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Abstract: In this paper the results of a detailed investigation 
on a multi-parent recombination operator, diagonal crossover, arc 
reported. Although earlier publications have indicated the high per
formance of diagonal crossover on a number of problems, so far it 
has not been investigated whether high performance is indeed a re
sult of using a high number of parents. Here we formulate three 
hypotheses to explain why GA performance increases when more 
parents arc used. Based on an extensive study on a test suite con
taiI1ing eight numerical optimization problems we arc able to estab
lish that the higher number of parents is indeed one of the sources 
of higher performance, if and when this occurs. By the diversity of 
the test functions (unimodal, multimodal, quasi-random landscapes) 
we can also make observations on the relationship between fitness 
landscapes and operator performance. 
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bination, multi-parent crossovers 

1. Introduction 

Multi-parent recombination is a new research area within evolutionary com
putation. Although some researchers have incidentally proposed and applied 
recombination mechanisms using more parents, Bcrsini and Seront (1996), Bre
mcrmann, Rogson and Salaff (Hl66), Miihlcnbcin (1989), the phenomenon of 
multi-parent recombination has not been given much attention in the past. In 
this paper we study this phenomenon by investigating the behavior of diagonal 
crossover (sec the definition in Section 2). Our research goals arc two-fold. 
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l. \Ve trv to fiwl connections between the structure of the fitness lanclseapc 
and tl;c pcrfonnancc of diagonal crossover. In particular we want to estab
lish on what kind of landscapes it is ad vantagcous to increase tlw number 
of parents. (Diagonal crossover for 2 parents is identical to the traditional 
1-point crossover operator.) 

2. \Ve trv to disclose the source of increased performance of the diagonal 
<:rosso~'cr with more parents when it is superior to 2-parcnt recombination. 

F11rther daboratior1 of the second research objective; requirc:s tc:chnical details, 
am! so, we return to this issue after the exact definition of the operator. The rest 
of the .paper is organized as follows. In the followiug sec:tion we briefly review 
m11lti-parcnt. recombinatiou operators in Evolutionary Algorithnrn. After the 
l'Xad ddi11itiou of diagonal crossover we formulfttc three hypotlwscs that can 
clarify why the performance of the GA increases when Uw nurnhc~r of parents ill 
diag;o11al crossowr is incrca.'lecl. To this end we clcsigu experiments that allow 
rcjcct.io11 or co11firmatio11 of these hypotheses. In Section 4 we prnseut the GA 
11scd i11 the experiments and discuss the performance measures to be used to 
1uonitor GA perfonnaucc. The test suite aml the rcsnlts of tlw experiments 011 

<'ad1 test. f1mctioI1 arc presented ill Section 4. Finally, in Scctiou 5 we evaluate 
the results awl draw conclusions. 

2. Multi-parent recombination 

I11 cvolutio11 strategics (ES) global recombination is a mnlti-pftreut operator, 
Bicick (HJQG), Schwefol (10%). This operator creates a new vftluc in tlic child 
d1romosomc ba.-;cd on two parents, but randomly chooses two parcuts for each 
variable a11cw. By this particular mechanism the irnmbcr of parents is 1111dc

tincd, thus i!lvestigations 011 the effects of different number of rccornbinants ot1 
algorithm performance could not be performed in the traclitioual ES framc\
work. (Let us uot.c that iu Schwcfol and lludolph, HlO::i, au extension of ES is 
proposPd that allows tuning of the nmnbcr of recornbiuauts.) So far Uwrc an: 
almost. no experimental rcsul ts available on tlw (dis )ad vautagcs of glolifd rc
nm1 hi11ation with respect to usual, two-parent rccomliinatio11. Schwcfol ( 1 DOG) 
briefly toudics 011 this issue statiug tlmt 'appn~cialilc~ accclcrntiou' is obtained 
hy drnuging to bisexual from asexual sc:lwrnc (i.e. adding rccornbiuat.iou 11si11g 
two par('111.s to the m11Lation-011ly algorithm), lint only 'slight fmtlwr iucrcasc' 
is .obtaiul'd when chaugi11g from 'bisexual to m11ltiscx11al rccomhi11atio11' (i.e. 
WHII)!; global recombination iustcad of the two-parent varift11t). 

11.elat.cd work of l3cycr (10%), gcueralizcs tlw traditional ES rncombi11at,io11 
'.Tcrators '.lY i11trod11cing the .1rnmbcr of parcuts as au i11depc11clcut parameter p. 
I lw n'sultu'.g (!l/ fl, ,\) .cvolut1on strategy is studied for the spccial case off' = /L 

a11<l theoretical aimlys1s on the sphericftl function shows au advantage of usi11g 
more tbau two pareuts. 

Global r~~co11.1bi11atio1.'. i11 ES also fertilized Genetic Algoritlirns. Tlw gcuc
pool rccomhmat1on of Muhlcnbcin a1Hl Voigt mixes iuformatiou of possibly more 
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pa.rents by a. similar mechanism as global recombination in ES, Miihlenbein and 
Voigt (1 Q!J5), Voigt awl Miihlenbein (1995). Hence, the number of parents is not 
ddiucd here cit.hcr. Miihlcnbein and Voigt report an increase of performance 
wlw11 11siug gcuc-pool recombination (GPR) instead of two-parent recombina
tion (TPH.). CPR iH Hhowed to be approximately 25% faster than TPR on the 
ONEMAX problem, and the fu:t::t:yfied GPR outperforms TPR on the spherical 
f11uc:t.iou in Hpccd aud in rna!i:t:ed heritability. 

The N-panmt gcmerali:t:ations of the traditional 1-point crossover and uni
form cro880V<~r iu GAs were introduced in Eiben, Rau6 and Ruttkay (1994). The 
rcsnlt.i11g cliagoual, rnHpectivcly, scauning crossover have the number of parents 
its paramc~t.c~r, awl therefore are t1111able on the 'extent of sexuality'. This tun
id Jili ty is new feat urn compared to global recombination and gene pool rccom
hi1mt.io11, where the multi-parent option cau only be switched on or off, but it 
is 1101. Hrnlahlc. Several Htndics, e.g. Eiben, van Kemcnade and Kok (1995), 
Ei!H•n, ltai1c'~ aud Huttkay (Hl94), Eiben and Schippers (199G), van Kemenade, 
Kok a11cl f~ihcn (lfl%), have shown that using more than two parents in either 
<:rossovc~r mcc:ha11iHm can incrcaHe GA performance, although this docs not hold 
for cwcry problem awl the two opcratorn can respond differently to increasing 
t.hc 11111nh<~r of parc11ts. 

The lllaiu s11 bjcc:t. of the present investigation, diagonal crossover, general
i:wH 1-poiut. c:roHsovcr for N parc11ts by Hclecting (N - 1) crossover points and 
c:rn11JHJSi11g N c:hilclrc11 by taking the resulting N chromosome segments from 
t.lw pan~l!t.8 'alollg t.lw cliagol!als'. The iclea iH illustrated for N = 3 in Fig. 1 up. 

Wit.Ii r<~HJWd to om Hccc 111d rcHcarch objective let us make the following 
ohs<~rvat.ions. FirHt., tlw i11crca.-;c i11 t lie number of parents automatically leads 
t.o m1 i11nc~a .. 'ic~d 1111mlwr of crosso,·<·r points. It can be the case that higher 
pmfor111a11c:<~ for higlwr N's is not the result of uHing more parents, but simply 
c·o111C~s from l ici11g more disruptive by using more crossover points. This forms 
rn!l' first. workiug ltypotlwsis. 

H 1 UHi11g more c:ro8sovcr poiutH lcacl8 to better performance. 

Sc•c·oud, 1101.i<"c! t.hat. !Jy applic:at.ion of the diagonal crossover, N parents create N 
diildrc11 i11 011c go. Siuc:c we~ 11sc a steacly state GA and update the population, 
i.e. insc!rl. olfspriug, after each application of cros:,;ovm (followed by mutation), 
t.!ii8 mc•ans t.hat. a GJ\ 118i11g 10 parents diagonal crossover has more information 
l 1<Jorc pcTfonniug the Hclec:tion step than a GA 11Hing the two-parents version. 
I 11 ot.lwr worclH, GAs with higher operator "arity" have a bigger generational 
gap whi<"h might. ca11se a bias iu their favor. Om Hcconcl working hypothesis is 

acc:ordiugly t.!tc following. 

H:.i Bigg<~r gcmcra.tional gap leads to better performance. 

Fiually, we maint.aiu om original co11jccturn that the advantag.cs of using d.iago-
11at c:ros8ovcr wit.Ii highm "aritics" am 11ot the result of an unmtcnded art1fact. 
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Figure 1. Diagonal crossover with three parents and three children (up) and 
with three parents and one child (down). 

H 3 Using more parents leads to better performance. 

Note that the hypotheses H1 , H2 and H3 arc not mutually exclusive as there 
might be more sources of increased GA performance when increasing N in diag
onal crossover. The main contribution of the present paper is that these sources 
arc investigated in isolation hence providing a solid ground to check whether 
higher performance for higher N's is an artifac:t (H1, H2), or the higher number 
of parents is indeed advantageous. 

3. Experiment setup and performance measures 

All experiments arc executed using a GA set.up as described in Table l. A non
standard option is the uniform random parent selection mechanism, whereby 
no selective pressure is applied when choosing rccornbinants. The motivation 
comes from van Kcrnenade, Kok and Eiben (1995), where we observed that this 
mechanism is preferable. Note that uniform random parent Helcction rncchaniHrn 
is standard in Evolution Strategics. 

In order to test the working hypothesc8 preHcnted in Section 2 we nm exper
iments with a set of different crossover operators. For investigating H 1 we apply 
the traditional two-parent two-children N-point crossover, De Jong and Spears 
(1992). This operator is well known from the literature, therefore we omit a clef-
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representation fixed point binary with Gray coding 
GA type stP-ady state 
parent selection uniform random 
deletion mechanism worst fitness deletion 
number of parents 2-30 
crossover rate Pc 1.0 
mutation rate Pm I/chromosome length 
population size 500 
termination criterion population converged OR optimum hit 
max. nr. of evaluations 100,000 
results averaged over 50 independent runs 

Table 1. GA setup used in the experiments 

inition. If N-point crossover exhibits increasing performance when increasing 
N, (the experimental results reported in Eiben, van Kemcnadc and Kok, 1995, 
make us expect this) then we accept H1. To test the second hypothesis H2 , we 
will apply a slightly modified version of diagonal crossover that creates only one 
child. The lower part of Fig. 1 illustrates this operator. When we use the one 
child version of diagonal crossover the generational gap docs not increase with 
increasing the number of parents. If the original variant outperforms the one 
child version of diagonal erossover, then we accept the hypothesis H2 . Concern
ing hypothesis H3 , note that the number of chromosome segments using N-point 
crossover is N + 1, which equals the number of chromosome segments obtained 
by diagonal crossover for N + 1 parents. This mea.rrn that the disruptiveness 
of these operators grows para.llclly as N increases. If higher disruptiveness in
creases GA performance on om tm;t suite, then the performance of both the 
N-point crossover and the diagonal crossover will increase with increasing N. 
This, however, docs not imply that more parents have no additional advantage 
as the perfonnancc of diagonal crossover might grow faster with increasing N 
than that of the two-parent N-point crossover. We accept the hypothesis H3 if 
diagonal crossover for N + 1 pa.rents is better than N-point crossover. 

To evaluate different GA setups, that is, the effect of different number of 
parents, respectively crossover-points, several performance measures of a run 
arc monitored. The two ma.in perfonnance measures a.re accuracy and speed. 
Accuracy is measured by the error at termination. Since all functions have a 
minimum of zero, we use the best objective function value at termination as 
the accuracy measure of one run, and the median of the best objective function 
values, calculated over the 50 independent runs, as the accuracy belonging to 
a specific setting. For practical purposes we consider 10-10 as zero and ter
minate the run if this value is achieved. Let us remark that using medians 
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instrad of average values has all advantage, namely medians arc less sensitive 
for outliers iu the data. On the other hand, if the optimum is found in the 
majority' of tlll' runs, then the median will equal the optimum. Aclclitionally to 
the medians of tlw outcomes we also present the !J!J% confidence interval bars 
to the pcrfonuancc curves. The secornl main performance measure is the speed 
of the algorithm, mcasmcd by the median number of fitness evaluations before 
tC'rrniuat.ion. If the GA with a certain sctup never finds the optimum, this value 
equals the rnaxinrnm number of fitness evaluations. A third performance mea
sure is the suc:('css rate, i.e. the percentage of nms where the optimal objective 
function value has heen found. We will present figmcs on success rates aucl !JO% 
confidence intcrvab, whenever the accuracy or the speed curves arc (nearly) 
c:onstant., th11s providing (almost) no basis to compare different setti11gs. Fi
nally, for a detailed insight in the bchavior of the GA sometimes we also depict 
the progn~ss cun'c's of the evolution for 18 parents (diagonal crossover), respcc
tivcl.v 17 crossover points (N-point crossover). These cmvcs (with a logarithmic: 
y-axis) show the population's best objective fnuction value as a function of the 
nmuhcr of cxerntcd fitness evaluations, averaged over GO independent nms. 

4. Experimental results 

The experiments have been performed 011 eight mnncrical function optimization 
prohlnns. Each function is to be minimized and is scaled to have an opti
rnal function value of zero. The fitness landscapes dcfirwcl by these functions 
have various characteristics, unimodal, multimodal a11d quasi-ramlom, i.e. very 
rnggcd with randomly distributed local optima. Additionally, some of the fum:
tions arc separable, while others arc not. The exact definitions will be given iu 
the corresponding subsections, here we only give a summary on their separabil
ity, the dime11sio11s aml the representation used in the experiments. As default, 
we use 20 hits for representing a single variable, but deviate from this val uc for 
Fl, F2 rmd F8. For Fl and F2 we use the values originating from de .Joug, for 
F8 ~m bits arc used, following I3iick (l!JOG). A co11cisc trcatrncnt 011 rnmwrical 
opt.imizatio11 problems as test functions can be found in Back awl Michakwicz 
( l!J!J7). 

Property Fl F2 F3 F4 FG FG F7 F8 
separable y n n n y y y ll 

dimensio11 3 2 :m 10 1() HJ 10 30 
chrom. length 30 22 GOO 200 200 200 200 !JOO 

Table 2. Properties of the test fu11ctio11s 
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Figure 2. Speed curves for the spherical function 

4.1. Spherical function 

The first test fuuction is the spherical function: 

n 

Fl(:I:') = L .T; ) 
i=l 

wbc~rc -ri.12 :::; T; ::::; 5.12. This function is one of the most widely used objec

tive fl!nctions in Evolutionary Computation, especially for c:onvcrgcncc velocity 

(~valuation. It has a 1111irnodal, smooth fit11css surface and is separable, making 

optimi:;,ation rather easy. We tested the classical version of de Jong with n = 3. 

The GA fom1d the optimum with every setting (every operator, for evu-y value 

of N). Therefore we omit accuracy and success rate data, only presenting tlw 

speed curves in Fig. 2. 
From tlw speed curves it tnrns out that the two variants of diagonal <:rossovt~r 

show almost i(lcntical hclrnvior awl both arc faster than N-poi11t crossover. 

Furthermore, it seems tl1at there is a limit to increasing N: approximately 

up to G it leads to performance increase, thereafter the performam:(~ begins to 

<lctcrioratc. 

4.2. Rosenbrock's saddle function 

F2 is the saddle function after ltoscnbrock: 

F2(x) = 100 · (:ri-1:2)2 + (1- .T1) 2, 

where -2.048 ::::; :1:; ~ 2.048. The global rniuirnurn is zero at x = (1, 1). The 

Roscuhrock function is not ::;cparablc arnl the uuimodal fitncs:-i landscape is 

d1ci.ractcrizcd by an extremely deep valley along the parabola :i:i = :1:2. 
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Figure 3. Accuracy (upper diagram) aucl speed (lower diagram) for the Roscn
brock function 

Recall from Table 2 that we use the classical cle Joug setting with cl1romo
somc length 22 for F2. Therefore, the maximum rntmber of parents is lowcn~d 
accordingly in these experiments. 

The accuracy am! speed curves suggest that increasing N clccrcascs the per
formance. The success rate curves in Fig. 3 disclose that this is only partly 
true. The optimi;mtion performance grows with N for N-point crossover ( 11p to 
N = 8), but deteriorates for the diagonal crossovers. N-point crossover outper
forms both diagonal crossovers with respect to each performance nwasure. The 
two variants of diagonal crossover arc practically identical for F2. 
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4.3. Ackley function 

Our third test function F3 is the Ackley function: 

455 

F:l(X) ~ 20 + e - 20<'Xp (-0.2 1 n ) (1 71 
) :;:;: L xr - exp :;:;: L cos(27r::ri) , 

t=l t=l 

where - :.HJ :S :i:i ::::; 30. The global nrnmnurn of zero is at .i = (0,0,0, ... ). 

This fnm:tiou is not separable and at a low resolution the fitness landscape is 

uuimoclal, hut the second cxpoucntial term covers the landscape with many 

small pmtks arnl valleys, i.e. many local optima. We tested F3 for n = 30 and 

observed that the GA never found the optimum. Accordingly, the speed and 

the success rate curves arc constant, therefore omitted here. We present the 

accuracy curves in Fig. 5. 

Tlw ctfoc:t of higher N's is clear from the accuracy curves. Increasing N 

is aclvantag(~ous for each operator up to the upper limit we tested. The one 

chil<l and the N-childrcn versions of diagonal crossover perform identically also 

on this function, and both diagonal crossovers arc consistently better than N

point crossover. 

4.4. Griewangk function 

F4, tlw Gricwangk function is defined as follows. 

n .2 n ( . ) ],; J,i 

F4(.i') = 1 + L 400n - II cos r: ' 
i=l i=l vi 
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Figure 5. Accuracy curves for the Ackley function 

where -tiOO s .r,: S uOO. The global m1111Hmrn of zero is at the point :? = 
(0, 0, 0, ... ). This function has a product term introducing an iutcnlepc11ck!lcy 
between the variables, thus it is not separable. F4 was tested for HJ dimeusions, 
the results arc exhibited in Fig. u. 

On this fm1ction the advantages of higher N's arc clear, but the pcrfonnanc:c 
incrca.o.;c of accuracy stops at about N = 15. While the accuracy c11rvcs show 
oHly rnodc'st diffcrcrn:cs between the opcraton;, the results 011 t.hc: speed of the 
algoritl1m disclose that the diagonal crossovers arc signific:autly faster ;tfkr N = 
5. The two variants of diagonal crossover do not differ siguificm1tly. 

4.5. Michalewicz function 

The fifth test function is taken from Mid1alewicz, Bersilli, Dorigo, Lallgcrmau, 
Scront and Gambardella ( Hl9G). 

-. ~ · · 'Jn ?,.T':{ n (. ')) 
Ff'J(:i:)=-2...:sm(.r;)·sm~ -;- , 

i=l 

where 0 S :1:; S 1r. We tested F5 for n = 10 and observed thitt t.hc GA fouud 
the optimum iu the majority of runs. Hence the medians of the ac:curacy res11lts 
arc equal to the optimal value. Therefore we ratlwr prcscut tlw success ratc:s 
iustcad of the accuracy data. 

Im:reasillg N above 2 011 the Michalcwicz f11uc:tioll rcsul ts in the highest µ,a.ills 
so far. The success rates show a spectacular iucrcasc from approximately :rn% 
for 2 pareuts to 80-90% for N between 5-20 awl the GA becomes approximately 
four times faster for N = ::i - 10, than for N = 2. Comparing t.hc operators 
we sec agaill the superiority of diagonal crossover alld 110 significant difforcncc 
between the one child and the N-child version. 
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Figure 8. Snc:c:ess rates (upper diagram) and speed (lower diagram) for the 
Rastrigin function 

4.6. Rastrigin function 

FG is the Rastrigin function: 
n 

FG(:r) = an+ L :r:T, - c~ co~(27r:r:;), 
;.=1 

where -.'i.12 ::::; .'I.'; :::; 5.12. The global minimum of icro is at .i = (0, 0,. - .). 
This function is separable and its primary characteristic is the existence~ of 
many suboptimal peaks whose values increase as the distance from the global 
optimum point increases. In our tests we used C.l! = 10.0 and n = 10. 

Since many runs found the optimum, accuracy figures arc replaced by succe!:-ls 
rates curves (notice the 0. G.'i - 1. 0 scaling in Fig. 8, upper part). These show that 
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Figmc g. Speed cmves for the Schwcfol function 

incrca.siug N is adva11tagco11s, h11t the differences between various operators are 
small. Looking at the speed cmves the effect of higher N's and the differences 
bd.wccu operators become clear. We can observe that each operator bcc:o1ncs 
better for hig]H'r N's and that the two diagonal crossovers (identical again) 
011tpcrforrn N-point crossover. 

4.7. Schwefel function 

F7 is olita.inc'd by generalizing Schwcfcl's 2.2G function (Schwdcl, HJQS, p. :344): 

n 

F7(f) = •118.0820n - I>i sin ( JW') , 
i=l 

where -512.0:1:::; .Ti :::; SI 1.07. The global minirmnn of zero is at :I:= ( 420.!)(j87, 
420.!1li87, ... ). Altho11gh this function is separable, it is interesting bccam;c of 
the prcscn('c of it secoml-best minimum far away from (in the 'opposite corucr' 
to) t!H' global rninirmmi. This fcatmc, just like two-peaks landscapes, makes 
the GA sensitive for early commitment with respect to the scard1 dircc:tio11. F7 
wa.~ tested for n = 10 awl tmucd 011t to be~ easy. Nearly all rnns cndl'd with 
thl' global optimum, implying that accuracy aml sncccss rates would give 110 
i11formatio11 for comparing tlic operators. The results on speed, however, show 
that Lhc GA performance quickly awl consequently improves when iw:rcasi11µ; 
N from 2 to approximately 10-lS, and stagnates thereafter. The algorithm 
b('comcs ;i,pproxirnately twice as fast for high N's as for N = 2. Om:c again, 
there is 110 significant difference between the two diagonal crossovers that, both 
outperform N-point crossover. 
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4.8. Fletcher-Powell function 

F8, tlie Fktd1cr-Powcll function is rdril'\'t•d from Bitl'k , l!l!Hi;· 

" 
F8(:r) L(A; - 13;)'2 

i=l 
11 

Ai L(11;.i si11 n.J + h;.1 cos r~1 ) 
.)=l 

" 
fJ, L(11 11 si11:ri +li;.Jrns.r 1), 

.i=l 

where n = 30, n(J" = 30, awl -7f ~ :r? :S 7f. Tlw n;1 . Ii, 1 E { - lOU ..... 
are ramlorn i11tc~g{'rs, and 11.7 E [·-If, 7r] is tltt· rnndurnl:> d1usPi: glulml 
positio11. For t.lw matrices A,B and tlw \'('dor 1t W<' 11s<'d :l11• \'al1w,.; 
Back ( HJ(}G) (pp. 2GG 2G7). 

No nrns fo1rncl t.lw optimlllll Oil this fmwt.iou, r<'snltiug iu l·uuslaut and 
s1H:ccss rat.c~ Clll'\'C'S. Ac1·11rac:» c·11rV('S r<'\Tal diil'l'n'w·1·s IH'!Wt't'll fui 
different N's, sltowiug adva11tng<'o11s clfcds of higlit•r s·s. np to appruximatdY 
l!J. Tlw three operators, hmv1•\·n, liardly cliffn i11 and. as t lw 
progress cnrvcs for N = 18 in Fig. 10 iudirntc. tlwir scard1 lwhm·iur is very 
similar, too. 

5. Conclusions 
Corn·cruiug 011 r Ii rst rcs1~ard1 ohjcd in•. i.('. lilldi11)!. ('Oll!H'«t ions I 1cl.\\H 'it 1 lw 
c:ltaractcristi('s of 1 lw ohjcctivP fnllltious and tl1t' 11s<'fnliwss uf appl,ving niu1" 
par<'11ts, W<' l'<lll ohsen·1' th(' followiug. \Vitli th1• siuglt· t'X<'('ptiun of Hust·uhtil«k's 
Ciaddlc (F2) it is Hsd1tl 1o appl:< diagonal nossonT with Iv·>:.!. 
for part.icnlar feature" of F~ that ma\' t·nnst· this tk\·iann• ld, us nu\c timt it !ia;; 
the lowest. din1c11sio11ali1v (n =~)and tltc slwril•st d1ru111usutll<'S li :1:2) ;1s 
opposed t.o other f111ll't iolls (200-D!JO for F;)-FS). This rnakl·s t I:<· 1lisr 11pt i v1•i:t·sc, 
oft.he crossovt'l' operators n·lati\'l'l)· hiµ.;h <'\'I'll for low 1\"'s. Tlw ut lwr n11i111tJ1lnl 

fuud.iou ill the (,est S<'1, Fl. is appan·Hll,\· so cas:v tu uptirni!.t' that tile (;;\ 
docs uot. s11tkr from this dk('t, hut oil F2 \\·hnl' t lw opt irnnrn is 'iiidd<'ll al t lw 
Jiott.orn of a loHg licHi \·alley', sl'<' D~il'k and "tllidwk1\·i1·z (lD\li'), this st·1·t11s tu 

he clisastl'rol!s. 
Onr s<'cornl r<'St'ard1 objt•ctiv1• t'Olll't'r!W<l tlH' idl'11tifinttioll uf tlw sunn·l'i,~l 

of i11ncasctl pcrfonr1<1.11n~ of diagoual crussm·t·r when n:·wd \\·itlr u1tll'l' par!'uls. 
As for the h:q)ot.hesis H 1, i.1'. 1 lmt irwrl'asi11g tltl' 11111nlicr uf nu:-isu\·cr puints 
i11crcascs pcrfonnmH'l'. ohscrn • t.ltat N -poiut 1·1'()ssm·t•r did l wnmr(' lil't. kr fur 
higher N's on all f1rnctiuns of our u~st. snik. TlHTt'forl', \\'I' art·t·pt ll 1 a11d nJll
dud<~ that ltiglin pcrfonrnrnn' partially l'omcs from a 11iglwr 11111Hlwr uf nosso\·t·r 
poi11ts. Expla11atio11s for 1 liis fad. an• the bdt<'r n1ixiug of iufornmt io11. s•'t' dt• 
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J oug aucl Spears ( 1Q92), and perhaps also the increased macro-mutation-like 
effects of crossover iu case of using higher N's. 

Hypothesis H2 abo11t the advantages of a bigger generational gap is clearly 
rejected, since the one child and the N children variants of diagonal crossover 
exhibited the same behavior on each functi011. Hence, we can conclude that 
the advantage of applying diagonal crossover with higher N's is not the result 
of a bigger generational gap in the Steady State GA we use (sec Section 2 for 
discussion). 

Recall that our workiug hypotheses arc not mutually exclusive. Accepting 
H1 docs not imply rejection of lh, i.e. that better perforrnam:e for higher N's 
would only come from having more crossover points. In fact diagonal crossover 
was better than N-point crossover on all but two functions: on H.oscnbrock's 
saddle (F2) and 011 the Fletcher-Powell functioll (F8). Oil the~ Fletcher-Powell 
fuuction diagollal crossover was not significantly better than N-point crossover. 
Such little differences in performance do not dearly justify the acceptcnce of the 
hypothesis fb Oil the functiou F8. There is no dear advantage of using more 
parents for recombination here. Increased performance for higher N's seems to 
be) the result of the crossovers effect as macro mutatiou, this effect being inten
sified by more crossover points. Recall, that FS spans a very rugged landscap<~ 
with ranclomly distributed local optima, which makes it more or less similar 
to NK-lanclscapes with relatively high K values. These observations arc Lhus 
in agreement with earlier conclusions for NK-landscapes, Eiben awl Schippers 
(199G), Hordijk and Mancleric:k ( Hl9J), Kauffmall ( 1993), stating that 011 such 
surfaces crossover is not useful <'tt all. On H.osenbroc:k's saddle (F2) diagonal 
crossover was dearly worse than N-point crossover, besides, the perforrnam:c of 
diagonal crossover dcc:rcasecl for increasing N. This behavior is unique on the 
test suite we use here and at the moment we do' llOt have a solid darificatiou 
for it. 

According to the above considerations, hypothesis H3 ha.s to be rcfiuecl. 
Ou quasi-raudom landscapes, such as FS, increased performance of diagonal 
crossover for higher N's may occur, but it seems not to be the result of us
iug more parents, i.e. lb docs not hold. 011 other types of landscapes (the 
uuimoclal Fl and the multimodal, but somewhat regularly shaped F3-F7), di
agonal crossover cxhi bits i11creasccl performance when im:rcasing N, arnl it docs 
outperform N-poiut crossover, thus confirming H3. F2 remains an exception, 
showing that even for unimodal larnlscapes it is not guaranteed that diago!lal 
crossover will become better whcu increasing N. Yet, with this exception iu 
mind, we can draw the conclusion that if diagonal crossover becomes better for 
higher N's thr,n this improvement is llOt only the consequence of using more 
crossover points, but also that of using more parents. 

Let us close onr conclusions with noting that the greatest gaiu occnrrccl in 
the speed of the GA, diagonal crossover is usually fal:>ter than 2 parent N-point 
crossover (if a!l(l when). Clearly, if we had set the maximum number of evalua
tions lower then this difference iu speed would also have resulted in difforcrn:es 
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in s11ccc:ss rate: and accuracy. Thus, although we definitely do not claim that 

<liagoual crossover is a universally superior opc:rawr, we have sufficient evidence 

to say that it is a sound design heuristics to implement it in a GA and set the 

number of parents above two. 
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