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Abstract 

We present a notion of classical pure type system, which extends the formalism of 
pure type system with a double negation operator. 

1 Introduction 

It is an old idea that proofs in formal logics are certain functions and objects. 
The Brower-Heyting-Kolmogorov (BHK) interpretation [15,51,40], in the form 
stated by Heyting [40], states that a proof of an implication P --+ Q is a "con­
struction" which transforms any proof of P into a proof of Q. This idea 
was formalized independently by Kleene's realizability interpretation [46,47] 
in which proofs of intuitionistic number theory are interpreted as numbers, by 
the Curry-Howard (CH) isomorphism [21,43] in which proofs of intuitionistic 
implicational propositional logic are interpreted as simply typed ,\-terms, and 
by the Lambek-Lawvere (LL) isomorphism [52,55] in which proofs of intuition­
istic positive propositional logic are interpreted as morphisms in a cartesian 
closed category. In the latter cases, the interpretations have an inverse, in 
that every simply typed >.-term or morphism in a cartesian closed category 
may be interpreted as a proof; hence the name "isomorphism". Moreover, 
both interpretations preserve the semantics of the deductive systems, in that 
proof normalization in logic corresponds exactly to /)-reduction in ,\-calculus 
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[78,98] and proof equivalence in logic corresponds exactly to equality between 
morphisms in a cartesian closed category [53,59]. 1 

The Curry-Howard and Lambek-Lawvere isomorphisms have come to play 
an important role in the area of logic and computation. Both have been 
generalized to systems of an increasing complexity -see e.g. [6,25,30,60,67,94] 
for the Curry-Howard isomorphism and [44,74,75,92] for the Lambek-Lawvere 
isomorphism- and have been used in a large number of applications. For 
example, the Curry-Howard isomorphism has been exploited in the use of 
type theory as a framework for reasoning and computation [16,17,56,68] and 
in the design of proof-development systems [8,19,33,57,58,73,89]. Yet and 
quite significantly, both isomorphisms have until the late 1980's invariably 
been studied in relation with intuitionistic logics. 2 

At that time Griffin [34] realized that Felleisen's control operator C [28,29] 
could be meaningfully added to the simply typed >.-calculus by typing C with 
the double negation rule [81,87,90] -hereafter we refer to Felleisen's calculus 
as the >.C-calculus and to Griffin's system as the simply typed >.C-calculus. 
Moreover, Griffin showed that the reduction rules for C were closely related 
to classical proof normalization as studied by Prawitz [81], Seldin [86,87], 
and Stalmarck [90]. Griffin's discoveries were followed by a series of papers 
on classical logic, control operators and the Curry-Howard isomorphism, see 
for example [3,4,18,24,42,62-66,69-72,82]. Most of these works introduce one 
typed classical >..-calculus, i.e. a typed >.-calculus enriched with control oper­
ators, and study its properties with respect to e.g. normalization, confluence 
and categorical semantics or its applications to e.g. classical theorem proving 
and witness extraction. However, none of the typed classical >..-calculi pro­
posed so far seems to have achieved a status of universality similar to that of 
the ordinary typed >.-calculus and the question of finding "the classical typed 
>.-calculus" still remains an area of active investigation. 

In a different line of work, some works considered generalizing classical 
>.-calculi to more powerful systems such as polymorphic >.-calculus or higher­
order >.-calculus. Remarkably, this question has so far only been addressed in a 
few specific cases, e.g. for the second-order type assignment system by Parigot 
[71,72], ML by Duba, Harper and MacQueen [27] and later by Harper and 
Lillibridge [38] and Girard's higher-order polymorphic >.-calculus by Harper 
and Lillibridge [37]. 3 Nevertheless, the central claim of this paper is that 

1 There is no notion of reduction associated to a cartesian closed category. Hence the LL 
isomorphism only reflects the notion of proof equivalence. In order to reflect the notion of 
proof normalization, the notion of 2-category must be considered [85]. 
2 The skepticism towards a proof or categorical semantics of classical logic may be at­
tributed to a number of factors, two of which are mentioned below. In category theory, 
Joyal noticed that every bicartesian closed category in which A is isomorphic to -.-.A is 
degenerate [54]. In classical proof theory, Girard noticed that cut-elimination in classical 
sequent calculus was not confluent; different strategies for reduction gives different proofs 
in normal form, i.e. proof normalization involves an element of non-determinism [32]. 
3 Other calculi which have been considered in the literature include PCF [70], linear A-
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generalizing existing classical >..-calculi to complex type systems is of definite 
interest. 

(i) From a theoretical point of view, such an endeavour confronts the exist­
ing classical >.-calculi to the issue of uniformity. As a result, the analysis 
of a classical A-calculus is not hindered by any endemic feature of a spe­
cific type structure. One immediate advantage of such an analysis is to 
discriminate between endemic classical A-calculi, which are only mean­
ingful for a specific type discipline, and global classical A-calculi, which 
are meaningful for an arbitrary type discipline. 

(ii) From a practical point of view, such an endeavour allows to general­
ize the Curry-Howard isomorphism to powerful logics, such as classical 
higher-order predicate logic, and lays the foundations for the design of 
proof-development systems with a computationally meaningful classical 
operator. 

This paper presents a uniform framework for classical A-calculi. The central 
notion of this paper, classical pure type system (CPTS), is based on the no­
tion of pure type system [6,30,31] and offers a uniform formalism to define 
and study classical A-calculi. The formalism is minimal -e.g. its only type 
constructor is the generalized function space II- and yet allows for many inter­
esting observations. In particular, it may be used to study -for the first time 
it seems- dependently typed classical A-calculi such as the Classical Calculus 
of Constructions. 

Overview of the paper 
• Section 2: Preliminaries 

This section presents computational type systems (CTS), an hybrid no­
tion combining features of higher-order rewriting systems and type theories. 
Furthermore, we formulate in the framework of CTSs standard definitions 
stemming from the areas of higher-order rewriting [7,49] and type theory 
[6,56]. 

The notion of computational type system is introduced solely for its con­
venience; although it covers the type systems considered in this paper, it is 
not intended as a general framework for type theories. 

• Section 3: A notion of classical pure type system 
This section introduces the central notion of this paper, namely that of 

a classical pure type system. Classical pure type systems are introduced 
in a similar spirit as pure type systems. The first subsection is devoted 
to the definition of logical specification. Our definition is closely related, 
although not identical, to that of Coquand and Herbelin [20]. In the second 

calculus [14], >.-calculus with explicit substitutions [39,84]. Werner also considered -in 
unpublished work, 1992- a classical variant of non-dependent logical pure type systems; 
however his notion of reduction is extremely weak. 
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Framework 

Pure Type System 

Classical Pure Type System 

Domain-Free Pure Type System 

Type Theory Reduction 

Domain-Free Classical Pure Type System >.~S /3~ 

Fig. 1. BASIC NOTATION FOR TYPE THEORIES 

subsection, we specify some important classes of specifications that appear 
in the literature and are considered further in the paper. In the third sub­
section, we introduce the >.-cube [6] and the L-cube [30] as examples of 
specifications. These examples will be studied in some depth and will serve 
as running examples throughout the paper. In the fourth subsection, we 
define the notion of a classical pure type system: in a nutshell, a classical 
pure type system is a pure type system extended with a binding double 
negation construction ~x: A. M. Our notion is inspired by classical natural 
deduction as studied by Prawitz [80,81), Seldin [87] and Stalmarck [90]. In 
order to present the Continuation-Passing Style translation -see Section 5-
and analyze its behavior in a typed setting, it is convenient to introduce a 
variant of classical pure type systems, called domain-free classical pure type 
systems (DFCPTS), in which abstractions do not carry domain tags, i.e. are 
of the form .Ax.M and ~x. Jvf. This is done in the fifth subsection. The 
sixth and last subsection reviews the notions of pure type system (PTS) 
and domain-free pure type system (DFPTS). The purpose of this last sub­
section is mainly to fix terminology; properties of pure type systems and 
domain-free pure type systems may be found respectively in [6,30] and [11]. 

Remark 1.1 We consider fov.r different type-theoretic frameworks: pure 
type systems, classical pure type systems, domain-free pure type systems 
and domain-free classical pure type systems. Every specification S defines 
one type theory in each framework. The basic notation is given in Figure 1. 

• Section 4: Basic properties of classical pure type systems 
The notion of CPTS provides a general framework to define and study 

classical typed .A-calculi. This section establishes some basic syntactic prop­
erties of CPTSs: closure of derivations under substitution, subject reduc­
tion, uniqueness of types, decidability of type-checking. . . Besides we com­
pare CPTSs with DFCPTSs. In particular, we define an erasure map, which 
removes the domains of .A- and ~-abstractions, and prove that erasure pre­
serves derivability for functional specifications. Moreover, we also exhibit 
some anomalies of erasure with respect to ~-reduction. We isolate one spe­
cific anomaly, which we call the unorthodox behavior of ~-reduction, which 
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will cause the failure of syntactic techniques to prove strong normalization 
for CPTSs -see Section 6. 

• Section 5: Continuation-Passing Style Translation 
The Continuation-Passing Style (CPS) translation is a standard compilation 
technique for functional languages [2,22,83]. CPS translations were studied 
among others by Plotkin [76], who defined a CPS translation from type­
free >.-terms to type-free >.-terms, and by Felleisen et al. (29], who extended 
Plotkin's translation from type-free >.C-terms to type-free >.-terms. Gener­
alizing an earlier observation by Meyer and Wand [61] that Plotkin's CPS 
translation maps simply typed >.-terms to simply typed >.-terms, Griffin [34] 
noted that Felleisen's extended translation maps simply typed >.C-terms to 
simply typed >.-terms. He further showed that this translation, when viewed 
as a translation on proofs, becomes the Kolmogorov embedding of classi­
cal logic into minimal logic [50]. Murthy [18,62,63] and Griffin himself [35] 
later systematized these ideas by studying different logical embeddings, con­
trol operators, and CPS translations. More recently, CPS translations from 
classical typed >.-calculi to typed >.-calculi were studied by de Groote for 
>.µ [23] and ,\~n [24], by Duba, Harper and MacQueen for the monomor­
phic fragment of ML (MML) [27] and by Harper and Lillibridge for ML 
with polymorphism (PML) [38] and Girard's higher-order polymorphic >.­
calculus with control operators [37]. 

In the first subsection, we discuss some of the problems related to CPS 
translations for proof-relevant systems. Much of the discussion is taken 
from [10] where the authors develop CPS translations for logical PTSs and 
DFPTSs. 

In the second subsection, we define for every injective logical specification 
Sa CPS translation from >.b..S to ~S; the translation is inspired from [10]. 

In the third subsection, we use the correctness of the CPS translation 
to derive the consistency of a CPTS from that of its corresponding PTS. 
Then we generalize our technique to prove consistency of classical arithmetic 
from consistency of constructive arithmetic. It is possible to go beyond 
this specific example and develop some general results for establishing the 
consistency of contexts but, for the sake of brevity, we do not follow this 
path. 

• Section 6: Strong normalization 
As a further application of the CPS translation, Griffin (34] used the trans­
lation to infer weak normalization of simply typed ,\C-terms from strong 
normalization of simply typed ,\-terms. Analogous results were later ob­
tained using a similar argument by de Groote for Parigot's ,\µ-calculus [23], 
by Duba, Harper and MacQueen for MML [27], and by Harper and Lil­
libridge for PML [38] and higher-order >.-calculus [37]. Other authors were 
also able to deduce strong normalization of a classical ,\-calculus from strong 
normalization of simply typed >.-calculus: Rehof and S0rensen for >.~ [82] 
and de Groote for >.~n [24]. 

5 
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In the first part of this section, we use the CPS translation to derive a 
normalization result for DFCPTSs. More precisely, we prove that a DFCPTS 
is ,8.6.-strongly normalizing provided its corresponding DFPTS is B-strongly 
normalizing. -

In the second part of this section, we consider the possibility of scaling 
up the result to CPTSs. It is easy to establish ,B.6.-strong normalization for 
a proof-irrelevant CPTS as a consequence of ,B-strong normalization for its 
corresponding PTS. Unfortunately, it is not possible to apply the technique 
directly to proof-relevant CPTSs. We analyze this negative result and locate 
its cause as the unorthodox behavior of .6.-reduction. 

In the third part of this section, we turn to standard proof techniques for 
strong normalization. Specifically, we present a general model construction 
which is based on saturated sets and which may be used to derive .B.6.-strong 
normalization for a large class of CPTSs including e.g. the Classical Calcu­
lus of Constructions. Along with the construction we present a sufficiency 
criterion for the model to be well-defined. Both the model and the criterion 
are inspired from previous work by Z. Luo [56] and J. Terlouw [93] on prov­
ing strong normalization for the Extended Calculus of Constructions and 
>.IT-type systems respectively. 

In the fourth part of this section, we consider yet another standard proof 
technique for strong normalization, namely the technique of reduction­
preserving mappings. More precisely, we examine the Harper-Honsell-Plotkin 
translation (36] from -the PTS core of- Edinburgh's Logical Frameworks 
to simply typed >.-calculus and the Geuvers-Nederhof translation [31] from 
Coquand's Calculus of Constructions to Girard's higher-order >.-calculus. It 
turns out that these translations lift to the framework of DFCPTSs but not 
to that of CPTSs. In the latter case, this failure is once more due to the 
unorthodox behavior of .6.-reduction. 

• Section 7: Classical Pure Type Systems as Logics 
This brief section collects some basic facts about the logical status of 

classical pure type systems. It is by no means a complete account of the 
logical properties of CPTSs. 

In the first subsection, we establish for impredicative and proof-irrelevant 
logical specifications, a correspondence between classical provability and 
intuitionistic provability by using the well-known encoding of classical logic 
as an intuionistic context. 

In the second subsection, we study the formulae-as-sets embedding. Once 
we view, as suggested above, the CPTSs of the L-cube as "the"classical logics, 
the embedding may be studied from a purely type-theoretical standpoint: 
as the homomorphic extension of a suitable morphism of specifications from 
the systems of the L-cube to the systems of the >.-cube. We prove that the 
embedding is sound -typing is preserved by the translation- but incomplete 
for the predicate logics- typing is not reflected by the translation. 

In the third subsection, we prove that the Classical Calculus of Construe-
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tions >..tJ..C is proof-relevant, thus generalising a result of [88,91]. 

• Section 8: Issues and related work 

The first part of the paper -Sections 3 to 6- is exclusively concerned with 
properties of classical pure type systems and lacks of any consideration as to 
the design of classical pure type systems. In this section, we discuss design 
issues for classical >.-calculi and propose some alternative frameworks for 
classical pure type systems. 

In the first subsection, we discuss the possible formats for classical clas­
sical natural deduction and the corresponding choices for the syntax of 
terms. Moreover, we discuss the relationship between our notion of CPTS 
and Prawitz's classical natural deduction. In the second subsection, we 
consider the issue of reduction, which is undoubtedly one of the least un­
derstood aspects of classical >..-calculus. Rather than singling out a few set 
of reduction rules out of the dozens of existing ones, we suggest syntactical 
criteria upon which to classify the rules and isolate some of these criteria 
as fundamental for the theory of classical pure type systems. These criteia 
lead us to distinguish between two forms of reduction rules: principal rules 
which generate a notion of proof equivalence -or in more general terms 
definitional equality- and minor rules which do not -typically, such rules 
involve an element of non-deterministic choice which causes the failure of 
confluence. As it will appear, this separation combines the advantages of 
'well-behaved' and 'powerful' classical >..-calculi by having on the one hand a 
well-behaved principal reduction relation and on the other hand a powerful 
minor reduction relation. The distinction turns out to be especially handy 
in specific applications, such as witness extraction. 

In the third subsection, we briefly discuss related work. 

2 Preliminaries 

The first subsection introduces some basic terminology for binary relations and 
is mostly taken from [48]. The second subsection is devoted to computational 
type systems. 

2.1 Relations 

Throughout this subsection, we let X denote an arbitrary set and R, S de­
note binary relations over X. Elements of X are called objects. We use the 
following notation. 

Definition 2.1 

• R.S denotes the composition of R and S. 

• R 0P denotes the inverse of R. 

o -1-n denotes fhe relation nw • (J?0P)W. 

7 
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• The closures of 'R are denoted as follows -where R stands for reflexive, S 
for symmetric and T for transitive, C for closure: 

Notion 

Notation 

TC 

n+ 
RTC RSTC 

Some of the relations will written as -+i, in which case we use a standard 
notation. In particular, we use -+ij to denote the union of two relations -+i 
and -+j and write -i instead of -+'i, =i instead of=-+;, and {i instead of.}-+;. 

We also introduce some standard properties of relations. 

Definition 2.2 

• A relation 'R is locally confluent if 'Rop · 'R <;;..J-n.. 

• A relation 'R is confluent if =n<;;.J,,n.. 

• An object a is normal with respect to a relation 'R if there is no b s.t. a'Rb. 

• An object a is weakly normalizing with respect to a relation n if there is a 
normal object b s.t. a'Rwb. 

• An object a is strongly normalizing with respect to a relation 'R if there is 
no infinite reduction sequence a'Ra''R ... 

The sets of normal, weakly normalizing and strongly normalizing objects ( w. r. t. 
'R) are denoted by NFn, WNn., SNn.. 

2. 2 Computational type systems 

In order to deal uniformly with various A-calculi, we introduce the notion 
of computational type system. The notion combines features of higher-order 
rewriting systems [49] and of abstract type systems [11]. 

Definition 2.3 A computational type system is a 7-tuple 

'JI'= (V, S, C, 'D, F, 'Y, 1-) 

such that: 

• V, S, C, 'D and F are disjoint sets. Elements of V, S, C, 'D and F are 
respectively called variables, .sorts, con.stants, domain-specified quantifiers 
and domain-free quantifiers; 

• the set U of pseudo-terms is given by the abstract syntax 

u = v Is I c I uu I dV: u. u I fV. u 

• / <;;_ U x U is a notion of reduction; 

• I-<;;_ List(V x U) x U x U is the derivability relation. 

Elements of List(V x U) are called contexts; elements of List(V x U) x U x U 
are called judgements. 

8 
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Throughout the paper, we adopt the following conventions . 

• We write r I- L}. with L}. = :r1 : Ai, ... 'Xn : An if r 11-J Xi : Ai for 
i = 1, ... , n. 

• We writer I- 1\:l: A: B for r 1-- M: A and r I- A: B. 

Computational type systems allow us to introduce in a generic way standard 
notions from higher-order rewrite systems and type theories. 

2.2.1 Notions related to terms and reduction 
We first define the notion of strict subterm. 

Definition 2.4 The subterrn relation <J is defined inductively as follows: 

• M <1 MN and N <JM N; 

• M <1 dx : A . .i\1 and A <J dx : A.A1; 

• M <1 fx.M; 

• if M <J N and N <J P, then lvl <1 P. 

If Jvl <JN, then A1 is a subterm of N. 

Next we define the notion of free and bound variables. 

Definition 2.5 The sets FV(Af) and BV(M) of free variables and bound 
variables of a pseudo-term 1v1 are defined inductively as follows: 

FV(x) = {x} 

FV(s) = 0 

FV(c) = 0 

FV(1'vf N) = FV(lvl) U FV(N) 

FV(dx: A. AI)= FV(A) U (FV(M) \ {x}) 

FV(fx. lvl) = FV(M) \ { x} 

BV(x) = r/J 

BV(s) = r/J 

BV(c) = r/J 

BV(M N) = BV(M) u BV(N) 

BV(dx: A. M) = BV(A) U BV(l'vf) U {x} 

BV(fx. M) = BV(M) U {x} 

For reasons of hygiene, we adopt Barendregt 's convention and assume that 
FV(M) n BV(M) = r/J for every pseudo-term Jvl. Substitution is defined in the 
usual, capture-avoiding, way. 

Definition 2.6 Let M, N E U and let x E V \ BV(M). The pseudo-term 

9 
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M { x : = N} is defined inductively as fallows 

x{x := N} = N 

y{x := N} = y 

s{x := N} = s 

(P Q){x := N} =: (P{x := N}) (Q{x := N}) 

(dy: A. P){x := N} =: dy: (A{x := N} ). (P{x := N}) 

(fy. P){x := N} =: fy. (P{x := N}) 

provided y E V and y ~ x 

for s ES UC 

Each computational type system has a reduction relation, which is ob­
tained from its notion of reduction in the usual way. 

Definition 2. 7 The reduction relation --t7 is defined as the compatible closure 
of"(, i.e. as the smallest relation s.t. for every M, M', NEU 

(M, M') E 'Y ~ M --t,, M' 
M --t,, M' ~ M N --t7 Jvl' N 

M --t,, M' ~ N M --t,, N M' 
M --t,, M' ~ dx : N. M --t,, dx : N. M' 

M --t,, M' ~dx: M. N --t,, dx: M'. N 
M --t,, M' ~ fx.M --t,, f x.M' 

2.2.2 Notions related to typing 
We turn to type-theoretic notions, in particular to the notion of legality. 

Definition 2.8 

• A judgement (r, M, A) is legal if r I- M: A. 

• A context r is legal if r I- M : A for some M and A. 

• A pseudo-term M is legal if r I- M : A or r I- A : M for some r and A. 

One can also define specific classes of pseudo-terms. 

Definition 2.9 

• A pseudo-term M is a s-type in context r with s E S if r I- M : s. 

• A pseudo-term M is a s-term in context r with s E S if r f- M : A and 
r 1- A : s for some pseudo-term A. 

• A pseudo-term M is a s-type if it is a s-type in context r for some context 
r. 

• A pseudo-term M is as-term if it is as-term in context r for some context 
r. 

• A pseudo-term M is a type if it is as-type for some sorts. 

10 
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The next definition is concerned with normalization properties of legal 
terms. 

Definition 2.10 1' is 

• normalizing, notation 1' I= WN, if M E WN"I for every legal M; 

• strongly normalizing, notation 'JI' I= SN, if M E SN"! for every legal M; 

• type-normalizing, notation 1' I= WN(type), if ME WN"I for every type A!f; 

• type-strongly-normalizing, notation 1' f= SN(type), if M E SN"! for every 
type M. 

2.2.3 Morphisms of computational type systems 
This subsubsection is devoted to technical definitions which will be used in 
Section 7. Its reading may be postponed until that point. 

First, we define the notion of morphism of computational type systems. 
There are many possible definitions. Here we only need a very simple one. 

Definition 2.11 Let 'IT'i = (V, Si, C, V, :F, "f, f-) be a computational type sys­
tem (i = 1, 2). A morphism from 1'1 to 1'2 is a map 1-1 : S1 --+ S2. 

Every morphism induces in the obvious way a map on pseudo-terms, con­
texts and judgements. By abuse of notation, we let l·I denote these maps. 

Definition 2.12 A morphism l·I of computational type systems is: 

• sound if for every context r and pseudo-terms M and A 

r h M : A * If! f-2 IMI : IAI 

• complete w.r.t. s ES if for every context r and pseudo-terms N and A 

fhA:s } 

If! f-2 N: IAI 

If 51 ~ 52 and 1-1 is the identity, we say that 1'2 is conservative over 1'1 w.r.t. 
s. 

The next lemma collects some basic facts concerning complete morphisms. 

Lemma 2.13 

(i) The identity morphism attached to a computational type system is com­
plete. 

(ii) The composition of two complete morphisms is complete. 

(iii) If H' o H is a complete morphism and H' is sound, then H is complete. 

11 
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mtww; £ ::::: .r1 : I:.;. i·1 : .'<u.ch that 

• £ 1 ::: .t : £ 1 ••••• i·, : nm ff.rt: 

• if E' f- A : . .;; many k s.t. 

We write E I· :A f- : A. 

we t lH· not ion 
a suitable critt:>rion 

Definition 2.15 

• Lrt E 
n 2: 0, 
E 

an erwimmru·11t. A ;\! i8 an £-prototype if 

• A 

s E S Pi ..... P" E T 8.t. E 1-- .U P1 : s. 
£-Proto. 

-<f on 
E 

for every 

3 A notion of classical pure type system 

exi.~tB 

sd of 

E. 

The dt>sign of a classical ,\-calculus supposes many choices. Rather than trying 
to discuss each choice here. we limit ourselves to giving the definition of a 
notion of classical pure type systrm and postpone -in as much as possible­
dw discussion until Section 8. 

3.1 

Specifications an' tupl1•s expressing certain dependenciE's and are used to gen­
erate t,vpe systt'ms. In onr cas1>. specifications come equipped with a distin-
guished sort propol'litions. 

Definition 3.1 A logical spPcifkation S 'is a qua<lr'uf!le (S, Prop, A, R) where 

• S is a set sorts Prop E 

• A C::: S x S is the set axioms: 

• R <;;;. S x S x S is set 

12 
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satisfying the following properties: 

• Property 1: (Prop, Prop, Prop) ER; 

• Property 2: all the rules involving Prop are of the form (s, Prop, Prop) or 
(Prop, si, s1); 

• Property 3: there is no sorts for which (s, Prop) EA; 

• Property 4: there is a sorts for which (Prop, s) E A. 

As usual, rules of the form (s1, s2, s2) are abbreviated as (s1, s2). 

The meaning of a specification may be intuitively explained as follows: 
Prop stands for the universe of propositions. The other sorts are the possible 
universes in which non-propositional types -to be thought e.g. as sets- may 
live. Axioms correspond to basic assumptions which determine the belonging 
of a certain sort to a certain universe. This is reflected in the deductive 
system of classical pure type systems through the (Axiom) rule. For example, 
Property 3 ensures that no universe inhabits Prop whereas Property 4 implies 
the existence of a universe for which Prop is an inhabitant. Finally, the rules 
indicate which products may be formed. For example, Property 1 states that 
it is possible to define from two propositions A and B the proposition A---"* B. 

Remark 3.2 Our notion of logical specification is closely related but not iden­
tical to the notion of logical specification in {20}. The latter notion requires 
the specification to be functional -see Definition 3. 2- and more importantly 
does not require Property 2. However, {20] mainly focuses on proof-irrelevant 
specifications -see Definition 3.3 below-, which occur as special cases of log­
ical specifications. Property 4, which also occurs in Coquand and Herbelin's 
definition, ensures that variables inhabiting Prop may be introduced. It is only 
needed in Section 5. 

Definition 3.3 A logical specification S = (S, Prop, A, R) is proof-irrelevant 
if for every (s1, s2, s3) E R we have s1 f. Prop or s2 = s3 = Prop. 

We close this section with the definition of top-sort. 

Definition 3.4 A sort s E S is a top-sort if there is no s' E S s. t. ( s, s') E A. 
The set of top-sorts is denoted by ST. 

3.2 Classes of specifications 

Throughout the paper, we will consider various classes of specifications. These 
are defined below. 

Definition 3.5 A logical specification (S, Prop, A, R) is: 

• functional if for all s1, s2 , s, s' ES, 
(s1,s)EA A (si,s')EA:::} s=s' 

· (s1, s2, s) ER A (s1, s2, s') ER :::} s = s' 
13 
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• injective if it is functional and for all s 1 , s;~, s, s' E S 
· (s, si) EA A (s', s1) E A => s = s' 
· (si,s,s3)ER A (s1,s',s3)ER => s=s' 

• proof-irrelevant if there is no rule (Prop, s) with s :f=. Prop. 

The notion of functional specification ensures that a term has at most one 
type in a given context --see Lemma 4.13- whereas the notion of injective 
specification allows for a characterization of the terms of a given universe -
see Propositions 4.18 and 4.19. The notion of proof-irrelevant specification 
ensures that only proofs --i.e. inhabitants of inhabitants of Prop-- may depend 
on proofs. 

3. 3 Examples of specifications 

In [5], Barendregt gives a fine-grain analysis of the Calculus of Constructions in 
form of the ,\-cube whereas in [30], Geuvers defines the logic cube (or L-cube) 
which represents some of the most important logics. 4 

Definition 3.6 The ,\-cube and L-cube specifications are given in FigiLre 2 
and Figure 3 respectively. The /\- and L-cube are depicted in Figure 4. 

Note that the L-cube specifications are proof-irrelevant. The correspon­
dence between specifications of the ,\-cube, L-cube and logics is given in Fig­
ure 5. The nature and significance of the correspondence are discussed -for 
the constructive case-- in [6,13,30,94]. See also Section 7. 

3.4 Classical pure type systems 

In this section, we let S = (S, Prop, A, R) be a logical specification and define 
its induced classical pure type system. The set of terms is built from the usual 
constants (sorts, variables) and constructions (,\-abstraction, II-abstraction, 
application) as well as from a new constant J_ for falsum and an extra binding 
double negation construction .6. -see Section 8. 

Definition 3. 7 Let V be an infinite set of variables. The set of pseudo-terms 
is given by the abstract syntax 

T = v I s I J_ I TT I XV: T T I IIV: T. T I .6. V: T. T 

As usual, A--+ B is used to denote IIx:A.. B when x r:f_ FV(B). Moreover we 
write --,A for A --+ __l. 5 

4 Closely related logic cubes have been proposed independently by Barendregt [6] and 
Berardi [13]. 
5 The first convention will also apply to all the systems considered in this paper. The second 
convention applies also to domain-free classical pure type systems and to pure type systems 
and domain-free pure type systems when working in a context of the form J_ : Prop, r. 

14 
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Sorts: *,D 

Prop * 

Axioms: *: D 

Rules: 

-+ (*, *) 

2 (*, *) (D, *) 

~ ( *, *) (D, D) 

w (*,*) (D, *) (D,D) 

p (*, *) (*, D) 

P2 (*, *) (D, *) (*, D) 

p~ (*, *) (*, D) (D,D) 

Pw=C (*, *) (D, *) (*, D) (D,D) 

Fig. 2. THE A-CUBE SPECIFICATIONS 

Sorts: *P, *8 , DP, 0 8 

Prop *P 

Axioms: *P : OP, *s : D 8 

Rules: 

PROP (*P, *P) 

PROP2 (*P, *P) 

p ROP<::l_ (*P, *P) 

PROPw (*P, *P) 

PRED (*P, *P) 

PRED2 (*P, *P) 

PREDw (*P, *P) 

PREDw (*P, *P) 

(OP, *P) 

(OP, DP) 

(DP, *P) 

(*s, DP) 

( *8, OP) 

( *s, OP) 

(*s,DP) 

(DP, OP) 

( *8, *s) (*s, *P) 

( *s 1 *S) (*s, *P) (DP, *P) 

(*s,*s) (*s, *P) (DP, DP) 

( *8, *s) (*s,*p) (DP, *P) 

Fig. 3. THE L-CUBE SPECIFICATIONS 

15 
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PROPw~~~~~---PREDw 

/ / 
PROP2 PRED2 

PROP~~~~1~~---PRED~ 

/ / 
PROP PRED 

Fig. 4. PICTURE OF THE CUBES 

PROP --+ first-order propositional logic 

PROP2 2 second-order propositional logic 

PROP~ ~ weak higher-order propositional logic 

PROPw w higher-order propositional logic 

PRED p first-order predicate logic 

PRED2 P2 second-order predicate logic 

PRED~ p~ weak higher-order predicate logic 

PREDw c higher-order predicate logic 

Fig. 5. CORRESPONDENCE BETWEEN A-CUBE SPECIFICATIONS, l-CUBE SPECIFICATIONS 

AND LOGICS 

One of the main difficulties in trying to define a notion of classical pure 
type system is to choose a notion of reduction for the 6.-operator. We take 
a minimalist approach and consider a single rule which makes applications of 
double negation atomic. The rule is inspired from normalisation procedures 
for classical natural deduction [80,81,87,90] and occurs in the majority of re­
duction systems for control operators, see for example [28,29]. For further 
discussion on the definition of reduction, see Section 8. 
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Definition 3.8 

• The notion of reduction f3 is defined by the contraction rule 

(>.x:A. b) c ~/3 b{x := c} 

• The notion of reduction 6. is defined by the contraction rule 

Finally, we define the derivability relation for classical pure type systems. 

Definition 3.9 

• The relation r r A. : B is defined by the rules of Figur-e 6. 6 

• The classical pure type system >.6.S is the computational type system 

(V, S, { .l }, {>.,II, 6.}, 0, (36., r) 

3. 5 Domain-free classical pure type systems 

In this section, we define a variant of classical pure type system, called domain­
free classical pure type systems, in which abstractions come without domain 
tags. So let S = (S, Prop, A, R) be a logical specification and let V be an 
infinite set of variables. 

Definition 3.10 

• The set of pseudo-terms is given by the abstract syntax 

T = v Is I J_ I TT i >-V.T I IIV:T. TI 6.V. T 

• The notion of reduction ,3 is defined by the contraction rule 

(>.x.b) c ~.B b{x := c} 

• The notion of reduction 6. is defined by the contraction rule 

(6.x. a) b ~.6. 6.y. a{x := >.z.y (z b)} 

• The relation r If-- A : B is defined by the rules of Figure 7. 

• The domain-free classical pure type system ).6.S is the computational type 
system 

(V, S, {.l}, {II}, {A6.}, (36., If-) 

The unusual conversion rule is adopted to enforce the Classification Lemma 
-see Propositions 4.18 and 4.19. 

6 Strictly speaking, we should write f-s rather than f-. However, the subscript is dropped 
in order to avoid clutter and will only be used when there is a risk of confusion. 

17 
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<>I- 1- : Prop 

<>I- 81 : S2 

rl-A:s 
r,x:Al-x:A 

rl-A:B r i- c: s 
r,x:Cl-A:B 

r 1- A : s1 r, x : A 1- B : s2 

r I- (ITx: A. B) : s3 

r I- F : (ITx: A. B) r I- a : A 

r I- Fa: B{x :=a} 

r, x : A I- b: B r I- (ITx: A. B) : s 
r 1- .\x:A. b: ITx:A. B 

(d bl . ) r, x : ·A I- b: 1- r I- A : Prop 
OU e negation r I- .6..x: •A. b : A 

(conversion) r I- A : B r f- B' : s 
r I- A: B' 

if (s1, s2) EA 

if x rt. r 

if x rt. r 

if B =13.t:. B' 

Fig. 6. DEDUCTIVE RULES FOR CLASSICAL PURE TYPE SYSTEMS 

3. 6 Pure type systems and domain-free pure type systems 

Every specification S generates both a pure type system and a domain-free 
pure type system. 

Definition 3.11 Let S = (S, Prop, A, R) be a pre-logical specification and let 
V be a fixed set of variables. 

18 
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<>II- l. : Prop 

r II-- A: s 
r, x: A II-- x: A 

r II- A : B r II-- c : s 
r,x:C II-- A:B 

r 11- A: s1 r, x : A 11- B : s2 

r II-- (Ilx: A. B) : s3 

r II- F : (IIx: A. B) r II-- a : A 

r II- Fa:B{x:=a} 

r, x : A II- b: B r II- (IIx: A. B) : s 

r II- >.x.b : Ilx: A. B 

(d bl . ) r, x: -,A II- b: l. r II-- A : Prop 
ou e negation A b A r 11- .u.x. : 

if x ~ r 

if x ~ r 

(conversion) r II-- A : B r II-- B : s r II-- B' : s .f B B' 
1 =(3t:;. r II-- A:B' 

Fig. 7. DEDUCTIVE RULES FOR DOMAIN-FREE CLASSICAL PURE TYPE SYSTEMS 

• The pure type system generated by S is the computational type system 

>.S = (V, S, 0, {>.,II}, 0, ,8, 1-J) 

where ,8 is defined as in Definition 3. 8 and 1-J is defined by the rules of pure 
type systems -see Figure 14, back page. The set of pseudo-terms of >.S is 
denoted by 7 J. 

• The domain-free pure type system generated by S is the computational type 

19 
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system 
~S = (\/, S, 0, {II},{..\},~, lf-J) 

where ~ is defined as in Definition 3.10 and lf-J is defined by the rules of 
domain-free pure type systems -see Figure 15, back page. The set of pseudo-­
terms of ~S is denoted by TJ. 

The main properties of pure type systems and domain-free pure type sys­
tems may be found respectively in [6,30] and [11]. 

4 Basic properties of classical pure type systems 

This section collects some basic results concerning CPTSs. Most results are 
as for pure type systems; it is therefore convenient to follow a pattern similar 
to that of [6, Section 5.2]. 

In the first subsection, we prove confluence of ,8.6.-reduction and deduce 
some of its most important consequences. In the second subsection, we es­
tablish some basic properties for arbitrary CPTSs. In the third subsection, 
we establish some further properties for specific classes of CPTSs. In the 
fourth subsection, we consider which of the previously established results ap­
ply to DFCPTSs. In the fifth subsection, we consider the relationship between 
CPTSs and DFCPTSs. Throughout this section and unless explicitly stated, 
S = (S, Prop, A, R) denotes a fixed logical specification. 

4.1 Confluence of /3.6. and appl-ications 

Reduction is closed under substitution. 

Lemma 4.1 

(i) G =13t>. H =? E{x := G} =f3t>. E{x := H}; 

(ii) E =13t>. F, G =13t>. H =? E{x := G} =f3t>. F{x := H}. 

Proof. 

(i) By induction on E. 

(ii) By induction on the derivation of E =f3.6. Fusing (i). 
0 

The following Proposition may be proved by several means. 

Proposition 4.2 (Confluence) The notion of reduction {3.6. is confluent. 

Proof. Using -for example- the technique of Tait and Martin-Lof. D 

The following consequences of confluence are often crucial, e.g. in proving 
subject reduction. 

Corollary 4.3 (Key Lemma) 
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• IIv: A.1. A.2 =fJt:;. IIv: A.'1. A; => A.1 =fJt:;. Ai, A2 =fJt:;. A; 

• s =f3b.. s' => s = s' 
4.2 Basic results for abritrary classical pure type systems 

Lemma 4.4 (Free Variables) If (x 1 : A.1, ... , Xn : An) 1- B: C then: 

(i) x 1 , ... , Xn are distinct; 

(ii) FV(B) U FV(C) ~ {x1, ... , .r:n}; 

(iii) (x 1 : A.1, ... , Xi-1 : Ai-i) I- Ai: s for each i = 1, ... , n. 

Proof. By induction on the derivation of (x 1 : A1, ... , Xn: An) I- B: C. D 

Lemma 4.5 (Start) If r is legal then: 

(i) r I- 81 : S2 for all (s1, s2) EA; 

(ii) r 1- l. : Prop; 

(iii) r I- x: A for all x: A Er. 

Proof. Since r is legal r 1- B : C for some B, C. Proceed by induction on 
the derivation of r I- B : C. D 

Lemma 4.6 (Transitivity) If 6. is legal then 

6.1-r /\ r1-A:B => 6.1-A:B 

Proof. By induction on the derivation of r I- A: B, using the Start Lemma.D 

Lemma 4. 7 (Thinning) If b.. ~ r are both legal then: 

r 1- A:B =>b.. I- A:B 

Proof. This follows from the Start Lemma and the Transitivity Lemma. D 

Lemma 4.8 (Substitution) 

r, x: A, 6. 1- B : C } 
=> f,b..{x:=a} I- B{x:=a}:C{x:=a} 

rl-a:A 

Proof. By induction on the derivation of r, x : A, b.. I- B : C. D 

The next lemma is useful to determine how a judgement can be derived 
and is used throughout the paper. 

Lemma 4.9 (Generation) 

(i) r I- l. : C => C =13t:;. Prop 

(ii) r I- s: C => 3(s, s') EA. C =flt:;. s' 
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(iii) r I- x: c =?- =is E S, D E T c =(:Jt,. D, x: DE r, r I- D: s 

(iv) r I- >.x:A. b: C =?- 3s ES, BET C =13c.. ITx:A. B,f,:r:: A I- b: 
B, r I- I1x: A. B: s 

(v) r I- .6..x:A. b: C =?- 3B E 7. C =8c. B,-iB := A,f,x: -iB I- b: J_,f 1-
B: Prop 

(vi) r I- I1x: A. B : C =?- 3(s1, s2 , s3) E R. C =13t::. s3, r f-- A : s1, r, x : A 1-
B: S2 

(vii) r I- Fa: C =?- 3x E F, A,B ET C =13t::. B{x := a},r I- F: l1x: 
A. B, r I- a: A 

Proof. By induction on the derivation of (i)-(vii) using the Thinning Lemma.D 

Lemma 4.10 (Correctness of types) 

r f-- A : B =?- B E ST v 3s E S. r I- B : s 

Proof. By induction on the derivation of r f-- A : B. D 

Proposition 4.11 (Subject and predicate reduction) 

(i) r I- lvf : A A A1 -+;Jc.. N =?- [ I- N : A 

(ii) r I- M : A (\ A -+13c,,. B =?- r I- M : B 

Proof. (ii) follows from (i) by Correctness of types. As for (i), we prove 
the following two statements by simultaneous induction on the derivation of 
r I- M: A: 

• M -+f3A N =?- r I- N: A 

• if r -+ 13 c,. .6.. =?- .6.. I- .i\1 : B 

\i\!e treat the first item in the case of an application when 

and N is obtained from l'vf by contracting the outermost .6..-redex, i.e. 

N = .6..y:-iA2{v := b}. a{x := >.z: (I1v:A1• A2 ). (y (z b))} 

So the last rule is 

r I- .6..x:-i(l1v:A1. A2)· a: (I1v:A3. A4) r I- b: A.3 r I- I1v:A.1. A2: s 

r I- (.6..x:-i(Ily:A1. A.2)- a) b: A4{v := b} 

It is convenient to introduce the notation et for C{ v := b }. We are to show 
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r f- N : A.1. By generation, we have 

Ilv:A1 .. 4.2 =13t::. Ilv:A.3. A.4 

r,x: ....,(Ilv:A1 . A2) f- a: .l 

r f- Ilv:A1. A2 : Prop 

r r- A1 : s1 

r, v : A1 1- A2 : s2 

with (s1, s2 , Prop) E R. By Property 2, s2 =Prop. By assumption, r f- b: As. 
By confluence, A1 =/3t::. A3 and A~ =/3t::. A1. Hence 

r 1- b: A.1 

r f- Ai: Prop 

(conversion) 

(substitution) 

(thinning, Property 1) r f- ....,Ai : Prop 

r,y:-,Atz:ITv:A 1.A2 I- y(zb) :.l (start, weakening, application) 

r, y: ....,A; f- .Az: (ITv:A 1• A.2 ). y (z b): ....,(Ilv:A.1. A.2 ) (abstraction, Property 1) 

r,y:-,A.; I- a{x:=.Az:(Ilv:A1.A2).(y(zb))}:.l (substitution) 

r I- N: A; (double negation) 

r 1- Al : s3 

r I- N: Al 

Proposition 4.12 (Consistency) 

(correctness of types) 

(conversion) 

>..SF WN/3t::. ==> VM E 7.• (f- M: .l) 

Proof. Define a trivially consistent context to be one of the form 

X1 : --,j_, ... 'Xn : ....,J_ 

0 

We prove that there is no pseudo-term M s.t. r f- M : .l for some trivial 
context r. 

Assume towards a contradiction that such a r and M exists. ·without loss 
of generality, one may assume that M is in normal form and is minimal, i.e. 
does not contain any subterm N s.t. f' I- N : .l for some trivially consistent 
context f'. M cannot be: 

• a variable because .l is not convertible with •.l; 

• a sort because .l is not convertible with a sort; 
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• 1- because 1- is not convertible with Prop; 

• a product because 1- is not convertible with a sort; 

• a .A-abstraction because 1- is not convertible with a II-term; 

• a .6.-abstraction because of the minimality of M. 

So necessarily M must be an application. Assume that M = lvf 1 M 2 . . . lvf n 

where A11 is not an application. For typability reasons, l'vf1 can only be a 
variable, a .A-abstraction or a .6.-abstraction; the last two cases are impossible 
because Af is in ;3.6.-normal form. So Af 1 is a variable . .'.'\ecessarily M1 occurs 
in the context and has type ...,J_ and hence n = 2 and A1 = J\11 A12. Therefore 
M2 is of type 1-, contradicting the minimality of M. D 

4.3 Basic results for specific classes of CPTSs 

4.3.1 Functional CPTSs 
In this Section, three properties are examined: Uniqueness of Types, Strength­
ening and Decidability of Type-Checking. Functionality is obviously crucial 
for the former property. As for the latter properties, it should be possible 
to eliminate the assumption of functionality by following an approach similar 
to [12] --however proofs become more involved. Throughout this section, S 
denotes a functional logical specification. 

Proposition 4.13 (Uniqueness of types) 

(i) r f-- 1'vf: B /\ r f-- Af : B' ==? B =13t::. B' 

(ii) r f-- M : B /\ r f-- Af' : B' /\ l\,f =(3t::. l'vf' ==? B =13t::. B' 

Proof. 

(i) By induction on M using generation and confluence. 

(ii) If M =f3t::. M' then by confluence there is an M" such that M -'1rf3t::. M" 
and M' -1rf3t::. M". By subject reduction r f-- M" : B and r f-- M" : B'. 
Hence by (i) B =13t;;. B'. 

0 

Proposition 4.14 (Strengthening) 

Proof. Prove by induction on the derivation off 1, x: A, f2 f-- b: B that 

r i, x : A, r 2 r- b : B } , 1., r L b B' ( ) 
==? 3B E T B -1r13t;,. B /\ 1' 2 I : * 

x r/. FV(f 2) U FV(b) U FV(B) 

Then assume f 1,x: A,f2 I- b: B. Use(*) to find B' s.t. f1,f2 l-b: B' with 
B -?rf3t::. B'. By Correctness of Types, either B E ST, in which case B = B' 
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and we are done, or f 1, x: A, f 2 f- B: s for some s ES. By ( *), f 1, f2 f- B: s. 
We conclude by applying the conversion rule. D 

Definition 4.15 

• The type-checking problem (TC) consists in deciding whether a given judge­
ment r f- Al : A is derivable. 

• The type-synthesis problem (TS) consists in deciding whether a pseudo­
term 1Vf has a type in a given pseudo-context r, i.e. whether there exists A 
s. t. r f- M : A is derivable. 

Decidablity of type-synthesis is especially useful for theorem proving. 

Proposition 4.16 (Decidability of type checking and type synthesis) 
If >..S f= Wf\'.at.. and both sets A and R are decidable, then TC and TS are de­
cidable. 

Proof. Define an algorithm tyr(M) which returns, when it exists, a type for 
l'vf in context r and returns t otherwise. The algorithm is given in Figure 8; 
it makes use of an auxiliary function leg(f) which checks whether a context is 
legal. More efficient algorithms can be derived, see [77]. D 

4.3.2 Injective CPTSs 
The central result of this section is a classification lemma for injective specifi­
cations. As usual with this kind of result, we partition the set of variables V 
as UsES vs in such a way that each vs is countably infinite and vs n vs' = 0 
for s =/=: s'. Moreover manipulate variables according to the rules: 

(start-s) 

( weakening-s) 

ff-A:s 
r, x: A f- x: A 

ff-A:B ff-C:s 
f,x:Cf-A:B 

if x (j. f and x E 1/8 

if x (j. f and x E ys 

Throughout this subsection, S = (S, Prop, A, R) is an injective logical specifi­
cation. Moreover, for every s E S, we defines+ as the unique (if it exists) sort 
s' s.t. (s, s') E A, s- as the unique (if it exists) sort s' s.t. (s', s) E A. The 
definition below gives a syntactic description of the classes of legal terms. 
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) { 
A if leg(r) and x : B E r for some B =13:::,. A 

tyr(x = 
t otherwise 

{ 
s' if leg(f) and (s, s') E A 

tyr(s) = 
t otherwise 

{ 
Prop if leg(r) 

tyr(l.) = 
t otherwise 

( ) { 
B{ x := N} if tyr(A1) ---»wh II:r: A. B and tyr(N) =13t::.. A 

tYr .lt1 N = 
t otherwise 

( ) { 
Ilx: A. B if tY(r x:A) (M) = B 

tyr .\x: A. Af = ' 
t otherwise 

( ) { 
S3 if (s1,s2,s3) E R,tyr(A)-wh s1andty(fx:A)(B)---»wh s2 

tyr II::r:: A. B = , 

t otherwise 

( ) {
A' if A= •A', tYr(A') ---»wh Prop and tyl',x:A(M) ---»wh l. 

tyr .6.x: A. M = 
t otherwise 

leg( 0) = true 

{ 
true if tyr(A) ---»wh s for some s E S and x fresh inf 

leg(r, x: A) = 
false otherwise 

Fig. 8. Type checking algorithm for functional normalising CPTSs 

Definition 4.17 Lets, s1, s2 , s3 range over sorts. 

Term 8 = \l5 

rrvs1 : Types1 .Types2 

.\V81 : Type81 .Term82 

Term 83 Term81 

l. 
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Ifs is not a top-sort, Types =Terms+. Otherwise, 

Types= s-IITV81 : Type81 .Type52 IF (s1, s2, s) ER 

Moreover, let Proof= TermProp and Form= TypeProp. 

The Classification Lemma shows that terms may be partitioned according 
to the sort of the types in which they can live. 

Proposition 4.18 (Classification 1) Let Txxx range over Term and Type 
and let s, s' be sorts. 

(i) Txxx8 is closed under reduction. 

(ii) s "¥= s' =? Txxx8 n Txx:xs' = 0 
=? s' rf_ T xxx8 (iii) s' E ST 

(iv) s' E ST =? Terms n Types' = 0 

Proof. First prove closure under substitution, i.e. for every s, s' E S, 

where Txxx is either Term or Type. Then prove the proposition. All proofs 
proceed by induction on the structure of Term8 and Type8 • D 

The next proposition shows that s-terms belong to Term 8 and s-types 
belong to T ype8 • 

Proposition 4.19 (Classification 2) Lets ES. 

(i) r f- M: A /\ r f- A: s =? ME Term 8 

(ii) r f- A : s => A E Type8 

Proof. Both statements are proved simultaneously by induction on the struc­
ture of derivations. D 

4.4 Properties of domain-free classical pure type systems 

Domain-free classical pure type systems are not the main focus of this paper 
so we limit this section to some brief comments. All the results in Subsection 
4.2 and Subsubsection 4.3.2 hold for DFCPTSs. In the latter case we must 
however be careful with variables and require the name of bound variables to 
be relevant. In particular, we require a-conversion to replace variables in vs 
by variables in vs. The results of Subsubsection 4.3.1, Uniqueness of Types 
and Decidability of Type Checking, do not apply [11]. 

We close this subsubsection by examining the relationship between CPTSs 
and DFCPTSs. Let S be a functional logical specification. 
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Definition 4.20 The erasure map I-\ : T --+ T is defined as follows: 

\xl=x 
IJ..I = J.. 
\s\ =s 

\t ui = it\ \ul 
\ . .\x: A.ti = ..\x.iti 
\6.x: A.tl = 6.x.\t\ 

\IIx : A.B\ = IIx: \A.\.\B\ 

Erasure preserves reduction, equality and typing: 

Proposition 4.21 

(i) J\1 -+f3A N :::? 

(ii) M =!Jc, N :::? 

(iii) r I- M : A :::? 

\M\ -»µ 6 \NI 
IJV1\ ={Jb. \N\ 
if! If- \J\11 : \Al 

Proof. First prove by induction on M that 

IM{x := N}I = \A1l{x := \N\} 

Then prove (1) using ( *) by induction on the structure of A1, (2) by induction 
on the derivation of JVI =f3 N and (3) by induction on the derivation of r 1-
M: A, using(*) and 2. 0 

Note that the proposition does not hold immediately for non-functional 
specifications because of the conversion rule for DFCPTSs. 

Erasure, as defined above, does not preserve infinite reductions because re­
dexes occuring in the domain of..\- and 6.-abstractions are lost during erasure. 
In the case of pure type systems, it is possible to define a modified erasure 
map I· lk that preserves reductions: it is done simply by extending domain-free 
pseudo-terms with a new construction K M N whose rewrite behavior is given 
by K x y --+" x and by modifying the inductive case for ..\-abstractions into 

Unfortunately, the idea does not scale up to CPTSs. 

Definition 4.22 

• The set W is defined as follows: 

w = v Is I J_ I WW I ..\V.W I 6.\l. w I IlV:W. w I K w w 

• The notion of reduction K, is defined by the contraction rule 

K x y --+" x 
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• The modified erasure map 1-lk: T --t W is defined as follows: 

lxlk=X 
IJ_lk = J_ 

lslk =s 
It ulk = ltlk lulk 

l>.x: A.tlk = K (>.x.lt!K) IAlk 
l.6x: A.tlk = K (.6x.lt1K) IAlk 

IIIx: A.Elk= IIx: IAlk·IBlk 

Modified erasure preserves [')-reductions but not .6-reductions. 

Lemma 4.23 

• M ---1-(j N :::} IMlk -t>f!_K I Nik 

• M --tA N :::} l2\1lk-t>AK INlk 

Proof. The first item is proved by induction on the structure of the terms. 
For the second item, note that the translation of a .6-redex does not reduce 
to the translation of its .6-reduct. D 

In the sequel of the paper, the failure of erasure to reflect .6-reduction will 
be referred to as the unorthodox behavior of .6-reduction. 

5 CPS translation and applications 

In this section, we define a Contination-Passing Style translation for injective 
logical specifications. The CPS translation is inspired from [10] where we 
develop CPS translations for logical pure type systems. In the first subsection, 
we discuss some of the problems arising from the use of domain-specified 
abstractions. In the second subsection, we define the CPS translation and 
prove its correctness. In the third subsection, we derive, as an application 
of our translation, consistency of a CPTS from consistency of its associated 
PTS. In the fourth subsection, we look at the image of impredicatively defined 
connectives by the CPS translation. 

5.1 Background 

Pure type systems feature domain-specified >.-abstractions of the form >.x : 
A. M. Unfortunately, such abstractions are a significant obstacle to a simple 
and useful formulation of CPS translations. Indeed, CPS translations intro­
duce new >.-abstractions whose domains need to be inferred. Consider the 
judgement 

r,x:Af-x:A 

where A is a formula. If we decide to translate CPTS pseudo-terms into PTS 
pseudo-terms, the CPS translation for x should yield >.k: C. x k for some 
suitable term C. It turns out that, if typability is to be preserved, C should 
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correspond to the top-level translation of A. As a result, the CPS translation 
cannot be defined by induction on the structure of the terms but should use a 
more complex induction principle. Such induction principles do exist in some 
cases, e.g. for proof-irrelevant specifications [20] or for the specifications of 
the A-cube [10]. However, the existence of such an induction principle, e.g. 
in the case of the Calculus of Constructions, relies on heavy proof-theoretic 
arguments: in [10], we define a domain-specified CPS translation for the PTSs 
of the A-cube using an induction principle taken from [26]. The latter is 
obtained as a corollary to strong normalization of a labelled version of the 
Calculus of Constructions. Instead of relying on such powerful proof-theoretic 
properties, we choose to work with domain-free systems and translate DFCPTS 
pseudo-terms into DFPTS pseudo-terms. 

5. 2 The translation 

Throughout this section, S denotes an injective logical specification. For rea­
sons that will appear later, we assume that we are given an infinite supply 
of special variables, ranged over by h, i, j, k, which do not appear in the legal 
terms of the DFCPTS. 

Definition 5.1 The CPS translations C(.) and C1.D are defined in Figure 
9. Moreover, if M E TJ and N E /, we let CM (N) and CM 1ND denote 
respectively C(N){..L := M} and C1ND{..l := M}. 

The CPS translation is correct in the following sense. 

Theorem 5.2 r 11- A : B => C1rD 11-J C(A) : C1BD 

Proof. We proceed in four steps: 

(i) show that for B E Proof, C(B) = Ak.C. Therefore, Ak.C(B) k -+!}_ C(B); 

(ii) prove by induction on the structure of A E T xxx8 that for x E vs' and 
BE Terms' 

C(A){x := C(B)} --*!!_ C(A{x := B}) 
(iii) prove by induction on the derivation of A E Txxx8 that 

A ~flt>. B => C(A) =Ii C(B) 

(iv) prove by induction on the structure of derivations 

r II- A : B => c1q 11-J C(A} : C1BD 

5. 3 Applications of the CPS translation to consistency of CPTSs 

One specific application of Theorem 5.2 is to prove consistency of CPTSs. 
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={ 
>..k.x k 

C(x) 
x 

C(s) =s 

C(J.) = J_ 

={ 
>..k.k (>..:r.C(M)) 

C(>..x.1vf) 
>..x.C(1vl) 

= { >.k.tC(M) ( >.j.j C(M') k) 
C(M 11.1') 

<C(Af) C(M') 

C(~x. M) = >..k.<C(M){x := >..h.h >..j.>..i.i (j k)}>..z.z 

C(ITx:A. B) = I1x:<C1AD. <C1BD 

={ 
-,--,r[',( M) 

<C(M) 

<C1[ JD = l. : Prop 

c1r,x: AD = c1rD,x: <C1AD 

Fig. 9. CPS TRANSLATION 

if x E VProp 

otherwise 

if >..x.M E Proof 

otherwise 

if MM' E Proof 

otherwise 

if ME Form 

otherwise 

Proposition 5.3 Assume >.JS I= WN(type). Then the four conditions below 
are equivalent 

(i) I- Jv[: l. for some M; 

(ii) If- M : J_ for some l'vl; 
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(iii) J_ : Prop f-- 1 Al : J_ for some 1'v1; 

(iv) J_ : Prop 11-1 M : J_ for some M. 

Proof. Obviously (iii) implies (i) implies (ii). The equivalence between (iii) 
and (iv) is proved in [11]. "\Ve prove (ii) implies (iv) and we are done. Suppose 
II- A : _l_. By Theorem 5.2 _l_ : Prop 11- 1 C(A) : (_l_ -+ _l_) -+ _l_, so 
11-1 C(A) .\z.z : _l_. D 

Theorem 5.2 may also be used to infer consistency of some contexts in a 
CPTS. For the sake of brevity, we only treat the case of the classical L-cube. 
As expected, the CPS translation acts as the identity on 'sets', i.e. inhabitants 
of *5 • 

Lemma 5.4 If A E Type*', then _l_ r/. FV(C1A-D) and C1AD =:=A. 

Moreover, the CPS translation preserves the internal equality on sets. 

Lemma 5.5 If A E Type*' and r 11- M : a 1 =A a2 for some M, then 
C(ai=Aa2 )QfD 11-.J M: a1 =.4 a2 for some l'vf. 

Proof. Let D = a 1 =A a2 . By Theorem 5.2, 

and by the Substitution Lemma, 

Moreover we have 

Thus one may construct a term P of type CD 1DD -+D. Hence P C0 (M) has 
type D and we are done. D 

These two facts may be used to infer consistency of classical arithmetic in 
higher-order predicate logic. One possible formalisation of arithmetic is given 
by the context Peano in Figure 10 -here addition and multiplication are not 
taken as primitives but are defined by recursion. 

Proposition 5.6 Peano is a consistent context in >.6.P REDw. 

Proof. It is easy to see that Peano is consistent iff there is no term M of 
type z =N (s z) in context Peano. By Theorem 5.2, Lemma 5.5 and some 
elementary reasoning, 

:JM. Pea no II- M : z =N (s z) =? :JM. C(z=N (s z)) QPeanoD 11- 1 M : z =N (s z) 

Conclude from the fact that C(z=N (s z)) QPeanoD is a consistent context in !:,_P REDw.D 
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z: N, s: N -t N -t N, 

rec: N -t (N -t N -t N) -t N -t N, 

<: N -t N -t *P, 

ind: TIP: N -t *P. P z -t (ITn: N. (P n) -t (P (s n))) -t ITn: N. P n, 

reco : Ilfo : N. Ills : N -t N -t N. (rec Jo fs z) =N Jo, 

recs : Illo : N. Ills : N -t N -t N. (rec Jo fs (s n)) =N Us n (rec Jo ls n)), 

si: Ilm, n: N. (s m =N s n) -t (m =N n), 

Po: Iln: N. --, (s n =N z), 

o1 : Ilm, n: N. (x < s y) -t (x < y V x =N y), 

02: Ilm,n: N. (x < y V x =Ny) -t (x < s y) 

Fig. 10. A context for Peano arithmetic 

It is important to realize that Propositions 5.3 and 5.6 are proved without 
invoking any normalization property of CPTSs. 

Remark 5. 7 In [88], Seldin shows that so-called strongly negation consistent 
contexts are consistent in the Calculus of Constructions. One can elaborate 
on his ideas and use the CPS translation to isolate some classes of consistent 
contexts. This development is omitted here. 

6 Strong normalization 

This section is concerned with strong normalisation of domain-free classical 
pure type systems and classical pure type systems. Strong normalisation of the 
former is reduced to strong normalisation of pure type systems by a refinement 
of the CPS translation. In contrast, strong normalisation of the latter is proved 
by a model construction. Proofs are omitted and will be presented in the full 
version of the paper. 

Throughout this section, we assume that S is an injective logical specifi­
cation. 

6.1 Strong normalization by CPS translation for DFCPTSs 

The CPS translation does not preserve reduction. Yet one may use an op­
timized translation which contracts some of the administrative redexes and 
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preserve -in a weak sense- reductions. Using some elementary reasoning, one 
concludes: 

Theorem 6.1 (Domain-Free Preservation of Strong Normalization) 

~S I= SN ==> )..b..S I= SN 

6.2 Strong normalization by CPS translation for CPTSs 

If S is proof-irrelevant, one may apply Theorem 6.1 to deduce strong normal­
ization of >..b..S from strong normalization of >..S. To do so, the following two 
observations are needed. 

Lemma 6.2 If Sis proof-irrelevant and M E T is a type in >..b..S, then M is 
a type in >..S. 

Proof. By induction on the structure of derivations, prove that proofs may 
only occur as subterms in proofs. D 

In particular, it follows that >..S I= SN(type) implies >..b..S I= Sl\(type). 

Lemma 6.3 If Sis proof-irrelevant, >..b..S I= SN(type) and >..b..S I= SN, then 
>..b..S I= SN. 

Proof. First show that there cannot be an infinite ,Bb..-reduction sequence 
starting from a legal term M and such that 

{ 
M - ~10 -+.a~ M1 -+13D.. ... 

\Mo\= \M1\ = ... 
(#) 

To prove ( #), use correctness of types to deduce that M is either a top-sort 
or r f- M : A for some r and A.. Then proceed by induction on the derivation 
of r f- M : A using >..b..S I= SN (type). 

Second, conclude by using >..b..S I= SN. D 

Putting it all together, 

Theorem 6.4 (Domain-Specified Preservation of Strong Normalization) 
If S is proof-irrelevant, 

>..S I= SN ==> >..b..S I= SN 

Proof. Assume >..S I= SN. Then ilS I= SN -see [11]. By Theorem 6.1, 
>..b..S I= SN. Moreover, >..b..S I= SN(type). By Lemma 6.3, >..b..S I= SN. D 

Unfortunately, it is not possible to extend immediately the result to proof­
relevant CPTSs. Indeed, the obvious solution would consist in extending the 
domain-free systems with the K-combinator -see [9] for a definition of pure 
type system with the K-combinator-, prove a result analogous to Theorem 
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6.1 for such systems and conclude strong normalisation of >...6...S from strong 
normalisation of >..t:.K -the domain-free classical pure type system extended 
with a K-combinator. But such a reduction does not work because of the 
unorthodox behavior of .6..-reduction -see Subsection 6.1. 

6.3 Strong normalization by a model construction 

Terlouw has given a general criterion for a >..IT type system to be strongly 
normalizing [93] -the criterion is also implicitely present in [56]. A similar 
criterion can be used for CPTSs. 

Theorem 6.5 If >...6...S is layered, then >..!:lS f= SN. 

Proof. See Appendix. D 

In order to prove that a CPTS >...6...S is layered, one can use the correctness 
of the CPS translation. 

Proposition 6.6 If >..S is layered and >..S f= WN( type), then >-..6...S is layered. 

Proof. See Appendix. 

Alternatively, it is sometimes equally easy to proceed by hand. 

Lemma 6. 7 If S is a specification of the >..-cube, then >-..6...S is layered. 

Proof. Let E be an environment. Define a measure on £-types as follows: 

• v(A) = 0 if A is an £-proposition, 

• v(*) = 1, 

• v(Ilx: A. B) = v(A) + v(B) + 1 if Ilx: A. B is an £-kind. 

D 

The measure is preserved by conversion. By uniqueness of types, v yields a 
measure!!. on pseudo-terms: 

dM) = { ~ if3AE£-Type.£ f- M:Aandv(A)=n 

otherwise 

For every Iv!, N E T, N -<e. AI implies ¥..(N) < ¥..(M). Hence -<e. is well­
founded. D 

It follows: 

Corollary 6.8 Systems of the classical >..-cube are strongly normalising. 

Proof. By Theorem 6.5 and Lemma 6.7. 

6.4 Strong normalization a la Harper-Hansell-Plotkin 

D 

In [36], Harper, Honsell and Plotkin prove strong normalisation for Edin­
burgh Logical Frameworks, which is essentially equivalent to >-.P, by defining 
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a reduction and derivation preserving mapping from legal AP-terms to legal 
'!l1T -+-terms -here '!l7T -+ denotes an extension of '!l -+ with some pairing op­
erators. Later Geuvers and Nederhof generalized this translation by taking as 
source theory the Calculus of Constructions AC and as target theory Girard's 
higher-order A-calculus Aw [31]. Both translations use two mappings: 

• a mapping T which acts on constructors, i.e. D-terms, and kinds, i.e. D-
types; 

• a mapping [.] which acts on legal terms and preserves reductions. 

Unfortunately, the reduction-preserving mapping techniques of Harper-Honsell­
Plotkin and Geuvers-Nederhof do not seem to extend to the framework of 
CPTSs. Interestingly, the technique applies to DFCPTSs. Vile present our 
analysis of this fact for the Harper-Bonsell-Plotkin mapping. A similar anal­
ysis may be conducted for the Geuvers-Nederhof mapping. 

Definition 6.9 [36] The Harper-Hansell-Plotkin translation[.] maps AP-pseudo­
terms to '!l1T -+pseudo-terms. It is defined as follows: 

[x]=x 

[*] = * 
[P Q] = [P] [Q] 

[Ax:A. M] = (Ay.Ax.[M]) [A] 
[ITx:A. B]=1l'T(A) [A] Ax.[B] 

where 7r T(A) is a constant. 

As mentioned earlier 

Lemma 6.10 [36} [.] preserves reductions. 

Let us now consider extending the translation to ..\.6.P-pseudo-terms. The 
obvious choices are 

[j_] = J_ 

[.6.x:A. M] = (Ay . .6.x. [M]) [A] 
Unfortunately, the extended translation [.] does not preserve reductions. In­
deed, consider the terms 

M= (.6.x:•(ITv:A 1 • A2)· a) b 
N = .6.y: -.A2 { v := b}. a{ x := Az: (ITv:A 1 . A2). (y (z b))} 

We have J\1 -+D..N but only [M] = 6 D.. [N]. As a result, it is not possible to prove 
strong normalization a la Harper-Hansell-Plotkin for ..\.6.P. However, one may 
define a domain-free variant of the translation which preserves reductions. 

Definition 6.11 The translation [.]dJ is defined as follows: 

[x]dJ = x 
[j_]clf = J_ 

[*]dJ = * 
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[P Q]dJ = [P] [Q] 
[A.x.Af]dJ = A.x.[M] 

[~x. M]dJ = ~x. [M] 
[IIx:A. B]dJ =?rr(A) [A] A.x.[B] 

where ?re is a constant and T is defined by 

T(X) = X 
T(*) =W 

7(1-) = J_ 

r(P Q) = T(P) T(Q) 
T(Ax.M) = T(M) 

T(IIx: A. B) = T(A) -t T(B) 

The translation [.]dJ may be used to prove strong normalization of A.~P. 

7 Classical Pure Type Systems as Logics 

One central goal in our work is to extend the Curry-Howard isomorphism to 
classical -\-calculi and natural deduction systems for classical logic. The iso­
morphism involves a logic L and a type theory T -with a notion of proposition­
and, in its strongest form, establishes a correspondence between: 

(i) inhabited propositions in T and provable formulae in L; 

(ii) proof-terms in T and proofs L; 

(iii) normalization in T and cut-elimination in L. 

Our notion of classical pure type system has been defined so as to preserve 
this three-fold correspondence with classical natural deduction as introduced 
by Prawitz [80]: classical logic is introduced via a double negation rule and 
reduction for the classical operator, which makes applications of double nega­
tion atomic, is closely related to Prawitz's original rule. In fact, his reduction 
relation makes all instances of double negation atomic while ours only makes 
atomic those instances of double negation whose conclusion is used as the 
function of an application rule ·-the reason for not using Prawitz's rule is that 
it is label-sensitive, see Subsection 8 for an explanation. Nevertheless, we shall 
not delve into the process of establishing the correspondence formally. There 
are several reasons for not pursuing this line of work: most importantly, the 
correspondence becomes clear as one works with classical pure type systems. 
Besides, as emerges from [30], stating the correspondence, let alone prove it, is 
long and tedious: it requires the introduction of logics as formal systems and 
of intermediate formal systems which arise as hybrid combinations between 
logics and type systems. Finally, the whole process requires great technical 
skill but does not improve our understanding of type systems. 7 Therefore we 

7 The studies by Tonino and Tujita [94] and Geuvers [30], in which the intrinsic technicalities 
of the Curry-Howard isomorphism are addressed, are of genuine interest. There is however 
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choose not to establish the Curry-Howard isomorphism formally and refer the 
interested reader to [30] for a thourough description of the proof techniques 
involved in this process. 

Remark 7 .1 Of course encoding classical logic as an intuionistic context al­
lows to derive the first and second parts of the isomorphism for the impred­
icative systems of the classical L-cube from the first and second parts of the 
isomorphism for the impredicative systems of the constructive L-cube. 

7.1 Impredicative specifications 

The next definition is inspired from [20]. 

Definition 7.2 A logical specification S = (S, Prop, A, R) is impredicative if 
there exists s E S s.t. (Prop, s) EA and (s, Prop) ER. 

Im predicative specifications permit quantification over the universe of propo­
sitions. Impredicativity may be used to encode classical logic. 

Lemma 7 .3 Let S be an impredicative and proof-irrelevant logical specifica­
tion. Moreover let .6. = J_ : Prop, H : ITA: Prop.••A -+A. Then for every 
judgement (r, M, A), 

there exists l'vf s. t. r f- M : A {::} there exists N s. t . .6., r f-J N : A 

Proof. To obtain N from M, replace recursively each subterm of the form 
.6.x: •A. P by H A (>.x: -iA. P') where P' has been obtained from P by the 
same process. To obtain M from N, replace each occurrence of H by 

>.A: Prop . ..\y: ...,...,A . .6.x: •A. y x 

D 

Note that one can also encode J_ as 11x: Prop. x. 

7.2 The formulae-as-sets embedding 

The formulae-as-sets embedding establishes the existence of a natural trans­
lation of the systems of the L-cube to the systems of the >.-cube. Technically, 
the translation is achieved through the notion of morphism of specifications. 

Definition 7.4 Let S1 =(Si, Prop, A1 , R 1) and 8 2 = (S2 , Prop, A2, R2) be two 
logical specifications. A (set-theoretic) map H : S1 ---7 S2 is a morphism of 
logical specifications if for alls, s', s" E S1 

• H(Prop) =Prop 

• (s, s') E A1 ::::} (H s, H s') E A2 

little interest repeating them for the classical variants of the logics they consider. 
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• (s, s1, s") E R1 :=::}- (H s, H s1, H s11 ) E R2 

The formulae-as-sets embedding may now be described as a morphism of 
specifications from a system of the L-cube to its corresponding system in the 
>.-cube -as described in Figure 5. 

Definition 7.5 The formulae-as-sets embedding is the morphism of specifica­
tions 1-1 given by: 

I *p I = I *8 I = * 
IDPI = IDsl = D 

The formulae-as-sets embedding can be extended to -both PTS and CPTS­
pseudo-terms in an obvious way. The embedding is sound but incomplete. 

Proposition 7.6 (Non-conservativity of the formulae-as-sets embedding) 
The formulae-as-sets embedding is not complete for dependent systems of the 
classical logic cube {i.e. )..f},.p RED, )..f},.P RED2, )..!},..? REDl,,!l_ and )..f},.p REDw ). 

Proof. The following example is inspired from [30]. Let 

r :=A : Set, P : A -+ Prop, fjJ : Prop 
'If;= •(Ilx: A.-, P x) -t (A -t efJ) -+ efJ 

Then there is no M s.t. r hAPREDw M: 'l/J but 

lfl 1-.\AP .>..p: •(IIx: A. ..., P x ) . .>..q: A -t f/J. /},.z: •f/J. p (>..a: A. z ( q a)) : l'l/JI 

D 

Independently, one can study conservativity between systems of the clas­
sical .>..- and L-cubes. Such a study for the PTS case may be found e.g. in 
[13,30]. Using techniques from [30], one proves 

Theorem 7.7 Let S1 ~ S2 be two systems of the classical >..-cube. Then S2 

is conservative over S1 unless S2 = )..f},.C and S1 = )..f},.P2. 

7. 3 The Classical Calculus of Constructions is proof-relevant 

Earlier work by Berardi, Coquand, Pottinger and Seldin has shown that clas­
sical logic is unexpectedly powerful in the Calculus of Constructions. For ex­
ample, one can prove that classical logic and the axiom of descriptions imply 
proof-irrelevance. Formally, there exists a term P s.t. the following judgement 
is derivable in .>..C: 

H : CL, H 1 : ADm, H 11 : ADc 1-J P : PI 

where CL formalizes classical logic, ADm and ADc formalizes the axiom of 
descriptions and PI formalizes the principle of proof-irrelevance, i.e. 
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CL= ITA: *· ( •-iA) -t A 
ADm = ITA: *· IlP: A -t *· (3!a: A. Pa) -t A 
ADc = IlA: *·TIP: A. -t *· Tiz: (3!a: A. Pa). P (ADm A. P z) 

PI= IlA: *· ITx, y: A. x =A y 

where =A is Leibniz equality on A and 3! is the unique existence quantifier. 
It follows that in >.6.C, one can find a term Q s.t. the following judgement is 
derivable 

H': ADm,H": ADc f- Q: PI 

However, Seldin showed -using a weak normalization procedure closely related 
to ours- that one cannot deduce proof-irrelevance from classical logic in >..C 
[88]. 8 We prove a stronger result. 

Proposition 7.8 There is no 1'd s.t. f- M: PI in A.6,.C. 

Proof. Without loss of generality, one may assume that l'vf is a normal term 
of the form 

>..A: *.,\x, y: A.>.P: A-+ *.>..H: P x.N 

with N of type P y. We show by case analysis that it is impossible. D 

8 Discussion and related work 

Our definition of classical pure type system represents one of the multiple 
possibilities for such a notion. In this section we discuss some of the motiva­
tions behind our choice and relate our >.6.-calculi to some of the alternatives 
found in the literature. Because of the nature of the paper, we only focus on 
syntactic issues. Categorical issues and the way they influence the design of a 
classical .A-calculus have been discussed by other authors elsewhere [42,69]. 

8.1 Classical natural deduction and classical >.-calculi 

Our presentation of classical pure type systems is based on Prawitz's format 
for classical natural deduction. However there are many other formats which 
also inspired classical >..-calculi. \Ve review some of these formats here; in 
order to constrain the discussion, we restrict ourselves to those formats where 
classical logic is forced by a rule -and not an axiom. The most conventional 
formats are obtained by extending intuitionistic natural deduction with one 
rule for one of the three formulae: 

• excluded middle AV •A; 

• double negation ''A -t A; 

• Pierce's law ((A -t B) -t A) -t A. 

8 Such a result was proved by model-theoretic means in [91]. 
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M ulti-Concl usioned 

Act/Pass [14,39,72] 

Intuitionistic Act/Pass [39,66] 

Truly MC [95] 

Fig. 11. CLASSICAL LAMBDA CALCULI AND NATURAL DEDUCTION FORMATS 

Remarkably, all these formats and derived endemic formats such as the variant 
of Pierce's law 

((\:JB : Prop.A---+ B)---+ A) ---+A 
have been used as a basis for classical ,\-calculi. 

In addition to these formats, one may conceive a variety of non-standard 
formats for classical natural deduction. One such format, proposed by L. Ong 
[69] as an explanation of the ,\p,-calculus, allows for two sorts of variables of 
type -,A: continuation variables which may only be used as argument of an 
application rule and traditional variables which may be used in the usual way. 
The symmetric ,\-calculus of Barbanera and Berardi provides another non­
standard format of classical natural deduction in which negation is idempotent 
and implication is encoded [4]. 

All the natural deduction formats mentioned so far are single-conclusioned. 
In addition, one may find several formats that allow for multiple conclusions. 
Some formats, which stem from Parigot's ,\p-calculus and linear logic, allow 
for multiple conclusions by distinguishing between active and passive formulae. 
There are other, more radical formats, which do not impose any such distinc­
tion; e.g. A. Ungar [95] has recently proposed an intriguing multi-conclusioned 
natural deduction system for classical natural deduction. 

Each format for classical natural deduction can potentially yield one -or 
more- classical ,\-calculus. Figure 11 attempts to classify the existing classical 
lambda calculi w.r.t. their corresponding format of classical natural deduction. 
Some of the calculi mentioned in Figure 11 are calculi of explicit substitutions 
but this fact is ignored for the sake of simplicity. From the point of view 
of classical pure type systems, classical ,\-calculi based on single-conclusioned 
seem amenable to generalization. In contrast, it is unclear whether classical 
,\-calculi based on multi-conclusioned systems could be used for proof-relevant 
specifications. 

Remark 8.1 One could refine this classification further by distinguishing be­
tween those formats in which the classical rule is a discharging rule and those 
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A 

Double negation as 

a non-discharging rule 

(corresponds to Felleisen's C) 

[A] 

J_ 

A 

Double negation as 

a discharging rule 

(corresponds to 6-abstraction) 

Fig. 12. DOUBLE NEGATION RULES 

in which 'it is not; the difj'erence between the two formats is 'illustrated in Fig­
ure 12. Probably such a distinction has little impact on the theory of classical 
>..-calculi and it is therefore not used here. 

8.2 Red'uctfon rules for classical nat'ural deduction 

Classical >.-calculi provide a computational analysis of classical logic by treat­
ing the classical operators as computationally meaningful. Many sets of re­
duction rules may be found in the literature: 

• reduction rules inspired from classical proof theory and classical cut-elimination 
proofs; 

• reduction rules inspired from programming languages and evaluation rules 
for control operators. 

It is impossible to discuss here all the sets of reduction rules which can be 
found in the literature. However we find it instructive to consider some criteria 
according to which reduction rules may be classified. We list five fairly general 
such criteria concerned with the applicability of the rule. 

• Local vs. global: the former only manipulate terms whereas the latter 
may manipulate contexts. The latter are typically found in programming 
languages; for example, the evaluation rules below are taken from [28,29]: 

E[C(M)]--+ M(>.x.AE[x]) 
E[A(M)]--+ M 

The major problem with such rules is that they complicate the meta-theory 
of the system quite significantly. For example, it is unclear whether systems 
with such reduction rules are strongly normalising. Moreover, T. Coquand 
has shown us that global rules can fail to have the Subject Reduction prop-
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erty for systems of dependent types. 

• Compatible vs. context-sensitive: the former apply in an arbitrary context 
whereas the latter may be restricted to specific contexts. An example of 
such rule is found in [29], where the applicability of the rule (.6.-1) below is 
restricted to the empty context. In Felleisen's terminology, this is a top-level 
rule. 

.6.x: -i.l. lv! --+ M { x := >.z: ..L. z} ( .6.-1) 

There does not seem to be any problem with using "well-behaved" context­
sensitive reduction rules. However, compatible reduction rules fit in the 
existing formats of higher-order rewriting - see [49] for a survey- whereas 
the study of context-sensitive higher-order rewriting systems has just begun 
[45]. 

• Substitutive vs. non-substitutive: the former apply to arbitrary instances 
whereas the latter may apply only for specific instances. An example of such 
rule is (.6.v) below, which is needed to simulate the simply typed >.µ-calculus 
in >.L'.l --+. 

y (Llx:-iA. M) --+ M{x := y} if y E Vandy: ·A (.6.v) 

The main disadvantage of non-substitutive rules is that they may cause the 
failure of the substitution lemma -if equality is not substitutive- and hence 
of the subject reduction property. 

• Type-insensitive vs. type-sensitive: the former apply without restrictions 
whereas the latter may apply only under specific typing assumptions. An 
example of such rule is (Llv)· The main disadvantage of type-sensitive rules 
is that they cannot be used in the conversion rule. Otherwise reduction 
would depend on typing; this may create a vicious circle in the definition 
of the system as typing already depends on reduction -in fact equality­
through the conversion rule. 

• Label-insensitive vs. label-sensitive: the former apply independently of the 
domains of >.- and .6.-abstractions whereas the latter may only apply for 
some domains. The rule (L'.l-1) and Prawitz's original reduction rule (.6.') 
below -with 0 = IIv:A. B- provide examples of the latter . 

.6.x: -iO. M--+ ..\v: A.Lly: -iB. M{x := ..\w: 0. y (w v)} (.6.') 

The main disadvantage oflabel-sensitive reduction rules is that their domain­
free variants are not always meaningful. For example, the domain-free vari­
ant of (.6.') is not normalising and does not have the subject reduction 
property. 

In the simply typed context, all the above combinations may be envisaged. In 
the context of classical pure type systems, the situation is radically different. 
In order for a notion of classical pure type system to have a reasonable theory, 
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the reduction relation must satisfy several basic properties which are often vio­
lated by classical ..\-calculi: compatibility, substitutivity, type-insensitivity and 
context-insensitivity, type-insensitivity and confluence. The latter is needed 
to prove the Key Lemma, which is in turn crucial in the proof of subject re­
duction. Of course, it has been continuously argued that reduction rules for 
a classical operator should not be confluent and in fact should not have the 
unique normal form property. However, this would lead to inconsistent calculi 
because of the conversion rules. 

This leads us to distinguish between the notions of minor rule and principal 
rule: a principal rule determines the notion of computational equality whereas 
a minor rule does not. In other \Vords, the proviso in the conversion rule should 
be A =p B where P is the union of the principal rules. Such a distinction 
is justified conceptually and pragmatically: some reduction rules, especially 
those involving a non-deterministic choice, do not make sense as equalities 
and would cause the inconsistency of classical pure type systems if considered 
as a principal rule. On the other hand, these rules have a neat operational 
semantics and are useful in several applications. An example of such a rule is 
.6.~ which has an obvious interpretation in the catch/throw paradigm and is 
useful for extracting a witness from a classical proof: 

.6.x: -iA. C[x M] ---1- M if FV(M) ~ FV(.6.x: -iA. C[x Af]) 

The distinction between principal and minor rules allow us to combine the best 
of both worlds: logical consistency and computational power. The pragmatics 
and implications of the principal/minor rules distinction is left for future work. 
We simply close this subsection by stating the following result: 

Theorem 8.2 For every system of the classical..\- cube, 

(i) r f- M: A, M ---1-13.c:..+.c:..l. N ::::} r f- N: A 

(ii) r f- 1\1 : A => M is /3.6.' .6.,,,+.6..l..-strongly normalizing 

8. 3 Related work 

As mentioned in the introduction, the existing classical >-.-calculi are proof­
irrelevant, which makes it somewhat difficult to relate our calculi to existing 
ones -the main novelty of the paper is to consider double negation for proof­
relevant systems and it seems therefore inappropriate to devote considerable 
attention to )..6. --1'. Instead, we conisder two existing calculi and show how 
they also give rise to notions of classical pure type system. 

8.3.1 The >-.µ-calculus 
The >.µ-calculus by Parigot is one of the most established classical >.-calculi. 
Unlike our calculi, the ..\µ-calculus provides an explicit treatment of contin­
uations by distinguishing between names which are bound by continuation 
µ-abstractions and variables which are bound by >.-abstractions. Parigot's 
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original formulation uses multi-conclusioned sequents and cannot easily be 
generalised. Recently, Bierman and Ong have defined variants of the >.µ­
calculus. Bierman's variant is multic-onclusioned and it is unclear whether it 
can be generalised into a notion of classical pure type system. In contrast, 
Ong's variant is single-conclusioned and may be generalised into a notion of 
classical pure type systems. This is the purpose of the next definition. Note 
that the distinction between names and variables is handled by the sorts of 
the type system. 

Definition 8.3 

• A continuation-based logical specification is a logical specification S with a 
distinguished sort of continuations Cont. 

• The set of pseudo-terms is given by the abstract syntax: 

r = v I s I J_ I r r I >. V: r. r I ITV: r. r I µ v : r. r I r. r I cont r 
• The notion of reduction µ is given by the contractions: 

(µx: cont (Ilv:A. B).M) N-+ µy: cont (B{v := N}).M{(x • u) := y • (u N)} 

µx : cont A.x • M -+ M if x rj. FV(M) 

x • (µy: cont A.M) -+ M {y := x} 

• The derivation rules are those of Table 13. 

Our notion of reduction are inspired by [71,72] rather than by [69], mostly 
because Ong's rules are not closed under substitution. In [69], Ong provides 
back and forth translations between )...6. -+and>.µ-+. One can define similar 
translations for an arbitrary specification S. The properties of the translations 
and more generally of this notion of classical pure type system will appear 
somewhere else. 

8.3.2 The >.[),.-calculus 
The >.Ll.-calculus was introduced by Rehof and S0rensen [82]. It is a call­
by-name calculus, closely related to classical natural deduction and with the 
ability to capture without any simulation the catch/throw mechanism. It is 
possible to generalise the >..6.-calculus to an arbitrary logical specification S. 
This is the purpose of the following definition -note that our notion of reduc­
tion below is slightly stronger than the one of [82]. 

Definition 8.4 Let .6. + be the notion of reduction .6. U .6.1 U .6.2 with 

.6.x.x M -+L1. 1 M 

.6.x.x (.6.y.M) -+L1.2 .6.y.M{x := y} 
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The domain-free type system >..D.8 is obtained by replacing /3.6. by /3.6. + in the 
conversion rule. 

All the properties of domain-free classical pure type systems, including the 
correctness of the CPS translation and strong normalisation by CPS transla­
tion, should extend to these calculi. This will be reported elsewhere. 

However, there is a major problem in defining domain-specified versions 
of these calculi. The rule .6.2 becomes non left-linear: this causes all the 
techniques to prove confluence and subject reduction of the system to fail. 
In contrast, there is no major problem with the ~1-reduction, even in the 
domain-specified case. 

8.3.3 Werner's proof-irrelevant generalised pure type systems 
In unpublished work [97], Werner studies a notion of proof-irrelevant classical 
pure type system. His reduction rules depend on typing and therefore his 
setting does not make sense in the proof-relevant case. A more detailed com­
parison between his framework and ours will appear in the full version of the 
paper. 

9 Conclusion 

In this paper, we introduced a framework for classical .\-calculi and proved 
that proof-relevant systems of this framework are well-behaved. Much work 
remains to be done. In particular, we are currently investigating: 

• extensions to CPTSs of the Kreisel-Friedman theorem on the computational 
content of classical proofs; 

• criteria for distinguishing between principal and minor rules; 

• syntactic proofs of strong normalisation for proof-relevant CPTSs. 

At a more general level, the appropriateness of CPTSs as a foundation for 
classical theorem proving and program extraction should be investigated. Fi­
nally, a systematic comparison of the existing simply typed calssical .\-calculi 
would bring a much needed clarification to the area. 
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r 1-J A: s 

r, x : A 1-J :r: : A 

r 1-J A : B r 1-.1 c : s 
r, x: C 1-.1 A: B 

r 1-J A : 81 r, x : A 1-J B : 82 

r 1-J (Ilx: A. B) : s3 

r 1-J F : (IIx: A. B) r 1-J a : A 

r 1-J Fa:B{x:=a} 

r, x : A 1-J b : B r f-J (IIx: A. B) : s 

r 1-J >.x:A.. b: ITx:A.. B 

r 1-J A : B r 1-J B' : s 

r 1-J A : B' 

Fig. 14. PURE TYPE SYSTEMS 
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r 11-1 A: 8 

f,x:A lf-1 x:A 

r 1r-1 A : B r 1r-1 c : 8 

r, x: C lf-1 A: B 

r lf-1 A: 81 r, x: A lf-1 B : 82 

r lf-1 (Ilx: A. B) : s3 

r lf-1 F: (ffi:::A. B) r lf-1 a: A 

r lf-1 Fa: B{x :=a} 

r, x : A lf-1 b : B r lf-.l (Ih: A. B) : s 

r 11-1 >.x.b: Ilx: A. B 

r If-.] A : B r lf-1 B : 8 r lf-1 B' : s 

r 11-1 A : B' 

Fig. 15. DOMAIN-FREE PURE TYPE SYSTEMS 
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if x rt r 

if B =!!_ B' 


