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1 Introduction 

Hydraulic shock absorbers find their main application in vehicles (trains, cars, 
motor-cycles, etc). A major challenge in designing new hydraulic shock absorbers is 
to predict and prevent unwanted high-frequency phenomena in the interior oil 
flow. For that purpose, the availability of a state-of-the-art computational method 
for hydro- (i.e., oleo-) dynamics would be helpful. At the KONI company a start 
has been made in developing and applying such a method. 

After a brief outline of construction and principles of a typical shock-absorber 
design, in Sect. 2 its geometry and oleodynamics are modelled. In Sect. 3, the space 
discretization is described. The space discretization is partly new; a novel, Osher­
type flux-difference splitting scheme for inviscid, compressible oil flow is presented. 
This presentation forms the major part of the paper. The paper ends with numer­
ical results (Sect. 4) and concluding remarks (Sect. 5). 

2 Problem definition 

2.1 Brief outline of a shock-absorber design 

For the typical shock-absorber design depicted in Fig. 1, a quick impression is 
given of the relevant construction parts and working principles. (For an extensive 
description, see [17].) The major parts of the shock absorber are a cylinder filled 
with oil (plus a small fraction of gas), and with a piston with rod in it. The piston 
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Fig. 1. Cross-section of a shock-absorber design (with permission from K 0 N !): I, piston rod; 2, guide; 3, 
inner cylinder; 4, piston; 5, foot assembly; A, damping valve; B, check valve; C, foot valve; CV, 

compression volume; RV, rebound volume; R, reservoir 

rod can move through a bearing, the guide. With its lower pin the shock absorber 
can be mounted to, e.g., a train bogie, in which case the piston rod can be mounted 
to, e.g., the passenger cabin. (The mounting may also be the reverse; for the method 
described in this paper it is not essential what is mounted to what.) The piston will 
be set into motion by an external axial force experienced by the vehicle. To this 
force, a good shock absorber reacts with an (almost) equally large and (almost) 
equally synchronous counter-force exerted by the oil. During an inward piston 
stroke (compression stroke), the oil flows through orifices in the piston from the 
lower piston clearance (the compression volume) into the upper piston clearance 
(the rebound volume). The piston orifices are normally shut off by a valve (the 
check valve), which is held in its place by a spring. (The check valve inhibits the oil 
to flow in the reverse direction during an outward piston stroke.) To compensate 
for volume occupied by the piston rod during a compression stroke, oil flows 
through orifices in the guide, into the spacing (the reservoir) in between the cylinder 
with piston and a secondary outer cylinder. The orifices in the guide are usually 
shut off as well (by the so-called damping valves). From the reservoir the oil can 
flow into the compression volume. During the compression stroke this will not 
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occur, since then the pressure in the compression volume is higher than in the 
reservoir. But during the following outward piston stroke the pressure in the 
compression volume becomes lower than in the reservoir and oil will flow from the 
reservoir through the foot valve, back into the compression volume. The points and 
durations of time of the various valve movements play an important role in the 
proper working of the shock absorber. This holds in particular for the damping 
valves. 

Concerning unwanted high-frequency oil-flow phenomena (reaction forces) 
that may be generated in a shock absorber, more or less generally accepted 
hypotheses are that these can be due to the waterhammer effect or to cavitation in 
the oil flow. But here we hypothesize that these spurious forces are mainly related 
to pressure waves travelling to and fro in the rebound volume. The waves are 
supposed to reflect at closed damping and check valves. During reflection of the 
waves, the damping valves may quickly open (and close), violating design prin­
ciples. These spurious movements of the damping valves may cause high-frequency 
pressure perturbations that may be transmitted directly (through construction 
parts) to the passenger cabin. In the next section we propose a mathematical­
physical model for oil flow in the rebound volume. The model allows a first 
investigation of the pressure-wave hypothesis. 

2.2 Oi/-fiow modelling in rebound volume 

The rebound volume, as depicted in Fig. 1, is almost axially symmetric. For 
simplicity, we approximate it as axial-symmetric. Further we take the damping 
valve closed and the check valve opened. A sketch is given in Fig. 2a. A difficulty of 
the geometry in Fig. 2a in case of inviscid fluid-flow computations is that no unique 
solution exists for it; in its backward-facing-step regions, vortices of arbitrary 
strength are allowed. To ensure uniqueness in the case of inviscid oil-flow computa­
tions (without the urgent need to introduce some sort of Kutta condition for the 
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Fig. 2. Schematized rebound volumes. a Axial-symmetric, with damping valve closed and check valve 
opened. b Without forward and backward facing steps 
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direction of the flow that separates from the inlet corners), we remove the steps, see 
Fig. 2b. 

To investigate the effects of propagating pressure waves, an inviscid model 
suffices. To include nonlinear effects (shocks) and to facilitate future extension of 
the flow model, as governing equations we take the Euler equations, in axial­
symmetric coordinates (Fig. 2b) given by: 

oq + of(q) + ag(q) = _ ! S(q), 
at ax ar r 

(1 a) 

with q the state vector 

(1 b) 

f (q) and g(q) the flux vectors 

f(q) = (PJ: p), 
puv 

g(q) = ( ::u )· 
pv2 + p 

(le) 

and S(q) the source vector 

S(q) = (::u). 
pv2 

(ld) 

Here u and v denote the velocity components in axial (x-) and radial (r-) direction, 
respectively, and p denotes the density and p the pressure. The system is completed 
by the equation of state, to be discussed next. 

We assume that the absorber is completely filled with oil. For oil, an equation of 
state is not readily available. According to P. Buis and A. Venis (pers. commun., 
MacNeal-Schwendler, Gouda, 1995), a suitable engineering model is 

In (2), c. denotes the specific heat at constant density, T the temperature, and the 
subscript 0 (in p0 , p0 , T 0 ) refers to a specific reference state. For various types of oil, 
A;, B;, and Cv are known. By incorporating the energy equation into (1), with (2) we 
would then get a balanced system of equations (i.e., a system in which the number 
of equations equals the number of unknowns). However, in our present pilot model 
we do not yet want to include temperature; it seems that temperature dependence 

_ __J 
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1eglected as a first approximation. Support for this comes from computing 
: for compressible water flows. For water one uses as equation of state Tait's 
l formula 

(p/po) + B = (!!__)" 
1 + B Po ' 

(3) 

] for the original publication and, e.g., [1, p. 56], or [28, p. 102]. In (3), 
f.Jo are again a reference pressure and density, and n and Bare parameters. 
ter n and B are known, for oil both are unknown. In analogy with (3), we 
temperature dependence in (2). To further simplify (2) we also neglect the 
ar terms, yielding as the equation of state that we are going to use: 

(4) 

fact, (4) is a linearized version of Eq. (3). Summarizing, the governing, 
:d system of equations is formed by the isentropic, axial-symmetric Euler 
ns (1), (4); isentropic because no other function p = p(p) than (4) can exist of 
that describes isentropy for any arbitrary state. Because of the absence of 

1ture, no energy equation needs to be invoked, which is advantageous for 
: of computational efficiency. 
n the isentropy, (4) may be substituted into the general definition of the 
,f sound: 

c = j(dp/dp),, 

:he subscript s refers to isentropic conditions. Substitution yields 

C =Co:= FJP;. 

(5) 

(6) 

( 1 ), (4) is hyperbolic with respect to time. Therefore the number of condi­
J be imposed at a boundary should equal the number of characteristics 
g the domain at that boundary. Two types of boundaries occur in the 
d volume's geometry as depicted in Fig. 2b: 

npermeable wall and 
ic inflow. 

·eting a solid impermeable wall as the limit of subsonic outflow, the number 
ndary conditions to be imposed there should equal one. (As is standard, 
normal velocity component will be imposed.) Across a subsonic inflow 

Hy, for the present system of three equations, two characteristics enter the 
.1, which implies that the number of boundary conditions to be imposed 
hould be two. In the present case, by these two subsonic inflow conditions 
~ning and closing of the check valve should be modelled. We refrain from 
.icing a complete model of the valve's dynamics. Only the check valve's 
1tics is modelled and merely implicitly, viz. by specifying the velocity corn­
: normal to the boundary as a function of time: u(x = 0, r, t) = uin (t) (Fig. 3). 
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Fig. 3. Sawtooth-type inflow velocity 

The valve's closing is simply taken as a discontinuity in time: at t = t" u;n drops 
instantaneously from (u;n)max to zero. The values of (u;nlmax and t 1 can be varied by 
the user. As the second condition at the inflow boundary, we simply impose a zero 
tangential velocity component: v(x = 0, r, t) = 0, t ~ 0. All boundary conditions 
imposed concern the oil's kinematics only; pressure (or density) is not imposed at 
any boundary. The pressure is put on a proper value through the initial conditions. 
As the initial solution we take the hydrostatic one: u(x, r, t = 0) = v(x, r, t = 0) = O 
and p(x, r, t = 0) = p0 , where Po can be chosen by the user. 

3 Flux evaluation 

To allow for discontinuous solutions, following Lax [12], the system of equations 
(la) is rewritten in the integral form 

J'f ~q dxdr + l. (f(q)cos cf> + g(q)sin</>)ds = f'f -~S(q)dxdr, (7) J!l. ut Jan• J 12• r 

where Q* is an arbitrary subdomain of the computational domain Q, oQ* the 
boundary of Q*, and cos</> and sincf> the x- and r-components of the outward unit 
normal on oQ*.' For the present low-subsonic oil-flow computations, use of the 
integral form is not as mandatory as, e.g., in supersonic gasdynamics. However, no 
reasons exist for not applying it. In the discretization of (7) we follow the method­
of-lines approach, so the spatial discretization and the temporal integration are 
considered separately. First we present the space discretization. As mentioned, this 
will form the major part of the paper. 

A straightforward space discretization is obtained by subdividing Q, in a struc­
tured manner, into disjunct non-overlapping subdomains Qi.i• i = 1, 2, ... , M, 
f = 1, 2, ... , N (finite volumes). As type of finite-volume discretization we take the 
cell-centered one. As finite-volume shapes, we will allow arbitrarily shaped quadri­
laterals, the structured subdivision being such that Q i+l.i• Q i-l.i• Q ;,j+i. and 
!J;,j-l are the neighbouring volumes of Qi,i (Fig. 4a). Using the rotational invari­
ance of the flux-vector part from the axial-symmetric Euler equations: 

f(q)cos<j) + g(q)sin</> = r-1 (</J)f(T(<j))q), (8a) 
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with T(</J) the rotation matrix 

0 
cos</> 
-sin</> 

for finite volume Q;,j, (7) can be rewritten as 
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(8b) 

H!.l,,, ~~ dxdr + f,£l,,
1
T-1(</J)f(T(</J)q)ds = f L., -~ S(q)dxdr. (9) 

Concerning the space discretization part of (9), it appears that per finite volume we 
need to evaluate the net flux of mass and momentum along aQi,i• and the source 
term integrated over Qi,j· The evaluation of the source term is simple and will be 
briefly discussed in Sect. 4. We proceed by discussing in detail the important flux 
evaluation. 

A numerical flux function needs to be chosen which accurately models the 
propagation of pressure waves. In our opinion, for this purpose upwind schemes 
are better suited than central schemes. The most promising upwind schemes are the 
multidimensional ones (see, e.g., [6, 23] for some genuinely multidimensional 
upwind schemes, or [2, 10, 16, 24] for some simpler multidimensional upwind 
schemes). The most well-proven upwind schemes are all 1-D. Examples of these are 
the schemes that follow the Godunov approach [4] (the flux-difference splitting 
schemes as Osher's [20] and Roe's [21 ]), or the schemes that are in fact based on 
a particle approach (the flux splitting schemes as Van Leer's [13] and Steger and 
Warming's [25]). Because it is not yet clear whether the multidimensional upwind 
schemes will be more accurate for a given computational cost than the 1-D upwind 
schemes, here we stick to the latter. All aforementioned 1-D upwind schemes have 
in common that along each cell face the flux vector is assumed to be constant and 
to be determined by uniformly constant left- and right-cell-face states q1 and 
qr only. Hence, for these schemes (9) can be rewritten as 

I, r . ~~ dxdr + y-i (</J;+112.)F(T(</J;+112.)(q1);+112,j. T(c/J;+112.)(q,);+112) 1;+112.j 
Jnl,J 

+ y-i (</J;,j+112)F( T(</J;,j+112Hq1b+112, T(</>;.i+112Hqr);,i+112) l;,j+112 

+ y-i ( </J;-112,j) F(T( </>H 12)(q1)H12.i• T( </J;-112.i)(q,)i-1;2.j) l;-112.j 

+ y-i ( </J;.j-1 12) F( T( </J;,j-112Hqtl;,j-112, T( cPi.i-112Hq,);,i-111) l;,j-112 

=JI -~S(q)dxdr, 
Qi,J 

(10) 

where F(T(</J;+ 112,j)(q1);+112.i, T(c/J;+1 12 )(q,);+1 12 ,j), e.g., represents the transport of 
mass, momentum and energy (per unit of length and time) across 8Q;+111,i, and 
where 1;+112 .i denotes the length of 8Q;+112.i (Fig. 4b). For this numerical flux 
function F(qh q,), we prefer a scheme of flux-difference splitting type. As shown in 
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Fig. 4. Quadrilateral finite volume with a its neighbours and b the geometric quantities needed for 
a single flux computation 

[8, 15], flux-difference splitting schemes render better resolved shear layers (parti­
cularly contact discontinuities). Concerning the choice between an Osher- or 
Roe-type flux-difference splitting scheme, we prefer the Osher-type since it directly 
gives a physically proper boundary-condition treatment. Another advantage of an 
Osher-type scheme is its continuous differentiability, which allows the application 
of an implicit solution method employing flux derivatives. 

For the present set of equations, (1) and (4), the corresponding Osher-type 
scheme does not yet exist. It will be constructed hereafter. 

3.1 An Osher-type scheme for 2-D isentropic Eulerian oil flow 

In Osher-type schemes, the numerical flux function F(qi, q,) is defined as 

1 . lfq,ldf(q)I 
= 2 (f(q1) +f (q,)) - 2 q, dq dq, (11) 

where (df(q)/dqr is the negative eigenvalue part of df(q)/dq, (df(q)/dqy+- the 
positive eigenvalue part, and where Jdf(q)/dqj = (df(q)/dqy+- -(c\/"(q)/dq) . Osher 
has proposed integration paths in state space (for the integrals in (11)) that make 
the integration trivial. For theoretical background and an impression how an 
Osher-type scheme is constructed, see [20]. (There the construction is done for the 
hyperbolic systems that describe 1-D non-isentropic Lagrangian gas flow, 1-D 
non-isentropic Eulerian gas flow, and 2-D isentropic Eulerian gas flow.) To 
construct an Osher-type scheme for the present 2-D Eulerian oil flow described by 
(1) and (4), only the homogeneous quasi-linear form 

(12) 
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needs to be considered. With q according to (lb), f(q) according to (le), p(p) 
according to (4), and the speed of sound c0 according to (6), for the Jacobian 
df (q)/dq if follows then 

d~(q) = (-u20 + c6 2~ ~u). 
q -UV V 

(13) 

The eigenvalues of the Jacobian are 

(14) 

The fact that the eigenvalues vary with u only (since c0 is constant), means that 
steepening of solution gradients (i.e., the nonlinearity) comes from u only. The 
eigenvectors corresponding with the above eigenvalues are 

1 1 
v 

R,~m 
v 

Ri= 
U-Co 

R3= 
u+c0 

' v v 

1 1 

(15) 

The eigenvectors are linearly independent. Referring to the theory in [20], R2 is 
linearly degenerate, and R1 and R3 are genuinely nonlinear. Hence, R1 and 
R3 should correspond with simple waves (compression or expansion waves), and 
R2 with a contact discontinuity. We consider now the integration path in state 
space. Osher has proposed to take a path built up of subcurves, where each 
subcurve is tangential (in state space) to one of the eigenvectors. With the present 
three eigenvectors, according to Osher the integration path is as depicted in Fig. 5a. 
In this path the ordering of eigenvectors, when going from q1 to q. is R3, R2, R1 . The 
reverse (Ri. R2, R3 in going from q1 to q.) is also possible (Fig. 5b). The idea of 
reversion stems from Hemker and Spekreijse [5], who (for the 2-D non-isentropic 
perfect-gas Euler equations) named the ordering proposed by Osher the 0 (orig­
inal)-variant and their own the P (physical)-variant. The advantage of the P-variant 
over the 0-variant is its better computational efficiency, particularly for subsonic 
flow computations. This can be explained as follows. With the integration path 
tangential to the eigenvectors, the integral evaluation boils down to ordinary flux 
evaluations at a few points along the integration path. Because two of the three 

ql/3 "2J3 ql/3 q213 

1..2 1..2 

l..3 1..1 l..1 l..3 

qi qr qi q, 

a b 

Fig. 5. Two variants of Osher path in state space, a 0-variant and b P-variant 
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eigenvalues are nonlinear, and one linearly degenerate, this number of points is five 
at a maximum. For the fully subsonic flows to be considered here, with the 
P-variant it is only one(!): F(qi, q,) = /(q 113). (With the 0-variant this would be 
three: F(qi. q,) = f(q 1) - f (q213) + f(q,).) Given the fact that the present computa­
tions are fully subsonic, here one can take full advantage of the P-variant. 

To evaluate Osher's numerical flux function, the intersection states q 113 and 
q213 need to be known. They follow from the Riemann invariants l/J~, k = 1, 2, 3, 
I= 1, 2, 3, l =I- k, valid along the subcurves. The Riemann invariants satisfy 

Vi/I~· Rk = 0, k = 1, 2, 3, l = 1, 2, 3, I =I- k, 

V= (8~ 1 ' 8~ 2 ' 8~ 3 )· 
Hence, l/lf, I= 1, 3 simply have to satisfy 

81/Jf 
-8 - = 0, I = 1, 3 . 

l]3 

(16a) 

(16b) 

( 17) 

These Riemann invariants follow directly, in conservative variables: t/li = q1, 

l/J~ = q2 , or in primitive variables: l/li = p, l/J~ = u. (In case of a linearly degenerate 
eigenvalue, one of the Riemann invariants is identical to that eigenvalue.) The 
Riemann invariants l/Jf. I = 2, 3 along the first subcurve have to satisfy 

81/Jl ol/Jl ol/Jt 
41 -0 +(qz -coqiJ-8 + q3 -8 . = O, l = 2, 3. 

lJ1 qz l]3 
(18) 

The partial differential equation for the Riemann invariants along the third 
subcurve is almost identical to (18); it only differs in a sign in the second coefficient. 
(As a consequence, one of the corresponding Riemann invariants l/Jf, l = 1, 2, will 
probably also have a difference with l/Jf, I= 2, 3, in a single sign only.) Given the 
fact that both primitive variables p and u are constant along the second subcurve, 
they are no candidates for being a Riemann invariant along the first and third 
subcurve. The remaining primitive variable vis; substitution of l/11 = c13/q 1 into (18) 
learns that it is a Riemann invariant indeed. So far, there is a good resemblance 
with the 2-D Eulerian gas case from [20]. Expecting a further resemblance, for the 
remaining Riemann invariant along the first subcurve we try l/Jj = u + 
Q(p) = (q 2/4 1) + Q(qi). Substitution into (18) yields the simple ordinary differential 
equation dQ/dq 1 = c0 /q 1 . Integration yields Q = c0 (1np + C), with C an integra­
tion constant. We take C = -lnp0 , leading to the Riemann invariant tf;j = 
u + c0 1n(p/p0 ). It can be directly seen that along the third subcurve the Riemann 
invariants are: i/Ji = v, l/t~ = u-c0 ln(p/p 0 ). The resulting Osher path 1s sum­
marized in Fig. 6. For the intersection states q113 and q213 it follows: 

(p I/3) (P112) (P2;3) (p 1/2) 
U1/3 = Ul/2 , Uz;3 = U112 , 

Vl/3 V1 Vz/3 V, 

(19a) 
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ivi=P 
ql/3 'J5=u Cfi.13 

vj=u+G:iln(pt rt)/~ '11=u-coin(pt rt) 
ifi=v I Al A3~=v 

qi q, 

Fig. 6. P-variant Osher path for 2-D isentropic Eulerian oil flow 

where 

(19b) 

1 1 (Pi) U1;2=2(u1 +u,)+2c0 ln p,. (19c) 

This concludes the construction of the present Osher scheme for given left- and 
right-cell-face states. 

3.2 The Osher-type boundary-condition treatment 
for 2-D isentropic Eulerian oil flow 

If the cell face coincides with the boundary of the computational domain, in case of 
a left or right boundary, q1 or q,, respectively, does not exist; it is outside the 
computational domain. Just at the boundary is the state qb. This boundary state 
qb can be determined by ingoing and outgoing characteristic information (i.e., by 
proper boundary conditions and Riemann invariants, respectively). An upwind 
treatment of boundary conditions fits well in Osher-type schemes. The theoretical 
basis for Osher's handling of boundary conditions is given in [19]. Following the 
same approach as in the foregoing section, here we will also mainly restrict 
ourselves to reinterpreting this theory in terms of the Osher path. The reinterpreta­
tion will be done for the types of boundaries that we have to deal with here: 
subsonic inflow and solid impermeable wall. 

Subsonic inflow 

In the present application we only have to deal with the case of a subsonic inflow 
boundary at the left (Fig. 7a). For completeness, the case with boundary at the right 
(Fig. 7b) is also considered. In both cases the Osher path is reduced in the sense that 
one subcurve disappears (Fig. 7c, d). The vanished subcurve corresponds with the 
outgoing characteristic. In both cases two of the three components of qb should be 
given by boundary conditions. In Sect. 2.2 it has been decided to impose ub and vb. 
The remaining unknown component of qb can be determined, together with 
the unknown state q213 (left boundary) or q113 (right boundary), by using the 
corresponding Riemann invariants (I/;i, tf;~, 1/d, I/;~ for the left-boundary case and 
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a 

c 

Fig. 7. The two cases of subsonic inflow boundary (a and b) and their reduced Os?er paths (P-variant) 
(c and d). a and c Boundary at the left (0 < u, < c,); b and d boundary at the nght (-c1 < u1 < 0) 

I/Ii. 1/11. I/Ji, i/J~ for the right). For the left-boundary case we find 

(::) = (~~(:))' (~~;:) = (~~(~))' 
Vb 0 V213 V, 

(20a) 

P _ p e(u,.(t)-u,)/Co 
1/2 - r ' (20b) 

and for the right (which is not in the present shock-absorber model): 

( P113)-(P'.12) (Pb) = (P'.12) 
U1/3 - Um , Ub U1n , 

V1t3 V1 Vb V1n 

(2la) 

P112 = p,e(u,-u,.)/co. (2lb) 

Solid impermeable wall 

In the present rebound-volume model both a left and a right wall (Fig. 8a, b) occur. 
As mentioned in Sect. 2.2 only one component of qb is prescribed by a boundary 
condition. The remaining two components are determined from the two Riemann 
invariants in the reduced Osher path: ij;f and if;~ in the left-boundary case (Fig. 8c), 
and I/Ji and I/I~ in the right-boundary case (Fig. 8d). For the left-boundary case we 
find 

(22) 

and for the right-boundary case 

(23) 
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a b 

Fig. 8. The two cases of solid impermeable wall boundary (a and b) and their reduced Osher paths 
(P-variant) (c and d). a and c Boundary at the left; b and d boundary at the right 

This completes the boundary-condition treatment necessary for our application. 
Other types (e.g., subsonic outflow with pressure or outflow velocity specified, 
supersonic in- or outflow) can be quickly constructed. 

3.3 The interpolation for the left- and right-cell-face states 

To evaluate the four flux terms in (10), besides for the numerical flux function 
F(qi, q,), a choice also needs to be made for its two arguments q1 and q,. Both 
cell-face states are determined by interpolation through the neighbouring cell­
centre states. The interpolation is done in a 1-D fashion, which is consistent with 
the application of a 1-D flux-difference splitting scheme. (Application of multi­
dimensional state interpolation in combination with a 1-D flux-difference splitting 
scheme is a possibility nevertheless [10, 11].) To discuss 1-D state interpolation in 
more detail, consider the 1-D set of cell faces given in Fig. 9. (A similar set at 
constant i could also have been taken.) The simplest possible state interpolation is 
the first-order accurate one: (q1);+112.i = qi,i• (q,);-112.i = q;,i, i = 1, 2, ... , M. Its 
known advantages are its natural monotonicity and its applicability at all cell faces, 
i = 1, 2, ... , M. Its well-known disadvantages are its need for relatively fine grids in 
smooth flow regions and its strong smearing of discontinuities not aligned with the 
grid. We do not yet expect to get oblique discontinuities, but do appreciate a good 
accuracy-efficiency ratio for smooth flows. Therefore the first-order accurate 
interpolation is not applied, but, instead, the higher-order accurate one: 

i = 2, 3, ... , M -1, k = 1, 2, 3, 

(q,)~-112.j = q~.j + ~ <t><r~-112.)(qL-q~+l ), 
i = 2, 3, ... , M -1, k = 1, 2, 3, 

k k 
k qi+l,j-qi,j 

r;+112.i = k k , 
q;,j-qi-1,j 

k k 
k qi-1,j- qi,j 

ri-1/2,j = k k ' 
qi,j -qi+l,j 

(24a) 

(24b) 
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Fig. 9. Line of cell-centred finite volumes (from boundary to boundary) 

where the superscript k refers to the k-th solution component, and where </>(r) is the 
(monotonicity preserving) limiter function, for which the one from [9] is taken: 

<fJ(r) = max{O, min(2r, min(t +~ r, 2))). (25) 

This limiter is such that inside the total variation diminution (TYD) domain of 
Sweby [26] it coincides to the maximum extent with the K = 1/3 scheme which is 
favourable for accuracy reasons, see [14]. So far, limiter (25) has been applied to 
linear scalar advection problems only. The quality of the corresponding numerical 
results is satisfactory. 

The interpolation formulas (24a) and (24b) cannot be applied up to and includ­
ing the boundaries. There we apply the second-order upwind and the central 
interpolation formulas: 

(q,)i/2,j = ql,j +-!(q1,j- qi)' 

(q1h12,j = -!(q1,j+q2,j), 

(q,)M-1/2,j = -!(qM-1,j +qM)' 

(q1)M+l/2,j = qM,j +-!(qM,j-qM-d · 

4 Numerical results 

(26a) 

(26b) 

(26c) 

(26d) 

For an elaborate presentation of numerical results, see [18]. Here a quick impres­
sion is given by presenting some representative results. The results have been 
obtained for the geometry given in Fig. 2b, and for p0 = 1 bar and p0 = 870 kg/m3 . 

The numerical treatments of the source term and the time derivative, that have 
been applied, are standard. In the evaluation of the source-term integral occurring 
in (7), S(q) is taken piecewise constant over Qi./ S(q) = S(qi,j) over Qi,j· This directly 
leads to ]Jn,/-1/r)S(q)dxdr = (-1/ri,i)S(q;JA;,i, where Ai,i is the area of finite 
volume Qi,i· An alternative way of discretizing the source term is to first put it into 
the advection operator, and next to discretize this enhanced advection term with 
some arbitrary advection scheme. (As examples of such an advection-based discret­
ization of source terms, see [3, 9, 22].) Given the fact that no spatial derivatives 
occur in (or can be easily introduced into) the present S(q), this alternative 
source-term treatment is not feasible here. 
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Fig. 10. Beginning of pressure history in the middle of the rebound volume's upper boundary 

For the time discretization of the semi-discrete equation JSn..,(oq/ot)dxdr = 
Ri.j( ... , qi,j• ... ), where Ri) ... , qi,j• ... ) denotes the total space-discretiza tion con­
tribution in Qi,i (consisting of both the discrete flux and source-term contributions), 
we apply the standard, explicit, fourth-order accurate four-stage Runge-Kutta 
scheme. Formally, the time step to be taken in this method is subjected to 
restrictions imposed by accuracy and TVD. For a short overview of theory on TVD 

bounds for the time step, see [7]. (In fact in [7], instead of a TVD bound, a positivity 
bound is imposed on the time step, but this is the same.) The accuracy bound on the 
time step is determined by the requirement that the sawtooth inlet velocity profile 
(Fig. 3), particularly the jump at t = t1' is imposed sufficiently accurate. The 
accuracy bound is more severe than the TVD bound. 

In Fig. 10 the beginning of a pressure history is depicted as computed in the 
middle of the rebound volume's upper boundary. The first pressure wave given in 
Fig. 10 is directly caused by the check valve's opening. The second pressure wave is 
the reflection of the first wave. The graph shows the start of the to-and-fro 
travelling of pressure waves in the rebound volume. The negative pressures that are 
found are not believed to be a numerical artefact, but, instead, an illustration of the 
still existing shortcomings of the physical model, such as the zero diffusion and the 
lack of a cavitation model. 

In Fig. 11 pressure distributions are given along the piston rod at different 
times. The graphs show the evolution of a pressure wave during a single to-and-fro 
travel in the rebound volume. The pressure variations are large; unwanted opening 
of the damping valves may easily be the result. 

To finish, the possibility of studying the influence of parameters is shown, in 
Fig. 12 that of Ai. As should be, the speeds of the pressure waves increase with 
increasing Ai. 
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Fig. 11. Beginning of pressure history along piston rod: 1, t = lOOr; 2, t = 500r; 3, t = 700r; 4, t = 800r; 
5, t = 900r; 6, t = lOOOr; 7, t = l!OOr; 8, t = 1150r; 9, t = 1200r; 10, t = 1250r; 11, t = 1300r; 12, 

t = 1400r; 13, t = 1500r; 14, t = 1550r; 15, t = 1600r; 16, t = 1650r; r:::: 4.5 x 10-1 s 

5 Conclusions 

From the viewpoint of shock-absorber design, many conclusions can be drawn, but 
here we restrict ourselves to the observation that the predicted pressure variations 
are large and may easily cause spurious opening and closing of valves. 

Our first idea for future work is - to take the geometry closer to that given in 
Fig. 1. 

In case this extension introduces essentially multidimensional features (pressure 
waves propagating in various directions, not necessarily aligned with the grid), the 
application of a multidimensional upwind discretization might be worthwhile. Our 
next ideas for future work concern the mathematical-physical model. We propose: 

to consider equation of state (2) instead of (4), 
to use an equation of state which takes into account multiphase behaviour, 
to introduce a cavitation model, and 
to extend the present Euler equations with viscous terms. 

In case of the latter extension, the Osher scheme is certainly a good choice 
because of its good resolution of layers. Moreover, because of its continuously 
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Fig. 12. Beginning of pressure history in the middle of the rebound volume's upper boundary, 
for varying compressibility: a, A1 = 154 bar; b, A1 = 1.6 x 154 bar; c, A1 = 10 x 154 bar; d, A1 = 

13 x 154 bar 

differentiable fluxes it is suitable for implicit time stepping, which may be necessary 
when viscous terms are added. Explicit time stepping remains an interesting 
possibility nevertheless. Recently, some new stability results were obtained for 
explicit time stepping applied to convection-diffusion equations [29]. 
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