
Semi-Coarsening in Three Directions for
Euler-Flow Computations in Three Dimensions

B. Koren, P.W. Hemker, P.M. de Zeeuw
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

A multiple semi-coarsened multigrid method for solving discretized, steady 3-D
Euler equations of gas dynamics, is described and applied. Convergence results
are presented for the case of the ONERA-M6 wing at transonic conditions. Com
parisons are made with an optimal standard multigrid method, as well as with a
single-grid method. Semi-coarsened multigrid appears to yield the best 3-D con
vergence behavior.

1 Introduction

A significant difficulty of standard multigrid methods for 3-D problems, when compared
to application to 2-D problems, is that the requirements to be imposed on the smoother
are much more severe. When cells are used as grid elements, in 3-D, standard coars
ening implies restriction from each set of 2 x 2 x 2 cells to a single cell only. Because
the set of eight cells can support more high-frequency errors than the two-dimensional
2 x 2-set, 3-D standard multigrid imposes stronger requirements on the smoother than
2-D standard multigrid. Standard multigrid may not perform satisfactory for 3-D gen
eralizations of 2-D problems, for which it does perform well. To illustrate this, we
present standard-multigrid convergence results as obtained in solving first-order dis
cretized, steady perfect-gas Euler equations for some 2-D and 3-D transonic test cases.
The 2-D results, shown in Figure 1, have been taken from [8]. They show a reasonably
grid-independent convergence behavior. In Figure 2 we show results, obtained with the
same solution method, for a highly similar problem in 3-D. For this 3-D transonic test
case, the convergence is far more grid-dependent than for both 2-D transonic cases. A
fix might be found in deriving a more powerful smoother, keeping the other components
of the numerical method the same. A more natural fix is not to apply standard, i.e.
full coarsening, but to use multiple semi-coarsening instead. Figures 3a and 3b show
standard coarsening and multiple semi-coarsening, respectively. (Semi-coarsening is the
inverse of semi-refinement, as shown in Figure 1 of [6].) Though multigrid with multiple
semi-coarsening is expected to be most fruitful for 3-D problems, as far as we know,
applications of multiple semi-coarsening only exist in 2-D. The pioneering work has been
done by Mulder [9], who has introduced multiple semi-coarsening as a fix for the poor
convergence results observed in computing nearly grid-aligned flows governed by the
steady, 2-D Euler equations. In [12], Radespiel and Swanson embroider on Mulder's
approach for the steady, 2-D Euler equations. They pay particular attention to the
prolongation operators. Semi-coarsened multigrid work for second-order elliptic

547

9 10 s 6 10

cycles cycles

a. Moo = 0.8, a= 1.25°. b. M00 = 0.85, a= 1°.

Figure 1: Convergence behavior of standard multigrid method for NACA0012-airfoil at
transonic conditions (solid lines: multigrid, dashed line: single grid).

2 3 4 5 6 7 8 9 10

cycles

Figure 2: Convergence behavior of standard multigrid method for ONERA-M6 wing at
transonic conditions, M00 = 0.84, a = 3.06° (solid lines: multigrid, dashed line: single
grid).

(Poisson-type) equations has been studied by Naik and Van Rosendale [10] and-recently
- by De Zeeuw [13]. Just as in [12], in (10, 13], much attention is paid to the choice
of proper prolongation operators in the multigrid algorithm. In the present paper we
consider semi-coarsened multigrid for the steady, 3-D Euler equations, and we also pay
particular attention to the prolongation operators.

548

I

l

®
a. Full coarsening. b. Multiple semi-coarsening.

Figure 3: Two types of 3-D coarsenings.

2 Equations

2.1 Continuous equations

The steady, 3-D Euler equations are written as

(la)

with q the state vector

(lb)

f (q), g(q) and h(q) the flux vectors

(
pu) ({llJ) pu2 +p {lVU

f(q) = ::~ , g(q) = ::~ + p ,

pu(e + ;) fllJ(e + ;)

h(q) = (:~ J,
pw2+p

pw(e + ;)

(le)

and with e the sum of internal and kinetic energy, satisfying the perfect-gas relation

e = _l_~ + ~ (u2 +v2 +w2).
"(-lp 2

(ld)

549

2.2 Discretized equations

The equations are discretized in the integral form

1 (f(q)n., + g(q)ny + h(q)n,) ds = 0,
ltm•

(2)

where 80* is the boundary of an arbitrary subdomain 0* of the computational domain
n, and where n.,, ny and n. are the x-, y- and z-components, respectively, of the out
ward unit normal on 80*. A straightforward and simple discretization is obtained by
subdividing the entire computational domain n, in a structured manner, into disjunct,
non-overlapping subdomains niJ,k> i = 0, 1, ... ' ima.x, j = 0, 1, ... , Jma.x, k = 0, 1, ... 'kma.x
(finite volumes) and by requiring that

in,,;,• (j(q)n., + g(q)ny + h(q)n,) ds = 0, 'Vi, j, k.

Using the rotational invariance of the Euler equations

f(q)n., + g(q)n11 + h(q)n. = r-1(9, <P)f(T(9, <f>)q),

where T(8, </>) is the rotation matrix

(

1 0
0 cos()

T(8,</>) = O -sin8
0 0
0 0

0
sin ()cos</>
cos9cos<f>

-sin</>
0

0
sin 8sin </>
cos8sin </>

cos <P
0

()= n.,
- Jn2 + n2 + n2,

"' !I z

</>= n11
- Jn2 +n2'

!I z

(3) can be rewritten as

f Bfl;j,. T-1(8, </!)f(T(8, </!)q)ds = 0, \:/i,j, k.

(3)

(4)

(5a)

(5b)

(6)

As finite volumes, arbitrarily shaped hexahedra are considered, the structured subdi
vision being such that - if existent - 0.i:l:IJ,lci fliJ:l:l,/c and QiJ,lc:l:l are the neighboring
volumes of f!;J,k· The type of finite-volume method applied is the cell-centered one.
Following the Godunov approach [1], along each cell face an,J,k, as in 2-D, the flux
vector is assumed to be constant and to be determined by a uniformly constant left and
right state, q1 and qr, only. Doing so, the fiux evaluation is identical to the numerical
solution of the 1-D Riemann problem for a non-isenthalpic perfect-gas fl.ow. For this, we
apply the 3-D extension of the 2-D P-variant [5] of Osher's approximate Riemann solver
[11]. This 3-D extension was first made by Houtman, see e.g. [7]. For the left and right
cell-face states, we take the first-order accurate approximations

(q~. I) (..) •,J,k+2 - q,,,,k
q;J,k+! - qiJ,k+l .

(q~l·) (••) •+.,J,k - q,,J,k
(+iJ,k - Qi+iJ,k '

(Q~·l) (•·) •.J+2,lc - q,,J,k
q;J+!,k - Qi,j+l,k '

(7)
At a later stage, these approximations can be replaced by higher-order accurate ones, in
which case also limiters can be introduced.

550

'I

3 Multigrid methods

In this section we first describe the standard 3-D multigrid algorithm. We use the 3-D
generalization of the optimal 2-D multigrid approach, that was originally described in
[5].

3.1 Standard multigrid

As the smoothing technique for the first-order discretized Euler equations, we prefer to
apply collective symmetric point Gauss-Seidel relaxation. Point refers to the property
that during the update of the local state vector q;,j,k, all other state vectors are kept
fixed. Collective refers to the property that the update of q;,j,k is done for all of its five
components simultaneously. Further, symmetric means that after a relaxation sweep
(i.e. an update of all state vectors q;,j,k) in one direction, a new sweep in the reverse
direction is made. The four different symmetric relaxation sweeps that are possible on a
regular 3-D grid, are performed alternatingly. At each volume visited during a relaxation
sweep, the system of five nonlinear equations is approximately solved by (exact) Newton
iteration, the differential operator applied being (tu, /;, :W, i, -Jz f, where c = ~,
z = ln (ffe). This relaxation method is simple and robust.

As the standard multigrid method we apply the nonlinear version (FAS), preceded
by nested iteration (FMG). For this we construct a nested set of grids such that each
finite volume on a coarse grid is the union of 2 x 2 x 2 volumes on the next finer grid (full
coarsening, Figure 3a). Let n 0, n 1, ... , nxm~ be the sequence of such nested grids, with
n 0 the coarsest and nxmax the finest grid. Then, nested iteration is applied to obtain a
good initial solution on n>..max, whereas nonlinear multigrid is applied to converge to the
solution on the finest grid, q>-max· The first iterate for the nonlinear multigrid cycling is
the solution obtained by nested iteration. We proceed to discuss both stages in more
detail.

The nested iteration starts with a user-defined initial estimate for q0 , the solution on
the coarsest grid. To obtain an initial solution on a finer grid l1A+1 , first the solution
on the coarser grid n>. is improved by a single nonlinear multigrid cycle. Hereafter, this
solution is prolongated to the finer grid nx+l· These steps are repeated until the highest
level (finest grid) has been reached.

Let N>..(q>.) = 0 denote the nonlinear system of first-order discretized equations on
n>.., then a single nonlinear multigrid cycle is recurrently defined by the following steps:

1. Improve on fh the latest obtained solution qx by application of npre relaxation
sweeps.

2. Compute on the next coarser grid n;._1 the right-hand side r>..-1 = N>..-1 (q>..-1) -
l;-1 N>..(q>..), where l;-1 is a restriction operator for right-hand sides.

3. Approximate the solution of N;._1 (q>._1) = rx-1 by the application of nFAS nonlinear
multigrid cycles. Denote the approximation obtained as Q>..-1 ·

4. Correct the current solution by: qx = q;. + 1~_ 1 (ii>..-1 - qx-1), where 1£_1 is a
prolongation operator for solutions.

5. Improve again q;. by application of npost relaxations.

551

Steps (2),(3) and (4) form the coarse-grid correction (all three are skipped on the coarsest
grid). The efficiency of a coarse-grid correction depends in general on the coars~ness of
the coarsest grid. The restriction operator l;-1 and the prolongation operator lr_1 are
defined by

(r>.-1)iJ,k = u;- 1r>.)i,j,k = (r>.)zi,2j,2k +
(r>.)2i-1,2j,2k + (r>.)zi,2j-1,2k + (r>.)zi,2j,2k-I +
(r>.hi-l,2j-l,2k + (r>.)2i-1,2j,2k-1 + (r>.)zi,2j-l,2k-l +
(r>.hi-1,2j-1,2k-li (Ba)

->.
U>.-1 q>.-1)2;,2j,2k =

~ ~ ~ (I >.-1 q>.-1hi-!,2j,2k = U>.-1 q>.-1hi,2j-l,2k = U>.-1 q>.-1)2i,2j,2k-l =
~ ~ ~

U>.-1 q>.-1hi-1,2j-l,2k = U>.-1 q>.-1hi-l,2j,2k-l = (l>.-1 q>.-i)2i,2j-l,2k-l =
->.

U>.-1 q>.-1hi-1,2j-1,2k-1 =

= (q>.-1)i,j,k· (8b)

As values for npre, npost and nFAS, we use here at all levels A: npre = 0, npost = 1
and nFAS = 1; i.e. as nonlinear multigrid cycles we use sawtooth-cycles with a single
post-relaxation per level only. Notice that these choices of the operators l;-1 and ir_1

guarantee the following nonlinear Galerkin relations between the discretizations on the
different grids: for all discrete functions q>.-l on !'h_1, A= 1, , Amax, we have

(9)

3.2 Multiple semi-coarsened multigrid method

Also in the case of the semi-coarsened multigrid method we use FAS as the basic multigrid
algorithm, and on each grid we apply collective symmetric point Gauss-Seidel relaxation
as the smoothing technique. In the semi-coarsened multigrid method, however, we re
place the sequentially ordered set of grids fh, A = 0, ... , Amax, by a partially ordered set
of grids !11,m,ni l = 0, 1, ... , lmu, m = 0, 1, ... , mmax, n = 0, 1, ... , nmax, with Slo,o,o the
coarsest and 01,,.ax,mmax,nmax the finest grid. Now l +m+n is called the level of grid 01,m,n·
The nesting and the semi-coarsening relation between these grids is described in [6, 4].

Also here nested iteration (FMG) is applied to obtain a good initial solution on the
finest grid. We proceed to discuss the present nested iteration and nonlinear multigrid
iteration in more detail. The nested iteration starts with a user-defined initial estimate
on the coarsest grid, 110,0,0 , which is improved by relaxation. The approximate solution
q0,o,o is prolongated (level-by-level) to all grids up to and including level 3, with the 3-D
prolongation according to formula (29) in [3] (see Appendix A for the implementation in
the present 3-D Euler context). Next, the solution q1,1,1 is improved by a single nonlinear
multigrid cycle and prolongated to all grids up to and including level 6. For simplicity,
we assume that lma.x = mmax = nmax· Then, the above process can be repeated in a
straightforward manner up to and including level 3lmax·

A single nonlinear multigrid cycle on level l + m + n is recurrently defined by the
following steps:

1. Compute on all grids at the next coarser level, (l + m + n) - 1 the same right
hand sides as in standard multigrid, but use another restriction operator, viz. the

552

one described in Appendix B. (The restriction of defects is still natural, i.e. by
summation over all sub-cells.)

2. Approximate the solutions on the coarser level (l + m + n) - 1 by the application
of a single nonlinear multigrid cycle on level (l + m + n) - 1.

3. Correct the current solutions on level l +m+n by one of two alternative correction
prolongations. One prolongation can be seen as an extension to 3-D and to systems
of equations, of the prolongation due to Naik and Van Rosendale [10]. (It uses
prolongation weights that are proportional to the absolute values of the restricted
defect components.) The other correction prolongation is the one proposed in [3].
(It is the correction-prolongation version of the solution prolongation described in
Appendix A, it uses fixed prolongation weights.) In Appendix C, both correction
prolongations are described explicitly.

4. Improve the solutions on level l + m + n by the application of np06t relaxations
sweeps.

Thus, here we also use sawtooth cycles as nonlinear multigrid cycles. Whereas in the stan
dard multigrid method one may also apply pre-relaxations, in the present semi-coarsened
multigrid technique this is not (yet) possible. Pre-relaxation leads to incoherent right
hand side representations. For an explanation of this we refer to [13]. (Note that by not
yet applying pre-relaxations, the averages taken in the restriction operator as described
in Appendix B, are not yet relevant in fact.)

4 Numerical results

4.1 Test case

As test case we consider the ONERA-M6 wing at the transonic conditions MCQ = 0.84,
a = 3.06°. The grids used are of C-0-type (Figures 4a - 4d). The wing as well as the
grids are symmetric with respect to the plane through the wing's leading and trailing
edges. In the convergence results to be presented hereafter, the finest grid considered is
the 64 x 16 x 16-grid.

4.2 Convergence results

Convergence results obtained are given in Figure 5. (Note that the convergence results
that have already been presented in Figure 2 are repeated in Figures 5a-b.) In all
four graphs, the residual ratio is defined as ll.RiFAsllL)llR1llL1 , where RiFAs is the first

component (i.e. the mass component) of Nim .. ,mm .. ,nm .. (q;~~,mmax,nm,.J and where iFAS

refers to the status before the i-th FAS-cycle. The improvement of both semi-coarsened
multigrid methods with respect to the standard multigrid method is significant. Of
both semi-coarsened methods, the one with the fixed prolongation weights (Figure 5d)
performs best.

5 Outlook

The foregoing multiple semi-coarsening method is called a full-grid-of-grids semi-coarsening
method. A disadvantage of full-grid-of-grids semi-coarsening is that many grid points

553

are needed in total. With N the total number of points on the finest grid, asymptotically
standard multigrid uses ~N grid points versus SN points for the full-grid-of-grids ap
proaches. An efficiency improvement is obtained by thinning out the grid-of-grids. Most
ambitious in this respect is the sparse-grid-of-grids approach (see [3] and the further
references there in). For a sparse grid-of-grids, for all grids !'21,m,n holds the constraint:
l + m + n ~ lmax (lmax = ffimax = nmax)· With the full grid-of-grids depicted as a cube
in Figure 6a, the sparse grid-of-grids is the subset given in Figure 6b. The gain in ef
ficiency by the reduction of the numbers of grid points is enormous. Theoretically, the
sparse-grid-of-grids approach has a much better ratio of discrete accuracy over number
of grid points used [2]. In the ideal case the full grid-of-grids will be completely replaced
by a sparse grid-of-grids. Work in this direction is in progress.

References

[1] GODUNOV, S .K.: Finite difference method for numerical computation of discontin
uous solutions of the equations of fluid dynamics (Cornell Aeronautical Lab. Trans!.
from the Russian), Math. Sbornik, 47, 271-306 (1959).

[2] GRIEBEL, M., ZENGER, C. AND ZIMMER, S.: Multilevel Gauss-Seidel-algorithms
for full and sparse grid problems, Computing, 50, 127-148 (1993).

[3] HEMKER, P.W.: Finite volume multigrid for 3D-problems (in this book).

[4] HEMKER, P.W. AND PFLAUM, C.: Approximation on partially ordered sets of
regular grids, Report NM-R9611, CWI, Amsterdam (1996).

[5] HEMKER, P.W. AND SPEKREIJSE, S.P.: Multiple grid and Osher's scheme for
the efficient solution of the steady Euler equations, Appl. Numer. Math., 2, 475-493
(1986).

[6] HEMKER, P.W. AND ZEEUW, P.M. DE: BASIS3, a data structure for 3-
dimensional sparse grids (in this book).

[7) HOUTMAN, E.M. AND BANNINK, W.J.: Experimental and numerical investigation
of the vortex flow over a delta wing at transonic speed, in: Vortex Flow Aerody
namics, 5.1-5.11, (AGARD, Neuilly-sur-Seine, 1991).

[8] KOREN, B.: Multigrid and Defect Correction for the Steady Navier-Stokes Equa
tions, Application to Aerodynamics, CWI Tracts, 74 (Stichting Mathematisch Cen
trum, Amsterdam, 1991).

[9] MULDER, W.A.: A new multigrid approach to convection problems, J. Comput.
Phys., 83, 303-323 (1989).

[10] NAIK, N.H. AND ROSENDALE, J. VAN: The improved robustness of multigrid
elliptic solvers based on multiple semicoarsened grids, SIAM J. Numer. Anal., 30,
215-229 (1993).

[11] OSHER, S. AND SOLOMON, F.: Upwind difference schemes for hyperbolic systems
of conservation laws, Math. Comput., 38, 339-374 (1982).

554

[12] RADESPIEL, R. AND SWANSON, R.C.: Progress with multigrid schemes for hyper
sonic flow problems, J. Comput. Phys., 116, 103-122 (1995).

[13] ZEEUW, P.M. DE: Multiple semi-coarsening techniques (in this book).

555

Appendix A. Prolongation of solution

Using the same notation as in [6] and defining p as the pointer to a complete patch at
level 1, m, n and s as the index ofone of the five solution components (say s=1, 2, 3, 4, 5),
the algorithm for the solution prolongation reads in quasi-ForTran:

3-D prolongation:
if (l>lmin.and.m>mmin.and.n>nmin) then

setting pointers:
pxyf=pntr(xf,pyf)
pxzf=pntr(xf,pzf)
pyzf=pntr(yf,pzf)
pxyzf=pntr(xf,pyzf)
prolongation:
data(s,p)=+data(s,pntr(xf ,p))

end if

+data(s,pntr(yf,p))
+data(s,pntr(zf,p))
-(data(s,pntr(xkl,pxyf))+data(s,pntr(xkr,pxyf))+

data(s,pntr(ykl,pxyf))+data(s,pntr(ykr,pxyf)))/4
-(data(s,pntr(xkl,pxzf))+data(s,pntr(xkr,pxzf))+

data(s,pntr(zkl,pxzf))+data(s,pntr(zkr,pxzf)))/4
-(data(s,pntr(ykl,pyzf))+data(s,pntr(ykr,pyzf))+

data(s,pntr(zkl,pyzf))+data(s,pntr(zkr,pyzf)))/4
+(data(s,pntr(xkl,pntr(ykl,pxyzf)))+

data(s,pntr(xkr,pntr(ykl,pxyzf)))+
data(s,pntr(xkl,pntr(ykr,pxyzf)))+
data(s,pntr(xkr,pntr(ykr,pxyzf)))+
data(s,pntr(xkl,pntr(zkl,pxyzf)))+
data(s,pntr(xkr,pntr(zkl,pxyzf)))+
data(s,pntr(xkl,pntr(zkr,pxyzf)))+
data(s,pntr(xkr,pntr(zkr,pxyzf)))+
data(s,pntr(ykl,pntr(zkl,pxyzf)))+
data(s,pntr(ykr,pntr(zkl,pxyzf)))+
data(s,pntr(ykl,pntr(zkr,pxyzf)))+
data(s,pntr(ykr,pntr(zkr,pxyzf))))/12,

s=1,2,3,4,5

2-D prolongations:
if (l=lmin.and.m>mmin.and.n>nmin) then

setting pointer:
pyzf=pntr(yf,pntr(zf ,p))
prolongation:
data(s,p)=+data(s,pntr(yf,p))

endif

+data(s,pntr(zf ,p))
-(data(s,pntr(ykl,pyzf))+data(s,pntr(ykr,pyzf))+

data(s,pntr(zkl,pyzf))+data(s,pntr(zkr,pyzf)))/4, s=l,2,3,4,5

if (l>lmin.and.m=mmin.and.n>nmin) then

556

setting pointer:
pxzf=pntr(xf,pntr(zf,p))
prolongation:
data(s,p)=+data(s,pntr(xf,p))

+data(s,pntr(zf,p))
-(data(s,pntr(xk:l,pxzf))+data(s,pntr(xkr,pxzf))+

data(s,pntr(zkl,pxzf))+data(s,pntr(zkr,pxzf)))/4, s=1,2,3,4,5
end if
if (l>lmin.and.m>mmin.and.n=nmin) then

setting pointer:
pxyf=pntr(xf,pntr(yf,p))
proiongation:
data(s,p)=+data(s,pntr(xf,p))

+data(s,pntr(yf ,p))
-(data(s,pntr(xkl,pxyf))+data(s,pntr(xkr,pxyf))+

data(s,pntr(ykl,pxyf))+data(s,pntr(ykr,pxyf)))/4, s=1,2,3,4,5
end if

1-D prolongations:
if (l=lmin.and.m=mmin.and.n>nmin) then

data(s,p)=data(s,pntr(zf,p)), s=1,2,3,4,5
endif
if (l=lmin.and.m>mmin.and.n=nmin) then

data(s,p)=data(s,pntr(yf,p)), s=1,2,3,4,5
endif
if (l>lmin.and.m=mmin.and.n=nmin) then

data(s,p)=data(s,pntr(xf,p)), s=1,2,3,4,5
endif

557

Appendix B. Restriction of defects

Using the same notation as in [6] and defining p as the pointer to a complete patch at
level l,m,n and d as the index of one of the five corresponding defect components (say
d =6 , 7 , 8 , 9 , 10), the algorithm for the restriction of the defects reads in quasi-ForTran
(assuming that all finer-grid cells that are required exist):

3-D restriction:
if (l<lmax.and.m<mmax.and.n<nmax) then

data(d,p)=1/3*(data(d,pntr(xkl,p))+data(d,pntr(xkr,p))+
data(d,pntr(ykl,p))+data(d,pntr(ykr,p))+
data(d,pntr(zkl,p))+data(d,pntr(zkr,p))), d=6,7,8,9,10

endif

2-D restrictions:
if (l=lmax.and.m<mmax.and.n<nmax) then

data(d,p)=1/2*(data(d,pntr(ykl,p))+data(d,pntr(ykr,p))+
data(d,pntr(zkl,p))+data(d,pntr(zkr,p))), d=6,7,8,9,10

end if
if (l<lmax.and.m=mmax.and.n<nmax) then

data(d,p)=1/2*(data(d,pntr(xkl,p))+data(d,pntr(xkr,p))+
data(d,pntr(zkl,p))+data(d,pntr(zkr,p))), d=6,7,8,9,10

end if
if (l<lmax.and.m<mmax.and.n=nmax) then

data(d,p)=1/2*(data(d,pntr(xkl,p))+data(d,pntr(xkr,p))+
data(d,pntr(ykl,p))+data(d,pntr(ykr,p))), d=6,7,8,9,10

endif

1-D restrictions:
if (l=lmax.and.m=mmax.and.n<nmax) then

data(d,p)=data(d,pntr(zkl,p))+data(d,pntr(zkr,p)), d=6,7,8,9,10
endif
if (l=lmax.and.m<mmax.and.n=nmax) then

data(d,p)=data(d,pntr(ykl,p))+data(d,pntr(ykr,p)), d=6,7,8,9,10
end if
if (l<lmax.and.m=mmax.and.n=nmax) then

data(d,p)=data(d,pntr(xkl,p))+data(d,pntr(xkr,p)), d=6,7,8,9,10
endif

558

Appendix C. Prolongation of solution corrections

With defect-dependent prolongation weights
Again using the same notation as in [6], defining p again as the pointer to a complete
patch at level l,m,n, sold as the index for the solution components before update
(say sold=6, 7, 8, 9, 10) and snew as the index for the updated solution components
(snew=1,2,3,4,5), then the algorithm for the defect-dependent correction prolongation
reads in quasi-ForTran:

3-D prolongation:
if (l>lmin.and.m>mmin.and.n>nmin) then

calculation weights:
dsum(d)=abs(data(d,pntr(xf,p)))+

abs(data(d,pntr(yf,p)))+
abs(data(d,pntr(zf,p))), d=6,7,8,9,10

wxf(d)=abs(data(d,pntr(xf,p)))/dsum(d), d=G,7,8,9,10
wyf(d)=abs(data(d,pntr(yf,p)))/dsum(d), d=6,7,8,9,10
wzf(d)=abs(data(d,pntr(zf,p)))/dsum(d), d=6,7,8,9,10
prolongation:
data(snew,p)=data(sold,p)

+wxf(d)*(data(snew,pntr(xf,p))-data(sold,pntr(xf ,p)))
+wyf(d)*(data(snew,pntr(yf,p))-data(sold,pntr(yf,p)))
+wzf(d)*(data(snew,pntr(zf,p))-data(sold,pntr(zf,p))),
(snew,d,sold)=(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15)

end if

2-D prolongations:
if (l=lmin.and.m>nunin.and.n>nmin) then

calculation weights:
dsum(d)=abs(data(d,pntr(yf,p)))+abs(data(d,pntr(zf,p))), d=6,7,8,9,10
wyf(d)=abs(data(d,pntr(yf,p)))/dsum(d), d=G,7,8,9,10
wzf(d)=abs(data(d,pntr(zf,p)))/dsum(d), d=6,7,8,9,10
prolongation:
data(snew,p)=data(sold,p)

end if

+wyf(d)*(data(snew,pntr(yf,p))-data(sold,pntr(yf,p)))
+wzf(d)*(data(snew,pntr(zf,p))-data(sold,pntr(zf,p))),
(snew,d,sold)=(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15)

if (l>lmin.and.m=mmin.and.n>nmin) then
calculation weights:
dsum(d)=abs(data(d,pntr(xf,p)))+abs(data(d,pntr(zf,p))), d=G,7,8,9,10
wxf(d)=abs(data(d,pntr(xf,p)))/dsum(d), d=6,7,8,9,10
wzf(d)=abs(data(d,pntr(zf,p)))/dsum(d), d=G,7,8,9,10
prolongation:
data(snew,p)=data(sold,p)

end if

+wxf(d)*(data(snew,pntr(xf,p))-data(sold,pntr(xf,p)))
+wzf(d)*(data(snew,pntr(zf,p))-data(sold,pntr(zf,p))),
(snew,d,sold)=(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15)

559


~~~~~~~~---------------------------------· 

if (l>lmin.and.m>mmin.and.n=nmin) then 
calculation weights: 
dsum(d)=abs(data(d,pntr(xf,p)))+abs(data(d,pntr(yf,p))), d=6,7,8,9,10 
wxf(d)=abs(data(d,pntr(xf,p)))/dsum(d), d=6,7,8,9,10 
wyf(d)=abs(data(d,pntr(yf,p)))/dsum(d), d=6,7,8,9,10 
prolongation: 
data(snew,p)=data(sold,p) 

endif 

1-D prolongations: 

+wxf(d)*(data(snew,pntr(xf,p))-data(sold,pntr(xf,p))) 
+wyf(d)*(data(snew,pntr(yf,p))-data(sold,pntr(yf,p))), 
(snew,d,sold)=(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15) 

if (l=lmin.and.m=mmin.and.n>nmin) then 
data(snew,p)=data(sold,p) 

+data(snew,pntr(zf,p)))-data(sold,pntr(zf,p)), 
(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 

endif 
if (l=lmin.and.m>mmin.and.n=nmin) then 

data(snew,p)=data(sold,p) 
+data(snew,pntr(yf,p)))-data(sold,pntr(yf,p)), 
(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 

end if 
if (l>lmin.and.m=mmin.and.n=nmin) then 

data(snew,p)=data(sold,p) 
+data(snew,pntr(xf,p)))-data(sold,pntr(xf,p)), 
(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 

end if 

With fixed prolongation weights 
Again using the same notation as in [6], defining p as the pointer to a complete patch at 
level l ,m,n and defining sold and snew as the indices for the solution components before 
and after update, respectively ( (snew, sold)=(1, 11), (2, 12), (3, 13), (4, 14), (5, 15) ), 
then the algorithm for the correction prolongation with fixed weights reads in quasi
ForTran: 

9-D prolongation: 
if (l>lmin.and.m>mmin.and.n>nmin) then 

setting pointers: 
pxf=pntr(xf,p) 
pyf=pntr(yf,p) 
pzf=pntr(zf,p) 
pxyf=pntr(xf,pyf) 
pxzf=pntr(xf,pzf) 
pyzf=pntr(yf,pzf) 
pxyzf=pntr(xf,pyzf) 
pxyll=pntr(xkl,pntr(ykl,pxyzf)) 
pxyrl=pntr(xkr,pntr(ykl,pxyzf)) 
pxylr=pntr(xkl,pntr(ykr,pxyzf)) 

560 



pxyrr=pntr(xkr,pntr(ykr,pxyzf)) 
pxzll=pntr(xkl,pntr(zkl,pxyzf)) 
pxzrl=pntr(xkr,pntr(zkl,pxyzf)) 
pxzlr=pntr(xkl,pntr(zkr,pxyzf)) 
pxzrr=pntr(xkr,pntr(zkr,pxyzf)) 
pyzll=pntr(ykl,pntr(zkl,pxyzf)) 
pyzrl=pntr(ykr,pntr(zkl,pxyzf)) 
pyzlr=pntr(ykl,pntr(zkr,pxyzf)) 
pyzrr=pntr(ykr,pntr(zkr,pxyzf)) 
prolongation: 
data(snew,p)=data(sold,p) 

+(data(snew,pxf)-data(sold,pxf)) 
+(data(snew,pyf)-data(sold,pyf)) 
+(data(snew,pzf)-data(sold,pzf)) 
-((data(snew,pntr(xkl,pxyf))-data(sold,pntr(xkl,pxyf)))+ 

end if 

2-D prolongations: 

(data(snew,pntr(xkr,pxyf))-data(sold,pntr(xkr,pxyf)))+ 
(data(snew,pntr(ykl,pxyf))-data(sold,pntr(ykl,pxyf)))+ 
(data(snew,pntr(ykr,pxyf))-data(sold,pntr(ykr,pxyf))))/4 

-((data(snew,pntr(xkl,pxzf))-data(sold,pntr(xkl,pxzf)))+ 
(data(snew,pntr(xkr,pxzf))-data(sold,pntr(xkr,pxzf)))+ 
(data(snew,pntr(zkl,pxzf))-data(sold,pntr(zkl,pxzf)))+ 
(data(snew,pntr(zkr,pxzf))-data(sold,pntr(zkr,pxzf))))/4 

-((data(snew,pntr(ykl,pyzf))-data(sold,pntr(ykl,pyzf)))+ 
(data(snew,pntr(ykr,pyzf))-data(sold,pntr(ykr,pyzf)))+ 
(data(snew,pntr(zkl,pyzf))-data(sold,pntr(zkl,pyzf)))+ 
(data(snew,pntr(zkr,pyzf))-data(sold,pntr(zkr,pyzf))))/4 

+((data(snew,pxyll)-data(sold,pxyll))+ 
(data(snew,pxyrl)-data(sold,pxyrl))+ 
(data(snew,pxylr)-data(sold,pxylr))+ 
(data(snew,pxyrr)-data(sold,pxyrr))+ 
(data(snew,pxzll)-data(sold,pxzll))+ 
(data(snew,pxzrl)-data(sold,pxzrl))+ 
(data(snew,pxzlr)-data(sold,pxzlr))+ 
(data(snew,pxzrr)-data(sold,pxzrr))+ 
(data(snew,pyzll)-data(sold,pyzll))+ 
(data(snew,pyzrl)-data(sold,pyzrl))+ 
(data(snew,pyzlr)-data(sold,pyzlr))+ 
(data(snew,pyzrr)-data(sold,pyzrr)))/12, 

(snew,sold)=(l,11),(2,12),(3,13),(4,14),(5,15) 

if (l=lmin.and.m>mmin.and.n>nmin) then 
setting pointers: 
pyf=pntr(yf,p) 
pzf=pntr(zf,p) 
pyzf=pntr(yf,pntr(zf,p)) 
prolongation: 
data(snew,p)=data(sold,p) 

561 



~ 
i 
I 

:1 

'.l 

'l 

! 
l 

+(data(snew,pyf)-data(sold,pyf)) 
+(data(snew,pzf)-data(sold,pzf)) 
-((data(snew,pntr(ykl,pyzf))-data(sold,pntr(ykl,pyzf)))+ 

(data(snew,pntr(ykr,pyzf))-data(sold,pntr(ykr,pyzf)))+ 
(data(snew,pntr(zkl,pyzf))-data(sold,pntr(zkl,pyzf)))+ 
(data(snew,pntr(zkr,pyzf))-data(sold,pntr(zkr,pyzf))))/4, 

(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 
endif 
if (l>lmin.and.m=mmin.and.n>nmin) then 

setting pointers: 
pxf=pntr(xf,p) 
pzf=pntr(zf,p) 
pxzf=pntr(xf,pntr(zf,p)) 
prolongation: 
data(snew,p)=data(sold,p) 

+(data(snew,pxf)-data(sold,pxf)) 
+(data(snew,pzf)-data(sold,pzf)) 
-((data(snew,pntr(xkl,pxzf))-data(sold,pntr(xkl,pxzf)))+ 

(data(snew,pntr(xkr,pxzf))-data{sold,pntr(xkr,pxzf)))+ 
(data(snew,pntr(zkl,pxzf))-data(sold,pntr(zkl,pxzf)))+ 
(data(snew,pntr(zkr,pxzf))-data(sold,pntr(zkr,pxzf))))/4, 

(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 
endif 
if (l>lmin.and.m>mmin.and.n=nmin) then 

setting pointers: 
pxf=pntr(xf,p) 
pyf=pntr(yf,p) 
pxyf=pntr(xf,pntr(yf,p)) 
prolongation: 
data(snew,p)=data(sold,p) 

+(data(snew,pxf)-data(sold,pxf)) 
+(data(snew,pyf)-data(sold,pyf)) 
-((data(snew,pntr(xkl,pxyf))-data(sold,pntr(xkl,pxyf)))+ 

(data(snew,pntr(xkr,pxyf))-data(sold,pntr(xkr,pxyf)))+ 
(data(snew,pntr(ykl,pxyf))-data(sold,pntr(ykl,pxyf)))+ 
(data(snew,pntr(ykr,pxyf))-data(sold,pntr(ykr,pxyf))))/4, 

(snew,sold)=(l,11),(2,12),(3,13),(4,14),(5,15) 
end if 

1-D prolongations: 
if (l=lmin.and.m=mmin.and.n>nmin) then 

data(snew,p)=data(sold,p) 
+data(snew,pntr(zf,p))-data(sold,pntr(zf,p)), 
(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 

endif 
if (l=lmin.and.m>mmin.and.n=nmin) then 

data(snew,p)=data(sold,p) 
+data(snew,pntr(yf,p))-data(sold,pntr(yf,p)), 
(snew,sold)=(l,11),(2,12),(3,13),(4,14),(5,15) 

562 



end if 
if (l>lmin.and.m=mmin.and.n=nmin) then 

data(snew,p)=data(sold,p) 
+data(snew,pntr(xf,p))-data(sold,pntr(xf,p)), 
(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 

end if 

563 



1.5 

0.5 

0 0 

a. At upper side wing. 

b. At far-field boundary. 

Figure 4: Views at 128 x 32 x 32 C-0-type grid ONERA-M6 wing. 

564 



c. At symmetry boundary. 

d. At upper pa.rt downstream boundary. 

Figure 4: Views at 128 x 32 x 32 C-0-type grid ONERA-M6 wing. 

565 



II: 
l I 0 0 

03 

~7 02 ,..._ -
0 I 

03 ..... ..... 
OS o:s 

n2~ ... Cl! 01 ... Cl! 

-1 -1 
OS OS 

""' I 
;:1 ;:1 

"O 'O n,~ ·- M ·- M 
"' I rt> I 
Q) Q) 

~ ... 
'-' 

"" "" 0 ... 0 ... 
-1 -1 

on on 
I I 

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 

relaxation cycles FAS-cycles 

a. Single-grid. b. Standard multigrid. 

0 0 

OI .-.. -
·- _g I 
..... ..... 
OS OS ... 

Cl! ... Cl! 

-1 -1 
o:s o:s 
;:l ;:l 
'O 'O 

~ ·- M ·- M rt> I rt> I 
Ql Ql ~ '<?a ... ... 
'-' 

1 
'-' '9 'f.,, 

"" "" 0 ... 0 ... 
,.,, 

-1 . .,, -1 
,.,, . .,, 

on on 
I I 

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 

FAS-cycles FAS-cycles 

c. Semi-coarsened multigrid, 
d. Semi-coarsened multigrid, with defect-dependent prolonga-

tion weights. with fixed prolongation weights. 

Figure 5: Convergence behavior of different solution methods for ONERA-M6 wing at 
transonic conditions, M00 = 0.84, a= 3.06°. 

566 



a. Full. 

Figure 6: Grids of grids. 

I 
I 

o~o 
, ,""Q' ... , 

, ' , ' , ' , ' , ' , ' , ' 

b. Sparse. 

567 


