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Abstract. Traditional models of concurrency resort to peculiarly indi-
rect means to express interaction and study its properties. Formalisms
such as process algebras/calculi, concurrent objects, actors, agents,
shared memory, message passing, etc., all are primarily action-based
models that provide constructs for the direct specification of things that
interact, rather than a direct specification of interaction (protocols).
Consequently, interaction in these formalisms becomes a derived or sec-
ondary concept whose properties can be studied only indirectly, as the
side-effects of the (intended or coincidental) couplings or clashes of the
actions whose compositions comprise a model.

Treating interaction as an explicit first-class concept, complete with
its own composition operators, allows to specify more complex interac-
tion protocols by combining simpler, and eventually primitive, protocols.
Reo [20/ITIT2U6] serves as a premier example of such an interaction-
based model of concurrency. In this paper, we describe Reo and its
support tools. We show how exogenous coordination in Reo reflects an
interaction-centric model of concurrency where an interaction (protocol)
consists of nothing but a relational constraint on communication actions.
In this setting, interaction protocols become explicit, concrete, tangi-
ble (software) constructs that can be specified, verified, composed, and
reused, independently of the actors that they may engage in disparate
applications.

Puff, the magic dragon ad-libbed concurrency,

As he frolicked through the mist of code disquised invisibly.

Little Jackie Paper loved that rascal Puff,

And brought him threads and semaphores and other fancy stuff. Oh ...

—Peter Paul AndM ary

1 Introduction

Concurrency is inherently difficult because it involves complex interaction pro-
tocols. Yet, it is always possible to make already difficult subjects even more
difficult by increasing the complexity of their treatment. We take full advantage
of this fact in cryptography by seeking easy disguising transformations whose
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inverses are so complex as to make them prohibitively difficult (if not impossible)
to perform, without knowing a key (piece of information). We use unnecessary
complexity to disguise things for entertainment, as in puzzles, for instance, as
well. In most other situations, though, we do not choose to increase the com-
plexity of a problem; at least not intentionally. However, it seems to me that the
historically justifiable optimum path that led us out of the realm of sequential
programming, into the new world of concurrency, has hindered us from realiz-
ing how our old-country world view unnecessarily increases the complexity of
life in this new world. Once we had mastered the skills to navigate through the
realm of sequential programming, the simplest models of concurrency seemed
to require only the addition of a few new constructs to our models of sequen-
tial programming: a befitting selection of locks, semaphores, mutual exclusion,
monitors, send/receive primitives, message passing, rendezvous, etc., would do.
Refinements in concurrency theory abstracted away inconsequential sequential
computations to offer process calculi and algebras. In many ways, these models
are indeed simple. Alas, simple models are not always simple to use.

With the availability of today’s low-cost multicore commodity hardware that
can scale up to offer massively parallel computing platforms, high-speed commu-
nication networks that interconnect the globe, plus every indication that both
of these phenomena constitute trends that will continue in the future, the need
for programming techniques to harness the massive concurrency that they offer
has become more vivid than ever. The inadequacy of traditional models for pro-
gramming of concurrent systems to serve this purpose stems from the fact that
the way in which they express interaction protocols generally does not scale up.

In spite of the fact that interaction constitutes the most challenging aspect of
concurrency, traditional models of concurrency predominantly treat interaction
as a secondary or derived concept. Shared memory, message passing, calculi such
as CSP [50], CCS [83], the m-calculus [84197], process algebras [33l25/46], and
the actor model [8] represent popular approaches to tackle the complexities of
constructing concurrent systems. Beneath their significant differences, all these
models share one common characteristic, inherited from the world of sequential
programming: they all constitute action-based models of concurrency.

For example, consider developing a simple concurrent application with two
producers, which we designate as Green and Red, and one consumer. The con-
sumer must repeatedly obtain and display the contents alternately made avail-
able by the Green and the Red producers.

Figure [Il shows the pseudo code for an implementation of this simple applica-
tion in a Java-like language. Lines 1-4 in this code declare four globally shared
entities: three semaphores and a buffer. The semaphores greenSemaphore and
redSemaphore are used by their respective Green and Red producers for their
turn keeping. The semaphore bufferSemaphore is used as a mutual exclusion
lock for the producers and the consumer to access the shared buffer, which
is initialized to contain the empty string. The rest of the code defines three
processes: two producers and a consumer.



Puff, The Magic Protocol 171

Global Objects: Green Producer:
1 private final Semaphore greenSemaphore = new Semaphore(1); 14 while (true) {
2 private final Semaphore redSemaphore = new Semaphore(0); 15 sleep(5000);
3 private final Semaphore bufferSemaphore = new Semaphore(1); 16 greenText = ...;
4 private String buffer = EMPTY; 17  greenSemaphore.acquire();

18  bufferSemaphore.acquire();
19  buffer = greenText;

20 bufferSemaphore.release();
21  redSemaphore.release();

22 }
Consumer: Red Producer:
5 while (true) { 23 while (true)
6 sleep(4000) ; 24 sleep(3000) ;
7  bufferSemaphore.acquire(); 25 redText = ...;
8 if (buffer != EMPTY) { 26  redSemaphore.acquire();
9 println(buffer); 27 bufferSemaphore.acquire();
10 buffer = EMPTY; 28 buffer = redText;
11} 29  bufferSemaphore.release();
12 bufferSemaphore.release(); 30 greenSemaphore.release();
13 } 31}

Fig. 1. Alternating producers and consumer

The consumer code (lines 5-13) consists of an infinite loop where in each
iteration, it performs some computation (which we abstract as the sleep on line
6), then it waits to acquire exclusive access to the buffer (line 7). While it has
this exclusive access (lines 8-11), it checks to see if the buffer is empty. An empty
buffer means there is no (new) content for the consumer process to display, in
which case the consumer does nothing and releases the buffer lock (line 12). If
the buffer is non-empty, the consumer prints its content and resets the buffer to
empty (lines 9-10).

The Green producer code (lines 14-22) consists of an infinite loop where in
each iteration, it performs some computation and assigns the value it wishes
to produce to local variable greenText (lines 14-15), and waits for its turn
by attempting to acquire greenSsemaphore (line 17). Next, it waits to gain
exclusive access to the shared buffer, and while it has this exclusive access, it
assigns greenText into buffer (lines 18-20). Having completed its turn, the
Green producer now releases redSemaphore to allow the Red producer to have
its turn (line 21).

The Red producer code (lines 23-31) is analogous to that of the Green pro-
ducer, with “red” and “green” swapped.

This is a simple concurrent application whose code has been made even sim-
pler by abstracting away its computation and declarations. Apart from their
trivial outer infinite loops, each process consists of a short piece of sequential
code, with a straight-line control flow that involves no inner loops or non-trivial
branching. The protocol embodied in this application, as described in our prob-
lem statement, above, is also quite simple. One expects it be easy, then, to answer
a number of questions about what specific parts of this code manifest the various
properties of our application. For instance, consider the following questions:
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1. Where is the green text computed?
2. Where is the red text computed?
3. Where is the text printed?

The answers to these questions are indeed simple and concrete: lines 16, 25, and
9, respectively. Indeed, the “computation” aspect of an application typically
correspond to coherently identifiable passages of code. However, the perfectly
legitimate question “Where is the protocol of this application?” does not have
such an easy answer: the protocol of this application is intertwined with its
computation code. More refined questions about specific aspects of the protocol
have more concrete answers:

1. What determines which producer goes first?
2. What ensures that the producers alternate?
3. What provides protection for the global shared buffer?

The answer to the first question, above, is the collective semantics behind lines
1, 2, 17, and 26. The answer to the second question is the collective semantics
behind lines 1, 2, 17, 26, 21, and 30. The answer to the third question is the
collective semantics of lines 3, 18, 20, 27, and 29. These questions can be answered
by pointing to fragments of code scattered among and intertwined with the
computation of several processes in the application. It is far more difficult to
identify other aspects of the protocol, such as possibilities for deadlock or live-
lock, with concrete code fragments. While both concurrency-coordinating actions
and computation actions are concrete and explicit in this code, the interaction
protocol that they induce is implicit, nebulous, and intangible. In applications
involving processes with even slightly less trivial control flow, the entanglement
of data and control flow with concurrency-coordination actions makes it difficult
to determine which parts of the code give rise to even the simplest aspects of
their interaction protocol.

When the protocol in a typical concurrent application consists of 623 send
and receive (or lock/unlock, etc.) primitives, sprinkled over 783,961 lines of C
code, chopped up into 387 different source files, how simple is it to understand
this protocol, reason about its properties, debug it, adapt it, or imagine reusing
it in another application? How can a hapless programmer (who may very well
be the original author of the code, six months down the road) even see what this
protocol actually does before he can contemplate to do anything with it? Even in
the case of our simple program in Figure[ll, which we just examined, do we see all
of its properties? We asked about and identified the buffer protection mechanism
in this application. But does this mechanism provide adequate protection that
we expect?

It is only tactful of me to say that I am sure all my readers have already
spotted what may be considered a bug in this code that may in fact remain
undetected in practice for a very long time, depending on the circumstances
that determine the relative speeds of the producer and consumer threads in this
application. There is no protection in this code preventing the producers from
over-writing each other in the buffer, regardless of whether or not their output
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Green Producer: Red Producer:
14 while (true) { 28 while (true)
15  sleep(5000); 29  sleep(3000);
16 greenText = ...; 30 redText = ...;
17  greenSemaphore.acquire(); 31  redSemaphore.acquire();
18 while (greenText !=EMPTY) { 32 while (redText !=EMPTY) {
19 bufferSemaphore.acquire(); 33 bufferSemaphore.acquire() ;
20 if (buffer == EMPTY) { 34 if (buffer == EMPTY) {
21 buffer = greenText; 35 buffer = redText;
22 greenText = EMPTY; 36 redText = EMPTY;
23 } 37 }
24 bufferSemaphore.release(); 38 bufferSemaphore.release();
25 } 39}
26  redSemaphore.release(); 40  greenSemaphore.release();
27 } 41 }

Fig. 2. Busy waiting consumer

has actually been consumed by the consumer. Strictly speaking, the original
statement of our requirements does not forbid this behavior, so whether this is
a bug (in the specification or implementation) is unclear. Suppose the intention
in fact was for the consumer to alternately consume what the two producers
produce, which means the implementation in Figure [Ilis incorrect and we need
to alter it.

One solution is to make the producers sensitive to the emptiness of the buffer.
The code for the new producers appears in Figure[2l A disadvantage of this code
is that it more heavily uses the busy-waiting mechanism that already existed in
the consumer code in Figure[Il A better alternative is to use a different protocol
that explicitly respects the turn taking, as described below.

In the program shown in Figure 3] the consumer too has its own turn-taking
semaphore, the new blueSemaphore (line 3), which is initialized to be locked,
just as the redSemaphore, because initially, there is nothing for the consumer
to do before any of the producers produces something. The initialization of the
bufferSemaphore is also changed (line 4), making the buffer initially locked on
behalf of the first producer. The consumer and the two producers all can proceed
until each reaches its own turn-taking lock on lines 8, 15, and 24, respectively.
The consumer and the Red producer suspend themselves on their turn-taking
locks, but the Green producer can proceed beyond its turn-taking lock (line 15),
where it fills the buffer (line 16), releases the turn-taking lock of the consumer
(line 17), and suspends itself on the buffer lock (line 18). Only the consumer can
now proceed, printing the content of the buffer (line 9), and releasing the buffer
lock (line 10), after which it proceeds with its next iteration in which it suspends
itself on its turn-taking lock (line 8). Only the Green producer can now proceed,
having obtained the buffer lock. It now completes its iteration by releasing the
turn-taking lock of the Red producer (line 19), and starts its next iteration in
which it suspends itself on its own turn-taking lock (line 15). Now, only the Red
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Global Objects: Green Producer:
1 private final Semaphore greenSemaphore = new Semaphore(1); 12 while (true) {
2 private final Semaphore redSemaphore = new Semaphore(0); 13 sleep(5000);
3 private final Semaphore blueSemaphore = new Semaphore(0); 14  greenText = ...;
4 private final Semaphore bufferSemaphore = new Semaphore(0); 15  greenSemaphore.acquire();
5 private String buffer = EMPTY; 16  buffer = greenText;

17  blueSemaphore.release();
18  bufferSemaphore.acquire();
19  redSemaphore.release();

20 }
Consumer: Red Producer:
6 while (true) { 21 while (true)
7 sleep(4000) ; 22 sleep(3000) ;
8  blueSemaphore.acquire(); 23 redText = ...;
9  println(buffer); 24  redSemaphore.acquire();
10  bufferSemaphore.release(); 25 buffer = redText;
11 } 26  blueSemaphore.release();

27  bufferSemaphore.acquire();
28  greenSemaphore.release();
29 }

Fig. 3. Revised alternating producers and consumer

producer can proceed to fill the buffer (line 25), release the turn-taking lock
of the consumer (line 26), and suspend itself on the buffer lock (line 27). The
consumer now goes through another iteration, at the end of which it releases the
buffer lock, allowing only the Red producer to proceed. The Red producer now
releases the turn-taking lock of the Green producer (line 29), and starts its next
iteration in which it suspends itself on its own turn-taking lock (line 24) again.

Now that we have a correct protocol (if we indeed do) that does what we
expect it to do (if it indeed does), what can we do with this protocol? How easy
is it, for instance to reuse this same protocol in a more elaborate application
where the control flow of the processes is more complex than the essentially
linear, sequential flow of these simple processes? Is it possible to bundle up this
protocol and parameterize it such that we can instantiate the protocol with
arbitrary numbers of and computation code for processes, the same way that we
can package a piece of code into a parameterized function to compute the inverse
of a matrix of any size, or find the minimum element in a list of any size? It would
certainly help in software development for multicore platforms, for instance, if
we could simply specify the desired numbers and participants for an abstract
parameterized protocol, as easily as passing arguments in a function call, to
tailor the desired concurrency on the available cores. How easy is it to alter this
protocol to change the imposed ordering or to allow a pair of considerably fast
producers go as fast as they wish, while the slower consumer merely samples
their output? Such manipulations are difficult with this and similar incarnations
of a protocol because they require seeing and touching the protocol as a tangible
concrete entity.

Seeing concurrency protocols through the mist of source code, reminds me of
my experience with autostereograms that suddenly burst into popularity in the
1990’s in Magic Eye books. In fact, there are different types of autostereograms



Puff, The Magic Protocol 175

and this particular type is called random dot autostereograms which hide a 3D
image behind a pattern of seemingly random dots. The hidden 3D image emerges
and becomes perceptible only when the incoherent 2D picture of random dots is
viewed just the right way. To accomplish this feat, one needs to learn the skill to
overcome the brain’s normally automatic coordination between its mechanisms
for the eyes’ focus and vergence. With the correct vergence, the 3D scene sud-
denly pops into existence, but let the normal brain mechanism that ties vergence
to focus take over, and puff, it’s gone! It is inaccurate to call this phenomenon
an optical illusion, because the 3D image is really there: all the depth informa-
tion as well as its other characteristics truly exist embedded within the mist of
random dots. It is nontrivial to learn the skill to see these 3D images because to
do so is contrary to how our brains are wired to tell each eye where to look as
we focus on what we see.

The protocol in a concurrent program is as real as the 3D image in a ran-
dom dot autostereogram: all information necessary for its manifestation really
exists, scattered, embedded within the bulk of the source code, most of which
is just as irrelevant to the protocol and hinders its recognition as the random
dots are to the 3D image and hinder its recognition. Seeing the protocol requires
nontrivial skills that defy our natural balance of mental vergence and focus of
attention. Constructing a random dot autostereogram requires intricate math-
ematical models and sophisticated calculations that do not resemble anything
like sculpting or drawing a 3D image. Constructing a protocol in this form re-
quires intricate mathematical models and sophisticated calculations that do not
resemble anything like sequential programming. The 2D picture of a random dot
autostereogram only indirectly contains its embedded 3D image, whose mani-
festation requires the active participation of an observer. The source code of a
concurrent program only indirectly contains its embedded protocol, whose man-
ifestation requires the active participation of a human or computer observer.
Both the 3D images of random dot autostereograms and the protocols of con-
current programs can be constructed and manipulated only indirectly, through
generally non-intuitive manipulations of seemingly unrelated tangible concrete
objects scattered throughout the scene. Even the simplest manipulations of an
autostereogram, such as scaling, can change the 3D image non-intuitively and
produce strange unexpected results. It is just as perilous and misguided to try
to alter a protocol or reuse (perhaps a part of) it in another program by directly
manipulating or copying source code, as it is to try to alter a 3D image or reuse
(perhaps a part of) it in another autostereogram by directly manipulating or
copying random dots.

Process algebraic models of concurrency fair only slightly better in this regard
than, e.g., programming with threads: they too embody an action-based model
of concurrency. Figure Ml shows a process algebraic model of our alternating pro-
ducers and consumer application. This model consists of a number of globally
shared names, i.e., g, r, b, and d. Generally, these shared names are consid-
ered as abstractions of channels and thus are called “channels” in the process
algebra/calculi community. However, since these names in fact serve no purpose
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Global Names: Green Producer:

synchronization-points g, r, b, d G := genG(t) . 7g(k) . !'b(t) . 7d(j) . !'r(k) . G
Consumer: Red Producer:

B := 7?b(t) . print(t) . !'d("done") . B R := genR(t) . 7r(k) . !b(t) . 7d(j) . !gk) . R
Application:

G| R | B !'g("token")
Fig. 4. Alternating producers and consumer in a process algebra

other than synchronizing the I/O operations performed on them, and because
we will later use the term “channel” to refer to entities with more elaborate
behavior, we use the term “synchronization points” here to refer to “process
algebra channels” to avoid confusion.

A process algebra consists of a set of atomic actions, and a set of composition
operators on these actions. In our case, the atomic actions include the primitive
actions read ? ( ) and write ! ( ) defined by the algebra, plus the user-defined
actions genG( ), genR( ), and print( ), which abstract away computation.
Typical composition operators include sequential composition . , parallel
composition | , nondeterministic choice + | definition := | and im-
plicit recursion.

In our model, the consumer B waits to read a data item into t by synchronizing
on the global name b, and then proceeds to print t (to display it). It then writes a
token "done" on the synchronization point d, and recurses. The Green producer
G first generates a new value in t, then waits for its turn by reading a token value
into k from g. It then writes t to b, and waits to obtain an acknowledgment j
through d, after which it writes the token k to r, and recurses. The Red producer
R behaves similarly, with the roles of r and g swapped. The application consists
of a parallel composition of the two producers and the consumer, plus a trivial
process that simply writes a "token" on g to kick off process G to go first.

Observe that a model is constructed by composing (atomic) actions into (more
complex) actions, called processes. True to their moniker, such formalisms are
indeed algebras of processes or actions. Just as in the version in Figure [3] while
communication actions are concrete and explicit in the incarnation of our ap-
plication in Figure [ interaction is a manifestation of the model with no direct
explicit structural correspondence. Nevertheless, process algebraic incarnations
of concurrency protocols are obviously simpler and more concise than their in-
carnations in typical programming languages, primarily because they abstract
away the clutter of computation.

Returning to our autostereogram analogy, it is as if we compare a random
dot autostereogram with a so-called wallpaper autostereogram. A wallpaper au-
tostereogram is the simplest type of autostereogram and consists of a horizon-
tally repeating pattern of nearly identical pictures. Roughly, it is the random dot
autostereogram with the cluttering random dots peeled off, which allows even
casual observers to get a good idea of what the 3D image is all about, with-
out requiring them to exert their perception skills to actually experience the 3D
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image. The individually identifiable repeating patterns of a wallpaper autostere-
ogram seem more concrete, and in some sense more well-packaged and more
reusable than the almost amorphous expanse of a random dot autostereogram.
Nevertheless, a cavalier attempt to edit or cut and paste parts of a wallpaper
autostereogram is no more likely to produce the desired alteration to its 3D im-
age than in the case of a random dot autostereogram. Successful alteration of a
process algebraic specification requires the same unnatural detachment of focus
(on local manipulation) and vergence (to see its global effects) as is required to
successfully alter the protocol of a concurrent C or Java application.

Indeed, in all action-based models of concurrency, interaction becomes a by-
product of processes executing their respective actions: when a process A hap-
pens to execute its i;;, communication action a; on a synchronization point, at
the same time that another process B happens to execute its j;; communication
action b; on that same synchronization point, the actions a; and b; “collide”
with one another and their collision yields an interaction. Manifested this way,
an interaction protocol consists of a desired temporal sequence of such (coinci-
dental or planned) collisions. It is non-trivial to distinguish between the essential
and the coincidental collision sequences, when the protocol itself is only such an
ephemeral manifestation.

Generally, the reason behind the specific collision of a; and b; remains debat-
able. Perhaps it was just dumb luck. Perhaps it was divine intervention. Some
may prefer to attribute it to intelligent design! What is not debatable is the
fact that, a split second earlier or later, perhaps in another run of the same
application, completely random cosmic rays may zap a memory bit and trigger
the automatic hardware error correction of the affected memory cell, and thus
change the relative timing of the running processes, making a; and b; collide not
with each other, but with two other actions (of perhaps other processes) yield-
ing completely different interactions. Action based models of concurrency make
protocols more difficult than necessary to specify, manipulate, verify, debug, and
next to impossible to reuse.

Instead of explicitly composing (communication) actions to indirectly specify
and manipulate implicit interactions, is it possible to devise a model of concur-
rency where interaction (not action) is an explicit, first-class construct? We tend
to this question in the next section and in the remainder of this paper describe
a specific language based on an interaction-centric model of concurrency. We
show that making interaction explicit leads to a clean separation of computa-
tion and communication, and produces reusable, tangible protocols that can be
constructed and verified independently of the processes that they engage.

2 Interaction Centric Concurrency

The most salient characteristic of interaction is that it transpires among two or
more actors. This is in contrast to action, which is what a single actor manifests.
In other words, interaction is not about the specific actions of individual actors,
but about the relations that (must) hold among those actions. A model of in-
teraction, thus, must allow us to directly specify, represent, construct, compose,
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decompose, analyze, and reason about those relations that define what tran-
spires among two or more engaged actors, without the necessity to be specific
about their individual actions. Making interaction a first-class concept means
that a model must offer (1) an explicit, direct, concrete representation of the in-
teraction among actors, independent of their (communication) actions; (2) a set
of primitive interactions; and (3) composition operators to combine (primitive)
interactions into more complex interactions.

Wegner has proposed to consider coordination as constrained interaction [101].
We propose to go a step further and consider interaction itself as a constraint
on (communication) actions. Features of a system that involve several entities,
for instance the clearance between two physical objects, cannot conveniently be
associated with any one of those entities. It is quite natural to specify and rep-
resent such features as constraints. The interaction among several active entities
has a similar essence: although it involves them, it does not belong to any one of
those active entities. Constraints have a natural formal model as mathematical
relations, which are non-directional. In contrast, actions correspond to functions
or mappings which are directional, i.e., transformational.

A constraint declaratively specifies what must hold in terms of a relation.
Typically, there are many ways in which a constraint can be enforced or violated,
leading to many different sequences of actions that describe precisely how to
enforce or maintain a constraint. Action-based models of concurrency lead to
the precise specification of how in terms of sequences of actions interspersed
among the active entities involved in a protocol. In an interaction-based model of
concurrency, only what a protocol represents is specified as a constraint over the
(communication) actions of some active entities; as in constraint programming,
the responsibility of how the protocol constraints are enforced or maintained is
relegated to an entity other than those active entities.

Generally, composing the sequences of actions that manifest two different
protocols does not yield a sequence of actions that manifests a composition
of those protocols. Thus, in action-based models of concurrency, protocols are
not compositional. Represented as constraints, in an interaction-based model of
concurrency, protocols can be composed as mathematical relations.

Banishing the actions that comprise protocol fragments out of the bodies
of processes produces simpler, cleaner, and more reusable processes. Expressed
as constraints, pure protocols become first-class, tangible, reusable constructs in
their own right. As concrete software constructs, such protocols can be embodied
into architecturally meaningful connectors.

In this setting, a process (or thread, component, service, actor, agent, etc.)
offers no methods, functions, or procedures for other entities to call, and it
makes no such calls itself. Moreover, processes cannot exchange messages through
targeted send and receive actions. In fact, a process cannot refer to any foreign
entity, such as another process, the mailbox or message queue of another process,
shared variables, semaphores, locks, etc. The only means of communication of
a process with its outside world is through blocking I/0O operations that it may
perform exclusively on its own ports, producing and consuming passive data.
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A port is a construct analogous to a file descriptor in a Unix process, except that
a port is unidirectional, has no buffer, and supports blocking I/O exclusively.

If i is an input port of a process, there are only two operations that the
process can perform on i: (1) blocking input get(i, v) waits indefinitely or
until it succeeds to obtain a value through i and assigns it to variable v; and
(2) input with time-out get (i, v, t) behaves similarly, except that it unblocks
and returns false if the specified time-out t expires before it obtains a value to
assign to v. Analogously, if o is an output port of a process, there are only two
operations that the process can perform on o: (1) blocking output put(o, v)
waits indefinitely or until it succeeds to dispense the value in variable v through
o; and (2) output with time-out put (o, v, t) behaves similarly, except that it
unblocks and returns false if the specified time-out t expires before it dispenses
the value in v.

Fig. 5. Protocol in a connector

Inter-process communication is possible only by mediation of connectors. For
instance, Figure [fl shows a producer, P and a consumer C whose communication
is coordinated by a simple connector. The producer P consists of an infinite
loop in each iteration of which it computes a new value and writes it to its
local output port (shown as a small circle on the boundary of its box in the
figure) by performing a blocking put operation. Analogously, the consumer C
consists of an infinite loop in each iteration of which it performs a blocking
get operation on its own local input port, and then uses the obtained value.
Observe that, written in an imperative programming language, the code for P
and C is substantially simpler than the code for the Green/Red producers and
the consumer in Figures[l 2, and [} it contains no semaphore operations or any
other inter-process communication primitives.

The direction of the connector arrow in Figure [0l suggests the direction of the
dataflow from P to C. However, even in the case of this very simple example, the
precise behavior of the system crucially depends on the specific protocol that
this simple connector implements. For instance, if the connector implements a
synchronous protocol, then it forces P and C to iterate in lock-step, by synchroniz-
ing their respective put and get operations in each iteration. On the other hand
the connector may have a bounded or an unbounded buffer and implement an
asynchronous protocol, allowing P to produce faster than C can consume. The
protocol of the connector may, for instance enable it to replicate data items,
e.g., the last value that it contained, if C consumes faster and drains the buffer.
The protocol may mandate an ordering other than FIFO on the contents of the
connector buffer, perhaps depending on the contents of the exchanged data. It
may retain only some of the contents of the buffer (e.g., only the first or the last
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item) if P produces data faster than C can consume. It may be unreliable and
lose data nondeterministically or according to some probability distribution. It
may retain data in its buffer only for a specified length of time, losing all data
items that are not consumed before their expiration dates. The alternatives for
the connector protocol are endless, and composed with the very same P and C,
each yields a totally different system.

A number of key observation about this simple example are worth noting.
First, Figure B is an architecturally informative representation of this system.
Second, banishing all inter-process communication out of the communicating
parties, into the connector, yields a “good” system design with the beneficial
consequences that:

— changing P, C, or the connector does not affect the other parts of the system;

— although they are engaged in a communication with each other, P and C are
oblivious to each other, as well as to the actual protocol that enables their
communication;

— the protocol embodied in the connector is oblivious to P and C.

In this architecture, the composition of the components and the coordination of
their interactions are accomplished exogenously, i.e., from outside of the compo-
nents themselves, and without their “knowledge’ﬂ. In contrast, the interaction
protocol and coordination in the examples in Figures [, 2, Bl and @ are endoge-
nous, i.e., accomplished through (inter-process communication) primitives from
inside the parties engaged in the protocol. It is clear that exogenous composition
and coordination lead to simpler, cleaner, and more reusable component code,
simply because all composition and coordination concerns are left out. What
is perhaps less obvious is that exogenous coordination also leads to reusable,
pure coordination code: there is nothing in any incarnation of the connector in
Figure Bl that is specific to P or C; it can just as readily engage any producer and
consumer processes in any other application.

Obviously, we are not interested in only this example, nor exclusively in con-
nectors that implement exogenous coordination between only two communicat-
ing parties. Moreover, the code for any version of the connector in Figure [,
or any other connector, can be written in any programming language: the con-
cepts of exogenous composition, exogenous coordination, and the system design
and architecture that they induce constitute what matters, not the implemen-
tation language. Focusing on multi-party interaction/coordination protocols re-
veals that they are composed out of a small set of common recurring concepts.
They include synchrony, atomicity, asynchrony, ordering, exclusion, grouping, se-
lection, etc. Compliant with the constraint view of interaction advocated above,
these concepts can be expressed as constraints, more directly and elegantly than
as compositions of actions in a process algebra or an imperative programming

! By this anthropomorphic expression we simply mean that a component does not
contain any piece of code that directly contributes to determine the entities that it
composes with, or the specific protocol that coordinates its own interactions with
them.
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language. This observation behooves us to consider the interaction-as-constraint
view of concurrency as a foundation for a special language to specify multi-party
exogenous interaction/coordination protocols and the connectors that embody
them, of which the connector in Figure[His but a trivial example. Reo, described
in the next section, is a premier example of such a language.

3 An Overview of Reo

Reo [200TTUT26] is a channel-based exogenous coordination language wherein
complex coordinators, called connectors, are compositionally built out of simpler
ones. Exogenous coordination imposes a purely local interpretation on each inter-
components communication, engaged in as a pure I/O operation on each side,
that allows components to communicate anonymously, through the exchange of
untargeted passive data. We summarize only the main concepts in Reo here.
Further details about Reo and its semantics can be found in the cited references.

Complex connectors in Reo are constructed as a network of primitive binary
connectors, called channels. Connectors serve to provide the protocol that con-
trols and organizes the communication, synchronization and cooperation among
the components/services that they interconnect. Formally, the protocol embod-
ied in a connector is a relation, which the connector imposes as a constraint on
the actions of the communicating parties that it inter-connects.

A channel is a medium of communication that consists of two ends and a
constraint on the dataflows observed at those ends. There are two types of chan-
nel ends: source and sink. A source channel end accepts data into its channel,
and a sink channel end dispenses data out of its channel. Every channel (type)
specifies its own particular behavior as constraints on the flow of data through
its ends. These constraints relate, for example, the content, the conditions for
loss, and/or creation of data that pass through the ends of a channel, as well
as the atomicity, exclusion, order, and/or timing of their passage. Reo places no
restriction on the behavior of a channel and thus allows an open-ended set of
different channel types to be used simultaneously together.

Although all channels used in Reo are user-defined and users can indeed define
channels with any complex behavior (expressible in the semantic model) that
they wish, a very small set of channels, each with very simple behavior, suffices
to construct useful Reo connectors with significantly complex behavior. Figure
shows a common set of primitive channels often used to build Reo connectors.

A Sync channel has a source and a sink end and no buffer. It accepts a data
item through its source end iff it can simultaneously (i.e., atomically) dispense
it through its sink.

P

Il
- e D
- I1
Sync LossySync FIFO1 SyncDrain AsyncDrain Filter(P)

Fig. 6. A typical set of Reo channels
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A LossySync channel is similar to a synchronous channel except that it always
accepts all data items through its source end. This channel transfers a data item
if it is possible for the channel to dispense the data item through its sink end;
otherwise the channel loses the data item. Observe that the behavior of this
channel if fully deterministic; the channel is never free to choose between passing
or losing a data item: if it is possible for a data item to be consumed through
its sink end, the channel must pass the data item exactly as a Sync. Thus, the
context of (un)availability of a ready consumer at its sink end determines the
(context-sensitive) behavior a LossySync channel.

A FIFO01 channel represents an asynchronous channel with a buffer of capacity
1: it can contain at most one data item. In the graphical representation of an
empty FIFO1 channel, no data item is shown in the box (this is the case in Figure
1). If the buffer of a FIF01 channel contains a data element d, then d appears
inside the box in its graphical representation. When its buffer is empty, a FIFO1
channel blocks I/O operations on its sink, because it has no data to dispense. It
dispenses a data item and allows an I/O operation at its sink to succeed, only
when its buffer is full, after which its buffer becomes empty. When its buffer is
full, a FIFO1 channel blocks I/O operations on its source, because it has no more
capacity to accept the incoming data. It accepts a data item and allows an I/0
operation at its source to succeed, only when its buffer is empty, after which its
buffer becomes full.

More exotic channels are also permitted in Reo, for instance, synchronous and
asynchronous drains. Each of these channels has two source ends and no sink
end. No data value can be obtained from a drain channel because it has no sink
end. Consequently, all data accepted by a drain channel are lost. SyncDrain is a
synchronous drain that can accept a data item through one of its ends iff a data
item is also available for it to simultaneously accept through its other end as
well. AsyncDrain is an asynchronous drain that accepts data items through its
source ends and loses them exclusively one at a time, but never simultaneously.

For a filter channel, or Filter (P), its pattern P C Data specifies the type of
data items that can be transmitted through the channel. This channel accepts a
value d € P through its source end iff it can simultaneously dispense d through
its sink end, exactly as if it were a Sync channel; it always accepts all data items
d ¢ P through its source end and loses them immediately.

Synchronous and asynchronous Spouts are the duals of their respective drain
channels, as each has two sink ends through which it produces nondeterministic
data items. Further discussion of these and other primitive channels is beyond
the scope of this paper.

- =

Source node Sink Node Mixed node

Fig. 7. Reo nodes
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Complex connectors are constructed by composing simpler ones via the join
and hide operations. Channels are joined together in nodes, each of which consists
of a set of channel ends. A Reo node is a logical place where channel ends coincide
and coordinate their dataflows as prescribed by its node type. Figure [ shows
the three possible node types in Reo. A node is either source, sink, or mized,
depending on whether all channel ends that coincide on that node are source
ends, sink ends, or a combination of the two. Reo fixes the semantics of (i.e., the
constraints on the dataflow through) Reo nodes, as described below. The hide
operation is used to hide the internal topology of a Reo connector. A hidden
nodes can no longer be accessed or observed from outside.

The source and sink nodes of a connector are collectively called its boundary
nodes. Boundary nodes define the interface of a connector. Processes (or com-
ponents, actors, agents, etc.) connect to the boundary nodes of a connector and
interact anonymously with each other through this interface. Connecting a pro-
cess to a (source or sink) node of a connector consists of the identification of one
of the (respectively, output or input) ports of the component with that node. At
most one process can be connected to a (source or sink) node at a time. Pro-
cesses interact by performing their blocking I/O operations on their own local
ports, which trigger dataflow through their respectively identified nodes of the
connector(s): the get and put operations mentioned in the description of the
components in Figure [l trigger write and take operations of Reo on the channel
ends of their respective nodes.

A component can write data items to a source node that it is connected to.
The write operation succeeds only if all (source) channel ends coincident on
the node accept the data item, in which case the data item is transparently
written to every source end coincident on the node. A source node, thus, acts as
a synchronous replicator.

A component can obtain data items, by an input operation, from a sink node
that it is connected to. A take operation succeeds only if at least one of the
(sink) channel ends coincident on the node offers a suitable data item; if more
than one coincident channel end offers suitable data items, one is selected non-
deterministically. A sink node, thus, acts as a nondeterministic merger.

A mixed node nondeterministically selects and takes a suitable data item
offered by one of its coincident sink channel ends and replicates it into all of its
coincident source channel ends. Note that a component cannot connect to, take
from, or write to mixed nodes.

Because a node has no buffer, data cannot be stored in a node. Specifically, a
mixed node cannot take a data item out of one of its coincident sink channel ends,
unless it can atomically replicate and write it into all of its coincident source
channel ends. Hence, nodes instigate the propagation of synchrony and exclusion
constraints on dataflow throughout a connector. Deriving the semantics of a
Reo connector amounts to resolving the composition of the constraints of its
constituent channels and nodes [43]. This is not a trivial task. In the sequel,
we present examples of Reo connectors that illustrate how non-trivial dataflow
behavior emerges from composing simple channels using Reo nodes. The local
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constraints of individual channels propagate through (the synchronous regions
of) a connector to its boundary nodes. This propagation also induces a certain
context-awareness in connectors. See [41] for a detailed discussion of this.

Reo has been used for composition of Web services [65/77I21], modeling and
analysis of long-running transactions in service-oriented systems [69], coordina-
tion of multi-agent systems [13], performance analysis of coordinated composi-
tions [23T6UT7IB6IST], modeling of business processes and verification of their
compliance [98/68/T9], and modeling of coordination in biological systems [40].

Reo offers a number of operations to reconfigure and change the topology of a
connector at run-time: operations that enable the dynamic creation of channels,
splitting and joining of nodes, hiding internal nodes. The hiding of internal
nodes allows to permanently fix the topology of a connector, such that only its
boundary nodes are visible and available. The resulting connector can then be
viewed as a new primitive connector, or primitive for short, since its internal
structure is hidden and its behavior is fixed.

4 Examples

Recall our alternating producers and consumer example of Section[Il We revise
the code for the Green and Red producers to make them suitable for exogenous
coordination (which, in fact, makes them simpler). Similar to the producer P in
Figure[d this code now consists of an infinite loop, in each iteration of which the
producer computes a new value and writes it to its output port. Analogously,
we revise the consumer code, fashioning it after the consumer C in Figure Bl
Figure [} shows this code.

Consumer: Green Producer: Red Producer:
1 while (true) { 6 while (true) { 11 while (true)
2  sleep(4000); 7  sleep(5000); 12 sleep(3000);
3  get(input, displayText); 8 greenText = ...; 13  redText = ...;
4  print(displayText); 9 put(output, greenText); 14  put(output, redText);
5} 10 } 15 }

Fig. 8. Generic reusable producers and consumer

In the remainder of this section, we present a number of protocols to imple-
ment different versions of the alternating producers and consumer example of
Section [l using the producers and consumer processes in Figure B These ex-
amples serve three purposes. First, they show a flavor of programming of pure
interaction coordination protocols as Reo circuits. Second, they present a num-
ber of generically useful circuits that can serve as connectors in many other
applications, or as sub-circuits in the circuits for construction of many other
protocols. Third, they illustrate the utility of exogenous coordination by show-
ing how trivial it is to change the protocol of an application, without altering
any of the processes involved.
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Fig. 9. Reo circuits for Alternators

4.1 Alternator

The connector shown in Figure @(a) is an alternator that imposes an ordering
on the flow of the data from its input nodes A and B to its output node C.
The SyncDrain enforces that data flow through A and B only synchronously
(i.e., atomically). The empty buffer of the the FIFO1 channel together with the
SyncDrain guarantee that the data item obtained from A is delivered to C' while
the data item obtained from B is stored in the FIFO1 buffer. After this, the buffer
of the FIFO01 is full and data cannot flow in through either A or B, but C' can
dispense the data stored in the FIFO1 buffer, which makes it empty again. Thus,
subsequent take operations at C' obtain the data items written to A, B, A, B, ...,
etc.

The connector in Figure@(b) has an extra Sync channel between node B and
the FIFO1 channel, compared to the one in Figure [@(a). It is trivial to see that
these two connectors have the exact same behavior. However, the structure of
the connector in Figure [@(b) allows us to generalize its alternating behavior to
any number of producers, simply by replicating it and “juxtaposing” the top
and the bottom Sync channels of the resulting copies, as seen in Figure[@(c) and
Figure [@(d).

The two SyncDrain channels in the connector shown in Figure [@(c) require
data to flow through A1, A2, and A3 only simultaneously (i.e., atomically). The
empty buffers of the FIFO1 channels, together with these SyncDrain channels
guarantee that the data item obtained from A1 is delivered to C while the data
items obtained from A2 and A3 are stored in the buffers of their respective
FIFO1 channels. Subsequently, as long as the buffer of at least one of the FIFO1
channels remains full, no data can flow through any of the nodes A1, A2, and
A3, but C can dispense the data stored in the buffers of the FIFO1 channels,
with their order preserved. Thus, the first 3 take operations on C' deliver the
data items obtained through A1, A2, and A3, in that order. At this point, all
FIFO01 buffers become empty and the next round of input becomes possible.

The connector in Figure[@(d) is obtained by replicating the one in Figure [Q(b)
3 times. Following the reasoning for the connector in Figure [@(c), it is easy to
see that the connector in Figure @l(d) delivers the data items obtained from A1,
A2, A3,and A4 through C, in that order.
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A version of our alternating producers and consumer example of Section[Il can
now be composed by attaching the output port of the revised Green producer
in Figure 8 to node A, the output port of the revised Red producer in Figure S
to node B, and the input port of the consumer in Figure[§ to node C of the Reo
circuit in Figure [@(a).

A closer look shows, however, that the behavior of this version of our example
is not exactly the same as that of the one in Figures Bl and @l As explained
above, the Reo circuit in Figure @(a) requires the availability of a pair of values
on A (from the Green producer) and B (from the Red producer) before it allows
the consumer to obtain them, first from A and then from B. Thus, if the Green
producer and the consumer are both ready to communicate, they still have to
wait for the Red producer to also attempt to communicate, before they can
exchange data. The versions in Figures Bl and [ allow the Green producer and
the consumer to go ahead, regardless of the state of the Red producer. Our
original specification of this example in Section [Tl was abstract enough to allow
both alternatives. A further refinement of this specification may indeed prefer
one and disallow the other. If the behavior of the connector in Figure[@(a) is not
what we want, we need to construct a different Reo circuit to impose the same
behavior as in Figures [3 and @ This is precisely what we describe below.

4.2 Sequencer

Figure [[0(a) shows an implementation of a sequencer by composing five Sync
channels and four FIFO1 channels together. The first (leftmost) FIFO1 channel
is initialized to have a data item in its buffer, as indicated by the presence of the
symbol e in the box representing its buffer cell. The actual value of the data item
is irrelevant. The connector provides only the four nodes A, B, C' and D for other
entities (connectors or component instances) to take from. The take operation
on nodes A, B, C and D can succeed only in the strict left-to-right order. This
connector implements a generic sequencing protocol: we can parameterize this
connector to have as many nodes as we want simply by inserting more (or fewer)
Sync and FIF01 channel pairs, as required.

Figure [[0(b) shows a simple example of the utility of the sequencer. The
connector in this figure consists of a two-node sequencer, plus a SyncDrain and
two Sync channels connecting each of the nodes of the sequencer to the nodes
A and C, and B and C, respectively. Similar to the circuit in Figure @l(a), this
connector imposes an order on the flow of the data items written to A and B,
through C: the sequence of data items obtained by successive take operations

A B D A » C
*‘:I—I—:I—* '
¢
Sequencer

(@) (b)

Fig. 10. Sequencer
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on C consists of the first data item written to A, followed by the first data item
written to B, followed by the second data item written to A, followed by the
second data item written to B, and so on. However, there is a subtle difference
between the behavior of the two circuits in Figures[@(a) and[I0(b). The alternator
in Figure[@Y(a) delays the transfer of a data item from A to C' until a data item is
also available at B. The circuit in Figure[I0(b) transfers from A to C as soon as
these nodes can satisfy their respective operations, regardless of the availability
of data on B.

We can obtain a new version of our alternating producers and consumer ex-
ample by attaching the output port of the Green producer in Figure [ to node
A, the output port of the Red producer in Figure ] to node B, and the input
port of the consumer in Figure ] to node C. The behavior of this version of our
application is now the same as the programs in Figure Ml and in Figure [ (after
replacing its producers with the ones in Figure 2)). The circuit in Figure [I0(b)
embodies the same protocol that is implicit in Figure [

A characteristic of this protocol is that it “slows down” each producer, as
necessary, by delaying the success of its data production until the consumer
is ready to accept its data. Our original problem statement in Section [I] does
not explicitly specify whether or not this is a required or permissible behavior.
While this may be desirable in some applications, slowing down the producers to
match the processing speed of the consumer may have serious drawbacks in other
applications, e.g., if these processes involve time-sensitive data or operations.
Perhaps what we want is to bind our producers and consumer by a protocol
that decouples them such as to allow each process to proceed at its own pace.
We proceed, below, to present a number of protocols that we then compose to
construct a Reo circuit for such a protocol.

A

I\
|
|

(@ (b)

Fig.11. An exclusive router and a ShiftLossyFIFO1

4.3 Exclusive Router

The connector shown in Figure[ITl(a) is a binary exclusive router: it routes data
from A to either B or C' (but not both). This connector can accept data only
if there is a write operation at the source node A, and there is at least one
taker at the sink node B or C. If both B and C' can dispense data, the choice
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of routing to B or C' follows from the non-deterministic decision by the mixed
node M: it can accept data only from one of its sink ends, excluding the flow of
data through the other, which forces the latter’s respective LossySync to lose
the data it obtains from A, while the other LossySync passes its data as if it
were a Sync.

By connecting the source node of a binary exclusive router to one of the sink
nodes of another binary exclusive router we obtain a ternary exclusive router.
This is possible in Reo because synchrony and exclusion constraints propagate
through its nodes. More generally, an n-ary exclusive router (with a single source
and n sink ends) can be composed out of n — 1 binary exclusive routers. Because
the exclusive routers are so commonly useful, we use a graphical short-hand to
represent them in circuits. The crossed circle shown on the right-hand side of
Figure [[I}(a) is the symbol that we use to represent a generic n-ary exclusive
router.

4.4 Shift-Lossy FIFO1

Figure [[II(b) shows a Reo circuit for a connector that behaves as a lossy FIFO1
channel with a shift loss-policy. This channel is called shift-lossy FIFO1
(ShiftLossyFIF01). This connector is composed of an exclusive router (shown
in Figure[ITl(a)), an initially full FIFO01 channel, two initially empty FIFO1 chan-
nels, and four Sync channels. Intuitively, it behaves as a normal FIF01 channel,
except that if its buffer is full then the arrival of a new data item deletes the
existing data item in its buffer, making room for the new arrival. As such, this
channel implements a “shift loss-policy” losing the older contents in its buffer
in favor of the newer arrivals. This is in contrast to the behavior of an overflow-
lossy FIFO1 channel, whose “overflow loss-policy” loses the new arrivals when
its buffer is full. See [31] for a more formal treatment of the semantics of this
connector.

The ShiftLossyFIF01 circuit in Figure[[Ti(b) is indeed so frequently useful as
a connector in construction of more complex circuits, that it makes sense to have
a special graphical symbol to designate it as a short-hand. The symbol shown on
the right-hand side of Figure [[I[(b) is the what we use to represent this circuit,
and also take the liberty to refer to it as a ShiftLossyFIF01 “channel”. This
symbol is intentionally similar to that of a regular FIFO1 channel, because the
behavior of this circuit closely resembles that of a regular FIFO1 channel. The
dashed sink-side half of the box representing the buffer of this channel suggests
that it loses the older values to make room for new arrivals, i.e., it shifts to lose.

4.5 Decoupled Alternating Producers and Consumer

Figure [2(a) shows how the ShiftLossyFIFO01 circuit of Figure [[I(b) can be
used to construct a version of the example in Figure B where the producer and
the consumer are partially decoupled from one another. Whenever, as initially is
the case, the ShiftLossyFIF01 buffer is empty, the consumer has no choice but
to wait for the producer to place a value into this buffer. However, the producer
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never has to wait for the consumer: it can work at its own pace and write to the
connector whenever it wishes. Every write by the producer replaces the current
contents of the ShiftLossyFIF01 buffer. A subsequent take by the consumer
obtains the current value out of ShiftLossyFIF01 buffer and makes it empty.
The producer never has to wait for the consumer, but if the consumer is faster
than the producer, it has to wait for the next data item to arrive. It is instructive
to compare the behavior of this system with that of a single LossySync channel
connecting a producer and a consumer: the two are not exactly the same.

Red N
producer T ] Consumer

Producer l =@ Consumer

G g [
producer ]

Sequencer

(a) (b)

Fig. 12. Decoupled producers and consumer

The connector in Figure [2((b) is a small variation of the Reo circuit in Fig-
ure [[0(b), with two instances of the ShiftLossyFIFO01 circuit of Figure [[Ti(b)
spliced in. In this version of our alternating producers and consumer, these three
processes are partially decoupled: each producer runs at its own pace, never hav-
ing to wait for any of the other two processes. Every take by the consumer, always
obtains and empties the latest value produced by its respective producer. If the
consumer runs slower than a producer, the excess data that they produce is lost
in the producer’s respective ShiftLossyFIF01, which allows the consumer to
effectively “sample” the data generated by this producer. If the consumer runs
faster than a producer, it will block on its respective empty ShiftLossyFIF01
until a new value becomes available.

4.6 Dataflow Variable

The Reo circuit in Figure implements the behavior of a dataflow variable.
It uses two instances of the ShiftLossyFIF01 connector shown Figure [IIb),
to build a connector with a single input and a single output nodes. Initially,
the buffers of its ShiftLossyFIF01 channels are empty, so an initial take on its
output node suspends for data. Regardless of the status of its buffers, or whether
or not data can be dispensed through its output node, every write to its input
node always succeeds and resets both of its buffers to contain the new data item.
Every time a value is dispensed through its output node, a copy of this value is
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“cycled back” into its left ShiftLossyFIF01 channel. This circuit “remembers”
the last value it obtains through its input node, and dispenses copies of this
value through its output node as frequently as necessary: i.e., it can be used as
a dataflow variable.

Fig. 13. Dataflow variable

The variable circuit in Figure[I3lis also very frequently useful as a connector in
construction of more complex circuits. Therefore, it makes sense to have a short-
hand graphical symbol to designate it with as well. The symbol shown on the
right-hand side of Figure[I3lis the what we use to represent this circuit, and also
take the liberty to refer to it as a Variable “channel”, or just a “variable” for
short. This symbol is intentionally similar to that of a regular FIFO1 channel,
because the behavior of this circuit closely resembles that of a regular FIFO1
channel. We use a rounded box to represent its buffer: the rounded box hints at
the recycling behavior of the variable circuit, which implements its remembering
of the last data item that it obtained or dispensed.

4.7 Fully Decoupled Alternating Producers and Consumer

Figure[I4l(a) shows how the variable circuit of Figure[I3] can be used to construct
a version of the example in Figure [, where the producer and the consumer are
fully decoupled from one another. Initially, the variable contains no value, and
therefore, the consumer has no choice but to wait for the producer to place its
first value into the variable. After that, neither the producer, nor the consumer
ever has to wait for the other one. Each can work at its own pace and write to
or take from the connector. Every write by the producer replaces the current
contents of the variable, and every take by the consumer obtains a copy of
the current value of the variable, which always contains the most recent value
produced.

The connector in Figure [[4[b) is a small variation of the Reo circuit in Fig-
ure [T0(b), with two instances of the variable circuit of Figure [[3 spliced in. In
this version of our alternating producers and consumer, these three processes are
fully decoupled: each can produce and consume at its own pace, never having to
wait for any of the other two. Every take by the consumer, always obtains the
latest value produced by its respective producer. If the consumer runs slower
than a producer, the excess data is lost in the producer’s respective variable,
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Fig. 14. Fully decoupled producers and consumer

and the consumer will effectively “sample” the data generated by this producer.
If the consumer runs faster than a producer, it will read (some of) the values of
this producer multiple times.

4.8 TFlexibility

Figures [@(a), I0(b), I2A(b), and M4(b) show four different connectors, each im-
posing a different protocols for the coordination of two alternating producers
and a consumer. The exact same producers and consumer processes can be com-
bined with any of these circuits to yield different applications. It is instructive
to compare the ease with which this is accomplished in our interaction-centric
world, with the effort involved in modifying the action-centric incarnations of
this same example in Figures Bl and [, which correspond to the protocol of the
circuit in Figure [I0(b), in order to achieve the behavior induced by the circuit
in Figure[@(a), I2(b), or M4(b).

For the sake of completeness, the behavior of the protocol in Figures [ cor-
responds to the behavior of the connector in Figure [[3l Just as in the case of
the program in Figures [Il this connector allows the producers at nodes A and
B alternate and over-write each other in buffer of the ShiftLossyFIF01. The
consumer at C can obtain only the latest value produced by either of the pro-
ducers.

A.—»«»ﬁo—i — o C
B-

Sequencer

Fig. 15. Alternating and over-writing
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The Reo connector binding a number of distributed processes, such as Web
services, can even be “hot-swapped” while the application runs, without the
knowledge or the involvement of the engaged processes. A prototype platform
to demonstrate this capability is available at [3].

5 Semantics

Reo allows arbitrary user-defined channels as primitives; arbitrary mix of syn-
chrony and asynchrony; and relational constraints between input and output.
This makes Reo more expressive than, e.g., dataflow models, Kahn networks,
synchronous languages, stream processing languages, workflow models, and Petri
nets. On the other hand, it makes the semantics of Reo quite non-trivial.
Various models for the formal semantics of Reo have been developed, each toserve
some specific purposes. In the rest of this section, we briefly describe the main ones.

5.1 Timed Data Streams

The first formal semantics of Reo was formulated based on the coalgebraic model
of stream calculus [9594/96]. In this semantics, the behavior of every connector
(channel or more complex circuit) and every component is given as a (maximal)
relation on a set of timed-data-streams [24]. This yields an expressive compo-
sitional semantics for Reo where coinduction is the main definition and proof
principle to reason about properties involving both data and time streams. The
timed-data-stream model serves as the reference semantics for Reo.

Table 1. TDS Semantics of Reo primitives
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FIFO1 ini-[{a,a) FIFO1(z)(8,b) = a=z.BAb<a <V
tialized
with z

SyncDrain |{(a,a)SyncDrain{(8,b) =a=1>
AsyncDrain |(a, a)SyncDrain{B,b) = a # b
(o, a) Filter(P) (B3,b) =

Filter(P) B(0) = a(0) A b(0) = a(0) A (o', a’) Filter(P) (3,V') if a(0) > P
(o, a’) Filter(P) (B,b) otherwise
MT9(<O‘7 a>7 <ﬂ7 b); (v,¢)) =
Merge a(0) = v(0) A a(0) = c¢(0) A Mrg({a’,a’), (B,b); (', ")) if a(0) < b(0)

B(0) = 7(0) A b(0) = ¢(0) A Mrg({ev, @), (B, 1); (v, ¢)) if a(0) > b(0)
Replicate  |Rpl({a,a); (B,b), (y,¢c)) =a=FANa=vAa=bAa=c
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A stream over a set X is an infinite sequence of elements x € X. The set
of data streams DS consists of all streams over an uninterpreted set of Data
items. A time stream is a monotonically increasing sequence of non-negative
real numbers. The set T'S represents all time streamdd. A Timed Data Stream
(TDS) is a twin pair of streams («, a) in TDS = DS x T'S consisting of a data
stream o € DS and a time stream a € T'S, with the interpretation that for all
i > 0, the observation of the data item (i) occurs at the time moment a (7). We
use a’ to represent the tail of a stream a, i.e., the stream obtained after removing
the first element of a; and x.a to represent the stream whose first element is x
and whose tail is a.

Table [ shows the TDS semantics of the primitive channels in Figure [6 as
well as that of the merge and replication behavior inherent in Reo nodes. The
semantics for every primitive is expressed as a binary (in the case of channels)
or ternary (for the merger and the replicator) relation on timed-data-streams
that represent the observations at their respective source and sink ends. We
can use relational composition to combine the semantics of these primitives to
obtain the semantics of more complex connectors. For instance, by composing
the relation that defines a binary merger in Table [Il with that of another, we
can obtain the semantics for a ternary merger. Thus, the semantics of an m-ary
sink node in Reo can be obtained as the composition of m — 1 binary mergers.
Analogously, the semantics of and n-are source node in Reo can be obtained as
the composition of n — 1 binary replicators. The semantics of a Reo mixed node
with m coincident sink and n coincident source channel ends is obtained as the
relational composition of m — 1 binary mergers and n — 1 binary replicators.

The semantics of a Reo circuit is the relational composition of the relations
that represent the semantics of its constituents (including the merge and replica-
tion inherent in its nodes). This compositional construction for instance, yields

X Rout({c,a); (B,b), (7,¢)) =
{a(O) = v(0) A a(0) = ¢(0) A X Rout({c/,a’), {B,b); (v, ")) if a(0) < b(0)
B(0) = 7(0) A b(0) = ¢(0) A X Rout((a, a), (5, V'); (7', ¢)) if a(0) > b(0)

as the semantics of the circuit in Figure [[j(a).

5.2 Constraint Automata

Constraint automata provide an operational model for the semantics of Reo
circuits [3I]. The states of an automaton represent the configurations of its cor-
responding circuit (e.g., the contents of the FIFO channels), while the transitions
encode its maximally-parallel stepwise behavior. The transitions are labeled with
the maximal sets of nodes on which dataflow occurs simultaneously, and a data
constraint (i.e., boolean condition for the observed data values). For example,
Figure [I6] shows the constraint automata semantics for some of the common Reo
primitives.

2 The real numbers that appear in a time stream must also satisfy an additional
technical condition to prevent Zeno’s paradox, but for simplicity, we ignore this
condition here.
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Fig. 16. Constraint automata of some typical Reo Channels

The constraint automaton for the Sync channel consists of a single state. It
has only a single transition, labeled by the pair of synchronization constraint, and
data constraint. The synchronization constraint {4, B} states that this transition
is possible iff both nodes A and B can fire synchronously (i.e., atomically),
allowing their respective pending I/O operations to succeed. The data constraint
d(A) = d(B) states that this transition is possible iff the data observed at
node A is identical to the data observed at node B. Because these two nodes
are respectively the source and the sink nodes (of the Sync channel), this data
constraint requires a transfer of data from A to B.

The constraint automaton for the LossySync channel in fact expresses the
semantics of a nondeterministic LossySync channel, not that of our context
sensitive LossySync described in Section Bl The difference is significant, but it
is not important for our purposes in this paperE This automaton has a single
state and two transitions. One of these transitions is identical to that of the Sync
channel, modeling its identical behavior. The other, labeled by {A}, true simply
states that the automaton can make this transition iff A can fire by itself and
imposes no constraint of the data of A: this data is lost.

The constraint automaton for the FIFO1 channel has two states, representing
its empty (initial) and full states. To simplify our presentation, we consider a
variant of constraint automata that allow states to have local memory variables.
The label {A},d(A) = X’ of the transition that takes the automaton from its
empty to its full state allows it to make this transition iff node A can fire by
itself, and the new value of the memory variable X in the target state (identified
by X’ in the data constraint) is the same as the data value observed on node A:
the value obtained from the source node A gets assigned to the X variable of the
target state to satisfy this constraint. The label { B}, d(B) = X of the transition
that takes the automaton from its full to its empty state allows it to make this
transition iff node B can fire by itself, and the value of the memory variable X
in the source state (identified by X in the data constraint) is the same as the
data value observed on node B: the value of the X variable of the source state
is dispensed through the sink node B to satisfy this data constraint.

3 In fact, constraint automata do not have the expressiveness required to directly
represent context sensitivity. Other more expressive semantic models, including more
sophisticated automata models, have been devised for this purpose [35J44]. A recent
work shows that, although constraint automata cannot directly represent context
sensitivity, it is possible to encode context sensitivity using constraint automata as
well [B6[70].
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The constraint automaton for the SyncDrain channel has a single state and
a single transition, whose constraints require its ends to fire synchronously
({A, B}), but imposes no constraints (true) on their data. Because these are
both source ends, their data are simply lost.

The constraint automaton for the AsyncDrain channel has a single state and
two transitions, each of which allow it to fire and lose the data obtained through
one of its ends (but never both synchronously).

The constraint automaton for the Filter (P) channel has a single state and
two transitions. If source node A can fire and its data value does not match
the filter pattern P, then the data value of A is simply lost. If the data value
available on the source node A matches the filter pattern P, then the only possible
transition is one similar to that of the Sync channel, by which the data value of
A is transferred to the sink node B.

"

C

{A.C}, d(A)=d(C) {A.C}, d(A)=d(C) . .
= > {AB,C}, d(A)=d(C) M d(B) =X A}, dA) =X A}, dA) =X N
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Binary Merger Exclusive router Alternator Overflow—Lossy FIFO1 Shift-Lossy FIFO1
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Fig. 17. Constraint automata of a binary merger and some example connectors

The semantics of a Reo circuit is derived by composing the constraint au-
tomata of its constituents, through a special form of synchronized product of
automata, which automatically accommodates the replication semantics of Reo
nodes [31]. The nondeterministic n-ary merge semantics inherent in Reo nodes
needs to be made explicit as a (product) composition of n — 1 nondeterminis-
tic binary merge primitives. Figure [[7(a) shows the constraint automaton for a
nondeterministic binary merge primitive.

Figure[[7(b) shows the constraint automaton representing the semantics of the
exclusive router Reo circuit of Figure [dl(a), which is obtained as the product
of the constraint automata of its constituents: 5 Sync channels, 2 LossySync
channels, a SyncDrain channel, and a merger.

Figure [[7(c) shows the constraint automaton representing the semantics of
the alternator circuit of Figure [(a), obtained as the product of the constraint
automata of its constituent Sync channel, SyncDrain channel, FIFO1 channel,
and merger.

Figure [[7(d) shows the constraint automaton representing the semantics of
an overflow lossy connector, which can be easily composed by connecting the
sink end of a LossySync to the source end of a FIFO1. Although this is the
semantics that must be obtained, the product of simple constraint automata
in Figure does not yield this automaton. This automaton can be obtained
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using more sophisticated variants of constraint automata [35/44], or an encoding
technique [56] which can handle context sensitivity.

Figure [[T(e) shows the constraint automaton representing the semantics of
the ShiftLossyFIF01 circuit of Figure [Ii(b), which is obtained as the product
of the constraint automata of its constituents.

Constraint automata have been used for the verification of protocols through
model-checking [7I62I3428/6TI30/29/48]. Results on equivalence and containment
of the languages of constraint automata [31] and failure based equivalences [54]
provide opportunities for analysis and optimization of Reo circuits.

A constraint automaton essentially captures all behavior alternatives of a Reo
connector. Therefore, it can be used to generate a state-machine implementing
the behavior of Reo connectors, in a chosen target language, such as Java or C.
The constraint automata semantics of Reo is used to generate executable code
for Reo [18].

Variants of the constraint automata model have been devised to capture time-
sensitive behavior [14J58J59], probabilistic behavior [26], stochastic behavior [32],
context sensitive behavior [354452], fairness [53I36], resource sensitivity [79],
and the QoS aspects [SOI6TTIBTISE] of Reo connectors and composite systems.

5.3 Connector Coloring

The Connector Coloring (CC) model describes the behavior of a Reo circuit in
terms of the detailed dataflow behavior of its constituent channels and nodes [41].
The semantics of a Reo circuit is the set of all of its dataflow alternatives. Each
such alternative is a consistent composition of the dataflow alternatives of each
of its constituent channels and nodes, expressed in terms of (solid and dashed)
colors that represent the basic flow and no-flow alternatives.

A B A B A B A B A B A B
—— - —{ - — = 4

Sync LossySync empty FIFO1 full FIFO1 SyncDrain AsyncDrain

Fig. 18. Connector Coloring semantics of some typical Reo Channels

Figure [I8 shows the two-color semantics of some common Reo primitives.
The Sync channel has two alternative colorings, each representing one possible
behavior: either flow on both of its ends (the solid line) or no flow on both
ends (the dashed line). The (nondeterministic) LossySync has three alternative
colorings: it either behaves as the Sync channel (the full solid and the full dashed
lines), or it allows flow at its source end, with no flow at its sink end (the half-
solid-half-dashed line). A FIFO1 channel has two sets of colorings, one for each
of its two states: empty and full. In its empty state, it can allow flow only at
its source end (with no flow at its sink), after which it becomes full. In its full
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state, it can allow flow only at its sink node (with no flow at its source), which
makes it empty. A SyncDrain channel has the same coloring as a Sync channel:

it can allow flow only through both of its ends simultaneously. An AsyncDrain
allows flow through only one of its ends at a time.

Y1

C

c Br»
@ (b)

()

Fig. 19. Connector Coloring semantics for merger, replicator, and exclusive router

To express the semantics of a Reo circuit, the replicator and the merger be-
havior inherent in Reo nodes must also be explicitly modeled as colorings. Fig-
ure [[9%(a) shows the three alternatives for the behavior of a merger: the merger
nondeterministically chooses to allow flow either theough its left source and sink,
or through its right source and sink, or there is no flow on any of its ends. Fig-
ure[I9(b) shows the two alternatives for the behavior of a replicator: either there
is flow on its source and both sinks, or there is no flow through any of its nodes
at all.

The coloring semantics of a Reo circuit can be composed out of the coloring
alternatives of its constituents, subject to the obvious requirement that each
node in the circuit can either have flow or not, and therefore, the colors of the
behavior alternatives of all constituents that coincide on a node must be the
same: either dashed or solid. For example, the coloring alternatives of the exclu-
sive router circuit of Figure [[Tl(a) is obtained by matching the alternative colors
of its constituent channels, replicators, and merger, as shown in Figure[T9(c). As
expected, this circuit as a whole allows flow through either its right-hand side,
or its left-hand side, exclusively, or there is no flow through the circuit at all.

A more sophisticated model using three colors is necessary to capture the
context sensitive behavior of primitives such as the LossySync channel. The
CC model is primarily used in the implementation of a visualization tool that
produces Flash animations depicting the behavior of a connector [44J911[75]. Con-
nector coloring and constraint automata are related [55]. It has been shown that
it is possible to encode context sensitive behavior in the two-color CC model as
well, using hypothetical extra nodes [56].

Finding a consistent coloring for a circuit amounts to constraint satisfaction.
Constraint solving techniques [I0/I02] have been applied using the CC model
to search for a valid global behavior of a given Reo connector [42/43]. In this
approach, each connector is considered as a set of constraints, representing the
colors of its individual constituents, where valid solutions correspond to a valid
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behavior for the current step. Distributed constraint solving techniques can be
used to adapt this constraint based approach for distributed environments.

The CC model is at the center of the distributed implementation of Reo [2/9T/93]
where several engines, each executing a part of the same connector, run on differ-
ent remote hosts. A distributed protocol based on the CC model guarantees that
all engines running the various parts of the connector agree to collectively manifest
one of its legitimate behavior alternatives.

5.4 Other Models

Other formalisms have also been used to investigate the various aspects of the
semantics of Reo. Plotkin’s style of Structural Operational Semantics (SOS) is
followed in [89] for the formal semantics of Reo. This semantics was used in a
proof-of-concept tool developed in the rewriting logic language of Maude, using
the simulation toolkit.

The Tile Model [47] semantics of Reo offers a uniform setting for representing
not only the ordinary dataflow execution of Reo connectors, but also their dy-
namic reconfigurations [I5]. An abstraction of the constraint automata is used
in [74] to serve as a common semantics for Reo and Petri nets. The application
of intuitionistic temporal linear logic (ITLL) as a basis for the semantics of Reo
is studied in [38], which also shows the close semantic link between Reo and the
zero-safe variant of Petri nets. A comparison of Orc [85J60] and Reo appears
in [92], and the authors of [99] compare Reo with ARC and PBRD coordination
models.

The semantics of Reo has also been formalized in the Unifying Theories of
Programming (UTP) [5I]. The UTP approach provides a family of algebraic
operators that interpret the composition of Reo connectors more explicitly than
in other approaches [81]. This semantic model can be used for proving properties
of connectors, such as equivalence and refinement relations between connectors
and as a reference document for developing tool support for Reo. The UTP
semantics for Reo opens the possibility to integrate reasoning about Reo with
reasoning about component specifications/implementations in other languages
for which UTP semantics is available. The UTP semantics of Reo has been used
for fault-based test case generation [9].

Automatic translation of an automata-based semantics of Reo into its equiv-
alent process algebraic specification is the basis of another input-output confor-
mance testing of protocols specified in Reo [70].

Reo offers operations to dynamically reconfigure the topology of its coordina-
tor circuits, thereby changing the coordination protocol of a running application.
A semantic model for Reo cognizant of its reconfiguration capability, a logic for
reasoning about reconfigurations, together with its model checking algorithm, are
presented in [39]. Graph transformation techniques have been used in combina-
tion with the connector coloring model to formalize the dynamic reconfiguration
semantics of Reo circuits triggered by dataflow [64U637675].
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6 Tools

Tool support for Reo consists of a set of Eclipse plug-ins that together comprise the
Extensible Coordination Tools (ECT) visual programming environment [3]. The
Reo graphical editor supports drag-and-drop graphical composition and editing of
Reo circuits. This editor also serves as a bridge to other tools, including animation
and code generation plug-ins. The animation plug-in automatically generates a
graphical animation of the flow of data in a Reo circuit, which provides an intuitive
insight into their behavior through visualization of how they work. This tool maps
the colors of the CC semantics to visual representations in the animations, and
represents the movement of data through the connector [44J971].

Another graphical editor in ECT supports drag-and-drop construction and
editing of constraint automata and its variants. It includes tools to perform
product and hiding on constraint automata for their composition. A converter
plug-in automatically generates the CA model of a Reo circuit.

Several model checking tools are available for analyzing Reo. The Vereofy
model checker, integrated in ECT, is based on constraint automata
[7134U62/27/28/61130/29/48]. Vereofy supports two input languages: (1) the Reo
Scripting Language (RSL) is a textual language for defining Reo circuits, and
(2) the Constraint Automata Reactive Module Language (CARML) is a guarded
command language for textual specification of constraint automata. Properties
of Reo circuits can be specified for verification by Vereofy in a language based
on Linear Temporal Logic (LTL), or on a variant of Computation Tree Logic
(CTL), called Alternating-time Stream Logic (ASL). Vereofy extends these log-
ics with regular expression constructs to express data constraints. Translation of
Reo circuits and constraint automata into RSL and CARML is automatic, and
the counter-examples found by Vereofy can automatically be mapped back into
the ECT and displayed as Reo circuit animations.

Timed Constraint Automata (TCA) were devised as the operational seman-
tics of timed Reo circuits [I4]. A SAT-based bounded model checker exists for
verification of a variant of TCA [58/59], although it is not yet fully integrated in
ECT. It represents the behavior of a TCA by formulas in propositional logic with
linear arithmetic, and uses a SAT solver for their analysis. A tool is available
to translate (timed) Reo circuits into models for verification using the Uppaal
model checker.

Another means for verification of Reo is made possible by a transformation
bridge into the mCRL2 toolset [4/49]. The mCRL2 verifier relies on the pa-
rameterized boolean equation system (PBES) solver to encode model checking
problems, such as verifying first-order modal-calculus formulas on linear process
specifications. An automated tool integrated in ECT translates Reo models into
mCRL2 and provides a bridge to its tool set. This translation and its applica-
tion for the analysis of workflows modeled in Reo are discussed in [67U72U7T].
Through mCRL2, it is possible to verify the behavior of timed Reo circuits,
or Reo circuits with more elaborate data-dependent behavior than Vereofy sup-
ports. The resulting labeled transformation systems can also be used for analysis
by a number of tools in the CADP tool set [I].
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A CA code generator plug-in produces executable Java code from a constraint
automaton as a single sequential thread. A C/C++ code generator is under de-
velopment. In this setting, components communicate via put and get operations
on so-called SyncPoints that implement the semantics of a constraint automa-
ton port, using common concurrency primitives. The tool also supports loading
constraint automata descriptions at runtime, useful for deploying Reo coordina-
tors in Java application servers, e.g., Tomcat, for applications such as mashup
execution [66/78].

A distributed implementation of Reo exists [2] as a middleware in the actor-
based language Scala [90], which generates Java source code. A preliminary
integration of this distributed platform into ECT provides the basic functionality
for distributed deployment through extensions of the Reo graphical editor [91].

A set of ECT plug-in tools are under development to support coordination
and composition of Web Services using Reo. ECT plug-ins are available for
automatic conversion of coordination and concurrency models expressed as UML
sequence diagrams [21122], UML activity diagrams, BPMN diagrams [19], and
BPEL source code into Reo circuits [37].

Tools are integrated in ECT for automatic generation of Quantified Intentional
Constraint Automata (QIA) from Reo circuits annotated with QoS properties,
and subsequent automatic translation of the resulting QIA to Markov Chain
models [TOTT7I87IRE]. A bridge to Prism [5] allows further analysis of the result-
ing Markov chains [23]. Of course, using Markov chains for the analysis of the
QoS properties of a Reo circuit (and its environment) is possible only when the
stochastic variables representing those QoS properties can be modeled by expo-
nential distributions. The QIA, however, remain oblivious to the (distribution)
types of stochastic variables. A discrete event simulation engine integrated in
ECT supports a wide variety of more general distributions for the analysis of
the QoS properties of Reo circuits [57UT00].

Based on algebraic graph transformations, a reconfiguration engine is available
as an ECT plug-in that supports dynamic reconfiguration of distributed Reo cir-
cuits triggered by dataflow [I8J63[75]. It currently works with the Reo animation
engine in ECT, and will be integrated in the distributed implementation of Reo.

7 Concluding Remarks

Action and interaction offer dual perspectives on concurrency. Execution of ac-
tions involving shared resources by independent processes that run concurrently,
induces pairings of those actions, along with an ordering of those pairs, that we
commonly refer to as interaction. Dually, interaction can be seen as an external
relation that constrains the pairings of the actions of its engaged processes and
their ordering. The traditional action-centric models of concurrency generally
make interaction protocols intangible by-products, implied by nebulous specifi-
cations scattered throughout the bodies of their engaged processes. Specification,
manipulation, and analysis of such protocols are possible only indirectly, through
specification, manipulation, and analysis of those scattered actions, which is of-
ten made even more difficult by the entanglement of the data-dependent control
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flow that surrounds those actions. The most challenging aspect of a concur-
rent system is what its interaction protocol does. In contrast to the how which
an imperative programming language specifies, declarative programming, e.g.,
in functional and constraint languages, makes it easier to directly specify, ma-
nipulate, and analyze the properties of what a program does, because what is
precisely what they express. Analogously, in an interaction-centric model of con-
currency, interaction protocols become tangible first-class constructs that exist
explicitly as (declarative) constraints outside and independent of the processes
that they engage. Specification of interaction protocols as declarative constraints
makes them easier to manipulate and analyze directly, and makes it possible to
compose interaction protocols and reuse them.

The coordination language Reo is a premier example of a formalism that em-
bodies an interaction-centric model of concurrency. We used examples of Reo cir-
cuits to illustrate the flavor programming pure interaction protocols. Expressed
as explicit declarative constraints, protocols espouse exogenous coordination.
Our examples showed the utility of exogenous coordination in yielding loosely-
coupled flexible systems whose components and protocols can be easily modified,
even at run time. We described a set of prototype support tools developed as
plug-ins to provide a visual programming environment within the framework of
Eclipse, and presented an overview of the formal foundations of the work behind
these tools.

A dragon lives forever, but not so little boys. Nevertheless, the ecology of
today’s society has left no secluded cave for our Puff to sadly slip into. The
protocols that our magic dragon manifests in its wake as it frolics through the
lines of code of concurrent applications will likely touch many aspects of the
daily life of every adult Jackie Paper. We have grown to know our magic dragon
well through the intimacy of the childhood games we played with it. Scaled
up versions of those games have become integral to the proper functioning of
our lives as grownups. Wish as we may to make way for other toys, we cannot
abandon this magic dragon any more. We need to develop concise languages to
directly communicate with our dragon in concrete terms of a structured dialog
that explicitly conveys the constraints of acceptable behavior in the context of
our requirements. Reo is a particular dialect of one such language.
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