
New Generation of Secure and Practical
RSA-Based Signatures

Ronald Cramer*
Ivan Damgard**

Abstract. For most digital signature schemes used in practice, such as
1809796/RSA or DSA, it has only been shown that certain plausible
cryptog~aphi~ assumptions, such as the difficulty of factoring integers,
computing discrete logarithms or the collision-intractability of certain
hash-functions are necessary for the security of the scheme, while their
sufficiency is, strictly speaking, an open question.
A clear advantage of such schemes over many signature schemes with
security proven relative to such common cryptographic assumptions, is
their efficiency: as a result of their relatively weak requirements regarding
computation, bandwidth and storage, these schemes have so far beaten
proven secure schemes in practice.
Our aim is to contribute to the bridging of the gap that seems to exist
between the theory and practice of digital signature schemes. We present
a digital signature that offers both proven security and practical value.
More precisely, under an appropriate assumption about RSA, the scheme
is proven to be not existentially forgeable under adaptively chosen mes
sage attacks. We also identify some applications where our scheme can be
conveniently implemented using dedicated smartcards that are available
today.

1 Introduction

Consider, very generally, electronic transaction systems that require message
authentication mechanisms such as digital signature schemes. Although we do
not mean to limit ourselves to this case in this paper, assume that the individual
players have dedicated (i.e., capable of performing public key cryptography)
smartcards as available today or in the near future, as their user-devices. We will
simply say that a digital signature scheme has practical value in this context, if
it can be conveniently used, given the available infrastructure and hardware.

Our objective is to design a digital signature scheme that offers both high
security and practical value. Informally, we require the following of our target
scheme. First, relative to some plausible cryptographic assumption, a proof must
be given that the scheme is not existentially forgeable under adaptively chosen

* CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands. Email: cramer@cwi.nl.
** Aarhus University & BRICS, Ny Munkegade, Aarhus, Denmark. Email:

ivan@daimi.aau.dk.

174

message attacks [13]. Without attempting to quantify the efficiency needed, we
require, secondly, that the amount of computation and the size of the signatures
are small, and, finally, that the amount of storage needed is reasonably limited.

In a sequence of results [17], [l], [18] and finally [23], it was established that
the existence of one-way functions is necessary and sufficient for the existence se
cure signatures. This result, however theoretically very important, does not give
rise to a practical signature scheme. The construction, which is based on a gen
eral one-way function, uses a costly "bit-by-bit" signing technique in conjunction
with tree authentication [17]. As a result, the size of signatures is O(k2 · logi),
where k stands for a security parameter and i indicates the number of signatures
made.

Benefitting from the special properties of claw-free trapdoor permutations, the
secure scheme presented in [13] achieves signatures of size O(k · logi) instead.
Their scheme also uses a tree structure. Intractability of factoring is a sufficient
assumption for the existence of the family of functions required for their scheme
(for an extension of their result, see [7]). Though yielding shorter signatures
asymptotically, the size grows rapidly in practice as the number of signatures
made increases.

Starting with the seminal paper [22], which proposed the RSA-functions as
the first implementation of public-key cryptography as envisaged by Diffie and
Hellman [9], many practical digital signature schemes have been proposed, for
instance, [11], [12], [24], [14], [20], [16] and [19].

Although many of them are actually used in practice today, these schemes
seem to have the property that their security is hard to analyze. We certainly do
not mean to suggest here that their security is dubious. On the contrary, these
schemes rely on common cryptographic assumptions, such as the difficulty of
factoring or inverting RSA-functions, the difficulty of computing discrete loga
rithms or the collision intractability of certain hash functions, and have so far
resisted many years of cryptanalytic efforts.

However, none of these practical schemes has been shown to be secure in the
sense of [13] provided that any of these mentioned cryptographic assumptions
holds. This implies that, independently of their validity, these necessary and
common cryptographic assumptions may still turn out to be insufficient for the
security of these signature schemes. Thus, based on the above, it is still an open
problem to design a secure and truly practical digital signature scheme, that
may be used in today's or tomorrow's information systems.

Recently, progress has been made in this area. Starting with [10], it can be
concluded that the first two requirements, namely proven security, moderate
amount of computation and provision of any reasonable number of small-sized
signatures, can be satisfied. The cryptographic assumptions needed there, are
an RSA-assumption and the factoring assumption (or more precisely, the exis
tence of a particular family of claw-free trapdoor permutations), respectively.
For efficient fail-stop signatures, see [21]. These schemes yield practically much
smaller signatures compared to, for instance, [13]. The reason is that, instead
of binary authentication trees, these schemes allow the use of trees with much
larger branching degree.

175

Briefly, the efficiency of this scheme is as follows. Let integers I, d and a

security parameter k be given (in [10] it must be required that l ? In
a signer can make at least ld signatures. The size of a signature in amounts
to dk bits. 3 . The idea is then to choose l large, such that for any reasonable

number of signatures the resulting size of the signatures is reasonably small.

Theoretically, this scheme offers a trade-off, via the flexibility of choosing
l, between the size of signatures and the storage required: the size is 0(...!:, ·

log,

log i) bits, with O(l · k) bits storage for the system constant and ·log i)

bits dynamic storage for the signer. The corresponding figures for and [7],
are 0(k · log i) bits for the size of signatures and 0(k · log i) bits storage 4 • A
disadvantage that in [10] may be that all signers and receivers of signatures must
have access to a large list of random numbers. This lists consists of l random
k-bit strings and l primes.

In [10], authentication of computer fa..xes is identified as an application where
their proposed scheme is certainly useful. However, in any practical system that

uses smartcards as the main players, this assumption about shared access to the

list of random numbers may be too demanding, simply because of its storage
requirements (in case a user has a wallet with observer ([5], [6]) as user device,

there are solutions, though not as efficient as the scheme presented in this paper,
that preserve the off-line property). One can envision a system where the players
gain access to the list through a server. If this server and the communication link
are trusted, this solution has only the on-line character as the main disadvantage.
Otherwise, one also has to employ mechanisms for ensuring the integrity of the

supplied data (one-way accumulators [2] seem to allow for an efficient approach).
Our contribution is the design of a secure signature scheme where the size of

the signatures is (d + l)k bits, while zd signatures can be made. The integers l
and d can be chosen independently from the security parameter k. The security
is derived from an appropriate RSA-assumption. Technically, our scheme builds
on [10]. Our improvement over [10] resides in the fact that our scheme does not
require the players to share a list of l random strings of size k bits; they only

need to share a list consisting of l + 1 primes.
As an example, take a 1000-bit RSA-modulus, and set l = 1000 and d ==

3. In this case, a signer can make over a billion signatures, the size of each
not exceeding 4000 bits. The secret key has size 1000 bits, while the public

key is 3000 bits. Now, let the shared list consist of the first 1001 consecutive
odd primes. By storing the differences between consecutive primes, this requires

hardly any storage. In [10], this particular choice for the list of primes has also
been proposed. But there, the players would additionally have to share l million
random bits. The required assumption about RSA is the same in both cases.

This example indicates that our secure scheme may very \Veil be implemented

3 The actual sizes stated in [10] are larger. However, these can be reduced by roughly

a factor of two if one observes that the signatures are redundant, i.e., part of the
signature can be recalculated from another part. See also Section 3.

4 The dynamic storage can be reduced by applying a suggestion from [3J.

176

in a system that uses today's dedicated smartcards.
More generally, our scheme works with any list of primes shared between

the players, but to limit the storage, it is convenient to take consecutive primes.
By choosing a random sequence of l + 1 consecutive primes, the security of our
scheme is equivalent to the general RSA-assumption.

Our exposition is organized as follows. In Section 2, we outline the technical
ideas behind our design. The formal presentation of the scheme can be found
in Section 3. The latter section left open the choice of some parameters. This
is resolved in Section 4, which is followed by a discussion of the performance of
our scheme in Section 5. The proof of security is given in Section 6. In Section 7,
we give optimizations of the proposed scheme that cut the storage requirements
even further.

2 Basic Ideas

Conceptually, our signature scheme may be viewed as a cross between [13] and
[10], together with modifications enabling their synthesis. Let l and d be integers.
In [10], all players in the signature scheme must have access to two lists. The
first list contains l primes. Depending on the particular RSA-assumption one
wishes to make, these could be, for instance, the first l odd primes, or l random
primes. The second list consists of l random k-bit strings. Here, k is a security
parameter and l is an integer with l ;::::: k. Our first objective is to remove the
necessity of the list of random numbers.

In [10], the system constants are as follows. Let L denote the list of primes
{po, ... ,P1-1}, L1 the list of l random l-bit strings {x0, ... ,x1-1} and let a denote
a random l-bit string, to be used as the root of all authentication trees. Let a
signer be given an RSA-modulus n together with its factorization. The public
key consists of n and Yroot· The latter is to be the root of an l-ary authentication
tree of depth d. The factorization of n is private input for the signer.

The "basic authentication step" in [10] is

l-1

Y +-(a· IT xf;);; mod n
i=O

where a is an already authenticated value, (3 = f3oll · · · llf3z_1 is an l-bit string
to be authenticated, and P; is a prime from the list L that has not been used
before in connection with a. Instead, our basic authentication step is

..l...
y +-(a· h/j) v; mod n,

where h is a member of 7l~ and part of the signer's public key. Furthermore,
e; is the smallest integer such that v; = p~; > n. Here the values that can
be authenticated are elements of 7l~. This re:U.oves the list L' and the condition
that l 2:::: k. However, implementing this idea only results in a scheme that we can
prove secure against random message attacks. Such a scheme can be efficiently
transformed to a scheme that is secure against active attacks, as is desired here,

177

by means of a technique described in [8]. The loss of efficiency is a factor of two
(twice as much computation, signature size twice as large). But we can do better
in this case, if we add one prime q with a special purpose to the list: it is only
used when a message m, agreed upon between the signer and a receiver, is to be
authenticated, as follows

where a is a "freshly" generated leaf in the authentication tree and e is the
smallest integer such that w = q• > n. This relates to the idea [13] of ap
plying sufficiently independent functions to the actual signing process and the
construction of an authentication tree, respectively.

To minimize the storage needed for the list of primes, we can take L to consist
of l consecutive primes. Then, only the first prime and all consecutive differences
are stored. In Section 7, two other techniques are given for further improvements
of the effciency of the scheme.

3 Description of the Scheme

In a preprocessing-phase, a security parameter k is determined, as well as inte
gers l and d. Next, a list L consisting of l + 1 distinct primes is generated by
invoking an algorithm H(lk, 11), say L = {q,p0 , ... ,Pz-i}. Ways of choosing H
are discussed in the next section.

Furthermore, we assume that we are given a probabilistic polynomial time
generator G that, on input 1 k, outputs a triple (n, r, s), where rand s are primes
and n = r · s is a k bits integer. It is assumed that G is defined such that it is
infeasible to factor n, when only n as generated by G is given as input. Finally,
we must have that q and the p; are co-prime to <f>(n). Given n and L, define e
as the smallest integer such that qe > n and ei as the smallest integer such that
p~' > n for i = 0 ... l - 1. In the following, w denotes q• and v; denotes p:i, for
i=O ... l-1.

We start with an informal overview of the scheme. The signer has as public
key an RSA-modulus n, h E 7l~ and x0 E 7l~. Here, n is generated by G(1 k) and
h and x 0 are chosen at random from 7l~ by the signer. In a possible variation of
the scheme, x 0 and h are chosen mutually at random and are the same for all
signers. In any case, h and x 0 must be chosen at random to avoid weak keys.

As always, his knowledge of the factorization (r, s) of n enables the signer
to compute xt: mod n for any X E 7l~ and any integer u such that gcd(u, (r -
l)(s -1)) = 1. The public key consists of the triple (n,h,x0). The factorization
of n is private input to the signer.

The algorithm DFS(i), which is used in the formal description of our scheme,
gradually develops a full l-ary tree of depth d by selecting the nodes at random
from 7l:. The tree is constructed in depth-first fashion. Although not explicitly
given as input to DFS(i), it is assumed that it has access to l, d, xo and n. The
value x0 serves as the root of the tree. Each time DFS(i) is invoked (i = 1 ... ld),
it creates a path to a new leaf xd and outputs this path, say, X1, ... , Xd (the root

178

x0 being understood). This sequence is ordered such that Xj-1 is the parent of
Xj (j = 1. . . d).

Furthermore, for each node Xj in this sequence, DFS(i) also outputs an in
dicator i; (j = 1 ... d) in such a way that i; is assigned to x i if and only if x i is
the ij-th child of Xj-l· The amount of storage needed for this procedure (apart
from l, d, x0 and n) does not exceed the amount of storage needed for d - 1 pairs
consisting of a node and an indicator.

By invoking DFS, the signer gradually constructs, in a depth first fashion, an
l-ary authentication tree with depth d: each time a new signature is required he
constructs a path to a new leaf. All nodes x are members of Z:~, given by their
smallest non-negative representative modulo n. The message space is equal to
the set {O, 1 }", which we will also identify with the set of non-negative integers
smaller than 2".

In Figure 1, the signer is making his i-th signature, on a message m E Z:~.
So, in particular xd is the i-th leaf he reaches. The part of the tree on the right
side of the path x0 , ••• , Xd-l, xd is not yet constructed. Since x1 happens to be
the i1 -st child of x0 , the signer authenticates x1 with respect to the prime Pi1 by

-1...
computing y1 +-- (x0 • h"' 1) •;1 mod n. Similar rules apply to the authentication of
the remaining nodes in this path. In particular, it so happens to be in our example
that Xd is the id-th child of Xd-1· Thus Xd is authenticated by computing Yd+--

..J......
(xd-1 · h"'d) ";d mod n. Finally, the message m is signed by computing z +-- (xd ·

hm)t» mod n. Notice that the prime q is only used when the "actual signature"
is computed, while the other primes in the list L are used exclusively in the
process of constructing the authentication tree. The signature on m consists of
the Yi and indicators i;, (j = 1 ... d) and z.

Concerning the storage needed for the signer, notice that the part of the tree
left from the path (xo, ... , Xd-1, xd) can be deleted. Actually, Xd itself can be
removed. In order to carry on with the depth-first construction of the tree, it is
sufficient to store xo, ... , Xd-l and the indicators to their parents. This storage
amounts to at most (d- l)(k + logl) bits (the root x0 is part of the public key).

A receiver of this signature gets only the message m, authentication values
Y;, the indicators ii (j = 1 ... d) and z. So, what about the nodes? These are
re-computed as follows. On input of the public key, the list L, m and z he
recomputes Xd a.s Xd +-- zw • h-m mod n. Recursively, the receiver re-computes
x;-1 from Xj, Yi and i; in a similarfashion (j =d .. . 1). The last node x0 he thus
computes should be equal to the actual x0 , which is part of the public key. If so,
the signature is accepted. We point out that in many tree-structured signature
schemes, it is sufficient to send the authentication values and have the verifier
re-compute the nodes, instead of defining these as part of the signature. It is
easily seen why this does not affect the security at all: briefly, if the verifications
in the "reduced" scheme hold, one gets a signature in the original scheme (on
the same message, of course) by simply incorporating the re-computed nodes.
The remark in a footnote in Section 1 is based on this observation.

More formally, the description of the new signature scheme is as follows.

179

Xo

. .
r---------·

m

Fig. 1. The i-th Signature

Preprocessing:
A security parameter k, integers l and d are determined. Next, the system
constant L = { q,po, ... ,pz-d consisting of l +I distinct primes is generated
by invoking H(I k, 11). Define e as the smallest integer such that w = q• > n,
and ei as the smallest integer such that Vi = P? > n, for i = 0 ... l - I. For
possible choices of H, see Sections 4 and 7.

Initialization:
The signer runs G(Ik) and obtains a triple (n,r,s) such that q and the Pi
are co-prime to <P(n). Next, he chooses hand Xo at random in z~. His public
key pk is now the pair (n, h, x0), while his secret key sk consists of the pair
(r, s).

Signing:
Let a k bit message m be given. Then the i-th signature, where 1 ~ i ~ zd,
is computed as follows. First, the signer puts (xi,i1 , •.. ,xd,id) +- DFS(i).

l

Next, he computes (for j = 1 ... d) Yi +- (xi-l · h'"i) v•; mod n. Finally, he
computes z +- (xd·hm)"t; mod n. The signature u on m consists of the values
z,y1,i1, ... ,yd,id.

Verification: Verification is done as follows. The receiver of a signature puts
u = (Z,Y1,i1 .. .,Yd,id), and, on input ofpk = (n,h,xo), m and u, he

v.:.
computes Xd +- zw · h-m mod n. Finally, he computes X;-1 +- lj '
h-X; mod n (j =d ... I). If X0 = x0 mod n, the signature is accepted.

Remark 1 For convenient exposition of the scheme, we have chosen to let the
signer only use the leaves for signing. However, the scheme is easily adapted so

180

as to allow for a more extensive use of the authentication tree. In this mo~ified
scheme each freshly constructed node can immediately be used for making a
signatu~e. The proof of security is easily adapted to fit with this modification.

4 Generating the List of Primes L

In order to minimize the storage needed for the system constants, i.e., the list
L k l and d it is convenient to set L to any l + 1 consecutive primes greater
' ' ' than 2. In this case, only the first prime, the differences between consecutive

primes and the exponents e and ei are stored. As an example, one could take L
to consist of the first l + 1 (odd) primes.

It must be stressed, however, that the correctness of the scheme is indepen
dent of the particular ways of generating L. Also, the proof of security is not
affected by such choices. What is dependent on the choice of L, is the particular
assumption we have to make about RSA-inversion. See Section 6.

5 Performance of the Scheme

A signer can make at least ld signatures (see also Remark 1) such that the size
of each signature does not exceed (d + 1)k bits (neglecting the d log l bits needed
to indicate the path). A public key has size 3k bits.

Concerning the amount of computation needed, signing requires two full
RSA-exponentiations and one modular multiplication on-line. A path to the
current leaf can be authenticated by pre-processing, using 2d full-RSA exponen
tiations and d modular multiplications. A receiver of a signature will have to
perform 2(d + 1) full RSA-exponentiations and d + 1 modular multiplications.

For the gradual depth-first construction of the authentication tree, the signer
stores at most (d- l)(k+ logl) bits at any time. Secure storage in the strongest
sense (i.e., storage not accessible or alterable by "the outside world") is only
needed for the secret key (k bits) and the relevant nodes of the latest path in
the tree, which is at most (d- l)k bits. The public list L only has to be securely
stored in a weaker sense: the signer must have certainty that L is authentic.

6 Proof of Security

The proof of security works for any choice of the list L. However, the particular
assumption we make about the difficulty of RSA-inversion depends on this very
choice in the following way. We require the following of the algorithm H.

Assumption 1 Let k be a security parameter and let l be of polynomial size in
k. Let L be generated by H(Ik, 11) and let n be an RSA-modulus as generated by
G(Ik) and let x be a random member of z;. Then there is no probabilistic poly

nomial time algorithm that has non-negligible probability of computing x-!- mod n
with a EL, on input L, n and x.

181

Under this assumption, we can prove that the signature scheme is not exis
tentially forgeable under adaptively chosen message attacks.

Theorem 1 Under Assumption 1, the signature scheme presented in Section 3
is not existentially forgeable under adaptively chosen message attacks.

Proof: We are given integers land d, a list L = {q,p0 , ••. ,p1_i} consisting of
l + 1 distinct primes and an RSA-modulus n. Let w and Vi be defined as in
Section 3, for i = 0 ... l - 1. We assume that n is generated according to G (1 k),
but we are not given the factorization. Also, we assume that q and the p; are
co-prime to </>(n) and that Lis generated according to H(lk, 11). 'The proof is
by contradiction. We show that existence of a successful attacker implies that
we can compute X~ mod n, given a random a E L, and a random X E Z~.
Which contradicts Assumption 1.
Let a: E L. First, we show that we can set up a "simulated" signer, who
as input h E :Z~ and h~ mod n for all f3 in L different from a, but is yet
indistinguishable from a signer who proceeds as in Section 3 after he is given
h, n and its factorization. To this end, we consider two cases separately and
focus mainly on the differences with Section 3. Finally, we run the attacker
against this simulated signer and obtain the desired contradiction.
Technically, the simulation runs as follows. In case a = w, the root x0 is
computed as x 0 +- a~0 "'111 - 1 mod n, for randomly chosen a0 from Z~. The
value ao is stored. All nodes x, excluding the leaves, are computed as x +

a110"'111-1 mod n, where a is chosen at random from Z~. The value a is stored.
If any x is the f-th child of his parent x .. = a:0 .. •111 - 1 mod n, the authentication

..L
value y is computed as y +- a:0 ••· 111 - 1 .. · 111+1 "'111 - 1 • (h"t)"'mod n. After the i-th
signature on a message m, the i-th leaf x is computed as x +- aw · h-m mod n
where a is chosen at random from :Z~. Next, the simulated signer reveals the
path to the i-th leaf, together with all authentication values, and the authen
tication value z = a of the message m.
In case a =f. w, say, a = Vj, the authentication tree has to be constructed
from the bottom up. We first show how this is done ford= 1. We select the
j-th child at x at random from :Z~. The parent x .. is then computed as x. +

b110"·111-1 h-"' mod n, where bis chosen at random from :Z~. The value bis stored.
The authentication value y of x is computed as y +- b110 ···v;- 111H 1 .. •111 - 1 mod n.
Finally, the remaining l - 1 children of x .. are selected at random from Z~.
Let x' be the f-th child (! =f. j). Then its authentication value y' is computed

as y' +- b110"· 111-1 111+1"·v1-1. (h-;;,)z'-z mod n. When we have constructed l-1
other such trees with d = 1, the same procedure can be used to combine them
into a tree with d = 2, by letting the roots play the role of the leaves as above.
By induction, we can build an l-ary tree with any depth d.
One choice has been left open in the present case. The leaves x of the target
tree of depth d must be chosen as x +- bw mod n, for random bin Z~. With
the i-th signature request, the simulated signer can reveal the path to the i
th leaf, to.fether with all authentication values, and the authentication value
z +- b · (hw)m mod n.

182

It is clear that in both cases each node in the tree has the uniform distribution
and is independent of anything else. All other values follow deterministically.
Thus this simulation cannot be distinguished from the real signer.
In the next step in our proof, we run the attacker against the simulated signer
and show that we can compute X; mod n, for random a E L, and a random
X E :l:~. Here, we have essentially the same success-probability as the attacker.
Recall that n and L were generated by G and H respectively.
We proceed as follows. We choose a random a E L, a random X E :l:~ and a

random p from :l:~. Put h ;- x rrllEL/{o} .e. prrllEL .e mod n. Next we feed L, n,

h, and hi3 mod n for all f3 in L different from a to the simulated signer and run
the simulation (note that his also distributed as in "real life") Next, we run
the attacker against this simulator. Assume that after zd calls to the simulated
signer, the attacker outputs a forgery 5

i.e., a signature on a message m that has not been signed by the simulator
in the course of the attack. Now, let T denote the full-tree of depth d and
branching l that the simulated signer has output in the course of the attack.
Define j to be the largest integer such that x0 , x1 , i 1 , ... , x i, ii is a path in T.
If j = d, then id is a leaf. So, there exists a signature

output by the simulated signer, such that :ia = xa. By the assumption on iii,
we have iii -::/= m. So, we have

(--l)q hm-m d Ya· Ya = mo n.

But since m - iii # 0 mod w (recall that we have 0 :S m, iii < n, while w and

the v; are greater than n), we can easily extract ht; mod n from this as follows.
Put m-iii mod w =qi ·e, with gcd(q, e) = 1 and 0 :S j :S e-1. Let the integers

f and i be such that e · f = 1 + i · qe-j. Then h~ = (y~ . fi:i.' . hi)q•-;-i.

If, on the other hand, j < d, then Xj is a node in T at depth j and Xj+l is not
a child of Xj in T. Let xi+1 denote the ii+1-th child of Xj in T. Then clearly,
by assumption on j, Xj+i # xi+l · Thus,

_.l__

with Xj+1 - Xj+1 =/:- 0 mod v;i+ 1 • From this value, h P>J+ 1 mod n is extracted as
above in the case j = d. We conclude that the forgery allows us to compute

.l
h" mod n for some a E L. By the construction of h, it follows, by the same
calculations as above, that we can efficiently derive x; mod n from this value.

5 In the verification, the receiver of the signature checks if the signature consists of
d nodes. We can remove this "length-check"-condition at the expense of a slightly
more technical proof than presented here.

183

~rom the perfectness of the simulation the probability that a = (3 is 1~ 1 . Thus,
if the attacker has non-negligible success- probability, then we can extract
random a-th roots also with non-negligible probability, for a E L. D

Note that if a signer deviating from the signer's algorithm, should deliber
ately compute two messages that have the same signature, a receiver can easily
compute a multiple of the order of h, which may allow that receiver to forge or
even factor the signer's modulus.

In the Section 4 we have suggested to make a particular choice that mini
mizes the storage of L, namely of having L consist of l + 1 consecutive primes.
Furthermore, for reasons of simplicity, we have suggested that these are the first
l + 1 primes of size k + 1 bits.

7 Optimizations

In this section, we describe a number of provably secure methods for decreasing
the required size of the exponents in the list L (See also Section 2).

Using Multiple Values of h

In this variation, the signer generates two values h as described in Section 3, h1

and h2. Let {3 be some k bits string that has to be authenticated. The signer splits
(3 into two blocks /31 and /32 of size ~ bits each and computes the authentication
value for f3 as follows.

y +--(a· hf' hg2); mod n,

for some appropriate exponent p and node a. This cuts the required size of the
exponents by a factor of two. The expenses are an increase of the size of the
public key by k bits. As noted before, the value of h may be chosen mutually

at random between the signers. This also holds for this method, and as such it
would mean an increase of k bits of the system constant. This method preserves
the security properties of the scheme, and can be used in conjunction with the
other methods presented.

Using a Hash-Function

Let 1-i be a collision-resistant hash-function that maps arbitrary sized input

strings to strings of size k* < < k. All values to be authenticated in the signature
scheme, i.e., the nodes in the tree and the messages, are to be hashed down to
k* bits first. Also, the root of the authentication tree as part of the public key,
can be replaced by a hash of that root.

The effect is that the required size of the exponents is now k* bits instead of k
bits. The security statement now also requires that H is collision-resistant. This
method can be used in conjunction with any of the other methods presented in
this paper.

184

References

1. M. Bella.re, S. Micali: How to Sign Given any Trapdoor Function, Proceedings
of Crypto '88, Springer Verlag LNCS series, pp. 200-215.

2. J. Benaloh, M. de Mare: One-Way Accumulators: A Decentralized Alternative to
Digital Signatures, Proceedings of Eurocrypt '93, Springer Verlag LNCS series,
pp. 274-285.

3. 0. Goldreich: Two Remarks Concerning the GMR Signature Scheme, Proceed
ings of Crypto '86, Springer Verlag LNCS series, pp. 104-110.

4. J. Bos, D. Chaum: Provably Unforgeable Signatures, Proceedings of Crypto '92,
Springer Verlag LNCS series, pp. 1-14.

5. D. Chaum, T. P. Pedersen: Wallet Databases with Observers, Proceedings of
Crypto '92, Springer Verlag LNCS series, pp. 89-105.

6. R. Cramer, T. Pedersen: Improved Privacy in Wallets with Observers, Proceed
ings of Eurocrypt '93, Springer Verlag LNCS series, pp. 329-343.

7. R. Cramer, I. Damgard: Secure Signature Schemes based on Interactive Proto
cols, Proceedings of Crypto '95, Springer Verlag LNCS series, pp. 297-310.

8. R. Cramer, I. Damgard, T. Pedersen: Efficient and Provable Security Ampli
fications, Proceedings of 4th Cambridge Security Protocols Workshop, April
1996.

9. W. Di.Ifie, M. Hellman: New Directions in Cryptography, IEEE Transactions on
Information Theory IT-22 (6): 644-654, 1976.

10. C. Dwork, M. Naor: An Efficient Existentially Unforgeable Signature Scheme
and its Applications, Proceedings of Crypto'94, Springer Verlag LNCS series,
pp. 218-238.

11. T. ElGamal, A Public-Key Cryptosystem and a Signature Scheme based on
Discrete Logarithms, IEEE Transactions on Information Theory, IT-31 (4): 469-
472, 1985.

12. A. Fiat, A. Shamir: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems, Proceedings of Crypto '86, pp. 186-194

13. S. Goldwasser, S. Micali and R. Rivest: A Digital Signature Scheme Secure
Against Chosen Message Attacks, SIAM Journal on Computing, 17(2): 281-
308, 1988.

14. L. Guillou, J.J. Quisquater: A Practical Zero-Knowledge Protocol fitted to Se
curity Microprocessor Minimizing both '.lransmission and Memory, Proceedings
of Eurocrypt '88, Springer Verlag LNCS series, pp. 123-128.

15. G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers, fifth
edition, 1979, Oxford Science Publications.

16. Information Technology - Security Techniques - Digital Signature Scheme Giv
ing Message Recovery, ISO/IEC Standard 9796, first edition, International
Standards Organization, Geneva.

17. R. C. Merkle: A Certified Digital Signature, Proceedings of Crypto '89, Springer
Verlag LNCS series, pp. 234-246.

18. M. Naor, M. Yung: Universal One-Way Hash Functions and Their Crypto
graphic Applications, Proceedings of 21st STOC, 1989, pp. 33-43.

19. National Institute of Technology and Standards: Specifications for the Digital
Signature Standard (DSS), Federal Information Processing Standards Publica
tion, US. Department of Commerce, 1993.

185

20. T. Okamoto: Provably Secure and Practical Identification Schemes and Corre
sponding Signature Schemes, Proceedings of Crypto '92, Springer Verlag LNCS
series, pp. 31-53.

21. B. Pfitzmann: Fail-Stop Signatures Without Trees, Hildesheimer Informatik
Berichte 16/94, Universitii.t Hildesheim, Juni 1994.

22. R. Rivest, A. Shamir, L. Adleman: A Method for Obtaining Digital Signatures
and Public Key Cryptosystems, Communications of ACM, 21 (1978), pp. 120-
126.

23. J. Rompel: One- Way Functions are Necessary and Sufficient for Secure Signa
tures, Proceedings of 22nd STOC, 1990, pp. 387-394.

24. C. Schnorr: Efficient Signature Generation by Smart Cards, Journal of Cryp
tology, 4 (3): 161-174, 1991.

