (0,0,0)-level, elementary
c cells can be r~moved from the block by subsequent calls to the
c subroutine 'RmCel'.
c
c
c SUBROUTINES TO ADD TO OR REMOVE FROM THE DATA STRUCTURE
c
c Subroutine MkKid(ktyp, daddy)
c integer ktyp, daddy
c - Corresponds to the PASCAL procedure 'MakeKid' -

481

c A kid cell is created of type 'ktyp' at the cell
c corresponding to the 'daddy'-patch.
c The type 'ktyp' wished for, is singled out from the set (XKL,
c XKR, YKL, YKR, ZKL, ZKR).
c The kid cell is created provided that in both the X-, Y- and
c Z-direction the parent exists (otherwise subroutine 'MkFami'
c should be used).
c
c Subroutine MkOfsp(patch)
c integer patch
c - Corresponds to the PASCAL procedure 'MakeOffspring' -
c When a patch is complete and pregnant in the X- and/or
c Y- and/or Z-direction, the Offspring in the corresponding
c direction is launched by this subroutine.
c Example of use:
c call ScanGr(l,m,n, myord, MkOfsp)
c
c Subroutine MkFami(l,m,n, i,j,k)
c integer 1,m,n, i,j,k
c - Corresponds to the PASCAL procedure 'MakeFami' -
c At level (1,m,n) and the location (i,j,k), a cell is
c created. Parents, grandparents etc. are created as well when
c they are not already present. (In this way, the creation of
c necessary intermediate generations will not accidentally be
c skipped.)
c
c Subroutine RmCel(patch)
c integer patch
c - Corresponds to the PASCAL procedure 'RemoveCell' -
c If possible (the cell is complete and hasn't any kids) the
c cell, corresponding to the patch 'patch', is removed (possibly,
c the patch remains as an incomplete patch).
c
c Subroutine RmOfsp(patch)
c integer patch
c - Corresponds to the PASCAL procedure 'RemoveOffspring' -
c When the patch 'patch' is complete and its kids are
c Sentenced, the Offspring is removed.
c Example of use:
c call ScanGr(l,m,n, myord, RmOfsp)
c
c
c SUBROUTINES TO SCAN THE DATA STRUCTURE
c
c Subroutine ScanGr(l,m,n, myord, Doit)
c integer l,m,n, myord(1:3)
c external Dolt
c - Corresponds to the PASCAL procedure 'ScanGrid' -
c A subroutine that scans all patches on the grid with
c level (l,m,n). The patches are visited by means of a recursive
c algorithm in an order steered by 'myord'.
c At each patch visited, a call is made to the subroutine 'Doit':
c call Dolt(patch)
c where the integer 'patch' identifies the patch visited.
c The subroutine 'Dolt' can be any subroutine constructed
c by the user, provided that it has the above syntax.
c If necessary, additional communication between the
c actual subroutine 'Dolt' and the (sub)program calling

482

c 'ScanGr' can be taken care of by a locally defined labeled
c COMMON Block, shared by the (sub)program calling 'ScanGr' and
c the actual 'Dolt'.
c
c
c SUBROUTINES TO SHOW OR TO DUMP DATA
c
c Subroutine ShoGr(l,m,n)
c integer l,m,n
c - Corresponds to the PASCAL procedure 'ShowGrid' -
c Of all the patches that occur on level (l,m,n) the
c properties and pointers are printed in an abbreviated
c manner. The patches rank in the order determined recursively
c by 'NrmOrd'.
c
c Subroutine ShoLv(lev)
c integer lev
c - Corresponds to the PASCAL procedure 'ShowLevel' -
c This subroutine calls 'ShoGr' for all levels (l,m,n)
c with l+m+n = lev.
c
c Subroutine DmpAll(dumpfi, name)
c integer dumpfi
c character*8 name
c - Corresponds to the PASCAL procedure 'DumpAll' -
c Part of the bulk of the data structure (some of the pointers,
c all properties and the data represented with a limited number
c of digits) is dumped on a file with unit specifier 'dumpfi',
c and 'name' a character expression giving the name of the file.
c This subroutine may serve as a tool for visualisation.
c
c
c ADDITIONAL SUBROUTINES
c
c Subroutine error(p, name, nr)
c integer p, nr
c character•(•) name
c - Corresponds to the PASCAL procedure 'error' -
c A subroutine that is called after a fatal error in the
c program has occurred.
c The string 'name' and the integer 'nr' are printed on
c standard output. Properties and pointers residing in the
c patch 'p' are printed in an abbreviated manner.
c
c Subroutine warnin(p, name, nr)
c integer p, nr
c character•(•) name
c - Corresponds to the PASCAL procedure 'warning' -
c A subroutine that is called after a non-fatal error in the
c program has occurred.
c The string 'name' and the integer 'nr' are printed on
c standard output. Properties and pointers residing in the
c patch 'p' are printed in an abbreviated manner.
c
c END OF DESCRIPTION OF SUBROUTINES AVAILABLE TO THE USER + + + + + +
c
c NOTE
c This code passes the Fortran-checker program FTNCHEK

483

c
c
c

484

(R. Moniot et al.) with the options
FTNCHEK -declare -f77 -portable -novice=2

