
Electronic Notes in Theoretical Computer Science 6 (1997)
URL: http://w-ww.elsevier.nl/locate/entcs/volwne6.html 56 pages

A Notion of Classical Pure Type System
(Preliminary version)

Gilles Barthe

CW!, PO Box 94079, 1090 GB Amsterdam, The Netherlands, gilles©cwi.nl

John Ratcliff

Oklahoma State University, Department of Computer Science, 219 Math Sciences,

Stillwater, OK, USA, 74078, hatcliff©a. cs. okstate .edu

Morten Heine S0rensen

DIKU, Universitetsparken 1, DK-2100 Copenhagen, Denmark, rambo©diku. dk

Abstract

We present a notion of classical pure type system, which extends the formalism of
pure type system with a double negation operator.

1 Introduction

It is an old idea that proofs in formal logics are certain functions and objects.
The Brower-Heyting-Kolmogorov (BHK) interpretation [15,51,40], in the form
stated by Heyting [40], states that a proof of an implication P --+ Q is a "con­
struction" which transforms any proof of P into a proof of Q. This idea
was formalized independently by Kleene's realizability interpretation [46,47]
in which proofs of intuitionistic number theory are interpreted as numbers, by
the Curry-Howard (CH) isomorphism [21,43] in which proofs of intuitionistic
implicational propositional logic are interpreted as simply typed ,\-terms, and
by the Lambek-Lawvere (LL) isomorphism [52,55] in which proofs of intuition­
istic positive propositional logic are interpreted as morphisms in a cartesian
closed category. In the latter cases, the interpretations have an inverse, in
that every simply typed >.-term or morphism in a cartesian closed category
may be interpreted as a proof; hence the name "isomorphism". Moreover,
both interpretations preserve the semantics of the deductive systems, in that
proof normalization in logic corresponds exactly to /)-reduction in ,\-calculus

@1997 Published by Elsevier Science B. V.

BARTHE, HATCLIFF, SRENSEN

[78,98] and proof equivalence in logic corresponds exactly to equality between
morphisms in a cartesian closed category [53,59]. 1

The Curry-Howard and Lambek-Lawvere isomorphisms have come to play
an important role in the area of logic and computation. Both have been
generalized to systems of an increasing complexity -see e.g. [6,25,30,60,67,94]
for the Curry-Howard isomorphism and [44,74,75,92] for the Lambek-Lawvere
isomorphism- and have been used in a large number of applications. For
example, the Curry-Howard isomorphism has been exploited in the use of
type theory as a framework for reasoning and computation [16,17,56,68] and
in the design of proof-development systems [8,19,33,57,58,73,89]. Yet and
quite significantly, both isomorphisms have until the late 1980's invariably
been studied in relation with intuitionistic logics. 2

At that time Griffin [34] realized that Felleisen's control operator C [28,29]
could be meaningfully added to the simply typed >.-calculus by typing C with
the double negation rule [81,87,90] -hereafter we refer to Felleisen's calculus
as the >.C-calculus and to Griffin's system as the simply typed >.C-calculus.
Moreover, Griffin showed that the reduction rules for C were closely related
to classical proof normalization as studied by Prawitz [81], Seldin [86,87],
and Stalmarck [90]. Griffin's discoveries were followed by a series of papers
on classical logic, control operators and the Curry-Howard isomorphism, see
for example [3,4,18,24,42,62-66,69-72,82]. Most of these works introduce one
typed classical >..-calculus, i.e. a typed >.-calculus enriched with control oper­
ators, and study its properties with respect to e.g. normalization, confluence
and categorical semantics or its applications to e.g. classical theorem proving
and witness extraction. However, none of the typed classical >..-calculi pro­
posed so far seems to have achieved a status of universality similar to that of
the ordinary typed >.-calculus and the question of finding "the classical typed
>.-calculus" still remains an area of active investigation.

In a different line of work, some works considered generalizing classical
>.-calculi to more powerful systems such as polymorphic >.-calculus or higher­
order >.-calculus. Remarkably, this question has so far only been addressed in a
few specific cases, e.g. for the second-order type assignment system by Parigot
[71,72], ML by Duba, Harper and MacQueen [27] and later by Harper and
Lillibridge [38] and Girard's higher-order polymorphic >.-calculus by Harper
and Lillibridge [37]. 3 Nevertheless, the central claim of this paper is that

1 There is no notion of reduction associated to a cartesian closed category. Hence the LL
isomorphism only reflects the notion of proof equivalence. In order to reflect the notion of
proof normalization, the notion of 2-category must be considered [85].
2 The skepticism towards a proof or categorical semantics of classical logic may be at­
tributed to a number of factors, two of which are mentioned below. In category theory,
Joyal noticed that every bicartesian closed category in which A is isomorphic to -.-.A is
degenerate [54]. In classical proof theory, Girard noticed that cut-elimination in classical
sequent calculus was not confluent; different strategies for reduction gives different proofs
in normal form, i.e. proof normalization involves an element of non-determinism [32].
3 Other calculi which have been considered in the literature include PCF [70], linear A-

2

BARTHE, HATCLIFF, SRENSEN

generalizing existing classical >..-calculi to complex type systems is of definite
interest.

(i) From a theoretical point of view, such an endeavour confronts the exist­
ing classical >.-calculi to the issue of uniformity. As a result, the analysis
of a classical A-calculus is not hindered by any endemic feature of a spe­
cific type structure. One immediate advantage of such an analysis is to
discriminate between endemic classical A-calculi, which are only mean­
ingful for a specific type discipline, and global classical A-calculi, which
are meaningful for an arbitrary type discipline.

(ii) From a practical point of view, such an endeavour allows to general­
ize the Curry-Howard isomorphism to powerful logics, such as classical
higher-order predicate logic, and lays the foundations for the design of
proof-development systems with a computationally meaningful classical
operator.

This paper presents a uniform framework for classical A-calculi. The central
notion of this paper, classical pure type system (CPTS), is based on the no­
tion of pure type system [6,30,31] and offers a uniform formalism to define
and study classical A-calculi. The formalism is minimal -e.g. its only type
constructor is the generalized function space II- and yet allows for many inter­
esting observations. In particular, it may be used to study -for the first time
it seems- dependently typed classical A-calculi such as the Classical Calculus
of Constructions.

Overview of the paper
• Section 2: Preliminaries

This section presents computational type systems (CTS), an hybrid no­
tion combining features of higher-order rewriting systems and type theories.
Furthermore, we formulate in the framework of CTSs standard definitions
stemming from the areas of higher-order rewriting [7,49] and type theory
[6,56].

The notion of computational type system is introduced solely for its con­
venience; although it covers the type systems considered in this paper, it is
not intended as a general framework for type theories.

• Section 3: A notion of classical pure type system
This section introduces the central notion of this paper, namely that of

a classical pure type system. Classical pure type systems are introduced
in a similar spirit as pure type systems. The first subsection is devoted
to the definition of logical specification. Our definition is closely related,
although not identical, to that of Coquand and Herbelin [20]. In the second

calculus [14], >.-calculus with explicit substitutions [39,84]. Werner also considered -in
unpublished work, 1992- a classical variant of non-dependent logical pure type systems;
however his notion of reduction is extremely weak.

3

BARTHE, HATCLIFF, SRENSEN

Framework

Pure Type System

Classical Pure Type System

Domain-Free Pure Type System

Type Theory Reduction

Domain-Free Classical Pure Type System >.~S /3~

Fig. 1. BASIC NOTATION FOR TYPE THEORIES

subsection, we specify some important classes of specifications that appear
in the literature and are considered further in the paper. In the third sub­
section, we introduce the >.-cube [6] and the L-cube [30] as examples of
specifications. These examples will be studied in some depth and will serve
as running examples throughout the paper. In the fourth subsection, we
define the notion of a classical pure type system: in a nutshell, a classical
pure type system is a pure type system extended with a binding double
negation construction ~x: A. M. Our notion is inspired by classical natural
deduction as studied by Prawitz [80,81), Seldin [87] and Stalmarck [90]. In
order to present the Continuation-Passing Style translation -see Section 5-
and analyze its behavior in a typed setting, it is convenient to introduce a
variant of classical pure type systems, called domain-free classical pure type
systems (DFCPTS), in which abstractions do not carry domain tags, i.e. are
of the form .Ax.M and ~x. Jvf. This is done in the fifth subsection. The
sixth and last subsection reviews the notions of pure type system (PTS)
and domain-free pure type system (DFPTS). The purpose of this last sub­
section is mainly to fix terminology; properties of pure type systems and
domain-free pure type systems may be found respectively in [6,30] and [11].

Remark 1.1 We consider fov.r different type-theoretic frameworks: pure
type systems, classical pure type systems, domain-free pure type systems
and domain-free classical pure type systems. Every specification S defines
one type theory in each framework. The basic notation is given in Figure 1.

• Section 4: Basic properties of classical pure type systems
The notion of CPTS provides a general framework to define and study

classical typed .A-calculi. This section establishes some basic syntactic prop­
erties of CPTSs: closure of derivations under substitution, subject reduc­
tion, uniqueness of types, decidability of type-checking. . . Besides we com­
pare CPTSs with DFCPTSs. In particular, we define an erasure map, which
removes the domains of .A- and ~-abstractions, and prove that erasure pre­
serves derivability for functional specifications. Moreover, we also exhibit
some anomalies of erasure with respect to ~-reduction. We isolate one spe­
cific anomaly, which we call the unorthodox behavior of ~-reduction, which

4

BARTHE, RATCLIFF, 8RENSEN

will cause the failure of syntactic techniques to prove strong normalization
for CPTSs -see Section 6.

• Section 5: Continuation-Passing Style Translation
The Continuation-Passing Style (CPS) translation is a standard compilation
technique for functional languages [2,22,83]. CPS translations were studied
among others by Plotkin [76], who defined a CPS translation from type­
free >.-terms to type-free >.-terms, and by Felleisen et al. (29], who extended
Plotkin's translation from type-free >.C-terms to type-free >.-terms. Gener­
alizing an earlier observation by Meyer and Wand [61] that Plotkin's CPS
translation maps simply typed >.-terms to simply typed >.-terms, Griffin [34]
noted that Felleisen's extended translation maps simply typed >.C-terms to
simply typed >.-terms. He further showed that this translation, when viewed
as a translation on proofs, becomes the Kolmogorov embedding of classi­
cal logic into minimal logic [50]. Murthy [18,62,63] and Griffin himself [35]
later systematized these ideas by studying different logical embeddings, con­
trol operators, and CPS translations. More recently, CPS translations from
classical typed >.-calculi to typed >.-calculi were studied by de Groote for
>.µ [23] and ,\~n [24], by Duba, Harper and MacQueen for the monomor­
phic fragment of ML (MML) [27] and by Harper and Lillibridge for ML
with polymorphism (PML) [38] and Girard's higher-order polymorphic >.­
calculus with control operators [37].

In the first subsection, we discuss some of the problems related to CPS
translations for proof-relevant systems. Much of the discussion is taken
from [10] where the authors develop CPS translations for logical PTSs and
DFPTSs.

In the second subsection, we define for every injective logical specification
Sa CPS translation from >.b..S to ~S; the translation is inspired from [10].

In the third subsection, we use the correctness of the CPS translation
to derive the consistency of a CPTS from that of its corresponding PTS.
Then we generalize our technique to prove consistency of classical arithmetic
from consistency of constructive arithmetic. It is possible to go beyond
this specific example and develop some general results for establishing the
consistency of contexts but, for the sake of brevity, we do not follow this
path.

• Section 6: Strong normalization
As a further application of the CPS translation, Griffin (34] used the trans­
lation to infer weak normalization of simply typed ,\C-terms from strong
normalization of simply typed ,\-terms. Analogous results were later ob­
tained using a similar argument by de Groote for Parigot's ,\µ-calculus [23],
by Duba, Harper and MacQueen for MML [27], and by Harper and Lil­
libridge for PML [38] and higher-order >.-calculus [37]. Other authors were
also able to deduce strong normalization of a classical ,\-calculus from strong
normalization of simply typed >.-calculus: Rehof and S0rensen for >.~ [82]
and de Groote for >.~n [24].

5

BARTHE, RATCLIFF, SRENSEN

In the first part of this section, we use the CPS translation to derive a
normalization result for DFCPTSs. More precisely, we prove that a DFCPTS
is ,8.6.-strongly normalizing provided its corresponding DFPTS is B-strongly
normalizing. -

In the second part of this section, we consider the possibility of scaling
up the result to CPTSs. It is easy to establish ,B.6.-strong normalization for
a proof-irrelevant CPTS as a consequence of ,B-strong normalization for its
corresponding PTS. Unfortunately, it is not possible to apply the technique
directly to proof-relevant CPTSs. We analyze this negative result and locate
its cause as the unorthodox behavior of .6.-reduction.

In the third part of this section, we turn to standard proof techniques for
strong normalization. Specifically, we present a general model construction
which is based on saturated sets and which may be used to derive .B.6.-strong
normalization for a large class of CPTSs including e.g. the Classical Calcu­
lus of Constructions. Along with the construction we present a sufficiency
criterion for the model to be well-defined. Both the model and the criterion
are inspired from previous work by Z. Luo [56] and J. Terlouw [93] on prov­
ing strong normalization for the Extended Calculus of Constructions and
>.IT-type systems respectively.

In the fourth part of this section, we consider yet another standard proof
technique for strong normalization, namely the technique of reduction­
preserving mappings. More precisely, we examine the Harper-Honsell-Plotkin
translation (36] from -the PTS core of- Edinburgh's Logical Frameworks
to simply typed >.-calculus and the Geuvers-Nederhof translation [31] from
Coquand's Calculus of Constructions to Girard's higher-order >.-calculus. It
turns out that these translations lift to the framework of DFCPTSs but not
to that of CPTSs. In the latter case, this failure is once more due to the
unorthodox behavior of .6.-reduction.

• Section 7: Classical Pure Type Systems as Logics
This brief section collects some basic facts about the logical status of

classical pure type systems. It is by no means a complete account of the
logical properties of CPTSs.

In the first subsection, we establish for impredicative and proof-irrelevant
logical specifications, a correspondence between classical provability and
intuitionistic provability by using the well-known encoding of classical logic
as an intuionistic context.

In the second subsection, we study the formulae-as-sets embedding. Once
we view, as suggested above, the CPTSs of the L-cube as "the"classical logics,
the embedding may be studied from a purely type-theoretical standpoint:
as the homomorphic extension of a suitable morphism of specifications from
the systems of the L-cube to the systems of the >.-cube. We prove that the
embedding is sound -typing is preserved by the translation- but incomplete
for the predicate logics- typing is not reflected by the translation.

In the third subsection, we prove that the Classical Calculus of Construe-

6

BARTHE, RATCLIFF, SRENSEN

tions >..tJ..C is proof-relevant, thus generalising a result of [88,91].

• Section 8: Issues and related work

The first part of the paper -Sections 3 to 6- is exclusively concerned with
properties of classical pure type systems and lacks of any consideration as to
the design of classical pure type systems. In this section, we discuss design
issues for classical >.-calculi and propose some alternative frameworks for
classical pure type systems.

In the first subsection, we discuss the possible formats for classical clas­
sical natural deduction and the corresponding choices for the syntax of
terms. Moreover, we discuss the relationship between our notion of CPTS
and Prawitz's classical natural deduction. In the second subsection, we
consider the issue of reduction, which is undoubtedly one of the least un­
derstood aspects of classical >..-calculus. Rather than singling out a few set
of reduction rules out of the dozens of existing ones, we suggest syntactical
criteria upon which to classify the rules and isolate some of these criteria
as fundamental for the theory of classical pure type systems. These criteia
lead us to distinguish between two forms of reduction rules: principal rules
which generate a notion of proof equivalence -or in more general terms
definitional equality- and minor rules which do not -typically, such rules
involve an element of non-deterministic choice which causes the failure of
confluence. As it will appear, this separation combines the advantages of
'well-behaved' and 'powerful' classical >..-calculi by having on the one hand a
well-behaved principal reduction relation and on the other hand a powerful
minor reduction relation. The distinction turns out to be especially handy
in specific applications, such as witness extraction.

In the third subsection, we briefly discuss related work.

2 Preliminaries

The first subsection introduces some basic terminology for binary relations and
is mostly taken from [48]. The second subsection is devoted to computational
type systems.

2.1 Relations

Throughout this subsection, we let X denote an arbitrary set and R, S de­
note binary relations over X. Elements of X are called objects. We use the
following notation.

Definition 2.1

• R.S denotes the composition of R and S.

• R 0P denotes the inverse of R.

o -1-n denotes fhe relation nw • (J?0P)W.

7

BARTHE, RATCLIFF, SRENSEN

• The closures of 'R are denoted as follows -where R stands for reflexive, S
for symmetric and T for transitive, C for closure:

Notion

Notation

TC

n+
RTC RSTC

Some of the relations will written as -+i, in which case we use a standard
notation. In particular, we use -+ij to denote the union of two relations -+i
and -+j and write -i instead of -+'i, =i instead of=-+;, and {i instead of.}-+;.

We also introduce some standard properties of relations.

Definition 2.2

• A relation 'R is locally confluent if 'Rop · 'R <;;..J-n..

• A relation 'R is confluent if =n<;;.J,,n..

• An object a is normal with respect to a relation 'R if there is no b s.t. a'Rb.

• An object a is weakly normalizing with respect to a relation n if there is a
normal object b s.t. a'Rwb.

• An object a is strongly normalizing with respect to a relation 'R if there is
no infinite reduction sequence a'Ra''R ...

The sets of normal, weakly normalizing and strongly normalizing objects (w. r. t.
'R) are denoted by NFn, WNn., SNn..

2. 2 Computational type systems

In order to deal uniformly with various A-calculi, we introduce the notion
of computational type system. The notion combines features of higher-order
rewriting systems [49] and of abstract type systems [11].

Definition 2.3 A computational type system is a 7-tuple

'JI'= (V, S, C, 'D, F, 'Y, 1-)

such that:

• V, S, C, 'D and F are disjoint sets. Elements of V, S, C, 'D and F are
respectively called variables, .sorts, con.stants, domain-specified quantifiers
and domain-free quantifiers;

• the set U of pseudo-terms is given by the abstract syntax

u = v Is I c I uu I dV: u. u I fV. u

• / <;;_ U x U is a notion of reduction;

• I-<;;_ List(V x U) x U x U is the derivability relation.

Elements of List(V x U) are called contexts; elements of List(V x U) x U x U
are called judgements.

8

BARTHE, HATCLIFF, SRENSEN

Throughout the paper, we adopt the following conventions .

• We write r I- L}. with L}. = :r1 : Ai, ... 'Xn : An if r 11-J Xi : Ai for
i = 1, ... , n.

• We writer I- 1\:l: A: B for r 1-- M: A and r I- A: B.

Computational type systems allow us to introduce in a generic way standard
notions from higher-order rewrite systems and type theories.

2.2.1 Notions related to terms and reduction
We first define the notion of strict subterm.

Definition 2.4 The subterrn relation <J is defined inductively as follows:

• M <1 MN and N <JM N;

• M <1 dx : A . .i\1 and A <J dx : A.A1;

• M <1 fx.M;

• if M <J N and N <J P, then lvl <1 P.

If Jvl <JN, then A1 is a subterm of N.

Next we define the notion of free and bound variables.

Definition 2.5 The sets FV(Af) and BV(M) of free variables and bound
variables of a pseudo-term 1v1 are defined inductively as follows:

FV(x) = {x}

FV(s) = 0

FV(c) = 0

FV(1'vf N) = FV(lvl) U FV(N)

FV(dx: A. AI)= FV(A) U (FV(M) \ {x})

FV(fx. lvl) = FV(M) \ { x}

BV(x) = r/J

BV(s) = r/J

BV(c) = r/J

BV(M N) = BV(M) u BV(N)

BV(dx: A. M) = BV(A) U BV(l'vf) U {x}

BV(fx. M) = BV(M) U {x}

For reasons of hygiene, we adopt Barendregt 's convention and assume that
FV(M) n BV(M) = r/J for every pseudo-term Jvl. Substitution is defined in the
usual, capture-avoiding, way.

Definition 2.6 Let M, N E U and let x E V \ BV(M). The pseudo-term

9

BARTHE, HATCLIFF, 8RENSEN

M { x : = N} is defined inductively as fallows

x{x := N} = N

y{x := N} = y

s{x := N} = s

(P Q){x := N} =: (P{x := N}) (Q{x := N})

(dy: A. P){x := N} =: dy: (A{x := N}). (P{x := N})

(fy. P){x := N} =: fy. (P{x := N})

provided y E V and y ~ x

for s ES UC

Each computational type system has a reduction relation, which is ob­
tained from its notion of reduction in the usual way.

Definition 2. 7 The reduction relation --t7 is defined as the compatible closure
of"(, i.e. as the smallest relation s.t. for every M, M', NEU

(M, M') E 'Y ~ M --t,, M'
M --t,, M' ~ M N --t7 Jvl' N

M --t,, M' ~ N M --t,, N M'
M --t,, M' ~ dx : N. M --t,, dx : N. M'

M --t,, M' ~dx: M. N --t,, dx: M'. N
M --t,, M' ~ fx.M --t,, f x.M'

2.2.2 Notions related to typing
We turn to type-theoretic notions, in particular to the notion of legality.

Definition 2.8

• A judgement (r, M, A) is legal if r I- M: A.

• A context r is legal if r I- M : A for some M and A.

• A pseudo-term M is legal if r I- M : A or r I- A : M for some r and A.

One can also define specific classes of pseudo-terms.

Definition 2.9

• A pseudo-term M is a s-type in context r with s E S if r I- M : s.

• A pseudo-term M is a s-term in context r with s E S if r f- M : A and
r 1- A : s for some pseudo-term A.

• A pseudo-term M is a s-type if it is a s-type in context r for some context
r.

• A pseudo-term M is as-term if it is as-term in context r for some context
r.

• A pseudo-term M is a type if it is as-type for some sorts.

10

BARTHE, RATCLIFF, SRENSEN

The next definition is concerned with normalization properties of legal
terms.

Definition 2.10 1' is

• normalizing, notation 1' I= WN, if M E WN"I for every legal M;

• strongly normalizing, notation 'JI' I= SN, if M E SN"! for every legal M;

• type-normalizing, notation 1' I= WN(type), if ME WN"I for every type A!f;

• type-strongly-normalizing, notation 1' f= SN(type), if M E SN"! for every
type M.

2.2.3 Morphisms of computational type systems
This subsubsection is devoted to technical definitions which will be used in
Section 7. Its reading may be postponed until that point.

First, we define the notion of morphism of computational type systems.
There are many possible definitions. Here we only need a very simple one.

Definition 2.11 Let 'IT'i = (V, Si, C, V, :F, "f, f-) be a computational type sys­
tem (i = 1, 2). A morphism from 1'1 to 1'2 is a map 1-1 : S1 --+ S2.

Every morphism induces in the obvious way a map on pseudo-terms, con­
texts and judgements. By abuse of notation, we let l·I denote these maps.

Definition 2.12 A morphism l·I of computational type systems is:

• sound if for every context r and pseudo-terms M and A

r h M : A * If! f-2 IMI : IAI

• complete w.r.t. s ES if for every context r and pseudo-terms N and A

fhA:s }

If! f-2 N: IAI

If 51 ~ 52 and 1-1 is the identity, we say that 1'2 is conservative over 1'1 w.r.t.
s.

The next lemma collects some basic facts concerning complete morphisms.

Lemma 2.13

(i) The identity morphism attached to a computational type system is com­
plete.

(ii) The composition of two complete morphisms is complete.

(iii) If H' o H is a complete morphism and H' is sound, then H is complete.

11

Definition 2.14 Au t•ndrnnnwnt E zs an
mtww; £ ::::: .r1 : I:.;. i·1 : .'<u.ch that

• £ 1 ::: .t : £ 1 ••••• i·, : nm ff.rt:

• if E' f- A : . .;; many k s.t.

We write E I· :A f- : A.

we t lH· not ion
a suitable critt:>rion

Definition 2.15

• Lrt E
n 2: 0,
E

an erwimmru·11t. A ;\! i8 an £-prototype if

• A

s E S Pi P" E T 8.t. E 1-- .U P1 : s.
£-Proto.

-<f on
E

for every

3 A notion of classical pure type system

exi.~tB

sd of

E.

The dt>sign of a classical ,\-calculus supposes many choices. Rather than trying
to discuss each choice here. we limit ourselves to giving the definition of a
notion of classical pure type systrm and postpone -in as much as possible­
dw discussion until Section 8.

3.1

Specifications an' tupl1•s expressing certain dependenciE's and are used to gen­
erate t,vpe systt'ms. In onr cas1>. specifications come equipped with a distin-
guished sort propol'litions.

Definition 3.1 A logical spPcifkation S 'is a qua<lr'uf!le (S, Prop, A, R) where

• S is a set sorts Prop E

• A C::: S x S is the set axioms:

• R <;;;. S x S x S is set

12

BARTHE, RATCLIFF, SRENSEN

satisfying the following properties:

• Property 1: (Prop, Prop, Prop) ER;

• Property 2: all the rules involving Prop are of the form (s, Prop, Prop) or
(Prop, si, s1);

• Property 3: there is no sorts for which (s, Prop) EA;

• Property 4: there is a sorts for which (Prop, s) E A.

As usual, rules of the form (s1, s2, s2) are abbreviated as (s1, s2).

The meaning of a specification may be intuitively explained as follows:
Prop stands for the universe of propositions. The other sorts are the possible
universes in which non-propositional types -to be thought e.g. as sets- may
live. Axioms correspond to basic assumptions which determine the belonging
of a certain sort to a certain universe. This is reflected in the deductive
system of classical pure type systems through the (Axiom) rule. For example,
Property 3 ensures that no universe inhabits Prop whereas Property 4 implies
the existence of a universe for which Prop is an inhabitant. Finally, the rules
indicate which products may be formed. For example, Property 1 states that
it is possible to define from two propositions A and B the proposition A---"* B.

Remark 3.2 Our notion of logical specification is closely related but not iden­
tical to the notion of logical specification in {20}. The latter notion requires
the specification to be functional -see Definition 3. 2- and more importantly
does not require Property 2. However, {20] mainly focuses on proof-irrelevant
specifications -see Definition 3.3 below-, which occur as special cases of log­
ical specifications. Property 4, which also occurs in Coquand and Herbelin's
definition, ensures that variables inhabiting Prop may be introduced. It is only
needed in Section 5.

Definition 3.3 A logical specification S = (S, Prop, A, R) is proof-irrelevant
if for every (s1, s2, s3) E R we have s1 f. Prop or s2 = s3 = Prop.

We close this section with the definition of top-sort.

Definition 3.4 A sort s E S is a top-sort if there is no s' E S s. t. (s, s') E A.
The set of top-sorts is denoted by ST.

3.2 Classes of specifications

Throughout the paper, we will consider various classes of specifications. These
are defined below.

Definition 3.5 A logical specification (S, Prop, A, R) is:

• functional if for all s1, s2 , s, s' ES,
(s1,s)EA A (si,s')EA:::} s=s'

· (s1, s2, s) ER A (s1, s2, s') ER :::} s = s'
13

BARTHE. HATCLIFF, SRENSEN

• injective if it is functional and for all s 1 , s;~, s, s' E S
· (s, si) EA A (s', s1) E A => s = s'
· (si,s,s3)ER A (s1,s',s3)ER => s=s'

• proof-irrelevant if there is no rule (Prop, s) with s :f=. Prop.

The notion of functional specification ensures that a term has at most one
type in a given context --see Lemma 4.13- whereas the notion of injective
specification allows for a characterization of the terms of a given universe -
see Propositions 4.18 and 4.19. The notion of proof-irrelevant specification
ensures that only proofs --i.e. inhabitants of inhabitants of Prop-- may depend
on proofs.

3. 3 Examples of specifications

In [5], Barendregt gives a fine-grain analysis of the Calculus of Constructions in
form of the ,\-cube whereas in [30], Geuvers defines the logic cube (or L-cube)
which represents some of the most important logics. 4

Definition 3.6 The ,\-cube and L-cube specifications are given in FigiLre 2
and Figure 3 respectively. The /\- and L-cube are depicted in Figure 4.

Note that the L-cube specifications are proof-irrelevant. The correspon­
dence between specifications of the ,\-cube, L-cube and logics is given in Fig­
ure 5. The nature and significance of the correspondence are discussed -for
the constructive case-- in [6,13,30,94]. See also Section 7.

3.4 Classical pure type systems

In this section, we let S = (S, Prop, A, R) be a logical specification and define
its induced classical pure type system. The set of terms is built from the usual
constants (sorts, variables) and constructions (,\-abstraction, II-abstraction,
application) as well as from a new constant J_ for falsum and an extra binding
double negation construction .6. -see Section 8.

Definition 3. 7 Let V be an infinite set of variables. The set of pseudo-terms
is given by the abstract syntax

T = v I s I J_ I TT I XV: T T I IIV: T. T I .6. V: T. T

As usual, A--+ B is used to denote IIx:A.. B when x r:f_ FV(B). Moreover we
write --,A for A --+ __l. 5

4 Closely related logic cubes have been proposed independently by Barendregt [6] and
Berardi [13].
5 The first convention will also apply to all the systems considered in this paper. The second
convention applies also to domain-free classical pure type systems and to pure type systems
and domain-free pure type systems when working in a context of the form J_ : Prop, r.

14

BARTHE, HATCLIFF, SRENSEN

Sorts: *,D

Prop *

Axioms: *: D

Rules:

-+ (*, *)

2 (*, *) (D, *)

~ (*, *) (D, D)

w (*,*) (D, *) (D,D)

p (*, *) (*, D)

P2 (*, *) (D, *) (*, D)

p~ (*, *) (*, D) (D,D)

Pw=C (*, *) (D, *) (*, D) (D,D)

Fig. 2. THE A-CUBE SPECIFICATIONS

Sorts: *P, *8 , DP, 0 8

Prop *P

Axioms: *P : OP, *s : D 8

Rules:

PROP (*P, *P)

PROP2 (*P, *P)

p ROP<::l_ (*P, *P)

PROPw (*P, *P)

PRED (*P, *P)

PRED2 (*P, *P)

PREDw (*P, *P)

PREDw (*P, *P)

(OP, *P)

(OP, DP)

(DP, *P)

(*s, DP)

(*8, OP)

(*s, OP)

(*s,DP)

(DP, OP)

(*8, *s) (*s, *P)

(*s 1 *S) (*s, *P) (DP, *P)

(*s,*s) (*s, *P) (DP, DP)

(*8, *s) (*s,*p) (DP, *P)

Fig. 3. THE L-CUBE SPECIFICATIONS

15

(DP, *s)

(DP, DP)

BARTHE, HATCLIFF, SRENSEN

PROPw~~~~~---PREDw

/ /
PROP2 PRED2

PROP~~~~1~~---PRED~

/ /
PROP PRED

Fig. 4. PICTURE OF THE CUBES

PROP --+ first-order propositional logic

PROP2 2 second-order propositional logic

PROP~ ~ weak higher-order propositional logic

PROPw w higher-order propositional logic

PRED p first-order predicate logic

PRED2 P2 second-order predicate logic

PRED~ p~ weak higher-order predicate logic

PREDw c higher-order predicate logic

Fig. 5. CORRESPONDENCE BETWEEN A-CUBE SPECIFICATIONS, l-CUBE SPECIFICATIONS

AND LOGICS

One of the main difficulties in trying to define a notion of classical pure
type system is to choose a notion of reduction for the 6.-operator. We take
a minimalist approach and consider a single rule which makes applications of
double negation atomic. The rule is inspired from normalisation procedures
for classical natural deduction [80,81,87,90] and occurs in the majority of re­
duction systems for control operators, see for example [28,29]. For further
discussion on the definition of reduction, see Section 8.

16

BARTHE. RATCLIFF, SRENSEN

Definition 3.8

• The notion of reduction f3 is defined by the contraction rule

(>.x:A. b) c ~/3 b{x := c}

• The notion of reduction 6. is defined by the contraction rule

Finally, we define the derivability relation for classical pure type systems.

Definition 3.9

• The relation r r A. : B is defined by the rules of Figur-e 6. 6

• The classical pure type system >.6.S is the computational type system

(V, S, { .l }, {>.,II, 6.}, 0, (36., r)

3. 5 Domain-free classical pure type systems

In this section, we define a variant of classical pure type system, called domain­
free classical pure type systems, in which abstractions come without domain
tags. So let S = (S, Prop, A, R) be a logical specification and let V be an
infinite set of variables.

Definition 3.10

• The set of pseudo-terms is given by the abstract syntax

T = v Is I J_ I TT i >-V.T I IIV:T. TI 6.V. T

• The notion of reduction ,3 is defined by the contraction rule

(>.x.b) c ~.B b{x := c}

• The notion of reduction 6. is defined by the contraction rule

(6.x. a) b ~.6. 6.y. a{x := >.z.y (z b)}

• The relation r If-- A : B is defined by the rules of Figure 7.

• The domain-free classical pure type system).6.S is the computational type
system

(V, S, {.l}, {II}, {A6.}, (36., If-)

The unusual conversion rule is adopted to enforce the Classification Lemma
-see Propositions 4.18 and 4.19.

6 Strictly speaking, we should write f-s rather than f-. However, the subscript is dropped
in order to avoid clutter and will only be used when there is a risk of confusion.

17

(axiom-1-)

(axiom)

(start)

(weakening)

(product)

(application)

(abstraction)

BARTHE, RATCLIFF, SRENSEN

<>I- 1- : Prop

<>I- 81 : S2

rl-A:s
r,x:Al-x:A

rl-A:B r i- c: s
r,x:Cl-A:B

r 1- A : s1 r, x : A 1- B : s2

r I- (ITx: A. B) : s3

r I- F : (ITx: A. B) r I- a : A

r I- Fa: B{x :=a}

r, x : A I- b: B r I- (ITx: A. B) : s
r 1- .\x:A. b: ITx:A. B

(d bl .) r, x : ·A I- b: 1- r I- A : Prop
OU e negation r I- .6..x: •A. b : A

(conversion) r I- A : B r f- B' : s
r I- A: B'

if (s1, s2) EA

if x rt. r

if x rt. r

if B =13.t:. B'

Fig. 6. DEDUCTIVE RULES FOR CLASSICAL PURE TYPE SYSTEMS

3. 6 Pure type systems and domain-free pure type systems

Every specification S generates both a pure type system and a domain-free
pure type system.

Definition 3.11 Let S = (S, Prop, A, R) be a pre-logical specification and let
V be a fixed set of variables.

18

(axiom-1..)

(axiom)

(start)

(weakening)

(product)

(application)

(abstraction)

BARTHE, RATCLIFF, SRENSEN

<>II- l. : Prop

r II-- A: s
r, x: A II-- x: A

r II- A : B r II-- c : s
r,x:C II-- A:B

r 11- A: s1 r, x : A 11- B : s2

r II-- (Ilx: A. B) : s3

r II- F : (IIx: A. B) r II-- a : A

r II- Fa:B{x:=a}

r, x : A II- b: B r II- (IIx: A. B) : s

r II- >.x.b : Ilx: A. B

(d bl .) r, x: -,A II- b: l. r II-- A : Prop
ou e negation A b A r 11- .u.x. :

if x ~ r

if x ~ r

(conversion) r II-- A : B r II-- B : s r II-- B' : s .f B B'
1 =(3t:;. r II-- A:B'

Fig. 7. DEDUCTIVE RULES FOR DOMAIN-FREE CLASSICAL PURE TYPE SYSTEMS

• The pure type system generated by S is the computational type system

>.S = (V, S, 0, {>.,II}, 0, ,8, 1-J)

where ,8 is defined as in Definition 3. 8 and 1-J is defined by the rules of pure
type systems -see Figure 14, back page. The set of pseudo-terms of >.S is
denoted by 7 J.

• The domain-free pure type system generated by S is the computational type

19

BARTHE, RATCLIFF, 8RENSEN

system
~S = (\/, S, 0, {II},{..\},~, lf-J)

where ~ is defined as in Definition 3.10 and lf-J is defined by the rules of
domain-free pure type systems -see Figure 15, back page. The set of pseudo-­
terms of ~S is denoted by TJ.

The main properties of pure type systems and domain-free pure type sys­
tems may be found respectively in [6,30] and [11].

4 Basic properties of classical pure type systems

This section collects some basic results concerning CPTSs. Most results are
as for pure type systems; it is therefore convenient to follow a pattern similar
to that of [6, Section 5.2].

In the first subsection, we prove confluence of ,8.6.-reduction and deduce
some of its most important consequences. In the second subsection, we es­
tablish some basic properties for arbitrary CPTSs. In the third subsection,
we establish some further properties for specific classes of CPTSs. In the
fourth subsection, we consider which of the previously established results ap­
ply to DFCPTSs. In the fifth subsection, we consider the relationship between
CPTSs and DFCPTSs. Throughout this section and unless explicitly stated,
S = (S, Prop, A, R) denotes a fixed logical specification.

4.1 Confluence of /3.6. and appl-ications

Reduction is closed under substitution.

Lemma 4.1

(i) G =13t>. H =? E{x := G} =f3t>. E{x := H};

(ii) E =13t>. F, G =13t>. H =? E{x := G} =f3t>. F{x := H}.

Proof.

(i) By induction on E.

(ii) By induction on the derivation of E =f3.6. Fusing (i).
0

The following Proposition may be proved by several means.

Proposition 4.2 (Confluence) The notion of reduction {3.6. is confluent.

Proof. Using -for example- the technique of Tait and Martin-Lof. D

The following consequences of confluence are often crucial, e.g. in proving
subject reduction.

Corollary 4.3 (Key Lemma)

20

BARTHE, RATCLIFF, SRENSEN

• IIv: A.1. A.2 =fJt:;. IIv: A.'1. A; => A.1 =fJt:;. Ai, A2 =fJt:;. A;

• s =f3b.. s' => s = s'
4.2 Basic results for abritrary classical pure type systems

Lemma 4.4 (Free Variables) If (x 1 : A.1, ... , Xn : An) 1- B: C then:

(i) x 1 , ... , Xn are distinct;

(ii) FV(B) U FV(C) ~ {x1, ... , .r:n};

(iii) (x 1 : A.1, ... , Xi-1 : Ai-i) I- Ai: s for each i = 1, ... , n.

Proof. By induction on the derivation of (x 1 : A1, ... , Xn: An) I- B: C. D

Lemma 4.5 (Start) If r is legal then:

(i) r I- 81 : S2 for all (s1, s2) EA;

(ii) r 1- l. : Prop;

(iii) r I- x: A for all x: A Er.

Proof. Since r is legal r 1- B : C for some B, C. Proceed by induction on
the derivation of r I- B : C. D

Lemma 4.6 (Transitivity) If 6. is legal then

6.1-r /\ r1-A:B => 6.1-A:B

Proof. By induction on the derivation of r I- A: B, using the Start Lemma.D

Lemma 4. 7 (Thinning) If b.. ~ r are both legal then:

r 1- A:B =>b.. I- A:B

Proof. This follows from the Start Lemma and the Transitivity Lemma. D

Lemma 4.8 (Substitution)

r, x: A, 6. 1- B : C }
=> f,b..{x:=a} I- B{x:=a}:C{x:=a}

rl-a:A

Proof. By induction on the derivation of r, x : A, b.. I- B : C. D

The next lemma is useful to determine how a judgement can be derived
and is used throughout the paper.

Lemma 4.9 (Generation)

(i) r I- l. : C => C =13t:;. Prop

(ii) r I- s: C => 3(s, s') EA. C =flt:;. s'

21

BARTHE, IlATCLIFF, SRBNSEN

(iii) r I- x: c =?- =is E S, D E T c =(:Jt,. D, x: DE r, r I- D: s

(iv) r I- >.x:A. b: C =?- 3s ES, BET C =13c.. ITx:A. B,f,:r:: A I- b:
B, r I- I1x: A. B: s

(v) r I- .6..x:A. b: C =?- 3B E 7. C =8c. B,-iB := A,f,x: -iB I- b: J_,f 1-
B: Prop

(vi) r I- I1x: A. B : C =?- 3(s1, s2 , s3) E R. C =13t::. s3, r f-- A : s1, r, x : A 1-
B: S2

(vii) r I- Fa: C =?- 3x E F, A,B ET C =13t::. B{x := a},r I- F: l1x:
A. B, r I- a: A

Proof. By induction on the derivation of (i)-(vii) using the Thinning Lemma.D

Lemma 4.10 (Correctness of types)

r f-- A : B =?- B E ST v 3s E S. r I- B : s

Proof. By induction on the derivation of r f-- A : B. D

Proposition 4.11 (Subject and predicate reduction)

(i) r I- lvf : A A A1 -+;Jc.. N =?- [I- N : A

(ii) r I- M : A (\ A -+13c,,. B =?- r I- M : B

Proof. (ii) follows from (i) by Correctness of types. As for (i), we prove
the following two statements by simultaneous induction on the derivation of
r I- M: A:

• M -+f3A N =?- r I- N: A

• if r -+ 13 c,. .6.. =?- .6.. I- .i\1 : B

\i\!e treat the first item in the case of an application when

and N is obtained from l'vf by contracting the outermost .6..-redex, i.e.

N = .6..y:-iA2{v := b}. a{x := >.z: (I1v:A1• A2). (y (z b))}

So the last rule is

r I- .6..x:-i(l1v:A1. A2)· a: (I1v:A3. A4) r I- b: A.3 r I- I1v:A.1. A2: s

r I- (.6..x:-i(Ily:A1. A.2)- a) b: A4{v := b}

It is convenient to introduce the notation et for C{ v := b }. We are to show

22

BARTHE, HATCLlFF, SRENSEN

r f- N : A.1. By generation, we have

Ilv:A1 .. 4.2 =13t::. Ilv:A.3. A.4

r,x:,(Ilv:A1 . A2) f- a: .l

r f- Ilv:A1. A2 : Prop

r r- A1 : s1

r, v : A1 1- A2 : s2

with (s1, s2 , Prop) E R. By Property 2, s2 =Prop. By assumption, r f- b: As.
By confluence, A1 =/3t::. A3 and A~ =/3t::. A1. Hence

r 1- b: A.1

r f- Ai: Prop

(conversion)

(substitution)

(thinning, Property 1) r f-,Ai : Prop

r,y:-,Atz:ITv:A 1.A2 I- y(zb) :.l (start, weakening, application)

r, y:,A; f- .Az: (ITv:A 1• A.2). y (z b):,(Ilv:A.1. A.2) (abstraction, Property 1)

r,y:-,A.; I- a{x:=.Az:(Ilv:A1.A2).(y(zb))}:.l (substitution)

r I- N: A; (double negation)

r 1- Al : s3

r I- N: Al

Proposition 4.12 (Consistency)

(correctness of types)

(conversion)

>..SF WN/3t::. ==> VM E 7.• (f- M: .l)

Proof. Define a trivially consistent context to be one of the form

X1 : --,j_, ... 'Xn :,J_

0

We prove that there is no pseudo-term M s.t. r f- M : .l for some trivial
context r.

Assume towards a contradiction that such a r and M exists. ·without loss
of generality, one may assume that M is in normal form and is minimal, i.e.
does not contain any subterm N s.t. f' I- N : .l for some trivially consistent
context f'. M cannot be:

• a variable because .l is not convertible with •.l;

• a sort because .l is not convertible with a sort;

23

BARTHE, HATCLIFF, SRENSEN

• 1- because 1- is not convertible with Prop;

• a product because 1- is not convertible with a sort;

• a .A-abstraction because 1- is not convertible with a II-term;

• a .6.-abstraction because of the minimality of M.

So necessarily M must be an application. Assume that M = lvf 1 M 2 . . . lvf n

where A11 is not an application. For typability reasons, l'vf1 can only be a
variable, a .A-abstraction or a .6.-abstraction; the last two cases are impossible
because Af is in ;3.6.-normal form. So Af 1 is a variable . .'.'\ecessarily M1 occurs
in the context and has type ...,J_ and hence n = 2 and A1 = J\11 A12. Therefore
M2 is of type 1-, contradicting the minimality of M. D

4.3 Basic results for specific classes of CPTSs

4.3.1 Functional CPTSs
In this Section, three properties are examined: Uniqueness of Types, Strength­
ening and Decidability of Type-Checking. Functionality is obviously crucial
for the former property. As for the latter properties, it should be possible
to eliminate the assumption of functionality by following an approach similar
to [12] --however proofs become more involved. Throughout this section, S
denotes a functional logical specification.

Proposition 4.13 (Uniqueness of types)

(i) r f-- 1'vf: B /\ r f-- Af : B' ==? B =13t::. B'

(ii) r f-- M : B /\ r f-- Af' : B' /\ l\,f =(3t::. l'vf' ==? B =13t::. B'

Proof.

(i) By induction on M using generation and confluence.

(ii) If M =f3t::. M' then by confluence there is an M" such that M -'1rf3t::. M"
and M' -1rf3t::. M". By subject reduction r f-- M" : B and r f-- M" : B'.
Hence by (i) B =13t;;. B'.

0

Proposition 4.14 (Strengthening)

Proof. Prove by induction on the derivation off 1, x: A, f2 f-- b: B that

r i, x : A, r 2 r- b : B } , 1., r L b B' ()
==? 3B E T B -1r13t;,. B /\ 1' 2 I : *

x r/. FV(f 2) U FV(b) U FV(B)

Then assume f 1,x: A,f2 I- b: B. Use(*) to find B' s.t. f1,f2 l-b: B' with
B -?rf3t::. B'. By Correctness of Types, either B E ST, in which case B = B'

24

BARTHE, RATCLIFF, SRENSEN

and we are done, or f 1, x: A, f 2 f- B: s for some s ES. By (*), f 1, f2 f- B: s.
We conclude by applying the conversion rule. D

Definition 4.15

• The type-checking problem (TC) consists in deciding whether a given judge­
ment r f- Al : A is derivable.

• The type-synthesis problem (TS) consists in deciding whether a pseudo­
term 1Vf has a type in a given pseudo-context r, i.e. whether there exists A
s. t. r f- M : A is derivable.

Decidablity of type-synthesis is especially useful for theorem proving.

Proposition 4.16 (Decidability of type checking and type synthesis)
If >..S f= Wf\'.at.. and both sets A and R are decidable, then TC and TS are de­
cidable.

Proof. Define an algorithm tyr(M) which returns, when it exists, a type for
l'vf in context r and returns t otherwise. The algorithm is given in Figure 8;
it makes use of an auxiliary function leg(f) which checks whether a context is
legal. More efficient algorithms can be derived, see [77]. D

4.3.2 Injective CPTSs
The central result of this section is a classification lemma for injective specifi­
cations. As usual with this kind of result, we partition the set of variables V
as UsES vs in such a way that each vs is countably infinite and vs n vs' = 0
for s =/=: s'. Moreover manipulate variables according to the rules:

(start-s)

(weakening-s)

ff-A:s
r, x: A f- x: A

ff-A:B ff-C:s
f,x:Cf-A:B

if x (j. f and x E 1/8

if x (j. f and x E ys

Throughout this subsection, S = (S, Prop, A, R) is an injective logical specifi­
cation. Moreover, for every s E S, we defines+ as the unique (if it exists) sort
s' s.t. (s, s') E A, s- as the unique (if it exists) sort s' s.t. (s', s) E A. The
definition below gives a syntactic description of the classes of legal terms.

25

BARTHE, RATCLIFF, SRENSEN

) {
A if leg(r) and x : B E r for some B =13:::,. A

tyr(x =
t otherwise

{
s' if leg(f) and (s, s') E A

tyr(s) =
t otherwise

{
Prop if leg(r)

tyr(l.) =
t otherwise

() {
B{ x := N} if tyr(A1) ---»wh II:r: A. B and tyr(N) =13t::.. A

tYr .lt1 N =
t otherwise

() {
Ilx: A. B if tY(r x:A) (M) = B

tyr .\x: A. Af = '
t otherwise

() {
S3 if (s1,s2,s3) E R,tyr(A)-wh s1andty(fx:A)(B)---»wh s2

tyr II::r:: A. B = ,

t otherwise

() {
A' if A= •A', tYr(A') ---»wh Prop and tyl',x:A(M) ---»wh l.

tyr .6.x: A. M =
t otherwise

leg(0) = true

{
true if tyr(A) ---»wh s for some s E S and x fresh inf

leg(r, x: A) =
false otherwise

Fig. 8. Type checking algorithm for functional normalising CPTSs

Definition 4.17 Lets, s1, s2 , s3 range over sorts.

Term 8 = \l5

rrvs1 : Types1 .Types2

.\V81 : Type81 .Term82

Term 83 Term81

l.

26

IF (s1 , s2, s-) E R I

IF (s1,s2,s) ER

IF (s1,s,s3) ER

IF s =Prop+

BARTHE, RATCLIFF, 8RENSEN

Ifs is not a top-sort, Types =Terms+. Otherwise,

Types= s-IITV81 : Type81 .Type52 IF (s1, s2, s) ER

Moreover, let Proof= TermProp and Form= TypeProp.

The Classification Lemma shows that terms may be partitioned according
to the sort of the types in which they can live.

Proposition 4.18 (Classification 1) Let Txxx range over Term and Type
and let s, s' be sorts.

(i) Txxx8 is closed under reduction.

(ii) s "¥= s' =? Txxx8 n Txx:xs' = 0
=? s' rf_ T xxx8 (iii) s' E ST

(iv) s' E ST =? Terms n Types' = 0

Proof. First prove closure under substitution, i.e. for every s, s' E S,

where Txxx is either Term or Type. Then prove the proposition. All proofs
proceed by induction on the structure of Term8 and Type8 • D

The next proposition shows that s-terms belong to Term 8 and s-types
belong to T ype8 •

Proposition 4.19 (Classification 2) Lets ES.

(i) r f- M: A /\ r f- A: s =? ME Term 8

(ii) r f- A : s => A E Type8

Proof. Both statements are proved simultaneously by induction on the struc­
ture of derivations. D

4.4 Properties of domain-free classical pure type systems

Domain-free classical pure type systems are not the main focus of this paper
so we limit this section to some brief comments. All the results in Subsection
4.2 and Subsubsection 4.3.2 hold for DFCPTSs. In the latter case we must
however be careful with variables and require the name of bound variables to
be relevant. In particular, we require a-conversion to replace variables in vs
by variables in vs. The results of Subsubsection 4.3.1, Uniqueness of Types
and Decidability of Type Checking, do not apply [11].

We close this subsubsection by examining the relationship between CPTSs
and DFCPTSs. Let S be a functional logical specification.

27

BARTHE, RATCLIFF, SRENSEN

Definition 4.20 The erasure map I-\ : T --+ T is defined as follows:

\xl=x
IJ..I = J..
\s\ =s

\t ui = it\ \ul
\ . .\x: A.ti = ..\x.iti
\6.x: A.tl = 6.x.\t\

\IIx : A.B\ = IIx: \A.\.\B\

Erasure preserves reduction, equality and typing:

Proposition 4.21

(i) J\1 -+f3A N :::?

(ii) M =!Jc, N :::?

(iii) r I- M : A :::?

\M\ -»µ 6 \NI
IJV1\ ={Jb. \N\
if! If- \J\11 : \Al

Proof. First prove by induction on M that

IM{x := N}I = \A1l{x := \N\}

Then prove (1) using (*) by induction on the structure of A1, (2) by induction
on the derivation of JVI =f3 N and (3) by induction on the derivation of r 1-
M: A, using(*) and 2. 0

Note that the proposition does not hold immediately for non-functional
specifications because of the conversion rule for DFCPTSs.

Erasure, as defined above, does not preserve infinite reductions because re­
dexes occuring in the domain of..\- and 6.-abstractions are lost during erasure.
In the case of pure type systems, it is possible to define a modified erasure
map I· lk that preserves reductions: it is done simply by extending domain-free
pseudo-terms with a new construction K M N whose rewrite behavior is given
by K x y --+" x and by modifying the inductive case for ..\-abstractions into

Unfortunately, the idea does not scale up to CPTSs.

Definition 4.22

• The set W is defined as follows:

w = v Is I J_ I WW I ..\V.W I 6.\l. w I IlV:W. w I K w w

• The notion of reduction K, is defined by the contraction rule

K x y --+" x

28

BARTHE, RATCLIFF, SRENSEN

• The modified erasure map 1-lk: T --t W is defined as follows:

lxlk=X
IJ_lk = J_

lslk =s
It ulk = ltlk lulk

l>.x: A.tlk = K (>.x.lt!K) IAlk
l.6x: A.tlk = K (.6x.lt1K) IAlk

IIIx: A.Elk= IIx: IAlk·IBlk

Modified erasure preserves [')-reductions but not .6-reductions.

Lemma 4.23

• M ---1-(j N :::} IMlk -t>f!_K I Nik

• M --tA N :::} l2\1lk-t>AK INlk

Proof. The first item is proved by induction on the structure of the terms.
For the second item, note that the translation of a .6-redex does not reduce
to the translation of its .6-reduct. D

In the sequel of the paper, the failure of erasure to reflect .6-reduction will
be referred to as the unorthodox behavior of .6-reduction.

5 CPS translation and applications

In this section, we define a Contination-Passing Style translation for injective
logical specifications. The CPS translation is inspired from [10] where we
develop CPS translations for logical pure type systems. In the first subsection,
we discuss some of the problems arising from the use of domain-specified
abstractions. In the second subsection, we define the CPS translation and
prove its correctness. In the third subsection, we derive, as an application
of our translation, consistency of a CPTS from consistency of its associated
PTS. In the fourth subsection, we look at the image of impredicatively defined
connectives by the CPS translation.

5.1 Background

Pure type systems feature domain-specified >.-abstractions of the form >.x :
A. M. Unfortunately, such abstractions are a significant obstacle to a simple
and useful formulation of CPS translations. Indeed, CPS translations intro­
duce new >.-abstractions whose domains need to be inferred. Consider the
judgement

r,x:Af-x:A

where A is a formula. If we decide to translate CPTS pseudo-terms into PTS
pseudo-terms, the CPS translation for x should yield >.k: C. x k for some
suitable term C. It turns out that, if typability is to be preserved, C should

29

BARTHE, RATCLIFF, SRENSEN

correspond to the top-level translation of A. As a result, the CPS translation
cannot be defined by induction on the structure of the terms but should use a
more complex induction principle. Such induction principles do exist in some
cases, e.g. for proof-irrelevant specifications [20] or for the specifications of
the A-cube [10]. However, the existence of such an induction principle, e.g.
in the case of the Calculus of Constructions, relies on heavy proof-theoretic
arguments: in [10], we define a domain-specified CPS translation for the PTSs
of the A-cube using an induction principle taken from [26]. The latter is
obtained as a corollary to strong normalization of a labelled version of the
Calculus of Constructions. Instead of relying on such powerful proof-theoretic
properties, we choose to work with domain-free systems and translate DFCPTS
pseudo-terms into DFPTS pseudo-terms.

5. 2 The translation

Throughout this section, S denotes an injective logical specification. For rea­
sons that will appear later, we assume that we are given an infinite supply
of special variables, ranged over by h, i, j, k, which do not appear in the legal
terms of the DFCPTS.

Definition 5.1 The CPS translations C(.) and C1.D are defined in Figure
9. Moreover, if M E TJ and N E /, we let CM (N) and CM 1ND denote
respectively C(N){..L := M} and C1ND{..l := M}.

The CPS translation is correct in the following sense.

Theorem 5.2 r 11- A : B => C1rD 11-J C(A) : C1BD

Proof. We proceed in four steps:

(i) show that for B E Proof, C(B) = Ak.C. Therefore, Ak.C(B) k -+!}_ C(B);

(ii) prove by induction on the structure of A E T xxx8 that for x E vs' and
BE Terms'

C(A){x := C(B)} --*!!_ C(A{x := B})
(iii) prove by induction on the derivation of A E Txxx8 that

A ~flt>. B => C(A) =Ii C(B)

(iv) prove by induction on the structure of derivations

r II- A : B => c1q 11-J C(A} : C1BD

5. 3 Applications of the CPS translation to consistency of CPTSs

One specific application of Theorem 5.2 is to prove consistency of CPTSs.

30

0

BARTHE, RATCLIFF, SRENSEN

={
>..k.x k

C(x)
x

C(s) =s

C(J.) = J_

={
>..k.k (>..:r.C(M))

C(>..x.1vf)
>..x.C(1vl)

= { >.k.tC(M) (>.j.j C(M') k)
C(M 11.1')

<C(Af) C(M')

C(~x. M) = >..k.<C(M){x := >..h.h >..j.>..i.i (j k)}>..z.z

C(ITx:A. B) = I1x:<C1AD. <C1BD

={
-,--,r[',(M)

<C(M)

<C1[JD = l. : Prop

c1r,x: AD = c1rD,x: <C1AD

Fig. 9. CPS TRANSLATION

if x E VProp

otherwise

if >..x.M E Proof

otherwise

if MM' E Proof

otherwise

if ME Form

otherwise

Proposition 5.3 Assume >.JS I= WN(type). Then the four conditions below
are equivalent

(i) I- Jv[: l. for some M;

(ii) If- M : J_ for some l'vl;

31

BARTHE, l-IATCL!FF, SRENSEN

(iii) J_ : Prop f-- 1 Al : J_ for some 1'v1;

(iv) J_ : Prop 11-1 M : J_ for some M.

Proof. Obviously (iii) implies (i) implies (ii). The equivalence between (iii)
and (iv) is proved in [11]. "\Ve prove (ii) implies (iv) and we are done. Suppose
II- A : _l_. By Theorem 5.2 _l_ : Prop 11- 1 C(A) : (_l_ -+ _l_) -+ _l_, so
11-1 C(A) .\z.z : _l_. D

Theorem 5.2 may also be used to infer consistency of some contexts in a
CPTS. For the sake of brevity, we only treat the case of the classical L-cube.
As expected, the CPS translation acts as the identity on 'sets', i.e. inhabitants
of *5 •

Lemma 5.4 If A E Type*', then _l_ r/. FV(C1A-D) and C1AD =:=A.

Moreover, the CPS translation preserves the internal equality on sets.

Lemma 5.5 If A E Type*' and r 11- M : a 1 =A a2 for some M, then
C(ai=Aa2)QfD 11-.J M: a1 =.4 a2 for some l'vf.

Proof. Let D = a 1 =A a2 . By Theorem 5.2,

and by the Substitution Lemma,

Moreover we have

Thus one may construct a term P of type CD 1DD -+D. Hence P C0 (M) has
type D and we are done. D

These two facts may be used to infer consistency of classical arithmetic in
higher-order predicate logic. One possible formalisation of arithmetic is given
by the context Peano in Figure 10 -here addition and multiplication are not
taken as primitives but are defined by recursion.

Proposition 5.6 Peano is a consistent context in >.6.P REDw.

Proof. It is easy to see that Peano is consistent iff there is no term M of
type z =N (s z) in context Peano. By Theorem 5.2, Lemma 5.5 and some
elementary reasoning,

:JM. Pea no II- M : z =N (s z) =? :JM. C(z=N (s z)) QPeanoD 11- 1 M : z =N (s z)

Conclude from the fact that C(z=N (s z)) QPeanoD is a consistent context in !:,_P REDw.D

32

BARTHE, RATCLIFF, SRENSEN

z: N, s: N -t N -t N,

rec: N -t (N -t N -t N) -t N -t N,

<: N -t N -t *P,

ind: TIP: N -t *P. P z -t (ITn: N. (P n) -t (P (s n))) -t ITn: N. P n,

reco : Ilfo : N. Ills : N -t N -t N. (rec Jo fs z) =N Jo,

recs : Illo : N. Ills : N -t N -t N. (rec Jo fs (s n)) =N Us n (rec Jo ls n)),

si: Ilm, n: N. (s m =N s n) -t (m =N n),

Po: Iln: N. --, (s n =N z),

o1 : Ilm, n: N. (x < s y) -t (x < y V x =N y),

02: Ilm,n: N. (x < y V x =Ny) -t (x < s y)

Fig. 10. A context for Peano arithmetic

It is important to realize that Propositions 5.3 and 5.6 are proved without
invoking any normalization property of CPTSs.

Remark 5. 7 In [88], Seldin shows that so-called strongly negation consistent
contexts are consistent in the Calculus of Constructions. One can elaborate
on his ideas and use the CPS translation to isolate some classes of consistent
contexts. This development is omitted here.

6 Strong normalization

This section is concerned with strong normalisation of domain-free classical
pure type systems and classical pure type systems. Strong normalisation of the
former is reduced to strong normalisation of pure type systems by a refinement
of the CPS translation. In contrast, strong normalisation of the latter is proved
by a model construction. Proofs are omitted and will be presented in the full
version of the paper.

Throughout this section, we assume that S is an injective logical specifi­
cation.

6.1 Strong normalization by CPS translation for DFCPTSs

The CPS translation does not preserve reduction. Yet one may use an op­
timized translation which contracts some of the administrative redexes and

33

BARTHE, RATCLIFF, SRENSEN

preserve -in a weak sense- reductions. Using some elementary reasoning, one
concludes:

Theorem 6.1 (Domain-Free Preservation of Strong Normalization)

~S I= SN ==>)..b..S I= SN

6.2 Strong normalization by CPS translation for CPTSs

If S is proof-irrelevant, one may apply Theorem 6.1 to deduce strong normal­
ization of >..b..S from strong normalization of >..S. To do so, the following two
observations are needed.

Lemma 6.2 If Sis proof-irrelevant and M E T is a type in >..b..S, then M is
a type in >..S.

Proof. By induction on the structure of derivations, prove that proofs may
only occur as subterms in proofs. D

In particular, it follows that >..S I= SN(type) implies >..b..S I= Sl\(type).

Lemma 6.3 If Sis proof-irrelevant, >..b..S I= SN(type) and >..b..S I= SN, then
>..b..S I= SN.

Proof. First show that there cannot be an infinite ,Bb..-reduction sequence
starting from a legal term M and such that

{
M - ~10 -+.a~ M1 -+13D.. ...

\Mo\= \M1\ = ...
(#)

To prove (#), use correctness of types to deduce that M is either a top-sort
or r f- M : A for some r and A.. Then proceed by induction on the derivation
of r f- M : A using >..b..S I= SN (type).

Second, conclude by using >..b..S I= SN. D

Putting it all together,

Theorem 6.4 (Domain-Specified Preservation of Strong Normalization)
If S is proof-irrelevant,

>..S I= SN ==> >..b..S I= SN

Proof. Assume >..S I= SN. Then ilS I= SN -see [11]. By Theorem 6.1,
>..b..S I= SN. Moreover, >..b..S I= SN(type). By Lemma 6.3, >..b..S I= SN. D

Unfortunately, it is not possible to extend immediately the result to proof­
relevant CPTSs. Indeed, the obvious solution would consist in extending the
domain-free systems with the K-combinator -see [9] for a definition of pure
type system with the K-combinator-, prove a result analogous to Theorem

34

BARTHE, RATCLIFF, SRENSEN

6.1 for such systems and conclude strong normalisation of >...6...S from strong
normalisation of >..t:.K -the domain-free classical pure type system extended
with a K-combinator. But such a reduction does not work because of the
unorthodox behavior of .6..-reduction -see Subsection 6.1.

6.3 Strong normalization by a model construction

Terlouw has given a general criterion for a >..IT type system to be strongly
normalizing [93] -the criterion is also implicitely present in [56]. A similar
criterion can be used for CPTSs.

Theorem 6.5 If >...6...S is layered, then >..!:lS f= SN.

Proof. See Appendix. D

In order to prove that a CPTS >...6...S is layered, one can use the correctness
of the CPS translation.

Proposition 6.6 If >..S is layered and >..S f= WN(type), then >-..6...S is layered.

Proof. See Appendix.

Alternatively, it is sometimes equally easy to proceed by hand.

Lemma 6. 7 If S is a specification of the >..-cube, then >-..6...S is layered.

Proof. Let E be an environment. Define a measure on £-types as follows:

• v(A) = 0 if A is an £-proposition,

• v(*) = 1,

• v(Ilx: A. B) = v(A) + v(B) + 1 if Ilx: A. B is an £-kind.

D

The measure is preserved by conversion. By uniqueness of types, v yields a
measure!!. on pseudo-terms:

dM) = { ~ if3AE£-Type.£ f- M:Aandv(A)=n

otherwise

For every Iv!, N E T, N -<e. AI implies ¥..(N) < ¥..(M). Hence -<e. is well­
founded. D

It follows:

Corollary 6.8 Systems of the classical >..-cube are strongly normalising.

Proof. By Theorem 6.5 and Lemma 6.7.

6.4 Strong normalization a la Harper-Hansell-Plotkin

D

In [36], Harper, Honsell and Plotkin prove strong normalisation for Edin­
burgh Logical Frameworks, which is essentially equivalent to >-.P, by defining

35

BARTHE, RATCLIFF, SRENSEN

a reduction and derivation preserving mapping from legal AP-terms to legal
'!l1T -+-terms -here '!l7T -+ denotes an extension of '!l -+ with some pairing op­
erators. Later Geuvers and Nederhof generalized this translation by taking as
source theory the Calculus of Constructions AC and as target theory Girard's
higher-order A-calculus Aw [31]. Both translations use two mappings:

• a mapping T which acts on constructors, i.e. D-terms, and kinds, i.e. D-
types;

• a mapping [.] which acts on legal terms and preserves reductions.

Unfortunately, the reduction-preserving mapping techniques of Harper-Honsell­
Plotkin and Geuvers-Nederhof do not seem to extend to the framework of
CPTSs. Interestingly, the technique applies to DFCPTSs. Vile present our
analysis of this fact for the Harper-Bonsell-Plotkin mapping. A similar anal­
ysis may be conducted for the Geuvers-Nederhof mapping.

Definition 6.9 [36] The Harper-Hansell-Plotkin translation[.] maps AP-pseudo­
terms to '!l1T -+pseudo-terms. It is defined as follows:

[x]=x

[*] = *
[P Q] = [P] [Q]

[Ax:A. M] = (Ay.Ax.[M]) [A]
[ITx:A. B]=1l'T(A) [A] Ax.[B]

where 7r T(A) is a constant.

As mentioned earlier

Lemma 6.10 [36} [.] preserves reductions.

Let us now consider extending the translation to ..\.6.P-pseudo-terms. The
obvious choices are

[j_] = J_

[.6.x:A. M] = (Ay . .6.x. [M]) [A]
Unfortunately, the extended translation [.] does not preserve reductions. In­
deed, consider the terms

M= (.6.x:•(ITv:A 1 • A2)· a) b
N = .6.y: -.A2 { v := b}. a{ x := Az: (ITv:A 1 . A2). (y (z b))}

We have J\1 -+D..N but only [M] = 6 D.. [N]. As a result, it is not possible to prove
strong normalization a la Harper-Hansell-Plotkin for ..\.6.P. However, one may
define a domain-free variant of the translation which preserves reductions.

Definition 6.11 The translation [.]dJ is defined as follows:

[x]dJ = x
[j_]clf = J_

[*]dJ = *
36

BARTHE, RATCLIFF, SRENSEN

[P Q]dJ = [P] [Q]
[A.x.Af]dJ = A.x.[M]

[~x. M]dJ = ~x. [M]
[IIx:A. B]dJ =?rr(A) [A] A.x.[B]

where ?re is a constant and T is defined by

T(X) = X
T(*) =W

7(1-) = J_

r(P Q) = T(P) T(Q)
T(Ax.M) = T(M)

T(IIx: A. B) = T(A) -t T(B)

The translation [.]dJ may be used to prove strong normalization of A.~P.

7 Classical Pure Type Systems as Logics

One central goal in our work is to extend the Curry-Howard isomorphism to
classical -\-calculi and natural deduction systems for classical logic. The iso­
morphism involves a logic L and a type theory T -with a notion of proposition­
and, in its strongest form, establishes a correspondence between:

(i) inhabited propositions in T and provable formulae in L;

(ii) proof-terms in T and proofs L;

(iii) normalization in T and cut-elimination in L.

Our notion of classical pure type system has been defined so as to preserve
this three-fold correspondence with classical natural deduction as introduced
by Prawitz [80]: classical logic is introduced via a double negation rule and
reduction for the classical operator, which makes applications of double nega­
tion atomic, is closely related to Prawitz's original rule. In fact, his reduction
relation makes all instances of double negation atomic while ours only makes
atomic those instances of double negation whose conclusion is used as the
function of an application rule ·-the reason for not using Prawitz's rule is that
it is label-sensitive, see Subsection 8 for an explanation. Nevertheless, we shall
not delve into the process of establishing the correspondence formally. There
are several reasons for not pursuing this line of work: most importantly, the
correspondence becomes clear as one works with classical pure type systems.
Besides, as emerges from [30], stating the correspondence, let alone prove it, is
long and tedious: it requires the introduction of logics as formal systems and
of intermediate formal systems which arise as hybrid combinations between
logics and type systems. Finally, the whole process requires great technical
skill but does not improve our understanding of type systems. 7 Therefore we

7 The studies by Tonino and Tujita [94] and Geuvers [30], in which the intrinsic technicalities
of the Curry-Howard isomorphism are addressed, are of genuine interest. There is however

37

BARTHE, RATCLIFF, 8RENSEN

choose not to establish the Curry-Howard isomorphism formally and refer the
interested reader to [30] for a thourough description of the proof techniques
involved in this process.

Remark 7 .1 Of course encoding classical logic as an intuionistic context al­
lows to derive the first and second parts of the isomorphism for the impred­
icative systems of the classical L-cube from the first and second parts of the
isomorphism for the impredicative systems of the constructive L-cube.

7.1 Impredicative specifications

The next definition is inspired from [20].

Definition 7.2 A logical specification S = (S, Prop, A, R) is impredicative if
there exists s E S s.t. (Prop, s) EA and (s, Prop) ER.

Im predicative specifications permit quantification over the universe of propo­
sitions. Impredicativity may be used to encode classical logic.

Lemma 7 .3 Let S be an impredicative and proof-irrelevant logical specifica­
tion. Moreover let .6. = J_ : Prop, H : ITA: Prop.••A -+A. Then for every
judgement (r, M, A),

there exists l'vf s. t. r f- M : A {::} there exists N s. t . .6., r f-J N : A

Proof. To obtain N from M, replace recursively each subterm of the form
.6.x: •A. P by H A (>.x: -iA. P') where P' has been obtained from P by the
same process. To obtain M from N, replace each occurrence of H by

>.A: Prop . ..\y: ...,...,A . .6.x: •A. y x

D

Note that one can also encode J_ as 11x: Prop. x.

7.2 The formulae-as-sets embedding

The formulae-as-sets embedding establishes the existence of a natural trans­
lation of the systems of the L-cube to the systems of the >.-cube. Technically,
the translation is achieved through the notion of morphism of specifications.

Definition 7.4 Let S1 =(Si, Prop, A1 , R 1) and 8 2 = (S2 , Prop, A2, R2) be two
logical specifications. A (set-theoretic) map H : S1 ---7 S2 is a morphism of
logical specifications if for alls, s', s" E S1

• H(Prop) =Prop

• (s, s') E A1 ::::} (H s, H s') E A2

little interest repeating them for the classical variants of the logics they consider.

38

BARTHE, HATCLIFF, SRENSEN

• (s, s1, s") E R1 :=::}- (H s, H s1, H s11) E R2

The formulae-as-sets embedding may now be described as a morphism of
specifications from a system of the L-cube to its corresponding system in the
>.-cube -as described in Figure 5.

Definition 7.5 The formulae-as-sets embedding is the morphism of specifica­
tions 1-1 given by:

I *p I = I *8 I = *
IDPI = IDsl = D

The formulae-as-sets embedding can be extended to -both PTS and CPTS­
pseudo-terms in an obvious way. The embedding is sound but incomplete.

Proposition 7.6 (Non-conservativity of the formulae-as-sets embedding)
The formulae-as-sets embedding is not complete for dependent systems of the
classical logic cube {i.e.)..f},.p RED,)..f},.P RED2,)..!},..? REDl,,!l_ and)..f},.p REDw).

Proof. The following example is inspired from [30]. Let

r :=A : Set, P : A -+ Prop, fjJ : Prop
'If;= •(Ilx: A.-, P x) -t (A -t efJ) -+ efJ

Then there is no M s.t. r hAPREDw M: 'l/J but

lfl 1-.\AP .>..p: •(IIx: A. ..., P x) . .>..q: A -t f/J. /},.z: •f/J. p (>..a: A. z (q a)) : l'l/JI

D

Independently, one can study conservativity between systems of the clas­
sical .>..- and L-cubes. Such a study for the PTS case may be found e.g. in
[13,30]. Using techniques from [30], one proves

Theorem 7.7 Let S1 ~ S2 be two systems of the classical >..-cube. Then S2

is conservative over S1 unless S2 =)..f},.C and S1 =)..f},.P2.

7. 3 The Classical Calculus of Constructions is proof-relevant

Earlier work by Berardi, Coquand, Pottinger and Seldin has shown that clas­
sical logic is unexpectedly powerful in the Calculus of Constructions. For ex­
ample, one can prove that classical logic and the axiom of descriptions imply
proof-irrelevance. Formally, there exists a term P s.t. the following judgement
is derivable in .>..C:

H : CL, H 1 : ADm, H 11 : ADc 1-J P : PI

where CL formalizes classical logic, ADm and ADc formalizes the axiom of
descriptions and PI formalizes the principle of proof-irrelevance, i.e.

39

BARTHE, RATCLIFF, 8RE:NSEN

CL= ITA: *· (•-iA) -t A
ADm = ITA: *· IlP: A -t *· (3!a: A. Pa) -t A
ADc = IlA: *·TIP: A. -t *· Tiz: (3!a: A. Pa). P (ADm A. P z)

PI= IlA: *· ITx, y: A. x =A y

where =A is Leibniz equality on A and 3! is the unique existence quantifier.
It follows that in >.6.C, one can find a term Q s.t. the following judgement is
derivable

H': ADm,H": ADc f- Q: PI

However, Seldin showed -using a weak normalization procedure closely related
to ours- that one cannot deduce proof-irrelevance from classical logic in >..C
[88]. 8 We prove a stronger result.

Proposition 7.8 There is no 1'd s.t. f- M: PI in A.6,.C.

Proof. Without loss of generality, one may assume that l'vf is a normal term
of the form

>..A: *.,\x, y: A.>.P: A-+ *.>..H: P x.N

with N of type P y. We show by case analysis that it is impossible. D

8 Discussion and related work

Our definition of classical pure type system represents one of the multiple
possibilities for such a notion. In this section we discuss some of the motiva­
tions behind our choice and relate our >.6.-calculi to some of the alternatives
found in the literature. Because of the nature of the paper, we only focus on
syntactic issues. Categorical issues and the way they influence the design of a
classical .A-calculus have been discussed by other authors elsewhere [42,69].

8.1 Classical natural deduction and classical >.-calculi

Our presentation of classical pure type systems is based on Prawitz's format
for classical natural deduction. However there are many other formats which
also inspired classical >..-calculi. \Ve review some of these formats here; in
order to constrain the discussion, we restrict ourselves to those formats where
classical logic is forced by a rule -and not an axiom. The most conventional
formats are obtained by extending intuitionistic natural deduction with one
rule for one of the three formulae:

• excluded middle AV •A;

• double negation ''A -t A;

• Pierce's law ((A -t B) -t A) -t A.

8 Such a result was proved by model-theoretic means in [91].

40

Single-Conclusioned

DN [34,82]

EM [24]

PL [41,86]

,\p[69]

Symmetric [4]

BARTHE, HATCLIFF, SRENSEN

M ulti-Concl usioned

Act/Pass [14,39,72]

Intuitionistic Act/Pass [39,66]

Truly MC [95]

Fig. 11. CLASSICAL LAMBDA CALCULI AND NATURAL DEDUCTION FORMATS

Remarkably, all these formats and derived endemic formats such as the variant
of Pierce's law

((\:JB : Prop.A---+ B)---+ A) ---+A
have been used as a basis for classical ,\-calculi.

In addition to these formats, one may conceive a variety of non-standard
formats for classical natural deduction. One such format, proposed by L. Ong
[69] as an explanation of the ,\p,-calculus, allows for two sorts of variables of
type -,A: continuation variables which may only be used as argument of an
application rule and traditional variables which may be used in the usual way.
The symmetric ,\-calculus of Barbanera and Berardi provides another non­
standard format of classical natural deduction in which negation is idempotent
and implication is encoded [4].

All the natural deduction formats mentioned so far are single-conclusioned.
In addition, one may find several formats that allow for multiple conclusions.
Some formats, which stem from Parigot's ,\p-calculus and linear logic, allow
for multiple conclusions by distinguishing between active and passive formulae.
There are other, more radical formats, which do not impose any such distinc­
tion; e.g. A. Ungar [95] has recently proposed an intriguing multi-conclusioned
natural deduction system for classical natural deduction.

Each format for classical natural deduction can potentially yield one -or
more- classical ,\-calculus. Figure 11 attempts to classify the existing classical
lambda calculi w.r.t. their corresponding format of classical natural deduction.
Some of the calculi mentioned in Figure 11 are calculi of explicit substitutions
but this fact is ignored for the sake of simplicity. From the point of view
of classical pure type systems, classical ,\-calculi based on single-conclusioned
seem amenable to generalization. In contrast, it is unclear whether classical
,\-calculi based on multi-conclusioned systems could be used for proof-relevant
specifications.

Remark 8.1 One could refine this classification further by distinguishing be­
tween those formats in which the classical rule is a discharging rule and those

41

BARTHE, IfATCLIFF, SRENSEN

A

Double negation as

a non-discharging rule

(corresponds to Felleisen's C)

[A]

J_

A

Double negation as

a discharging rule

(corresponds to 6-abstraction)

Fig. 12. DOUBLE NEGATION RULES

in which 'it is not; the difj'erence between the two formats is 'illustrated in Fig­
ure 12. Probably such a distinction has little impact on the theory of classical
>..-calculi and it is therefore not used here.

8.2 Red'uctfon rules for classical nat'ural deduction

Classical >.-calculi provide a computational analysis of classical logic by treat­
ing the classical operators as computationally meaningful. Many sets of re­
duction rules may be found in the literature:

• reduction rules inspired from classical proof theory and classical cut-elimination
proofs;

• reduction rules inspired from programming languages and evaluation rules
for control operators.

It is impossible to discuss here all the sets of reduction rules which can be
found in the literature. However we find it instructive to consider some criteria
according to which reduction rules may be classified. We list five fairly general
such criteria concerned with the applicability of the rule.

• Local vs. global: the former only manipulate terms whereas the latter
may manipulate contexts. The latter are typically found in programming
languages; for example, the evaluation rules below are taken from [28,29]:

E[C(M)]--+ M(>.x.AE[x])
E[A(M)]--+ M

The major problem with such rules is that they complicate the meta-theory
of the system quite significantly. For example, it is unclear whether systems
with such reduction rules are strongly normalising. Moreover, T. Coquand
has shown us that global rules can fail to have the Subject Reduction prop-

42

BARTHE, HATCLIFF, 8RENSEN

erty for systems of dependent types.

• Compatible vs. context-sensitive: the former apply in an arbitrary context
whereas the latter may be restricted to specific contexts. An example of
such rule is found in [29], where the applicability of the rule (.6.-1) below is
restricted to the empty context. In Felleisen's terminology, this is a top-level
rule.

.6.x: -i.l. lv! --+ M { x := >.z: ..L. z} (.6.-1)

There does not seem to be any problem with using "well-behaved" context­
sensitive reduction rules. However, compatible reduction rules fit in the
existing formats of higher-order rewriting - see [49] for a survey- whereas
the study of context-sensitive higher-order rewriting systems has just begun
[45].

• Substitutive vs. non-substitutive: the former apply to arbitrary instances
whereas the latter may apply only for specific instances. An example of such
rule is (.6.v) below, which is needed to simulate the simply typed >.µ-calculus
in >.L'.l --+.

y (Llx:-iA. M) --+ M{x := y} if y E Vandy: ·A (.6.v)

The main disadvantage of non-substitutive rules is that they may cause the
failure of the substitution lemma -if equality is not substitutive- and hence
of the subject reduction property.

• Type-insensitive vs. type-sensitive: the former apply without restrictions
whereas the latter may apply only under specific typing assumptions. An
example of such rule is (Llv)· The main disadvantage of type-sensitive rules
is that they cannot be used in the conversion rule. Otherwise reduction
would depend on typing; this may create a vicious circle in the definition
of the system as typing already depends on reduction -in fact equality­
through the conversion rule.

• Label-insensitive vs. label-sensitive: the former apply independently of the
domains of >.- and .6.-abstractions whereas the latter may only apply for
some domains. The rule (L'.l-1) and Prawitz's original reduction rule (.6.')
below -with 0 = IIv:A. B- provide examples of the latter .

.6.x: -iO. M--+ ..\v: A.Lly: -iB. M{x := ..\w: 0. y (w v)} (.6.')

The main disadvantage oflabel-sensitive reduction rules is that their domain­
free variants are not always meaningful. For example, the domain-free vari­
ant of (.6.') is not normalising and does not have the subject reduction
property.

In the simply typed context, all the above combinations may be envisaged. In
the context of classical pure type systems, the situation is radically different.
In order for a notion of classical pure type system to have a reasonable theory,

43

BARTHE, HATCLIFF, 8RENSEN

the reduction relation must satisfy several basic properties which are often vio­
lated by classical ..\-calculi: compatibility, substitutivity, type-insensitivity and
context-insensitivity, type-insensitivity and confluence. The latter is needed
to prove the Key Lemma, which is in turn crucial in the proof of subject re­
duction. Of course, it has been continuously argued that reduction rules for
a classical operator should not be confluent and in fact should not have the
unique normal form property. However, this would lead to inconsistent calculi
because of the conversion rules.

This leads us to distinguish between the notions of minor rule and principal
rule: a principal rule determines the notion of computational equality whereas
a minor rule does not. In other \Vords, the proviso in the conversion rule should
be A =p B where P is the union of the principal rules. Such a distinction
is justified conceptually and pragmatically: some reduction rules, especially
those involving a non-deterministic choice, do not make sense as equalities
and would cause the inconsistency of classical pure type systems if considered
as a principal rule. On the other hand, these rules have a neat operational
semantics and are useful in several applications. An example of such a rule is
.6.~ which has an obvious interpretation in the catch/throw paradigm and is
useful for extracting a witness from a classical proof:

.6.x: -iA. C[x M] ---1- M if FV(M) ~ FV(.6.x: -iA. C[x Af])

The distinction between principal and minor rules allow us to combine the best
of both worlds: logical consistency and computational power. The pragmatics
and implications of the principal/minor rules distinction is left for future work.
We simply close this subsection by stating the following result:

Theorem 8.2 For every system of the classical..\- cube,

(i) r f- M: A, M ---1-13.c:..+.c:..l. N ::::} r f- N: A

(ii) r f- 1\1 : A => M is /3.6.' .6.,,,+.6..l..-strongly normalizing

8. 3 Related work

As mentioned in the introduction, the existing classical >-.-calculi are proof­
irrelevant, which makes it somewhat difficult to relate our calculi to existing
ones -the main novelty of the paper is to consider double negation for proof­
relevant systems and it seems therefore inappropriate to devote considerable
attention to)..6. --1'. Instead, we conisder two existing calculi and show how
they also give rise to notions of classical pure type system.

8.3.1 The >-.µ-calculus
The >.µ-calculus by Parigot is one of the most established classical >.-calculi.
Unlike our calculi, the ..\µ-calculus provides an explicit treatment of contin­
uations by distinguishing between names which are bound by continuation
µ-abstractions and variables which are bound by >.-abstractions. Parigot's

44

BARTHE, RATCLIFF, SRENSEN

original formulation uses multi-conclusioned sequents and cannot easily be
generalised. Recently, Bierman and Ong have defined variants of the >.µ­
calculus. Bierman's variant is multic-onclusioned and it is unclear whether it
can be generalised into a notion of classical pure type system. In contrast,
Ong's variant is single-conclusioned and may be generalised into a notion of
classical pure type systems. This is the purpose of the next definition. Note
that the distinction between names and variables is handled by the sorts of
the type system.

Definition 8.3

• A continuation-based logical specification is a logical specification S with a
distinguished sort of continuations Cont.

• The set of pseudo-terms is given by the abstract syntax:

r = v I s I J_ I r r I >. V: r. r I ITV: r. r I µ v : r. r I r. r I cont r
• The notion of reduction µ is given by the contractions:

(µx: cont (Ilv:A. B).M) N-+ µy: cont (B{v := N}).M{(x • u) := y • (u N)}

µx : cont A.x • M -+ M if x rj. FV(M)

x • (µy: cont A.M) -+ M {y := x}

• The derivation rules are those of Table 13.

Our notion of reduction are inspired by [71,72] rather than by [69], mostly
because Ong's rules are not closed under substitution. In [69], Ong provides
back and forth translations between)...6. -+and>.µ-+. One can define similar
translations for an arbitrary specification S. The properties of the translations
and more generally of this notion of classical pure type system will appear
somewhere else.

8.3.2 The >.[),.-calculus
The >.Ll.-calculus was introduced by Rehof and S0rensen [82]. It is a call­
by-name calculus, closely related to classical natural deduction and with the
ability to capture without any simulation the catch/throw mechanism. It is
possible to generalise the >..6.-calculus to an arbitrary logical specification S.
This is the purpose of the following definition -note that our notion of reduc­
tion below is slightly stronger than the one of [82].

Definition 8.4 Let .6. + be the notion of reduction .6. U .6.1 U .6.2 with

.6.x.x M -+L1. 1 M

.6.x.x (.6.y.M) -+L1.2 .6.y.M{x := y}

45

if x rj. FV(M)

(axiom-1-)

(axiom)

(start)

(WPakPn i ng)

(product)

B·\HTm. llAT<'LIFF. SttE!'<SE~

< > 1- J_ : Prop

r1-A.:
f,x:Al-.r:A

fl-A:B fl-C:s
f,.r:Cl-A:B

fl-A:s1 r,x:.41-B:s2

r I- (CT.r: A. B) : S3

r 1- F : (11.r: A. B) r 1- a : A
(I-application)

r I- Fa : B { :r := a}

f, x : A I- b : B r 1- (CTx: .4. B) : s
(1-abstra<'t ion) r 1- -\i~: .4.. b : CTx: A. B

r 1- .4. : Prop
(continuation) r 1- cont .-1 : Cont

(c-application) r I- :r : cont A r I- a : A
r I- :r. a : J_

(b .) r, :r : cont .4 I- b : 1- . f I- A : Prop
C-a StraCtlOll f I l

1- µ:r : •."1. J : A

(conversion)
fl-A:B fl-B':s

r I- A: B'

if (s 1, s:.d E A

if I <f_ r

if x t/: r

Fig. 13. DEDUCTIVE RULES FOR ..\µ-Pt:RE TYPE SYSTE'.\IS

46

BARTHE, HATCLlFF, SRENSEN

The domain-free type system >..D.8 is obtained by replacing /3.6. by /3.6. + in the
conversion rule.

All the properties of domain-free classical pure type systems, including the
correctness of the CPS translation and strong normalisation by CPS transla­
tion, should extend to these calculi. This will be reported elsewhere.

However, there is a major problem in defining domain-specified versions
of these calculi. The rule .6.2 becomes non left-linear: this causes all the
techniques to prove confluence and subject reduction of the system to fail.
In contrast, there is no major problem with the ~1-reduction, even in the
domain-specified case.

8.3.3 Werner's proof-irrelevant generalised pure type systems
In unpublished work [97], Werner studies a notion of proof-irrelevant classical
pure type system. His reduction rules depend on typing and therefore his
setting does not make sense in the proof-relevant case. A more detailed com­
parison between his framework and ours will appear in the full version of the
paper.

9 Conclusion

In this paper, we introduced a framework for classical .\-calculi and proved
that proof-relevant systems of this framework are well-behaved. Much work
remains to be done. In particular, we are currently investigating:

• extensions to CPTSs of the Kreisel-Friedman theorem on the computational
content of classical proofs;

• criteria for distinguishing between principal and minor rules;

• syntactic proofs of strong normalisation for proof-relevant CPTSs.

At a more general level, the appropriateness of CPTSs as a foundation for
classical theorem proving and program extraction should be investigated. Fi­
nally, a systematic comparison of the existing simply typed calssical .\-calculi
would bring a much needed clarification to the area.

References

[1] S. Abramsky, D. Gabbay, and T. Maibaum, editors. Handbook of Logic in

Computer Science. Oxford Science Publications, 1992.

[2] A. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[3] F. Barbanera and S. Berardi. A strong normalization result for classical logic.
Annals of Pure and Applied Logic, 76(2):99-116, December 1995.

47

BARTHE, HATCLIFF, SRENSEN

[4] F. Barbanera and S. Berardi. A symmetric lambda calculus for classical
program extraction. Information and Computation, 125(2):103-117, March
1996.

[5] H. Barendregt. Introduction to Generalised Type Systems. J. Functional
Programming, 1(2):125-154, April 1991.

[6] H. Barendregt. Lambda calculi with types. In Abramsky et al. [1], pages
117-309. Volume 2.

[7] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundations of Mathematics. North-Holland,
revised edition, 1984.

[8] B. Barras, S. Boutin, C. Cornes, J. Courant, J-C. Filliatre, E. Gimenez,
H. Herbelin, G. Huet, C. Munoz, C. Murthy, C. Parent, C. Paulin-Mohring,
A. Saibi, and B. Werner. The Coq proof assistant user's guide. Version 6.1.
Technical report, INRJA - Rocquencourt, December 1996. Available by ftp
from ftp. inria. fr along with the implementation.

[9] G. Barthe. Extensions of pure type systems. In M. Dezani-Ciancaglini and
G. Plotkin, editors, Proceedings of TLCA '95, volume 902 of Lecture Notes in
Computer Science, pages 16-31. Springer-Verlag, April 1995.

[10] G. Barthe, J. Ratcliff, and M.H. S(Orensen. CPS-translation and applications:
the cube and beyond. In 0. Danvy, editor, Proceedings of the Second ACM
SIGPLAN Workshop on Continuations, number NS-96-13 in BRICS Notes,
pages 4/1-4/31, 1996.

[11] G. Barthe and M.H. S0rensen. Domain-free pure type systems. In S. Adian
and A. Nerode, editors, Proceedings of LFCS'97, Lecture Notes in Computer
Science, 1997. To appear.

[12] L. S. van Benthem Jutting. Typing in pure type systems. Information and
Computation, 105(1):30-41, July 1993.

[13] S. Berardi. Type dependence and Constructive Mathematics. PhD thesis,
University of Torino, 1990.

[14] G.M. Bierman. Towards a classical linear >.-calculus. In Proceedings of
Tokyo Conference on Linear Logic, volume 3 of Electronic Notes in Theoretical
Computer Science. Elsevier, 1996.

[15] L.E.J. Brouwer. Intultionistische splitsing van mathematische grondbegrippen.
Nederl. Akad. Wetensch. Verslagen, 32:877-880, 1923.

[16] R. Constable. Constructive mathematics and automatic program writers. In
Proceddings of the IFIP Congress, pages 229-233, Ljubljana, 1971.

[17] R. Constable. programs as proofs: A synopsis. Information Processing Letters,
16(3):105-112, 1983.

48

BARTHE, lIATCLIFF, SRENSEN

[18] R. Constable and C.R. Murthy. Finding computational contents in classical
proofs. In G. Huet and G. Plotkin, editors, Proceedings of the First Workshop
on Logical Frameworks, pages 341--362. Cambridge University Press, 1990.

[19] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer,
R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden,
J.T. Sasaki, and S.F. Smith. Implementing Mathematics with the NuPrl
Developrnent System. Prentice-Hall, Inc., 1986.

[20] T. Coquand and H. Herbelin. A-translation and looping combinators in pure
type systems. Journal of Functional Programming, 4(1):77-88, 1994.

[21] H.B. Curry and R Feys. Combinatory Logic. North-Holland, 1958.

[22] 0. Danvy, editor. Proceedings of the Second ACM SIGPLAN Workshop on
Continuations, number :-JS-96-13 in BRICS Notes, 1996.

[23] P. de Groote. A CPS-translation of the .\µ-calculus. In S. Tison, editor,
Proceedings of CAAP'94, volume 787 of Lecture Notes in Computer Science,
pages 85-99. Springer-Verlag, 1994.

[24] P. de Groote. A simple calculus of exception handling. In M. Dezani­
Ciancaglini and G. Plotkin, editors, Typed Lambda Calcul'Us and Applications,
volume 902 of Lecture Notes in Computer Science, pages 201-215. Springer­
Verlag, 1995.

[25] P. de Groote, editor. The Curry-Howard isomorphism, volume 8 of Cahiers du
centre de logiqite. Universite catholique de Louvain, 1995.

[26] G. Dowek, G. Huet, and B. Werner, On the existence of long (377-norrnal
forms in the cube, In H. Geuvers, editor, Informal Proceedings of TYPES'93,
pages 115-130, 1993. Available from http://www.dcs.ed.ac.uk/lfcsinfo/
research/types-bra/proc/index.html.

[27] B.F. Duba, R. Harper, and D. MacQueen. Typing first-class continuations in
ML. In Conference Record of the Annual A CM SIGPLAN-SIGA GT Symposium
on Principles of Programming Languages, 1991.

[28] M. Felleisen. The Calculi of >-v-CS Conversion: A Syntactic theory of Control
and State in Imperative Higher Order programming Languages. PhD thesis,
Indiana University, 1987.

[29] M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba. A syntactic theory of
sequential control. Theoretical Computer Science, 52(3):205-237, 1987.

[30] H. Geuvers. Logics and Type Systems. PhD thesis, University of Nijrnegen,
1993.

[31] H. Geuvers and M.-J. Nederhof. A modular proof of strong normalisation for
the Calculus of Constructions. Journal of Functional Programming, 1:155-189,
1991.

49

BARTHE, RATCLIFF, 8RENSEN

[32] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Number 7 in Tracts
in Theoretical Computer Science. Cambridge University Press, 1989.

[33] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: A theorem
proving environment for higher-order logic. Cambridge University Press, 1993.

[34] T.G. Griffin. A formulae-as-types notion of control. In Conference
Record of the Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 47-58. ACM Press, 1990.

[35] T.G. Griffin. Logical interpretations and computational simulations.
Manuscript, 1992.

[36] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. In
Proceedings of LICS'81, pages 194-204. IEEE Computer Society Press, 1987.

[37] R. Harper and M. Lillibridge. Explicit polymorphism and CPS conversion.
In Conference Record of the Annual ACM SJGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 206-219. ACM Press, 1993.

[38] R. Harper and M. Lillibridge. Polymorphic type assignment and CPS
conversion. LISP and Symbolic Computation, 6:361-380, 1993.

[39] H. Herbelin. Sequents qu 'on calcule. PhD thesis, Universite Paris 7, 1995.

[40] A. Heyting, Mathematische Grundlagenforschung. Intuitionismus. Beweis­
theorie, Springer, 1934.

[41] S. Hirokawa, Y. Komori, and I. Takeuti. A reduction rule for the Peirce formula.
Manuscript, 1994.

[42] M. Hofmann. Sound and complete axiomatisations of call-by-balue control
operators. Mathematical Structures in Computer Science, 5(4) :461-482,
December 1995.

[43] W. Howard. The formulae-as-types notion of construction. In J.P. Seldin and
J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 479-490. Academic Press Limited, 1980.

[44] B. Jacobs. Categorical logic and type theory. Book. In preparation, 199x.

[45] Z. Khasidashvili and V. van Oostrom. Context-sensitive condition3<1 expression
reduction systems. Elsevier, Electronic Notes in Theoretical Computer Science,
2, 1995. Available at http://www.elsevier/nl/mcs/tcs/pc/volume2.htm.

[46] S.C. Kleene. On the interpretation of intuitionistic number theory. Journal of
Symbolic Logic, 10:109-124, 1945.

[47] S.C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.

[48] J.W. Klop. Term-rewriting systems. In Abramsky et al. [1], pages 1-116.
Volume 2.

50

BARTHE, RATCLIFF, SRENSEN

[49] J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction
systems: Introduction and survey. Theoretical Computer Science, 121(1-2):279-
308, 1993.

[50] A. Kolmogorov. Sur le principe de tertium non datur. Matematiceskij Sbornik,
32:646-667, 1925. English translation in [96].

[51] A. Kolmogorov. Zur Deutung der intuitionistischen Logik. Mathematische
Zeitschrijt, 35:58-65, 1932.

[52] J. Lambek. Deductive systems and categories I. Syntactic calculus and
residuated categories. Mathematical Systems Theory, 2(4):287-318, 1968.

[53] J. Lambek. From .\-calculus to cartesian closed categories. In J .R. Hindley
and J.P. Seldin, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 375-402. Academic Press, 1980.

[54] J. Lambek and P.J. Scott. Introduction to Higher-Order Categorical Logic.
Cambridge Studies in Advanced Mathematics. Cambridge University Press,
1986.

[55] F.W. Lawvere. Ajointness in foundations. Dialectica, 23:281-296, 1969.

[56] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science.
Number 11 in International Series of Monographs on Computer Science. Oxford
University Press, 1994.

[57] Z. Luo and R. Pollack. LEGO proof development system: User's
manual. Technical Report ECS-LFCS-92-211, LFCS, Computer Science Dept.,
University of Edinburgh, May 1992.

[58] L. Magnusson. The implementation of ALF: a proof editor based on
Martin-Lof's monomorphic type theory with explicit substitution. PhD thesis,
Department of Computer Science, Chalmers University, 1994.

[59] C. Mann. The connection between equivalences of proofs and cartesian closed
categories. Proceedings of the London Mathematical Society, 31:289-310, 1975.

[60] P. Martin-Li:if. lntuitionistic Type Theory, volume 1 of Studies in Proof Theory.
Bibliopolis, Naples, 1984.

(61] A.R. Meyer and M. Wand. Continuation semantics in typed lambda-calculi
(summary). In R. Parikh, editor, Logics of Programs, volume 193 of Lecture
Notes in Computer Science, pages 219-224. Springer-Verlag, 1985.

[62] C. Murthy. Extracting Constructive Contents from Classical Proofs. PhD
thesis, Cornell University, 1990.

[63] C. Murthy. An evaluation semantics for classical proofs. In Logic in Computer
Science, 1991.

[64] C.R. Murthy. A computational analysis of Girard's translation and LC. In
Logic in Computer Science, 1992.

51

BARTHE, RATCLIFF, SRENSEN

[65] C.R. Murthy. Control operators, hierachies, and pseudo-classical type systems:
A-translation at work. In ACM SIGPLAN Workshop on Continuations, 1992.

[66] H. Nakano. A constructive logic behind the catch and throw mechanism.
Annals of Pure and Applied Logic, 69(2-3):269-301, October 1994.

[67] R. Nederpelt, H. Geuvers, and R. de Vrijer, editors. Selected papers on
Automath, volume 133 of Studies in Logic and the Foundations of Mathematics.
North-Holland, Amsterdam, 1994.

[68] B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-Lof's Type
Theory. An Introduction. Number 7 in International Series of Monographs on
Computer Science. Oxford University Press, 1990.

[69] C.-H. L. Ong. A semantic view of classical proofs: Type-theoretic, categorical,
and denotational characterizations. In Logic in Computer Science, 1996. To
appear.

[70] C.-H.L. Ong and C.A. Stewart. A Curry-Howard Foundation for functional
computation with control. In Proceedings of POPL '91, pages??-?? ACM Press,
1997.

[71] M. Parigot. >.µ-calculus: An algorithmic interpretation of classical natural
deduction. In International Conference on Logic Programming and Automated
Reasoning, volume 624 of Lecture Notes in Computer Science, pages 190-201.
Springer-Verlag, 1992.

[72] M. Parigot. Strong normalization for second order classical natural deduction.
In Proceedings of LICS'93, pages 39-46. IEEE Computer Society Press, 1993.

[73] F. Pfenning. Elf: a meta-language for deductive systems. In A. Bundy, editor,
Proceedings of CADE-12, volume 814 of Lecture Notes in Artificial Intelligence,
pages 811-815. Springer-Verlag, 1994.

[74] A. Pitts. Categorical logic. Technical Report 367, University of Cambridge
Computer Laboratory, May 1995.

[75] A. Pitts and P. Dybjer, editors. Semantics and Logics of Computation.
Publications of the Isaac Newton Institute. Cambridge University Press, 1997.

(76] G. Plotkin. Call-by-name, call-by-value and the >.-calculus. Theoretical
Computer Science, 1:125-159, 1975.

[77] R. Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus
of Constructions. PhD thesis, University of Edinburgh, 1994. Available by
anonymous ftp from ftp. cs. chalmers. se in directory pub/users/pollack.

[78] G. Pottinger. Normalization as a homomorphic image of cut-elimination.
Archive for Mathematical Logic, 12:323-357, 1977.

[79] G. Pottinger. Strong normalisation for terms of the theory of constructions.
Technical Report TR 11-7, Odissey Research Associates, 1987.

52

BARTHE, RATCLIFF, SRENSEN

[80] D. Prawitz. Natural Deduction: A proof theoretical study. Almquist & Wiksell,
1965.

[81] D. Prawitz. Ideas and results of proof theory. In J.E. Fenstad, editor, The 2nd
Scandinavian Logical Symposium, pages 235-307. North-Holland, 1970.

[82] N.J. Rehof and M.H. S0rensen. The >.o. calculus. In M. Hagiya and J. Mitchell,
editors, Proceedings of TACS'94, volume 789 of Lecture Notes in Computer
Science, pages 516-542. Springer-Verlag, 1994.

[83] J.C. Reynolds. The discoveries of continuations. LISP and Symbolic
Computation, 6:233-248, 1993.

[84] E. Ritter, D. Pym, and L. Wallen. Proof-terms for classical and intuitionistic
logic (extended abstract). In M. McRobbie and J. Slaney, editors, Proceeedings
of CADE'96, volume 1104 of Lecture Notes in Artificial Intelligence, pages ??­
??' 1996.

[85] R. Seely. Modelling computations: A 2-categorical framework. In Proceedings
of LICS'87, pages 65-71. IEEE Computer Society Press, 1987.

[86] J.P. Seldin. On the proof theory of the intermediate logic MH. Journal of
Symbolic Logic, 51(3):626-647, 1986.

[87] J.P. Seldin. Normalization and excluded middle. Studia Logica,
XLVIII(2):193-217, 1989.

[88] J.P. Seldin. On the proof theory of Coquand 's calculus of constructions. Annals
of Pure and Applied Logic, 83(1):23-101, 6 January 1997.

[89] N. Shankar, S. Owre, and J.M. Rushby. The PVS Proof Checker: A Reference
Manual. Computer Science Laboratory, SRI International, Menlo Park, CA,
February 1993. A new edition for PVS Version 2 is expected in late 1996.

[90] G. Stal.marck. Normalization theorems for full first order classical natural
deduction. Journal of Symbolic Logic, 56(1):129-149, 1991.

[91] M. Stefanova and H. Geuvers. A simple set-theoretic semantics for the
Calculus of Constructions. In S. Berardi and M. Coppo, editors, Proceedings
of TYPES'95, volume 1158 of Lecture Notes in Computer Science. Springer­
Verlag, 1996.

[92] Th. Streicher. Semantics of Type Theory. Correctness, Completeness and
Independence results. Progress in Theoretical Computer Science. Birkhauser,
1991.

[93] J. Terlouw. Strong normalization in type systems: a model theoretic approach.
Annals of Pure and Applied Logic, 73(1):53-78, May 1995.

[94] H. Tonino and K. Fujita. On the adequacy of representing higher order
intuitionistic logic as a pure type system. Annals of Pure and Applied Logic,
57(3):251-276, June 1992.

53

BARTHE, RATCLIFF, SRENSEN

[95] A. Ungar. Normalization, c'u.t-elirn'ination and the theory of proofs. Number 28
in Lecture .'.'Jotes. Center for the Study of Language and Information, Stanford,
CA., 1992.

[96J J. van Heijenoort, editor. From Frege to Godel: A Source-Book in Mathematical
Logic, 1879-1981. Harvard University Press, 1967.

[97] B. Werner. Continuations, evaluation styles and types systems. Manuscript,
1992.

[98] J. Zucker. The correspondence between cut-elimination and normalization.
Archive for Mathematical Logic, 7:113--155, 1974.

54

(axiom)

(start)

(weakening)

(product)

(application)

(abstraction)

(conversion)

BARTHE, HATCLIFF, SRENSEN

r 1-J A: s

r, x : A 1-J :r: : A

r 1-J A : B r 1-.1 c : s
r, x: C 1-.1 A: B

r 1-J A : 81 r, x : A 1-J B : 82

r 1-J (Ilx: A. B) : s3

r 1-J F : (IIx: A. B) r 1-J a : A

r 1-J Fa:B{x:=a}

r, x : A 1-J b : B r f-J (IIx: A. B) : s

r 1-J >.x:A.. b: ITx:A.. B

r 1-J A : B r 1-J B' : s

r 1-J A : B'

Fig. 14. PURE TYPE SYSTEMS

55

if x tJ. r

if x tJ. r

if B =fJ B'

(axiom)

(start)

(weakening)

(product)

(application)

(abstraction)

(conversion)

BARTHE, HATCLIFF, SRENSEN

r 11-1 A: 8

f,x:A lf-1 x:A

r 1r-1 A : B r 1r-1 c : 8

r, x: C lf-1 A: B

r lf-1 A: 81 r, x: A lf-1 B : 82

r lf-1 (Ilx: A. B) : s3

r lf-1 F: (ffi:::A. B) r lf-1 a: A

r lf-1 Fa: B{x :=a}

r, x : A lf-1 b : B r lf-.l (Ih: A. B) : s

r 11-1 >.x.b: Ilx: A. B

r If-.] A : B r lf-1 B : 8 r lf-1 B' : s

r 11-1 A : B'

Fig. 15. DOMAIN-FREE PURE TYPE SYSTEMS

56

if x rt r

if x rt r

if B =!!_ B'

