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Abstract 

A multiple semi-coarsened multigrid method for solving discretized, steady 3-D 
Euler equations of gas dynamics, is described and applied. Convergence results 
are presented for the case of the ONERA-M6 wing at transonic conditions. Com
parisons are made with an optimal standard multigrid method, as well as with a 
single-grid method. Semi-coarsened multigrid appears to yield the best 3-D con
vergence behavior. 

1 Introduction 

A significant difficulty of standard multigrid methods for 3-D problems, when compared 
to application to 2-D problems, is that the requirements to be imposed on the smoother 
are much more severe. When cells are used as grid elements, in 3-D, standard coars
ening implies restriction from each set of 2 x 2 x 2 cells to a single cell only. Because 
the set of eight cells can support more high-frequency errors than the two-dimensional 
2 x 2-set, 3-D standard multigrid imposes stronger requirements on the smoother than 
2-D standard multigrid. Standard multigrid may not perform satisfactory for 3-D gen
eralizations of 2-D problems, for which it does perform well. To illustrate this, we 
present standard-multigrid convergence results as obtained in solving first-order dis
cretized, steady perfect-gas Euler equations for some 2-D and 3-D transonic test cases. 
The 2-D results, shown in Figure 1, have been taken from [8]. They show a reasonably 
grid-independent convergence behavior. In Figure 2 we show results, obtained with the 
same solution method, for a highly similar problem in 3-D. For this 3-D transonic test 
case, the convergence is far more grid-dependent than for both 2-D transonic cases. A 
fix might be found in deriving a more powerful smoother, keeping the other components 
of the numerical method the same. A more natural fix is not to apply standard, i.e. 
full coarsening, but to use multiple semi-coarsening instead. Figures 3a and 3b show 
standard coarsening and multiple semi-coarsening, respectively. (Semi-coarsening is the 
inverse of semi-refinement, as shown in Figure 1 of [6].) Though multigrid with multiple 
semi-coarsening is expected to be most fruitful for 3-D problems, as far as we know, 
applications of multiple semi-coarsening only exist in 2-D. The pioneering work has been 
done by Mulder [9], who has introduced multiple semi-coarsening as a fix for the poor 
convergence results observed in computing nearly grid-aligned flows governed by the 
steady, 2-D Euler equations. In [12], Radespiel and Swanson embroider on Mulder's 
approach for the steady, 2-D Euler equations. They pay particular attention to the 
prolongation operators. Semi-coarsened multigrid work for second-order elliptic 
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a. Moo = 0.8, a= 1.25°. b. M00 = 0.85, a= 1°. 

Figure 1: Convergence behavior of standard multigrid method for NACA0012-airfoil at 
transonic conditions (solid lines: multigrid, dashed line: single grid). 
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Figure 2: Convergence behavior of standard multigrid method for ONERA-M6 wing at 
transonic conditions, M00 = 0.84, a = 3.06° (solid lines: multigrid, dashed line: single 
grid). 

(Poisson-type) equations has been studied by Naik and Van Rosendale [10] and-recently 
- by De Zeeuw [13]. Just as in [12], in (10, 13], much attention is paid to the choice 
of proper prolongation operators in the multigrid algorithm. In the present paper we 
consider semi-coarsened multigrid for the steady, 3-D Euler equations, and we also pay 
particular attention to the prolongation operators. 
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a. Full coarsening. b. Multiple semi-coarsening. 

Figure 3: Two types of 3-D coarsenings. 

2 Equations 

2.1 Continuous equations 

The steady, 3-D Euler equations are written as 

(la) 

with q the state vector 

(lb) 

f (q), g(q) and h(q) the flux vectors 

(
pu ) ({llJ ) pu2 +p {lVU 

f(q) = ::~ , g(q) = ::~ + p , 

pu(e + ;) fllJ(e + ;) 

h(q) = ( :~ J, 
pw2+p 

pw(e + ;) 

(le) 

and with e the sum of internal and kinetic energy, satisfying the perfect-gas relation 

e = _l_~ + ~ (u2 +v2 +w2). 
"(-lp 2 

(ld) 
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2.2 Discretized equations 

The equations are discretized in the integral form 

1 (f(q)n., + g(q)ny + h(q)n,) ds = 0, 
ltm• 

(2) 

where 80* is the boundary of an arbitrary subdomain 0* of the computational domain 
n, and where n.,, ny and n. are the x-, y- and z-components, respectively, of the out
ward unit normal on 80*. A straightforward and simple discretization is obtained by 
subdividing the entire computational domain n, in a structured manner, into disjunct, 
non-overlapping subdomains niJ,k> i = 0, 1, ... ' ima.x, j = 0, 1, ... , Jma.x, k = 0, 1, ... 'kma.x 
(finite volumes) and by requiring that 

in,,;,• (j(q)n., + g(q)ny + h(q)n,) ds = 0, 'Vi, j, k. 

Using the rotational invariance of the Euler equations 

f(q)n., + g(q)n11 + h(q)n. = r-1(9, <P)f(T(9, <f>)q), 

where T(8, </>) is the rotation matrix 

( 

1 0 
0 cos() 

T(8,</>) = O -sin8 
0 0 
0 0 

0 
sin ()cos</> 
cos9cos<f> 

-sin</> 
0 

0 
sin 8sin </> 
cos8sin </> 

cos <P 
0 

()= n., 
- Jn2 + n2 + n2, 

"' !I z 

</>= n11 
- Jn2 +n2' 

!I z 

(3) can be rewritten as 

f Bfl;j,. T-1(8, </!)f(T(8, </!)q)ds = 0, \:/i,j, k. 

(3) 

(4) 

(5a) 

(5b) 

(6) 

As finite volumes, arbitrarily shaped hexahedra are considered, the structured subdi
vision being such that - if existent - 0.i:l:IJ,lci fliJ:l:l,/c and QiJ,lc:l:l are the neighboring 
volumes of f!;J,k· The type of finite-volume method applied is the cell-centered one. 
Following the Godunov approach [1], along each cell face an,J,k, as in 2-D, the flux 
vector is assumed to be constant and to be determined by a uniformly constant left and 
right state, q1 and qr, only. Doing so, the fiux evaluation is identical to the numerical 
solution of the 1-D Riemann problem for a non-isenthalpic perfect-gas fl.ow. For this, we 
apply the 3-D extension of the 2-D P-variant [5] of Osher's approximate Riemann solver 
[11]. This 3-D extension was first made by Houtman, see e.g. [7]. For the left and right 
cell-face states, we take the first-order accurate approximations 

( q~. I) ( .. ) •,J,k+2 - q,,,,k 
q;J,k+! - qiJ,k+l . 

( q~l·) (••) •+.,J,k - q,,J,k 
(+iJ,k - Qi+iJ,k ' 

( Q~·l) (•·) •.J+2,lc - q,,J,k 
q;J+!,k - Qi,j+l,k ' 

(7) 
At a later stage, these approximations can be replaced by higher-order accurate ones, in 
which case also limiters can be introduced. 
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3 Multigrid methods 

In this section we first describe the standard 3-D multigrid algorithm. We use the 3-D 
generalization of the optimal 2-D multigrid approach, that was originally described in 
[5]. 

3.1 Standard multigrid 

As the smoothing technique for the first-order discretized Euler equations, we prefer to 
apply collective symmetric point Gauss-Seidel relaxation. Point refers to the property 
that during the update of the local state vector q;,j,k, all other state vectors are kept 
fixed. Collective refers to the property that the update of q;,j,k is done for all of its five 
components simultaneously. Further, symmetric means that after a relaxation sweep 
(i.e. an update of all state vectors q;,j,k) in one direction, a new sweep in the reverse 
direction is made. The four different symmetric relaxation sweeps that are possible on a 
regular 3-D grid, are performed alternatingly. At each volume visited during a relaxation 
sweep, the system of five nonlinear equations is approximately solved by (exact) Newton 
iteration, the differential operator applied being (tu, /;, :W, i, -Jz f, where c = ~, 
z = ln (ffe). This relaxation method is simple and robust. 

As the standard multigrid method we apply the nonlinear version (FAS), preceded 
by nested iteration (FMG). For this we construct a nested set of grids such that each 
finite volume on a coarse grid is the union of 2 x 2 x 2 volumes on the next finer grid (full 
coarsening, Figure 3a). Let n 0, n 1, ... , nxm~ be the sequence of such nested grids, with 
n 0 the coarsest and nxmax the finest grid. Then, nested iteration is applied to obtain a 
good initial solution on n>..max, whereas nonlinear multigrid is applied to converge to the 
solution on the finest grid, q>-max· The first iterate for the nonlinear multigrid cycling is 
the solution obtained by nested iteration. We proceed to discuss both stages in more 
detail. 

The nested iteration starts with a user-defined initial estimate for q0 , the solution on 
the coarsest grid. To obtain an initial solution on a finer grid l1A+1 , first the solution 
on the coarser grid n>. is improved by a single nonlinear multigrid cycle. Hereafter, this 
solution is prolongated to the finer grid nx+l· These steps are repeated until the highest 
level (finest grid) has been reached. 

Let N>..(q>.) = 0 denote the nonlinear system of first-order discretized equations on 
n>.., then a single nonlinear multigrid cycle is recurrently defined by the following steps: 

1. Improve on fh the latest obtained solution qx by application of npre relaxation 
sweeps. 

2. Compute on the next coarser grid n;._1 the right-hand side r>..-1 = N>..-1 (q>..-1) -
l;-1 N>..(q>..), where l;-1 is a restriction operator for right-hand sides. 

3. Approximate the solution of N;._1 (q>._1) = rx-1 by the application of nFAS nonlinear 
multigrid cycles. Denote the approximation obtained as Q>..-1 · 

4. Correct the current solution by: qx = q;. + 1~_ 1 (ii>..-1 - qx-1), where 1£_1 is a 
prolongation operator for solutions. 

5. Improve again q;. by application of npost relaxations. 
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Steps (2),(3) and (4) form the coarse-grid correction (all three are skipped on the coarsest 
grid). The efficiency of a coarse-grid correction depends in general on the coars~ness of 
the coarsest grid. The restriction operator l;-1 and the prolongation operator lr_1 are 
defined by 

(r>.-1)iJ,k = u;- 1r>.)i,j,k = (r>.)zi,2j,2k + 
(r>.)2i-1,2j,2k + (r>.)zi,2j-1,2k + (r>.)zi,2j,2k-I + 
(r>.hi-l,2j-l,2k + (r>.)2i-1,2j,2k-1 + (r>.)zi,2j-l,2k-l + 
(r>.hi-1,2j-1,2k-li (Ba) 

->. 
U>.-1 q>.-1)2;,2j,2k = 

~ ~ ~ (I >.-1 q>.-1hi-!,2j,2k = U>.-1 q>.-1hi,2j-l,2k = U>.-1 q>.-1)2i,2j,2k-l = 
~ ~ ~ 

U>.-1 q>.-1hi-1,2j-l,2k = U>.-1 q>.-1hi-l,2j,2k-l = (l>.-1 q>.-i)2i,2j-l,2k-l = 
->. 

U>.-1 q>.-1hi-1,2j-1,2k-1 = 

= (q>.-1)i,j,k· (8b) 

As values for npre, npost and nFAS, we use here at all levels A: npre = 0, npost = 1 
and nFAS = 1; i.e. as nonlinear multigrid cycles we use sawtooth-cycles with a single 
post-relaxation per level only. Notice that these choices of the operators l;-1 and ir_1 

guarantee the following nonlinear Galerkin relations between the discretizations on the 
different grids: for all discrete functions q>.-l on !'h_1, A= 1, .... , Amax, we have 

(9) 

3.2 Multiple semi-coarsened multigrid method 

Also in the case of the semi-coarsened multigrid method we use FAS as the basic multigrid 
algorithm, and on each grid we apply collective symmetric point Gauss-Seidel relaxation 
as the smoothing technique. In the semi-coarsened multigrid method, however, we re
place the sequentially ordered set of grids fh, A = 0, ... , Amax, by a partially ordered set 
of grids !11,m,ni l = 0, 1, ... , lmu, m = 0, 1, ... , mmax, n = 0, 1, ... , nmax, with Slo,o,o the 
coarsest and 01,,.ax,mmax,nmax the finest grid. Now l +m+n is called the level of grid 01,m,n· 
The nesting and the semi-coarsening relation between these grids is described in [6, 4]. 

Also here nested iteration (FMG) is applied to obtain a good initial solution on the 
finest grid. We proceed to discuss the present nested iteration and nonlinear multigrid 
iteration in more detail. The nested iteration starts with a user-defined initial estimate 
on the coarsest grid, 110,0,0 , which is improved by relaxation. The approximate solution 
q0,o,o is prolongated (level-by-level) to all grids up to and including level 3, with the 3-D 
prolongation according to formula (29) in [3] (see Appendix A for the implementation in 
the present 3-D Euler context). Next, the solution q1,1,1 is improved by a single nonlinear 
multigrid cycle and prolongated to all grids up to and including level 6. For simplicity, 
we assume that lma.x = mmax = nmax· Then, the above process can be repeated in a 
straightforward manner up to and including level 3lmax· 

A single nonlinear multigrid cycle on level l + m + n is recurrently defined by the 
following steps: 

1. Compute on all grids at the next coarser level, (l + m + n) - 1 the same right
hand sides as in standard multigrid, but use another restriction operator, viz. the 
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one described in Appendix B. (The restriction of defects is still natural, i.e. by 
summation over all sub-cells.) 

2. Approximate the solutions on the coarser level (l + m + n) - 1 by the application 
of a single nonlinear multigrid cycle on level (l + m + n) - 1. 

3. Correct the current solutions on level l +m+n by one of two alternative correction 
prolongations. One prolongation can be seen as an extension to 3-D and to systems 
of equations, of the prolongation due to Naik and Van Rosendale [10]. (It uses 
prolongation weights that are proportional to the absolute values of the restricted 
defect components.) The other correction prolongation is the one proposed in [3]. 
(It is the correction-prolongation version of the solution prolongation described in 
Appendix A, it uses fixed prolongation weights.) In Appendix C, both correction 
prolongations are described explicitly. 

4. Improve the solutions on level l + m + n by the application of np06t relaxations 
sweeps. 

Thus, here we also use sawtooth cycles as nonlinear multigrid cycles. Whereas in the stan
dard multigrid method one may also apply pre-relaxations, in the present semi-coarsened 
multigrid technique this is not (yet) possible. Pre-relaxation leads to incoherent right
hand side representations. For an explanation of this we refer to [13]. (Note that by not 
yet applying pre-relaxations, the averages taken in the restriction operator as described 
in Appendix B, are not yet relevant in fact.) 

4 Numerical results 

4.1 Test case 

As test case we consider the ONERA-M6 wing at the transonic conditions MCQ = 0.84, 
a = 3.06°. The grids used are of C-0-type (Figures 4a - 4d). The wing as well as the 
grids are symmetric with respect to the plane through the wing's leading and trailing 
edges. In the convergence results to be presented hereafter, the finest grid considered is 
the 64 x 16 x 16-grid. 

4.2 Convergence results 

Convergence results obtained are given in Figure 5. (Note that the convergence results 
that have already been presented in Figure 2 are repeated in Figures 5a-b.) In all 
four graphs, the residual ratio is defined as ll.RiFAsllL)llR1llL1 , where RiFAs is the first 

component (i.e. the mass component) of Nim .. ,mm .. ,nm .. (q;~~,mmax,nm,.J and where iFAS 

refers to the status before the i-th FAS-cycle. The improvement of both semi-coarsened 
multigrid methods with respect to the standard multigrid method is significant. Of 
both semi-coarsened methods, the one with the fixed prolongation weights (Figure 5d) 
performs best. 

5 Outlook 

The foregoing multiple semi-coarsening method is called a full-grid-of-grids semi-coarsening 
method. A disadvantage of full-grid-of-grids semi-coarsening is that many grid points 
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are needed in total. With N the total number of points on the finest grid, asymptotically 
standard multigrid uses ~N grid points versus SN points for the full-grid-of-grids ap
proaches. An efficiency improvement is obtained by thinning out the grid-of-grids. Most 
ambitious in this respect is the sparse-grid-of-grids approach (see [3] and the further 
references there in). For a sparse grid-of-grids, for all grids !'21,m,n holds the constraint: 
l + m + n ~ lmax (lmax = ffimax = nmax)· With the full grid-of-grids depicted as a cube 
in Figure 6a, the sparse grid-of-grids is the subset given in Figure 6b. The gain in ef
ficiency by the reduction of the numbers of grid points is enormous. Theoretically, the 
sparse-grid-of-grids approach has a much better ratio of discrete accuracy over number 
of grid points used [2]. In the ideal case the full grid-of-grids will be completely replaced 
by a sparse grid-of-grids. Work in this direction is in progress. 
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Appendix A. Prolongation of solution 

Using the same notation as in [6] and defining p as the pointer to a complete patch at 
level 1, m, n and s as the index ofone of the five solution components (say s=1, 2, 3, 4, 5), 
the algorithm for the solution prolongation reads in quasi-ForTran: 

3-D prolongation: 
if (l>lmin.and.m>mmin.and.n>nmin) then 

setting pointers: 
pxyf=pntr(xf,pyf) 
pxzf=pntr(xf,pzf) 
pyzf=pntr(yf,pzf) 
pxyzf=pntr(xf,pyzf) 
prolongation: 
data(s,p)=+data(s,pntr(xf ,p)) 

end if 

+data(s,pntr(yf,p)) 
+data(s,pntr(zf,p)) 
-(data(s,pntr(xkl,pxyf))+data(s,pntr(xkr,pxyf))+ 

data(s,pntr(ykl,pxyf))+data(s,pntr(ykr,pxyf)))/4 
-(data(s,pntr(xkl,pxzf))+data(s,pntr(xkr,pxzf))+ 

data(s,pntr(zkl,pxzf))+data(s,pntr(zkr,pxzf)))/4 
-(data(s,pntr(ykl,pyzf))+data(s,pntr(ykr,pyzf))+ 

data(s,pntr(zkl,pyzf))+data(s,pntr(zkr,pyzf)))/4 
+(data(s,pntr(xkl,pntr(ykl,pxyzf)))+ 

data(s,pntr(xkr,pntr(ykl,pxyzf)))+ 
data(s,pntr(xkl,pntr(ykr,pxyzf)))+ 
data(s,pntr(xkr,pntr(ykr,pxyzf)))+ 
data(s,pntr(xkl,pntr(zkl,pxyzf)))+ 
data(s,pntr(xkr,pntr(zkl,pxyzf)))+ 
data(s,pntr(xkl,pntr(zkr,pxyzf)))+ 
data(s,pntr(xkr,pntr(zkr,pxyzf)))+ 
data(s,pntr(ykl,pntr(zkl,pxyzf)))+ 
data(s,pntr(ykr,pntr(zkl,pxyzf)))+ 
data(s,pntr(ykl,pntr(zkr,pxyzf)))+ 
data(s,pntr(ykr,pntr(zkr,pxyzf))))/12, 

s=1,2,3,4,5 

2-D prolongations: 
if (l=lmin.and.m>mmin.and.n>nmin) then 

setting pointer: 
pyzf=pntr(yf,pntr(zf ,p)) 
prolongation: 
data(s,p)=+data(s,pntr(yf,p)) 

endif 

+data(s,pntr(zf ,p)) 
-(data(s,pntr(ykl,pyzf))+data(s,pntr(ykr,pyzf))+ 

data(s,pntr(zkl,pyzf))+data(s,pntr(zkr,pyzf)))/4, s=l,2,3,4,5 

if (l>lmin.and.m=mmin.and.n>nmin) then 
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setting pointer: 
pxzf=pntr(xf,pntr(zf,p)) 
prolongation: 
data(s,p)=+data(s,pntr(xf,p)) 

+data(s,pntr(zf,p)) 
-(data(s,pntr(xk:l,pxzf))+data(s,pntr(xkr,pxzf))+ 

data(s,pntr(zkl,pxzf))+data(s,pntr(zkr,pxzf)))/4, s=1,2,3,4,5 
end if 
if (l>lmin.and.m>mmin.and.n=nmin) then 

setting pointer: 
pxyf=pntr(xf,pntr(yf,p)) 
proiongation: 
data(s,p)=+data(s,pntr(xf,p)) 

+data(s,pntr(yf ,p)) 
-(data(s,pntr(xkl,pxyf))+data(s,pntr(xkr,pxyf))+ 

data(s,pntr(ykl,pxyf))+data(s,pntr(ykr,pxyf)))/4, s=1,2,3,4,5 
end if 

1-D prolongations: 
if (l=lmin.and.m=mmin.and.n>nmin) then 

data(s,p)=data(s,pntr(zf,p)), s=1,2,3,4,5 
endif 
if (l=lmin.and.m>mmin.and.n=nmin) then 

data(s,p)=data(s,pntr(yf,p)), s=1,2,3,4,5 
endif 
if (l>lmin.and.m=mmin.and.n=nmin) then 

data(s,p)=data(s,pntr(xf,p)), s=1,2,3,4,5 
endif 
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Appendix B. Restriction of defects 

Using the same notation as in [6] and defining p as the pointer to a complete patch at 
level l,m,n and d as the index of one of the five corresponding defect components (say 
d =6 , 7 , 8 , 9 , 10), the algorithm for the restriction of the defects reads in quasi-ForTran 
(assuming that all finer-grid cells that are required exist): 

3-D restriction: 
if (l<lmax.and.m<mmax.and.n<nmax) then 

data(d,p)=1/3*(data(d,pntr(xkl,p))+data(d,pntr(xkr,p))+ 
data(d,pntr(ykl,p))+data(d,pntr(ykr,p))+ 
data(d,pntr(zkl,p))+data(d,pntr(zkr,p))), d=6,7,8,9,10 

endif 

2-D restrictions: 
if (l=lmax.and.m<mmax.and.n<nmax) then 

data(d,p)=1/2*(data(d,pntr(ykl,p))+data(d,pntr(ykr,p))+ 
data(d,pntr(zkl,p))+data(d,pntr(zkr,p))), d=6,7,8,9,10 

end if 
if (l<lmax.and.m=mmax.and.n<nmax) then 

data(d,p)=1/2*(data(d,pntr(xkl,p))+data(d,pntr(xkr,p))+ 
data(d,pntr(zkl,p))+data(d,pntr(zkr,p))), d=6,7,8,9,10 

end if 
if (l<lmax.and.m<mmax.and.n=nmax) then 

data(d,p)=1/2*(data(d,pntr(xkl,p))+data(d,pntr(xkr,p))+ 
data(d,pntr(ykl,p))+data(d,pntr(ykr,p))), d=6,7,8,9,10 

endif 

1-D restrictions: 
if (l=lmax.and.m=mmax.and.n<nmax) then 

data(d,p)=data(d,pntr(zkl,p))+data(d,pntr(zkr,p)), d=6,7,8,9,10 
endif 
if (l=lmax.and.m<mmax.and.n=nmax) then 

data(d,p)=data(d,pntr(ykl,p))+data(d,pntr(ykr,p)), d=6,7,8,9,10 
end if 
if (l<lmax.and.m=mmax.and.n=nmax) then 

data(d,p)=data(d,pntr(xkl,p))+data(d,pntr(xkr,p)), d=6,7,8,9,10 
endif 
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Appendix C. Prolongation of solution corrections 

With defect-dependent prolongation weights 
Again using the same notation as in [6], defining p again as the pointer to a complete 
patch at level l,m,n, sold as the index for the solution components before update 
(say sold=6, 7, 8, 9, 10) and snew as the index for the updated solution components 
(snew=1,2,3,4,5), then the algorithm for the defect-dependent correction prolongation 
reads in quasi-ForTran: 

3-D prolongation: 
if (l>lmin.and.m>mmin.and.n>nmin) then 

calculation weights: 
dsum(d)=abs(data(d,pntr(xf,p)))+ 

abs(data(d,pntr(yf,p)))+ 
abs(data(d,pntr(zf,p))), d=6,7,8,9,10 

wxf(d)=abs(data(d,pntr(xf,p)))/dsum(d), d=G,7,8,9,10 
wyf(d)=abs(data(d,pntr(yf,p)))/dsum(d), d=6,7,8,9,10 
wzf(d)=abs(data(d,pntr(zf,p)))/dsum(d), d=6,7,8,9,10 
prolongation: 
data(snew,p)=data(sold,p) 

+wxf(d)*(data(snew,pntr(xf,p))-data(sold,pntr(xf ,p))) 
+wyf(d)*(data(snew,pntr(yf,p))-data(sold,pntr(yf,p))) 
+wzf(d)*(data(snew,pntr(zf,p))-data(sold,pntr(zf,p))), 
(snew,d,sold)=(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15) 

end if 

2-D prolongations: 
if (l=lmin.and.m>nunin.and.n>nmin) then 

calculation weights: 
dsum(d)=abs(data(d,pntr(yf,p)))+abs(data(d,pntr(zf,p))), d=6,7,8,9,10 
wyf(d)=abs(data(d,pntr(yf,p)))/dsum(d), d=G,7,8,9,10 
wzf(d)=abs(data(d,pntr(zf,p)))/dsum(d), d=6,7,8,9,10 
prolongation: 
data(snew,p)=data(sold,p) 

end if 

+wyf(d)*(data(snew,pntr(yf,p))-data(sold,pntr(yf,p))) 
+wzf(d)*(data(snew,pntr(zf,p))-data(sold,pntr(zf,p))), 
(snew,d,sold)=(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15) 

if (l>lmin.and.m=mmin.and.n>nmin) then 
calculation weights: 
dsum(d)=abs(data(d,pntr(xf,p)))+abs(data(d,pntr(zf,p))), d=G,7,8,9,10 
wxf(d)=abs(data(d,pntr(xf,p)))/dsum(d), d=6,7,8,9,10 
wzf(d)=abs(data(d,pntr(zf,p)))/dsum(d), d=G,7,8,9,10 
prolongation: 
data(snew,p)=data(sold,p) 

end if 

+wxf(d)*(data(snew,pntr(xf,p))-data(sold,pntr(xf,p))) 
+wzf(d)*(data(snew,pntr(zf,p))-data(sold,pntr(zf,p))), 
(snew,d,sold)=(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15) 
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~~~~~~~~---------------------------------· 

if (l>lmin.and.m>mmin.and.n=nmin) then 
calculation weights: 
dsum(d)=abs(data(d,pntr(xf,p)))+abs(data(d,pntr(yf,p))), d=6,7,8,9,10 
wxf(d)=abs(data(d,pntr(xf,p)))/dsum(d), d=6,7,8,9,10 
wyf(d)=abs(data(d,pntr(yf,p)))/dsum(d), d=6,7,8,9,10 
prolongation: 
data(snew,p)=data(sold,p) 

endif 

1-D prolongations: 

+wxf(d)*(data(snew,pntr(xf,p))-data(sold,pntr(xf,p))) 
+wyf(d)*(data(snew,pntr(yf,p))-data(sold,pntr(yf,p))), 
(snew,d,sold)=(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15) 

if (l=lmin.and.m=mmin.and.n>nmin) then 
data(snew,p)=data(sold,p) 

+data(snew,pntr(zf,p)))-data(sold,pntr(zf,p)), 
(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 

endif 
if (l=lmin.and.m>mmin.and.n=nmin) then 

data(snew,p)=data(sold,p) 
+data(snew,pntr(yf,p)))-data(sold,pntr(yf,p)), 
(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 

end if 
if (l>lmin.and.m=mmin.and.n=nmin) then 

data(snew,p)=data(sold,p) 
+data(snew,pntr(xf,p)))-data(sold,pntr(xf,p)), 
(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 

end if 

With fixed prolongation weights 
Again using the same notation as in [6], defining p as the pointer to a complete patch at 
level l ,m,n and defining sold and snew as the indices for the solution components before 
and after update, respectively ( (snew, sold)=(1, 11), (2, 12), (3, 13), (4, 14), (5, 15) ), 
then the algorithm for the correction prolongation with fixed weights reads in quasi
ForTran: 

9-D prolongation: 
if (l>lmin.and.m>mmin.and.n>nmin) then 

setting pointers: 
pxf=pntr(xf,p) 
pyf=pntr(yf,p) 
pzf=pntr(zf,p) 
pxyf=pntr(xf,pyf) 
pxzf=pntr(xf,pzf) 
pyzf=pntr(yf,pzf) 
pxyzf=pntr(xf,pyzf) 
pxyll=pntr(xkl,pntr(ykl,pxyzf)) 
pxyrl=pntr(xkr,pntr(ykl,pxyzf)) 
pxylr=pntr(xkl,pntr(ykr,pxyzf)) 
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pxyrr=pntr(xkr,pntr(ykr,pxyzf)) 
pxzll=pntr(xkl,pntr(zkl,pxyzf)) 
pxzrl=pntr(xkr,pntr(zkl,pxyzf)) 
pxzlr=pntr(xkl,pntr(zkr,pxyzf)) 
pxzrr=pntr(xkr,pntr(zkr,pxyzf)) 
pyzll=pntr(ykl,pntr(zkl,pxyzf)) 
pyzrl=pntr(ykr,pntr(zkl,pxyzf)) 
pyzlr=pntr(ykl,pntr(zkr,pxyzf)) 
pyzrr=pntr(ykr,pntr(zkr,pxyzf)) 
prolongation: 
data(snew,p)=data(sold,p) 

+(data(snew,pxf)-data(sold,pxf)) 
+(data(snew,pyf)-data(sold,pyf)) 
+(data(snew,pzf)-data(sold,pzf)) 
-((data(snew,pntr(xkl,pxyf))-data(sold,pntr(xkl,pxyf)))+ 

end if 

2-D prolongations: 

(data(snew,pntr(xkr,pxyf))-data(sold,pntr(xkr,pxyf)))+ 
(data(snew,pntr(ykl,pxyf))-data(sold,pntr(ykl,pxyf)))+ 
(data(snew,pntr(ykr,pxyf))-data(sold,pntr(ykr,pxyf))))/4 

-((data(snew,pntr(xkl,pxzf))-data(sold,pntr(xkl,pxzf)))+ 
(data(snew,pntr(xkr,pxzf))-data(sold,pntr(xkr,pxzf)))+ 
(data(snew,pntr(zkl,pxzf))-data(sold,pntr(zkl,pxzf)))+ 
(data(snew,pntr(zkr,pxzf))-data(sold,pntr(zkr,pxzf))))/4 

-((data(snew,pntr(ykl,pyzf))-data(sold,pntr(ykl,pyzf)))+ 
(data(snew,pntr(ykr,pyzf))-data(sold,pntr(ykr,pyzf)))+ 
(data(snew,pntr(zkl,pyzf))-data(sold,pntr(zkl,pyzf)))+ 
(data(snew,pntr(zkr,pyzf))-data(sold,pntr(zkr,pyzf))))/4 

+((data(snew,pxyll)-data(sold,pxyll))+ 
(data(snew,pxyrl)-data(sold,pxyrl))+ 
(data(snew,pxylr)-data(sold,pxylr))+ 
(data(snew,pxyrr)-data(sold,pxyrr))+ 
(data(snew,pxzll)-data(sold,pxzll))+ 
(data(snew,pxzrl)-data(sold,pxzrl))+ 
(data(snew,pxzlr)-data(sold,pxzlr))+ 
(data(snew,pxzrr)-data(sold,pxzrr))+ 
(data(snew,pyzll)-data(sold,pyzll))+ 
(data(snew,pyzrl)-data(sold,pyzrl))+ 
(data(snew,pyzlr)-data(sold,pyzlr))+ 
(data(snew,pyzrr)-data(sold,pyzrr)))/12, 

(snew,sold)=(l,11),(2,12),(3,13),(4,14),(5,15) 

if (l=lmin.and.m>mmin.and.n>nmin) then 
setting pointers: 
pyf=pntr(yf,p) 
pzf=pntr(zf,p) 
pyzf=pntr(yf,pntr(zf,p)) 
prolongation: 
data(snew,p)=data(sold,p) 
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+(data(snew,pyf)-data(sold,pyf)) 
+(data(snew,pzf)-data(sold,pzf)) 
-((data(snew,pntr(ykl,pyzf))-data(sold,pntr(ykl,pyzf)))+ 

(data(snew,pntr(ykr,pyzf))-data(sold,pntr(ykr,pyzf)))+ 
(data(snew,pntr(zkl,pyzf))-data(sold,pntr(zkl,pyzf)))+ 
(data(snew,pntr(zkr,pyzf))-data(sold,pntr(zkr,pyzf))))/4, 

(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 
endif 
if (l>lmin.and.m=mmin.and.n>nmin) then 

setting pointers: 
pxf=pntr(xf,p) 
pzf=pntr(zf,p) 
pxzf=pntr(xf,pntr(zf,p)) 
prolongation: 
data(snew,p)=data(sold,p) 

+(data(snew,pxf)-data(sold,pxf)) 
+(data(snew,pzf)-data(sold,pzf)) 
-((data(snew,pntr(xkl,pxzf))-data(sold,pntr(xkl,pxzf)))+ 

(data(snew,pntr(xkr,pxzf))-data{sold,pntr(xkr,pxzf)))+ 
(data(snew,pntr(zkl,pxzf))-data(sold,pntr(zkl,pxzf)))+ 
(data(snew,pntr(zkr,pxzf))-data(sold,pntr(zkr,pxzf))))/4, 

(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 
endif 
if (l>lmin.and.m>mmin.and.n=nmin) then 

setting pointers: 
pxf=pntr(xf,p) 
pyf=pntr(yf,p) 
pxyf=pntr(xf,pntr(yf,p)) 
prolongation: 
data(snew,p)=data(sold,p) 

+(data(snew,pxf)-data(sold,pxf)) 
+(data(snew,pyf)-data(sold,pyf)) 
-((data(snew,pntr(xkl,pxyf))-data(sold,pntr(xkl,pxyf)))+ 

(data(snew,pntr(xkr,pxyf))-data(sold,pntr(xkr,pxyf)))+ 
(data(snew,pntr(ykl,pxyf))-data(sold,pntr(ykl,pxyf)))+ 
(data(snew,pntr(ykr,pxyf))-data(sold,pntr(ykr,pxyf))))/4, 

(snew,sold)=(l,11),(2,12),(3,13),(4,14),(5,15) 
end if 

1-D prolongations: 
if (l=lmin.and.m=mmin.and.n>nmin) then 

data(snew,p)=data(sold,p) 
+data(snew,pntr(zf,p))-data(sold,pntr(zf,p)), 
(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 

endif 
if (l=lmin.and.m>mmin.and.n=nmin) then 

data(snew,p)=data(sold,p) 
+data(snew,pntr(yf,p))-data(sold,pntr(yf,p)), 
(snew,sold)=(l,11),(2,12),(3,13),(4,14),(5,15) 
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end if 
if (l>lmin.and.m=mmin.and.n=nmin) then 

data(snew,p)=data(sold,p) 
+data(snew,pntr(xf,p))-data(sold,pntr(xf,p)), 
(snew,sold)=(1,11),(2,12),(3,13),(4,14),(5,15) 

end if 
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a. At upper side wing. 

b. At far-field boundary. 

Figure 4: Views at 128 x 32 x 32 C-0-type grid ONERA-M6 wing. 
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c. At symmetry boundary. 

d. At upper pa.rt downstream boundary. 

Figure 4: Views at 128 x 32 x 32 C-0-type grid ONERA-M6 wing. 
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Figure 5: Convergence behavior of different solution methods for ONERA-M6 wing at 
transonic conditions, M00 = 0.84, a= 3.06°. 
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a. Full. 

Figure 6: Grids of grids. 
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