
Termination of Algebraic Type Systems:
The Syntactic Approach

Gilles Barthe and Femke van Raamsdonk *

1 Introduction

CWI
P.O. Box 94079, 1090 GB Amsterdam

The Netherlands
{gilles,femke }@cwi.nl

Combinations of type theory and rewriting are of obvious interest for the study
of higher-order programming and program transformation with algebraic data
types specifications; somewhat more recently, they also found applications in
proof-checking. A natural question in this field concerns the termination or
strong normalisation of such systems and is as follows: given a terminating type
system T and a terminating rewriting system R, is the combination of T and
R terminating? It is not surprising that this question has already received con
siderable attention, see for instance [1, 2, 4, 7, 11, 12, 15-17, 19, 24]. However, the
situation is in our opinion not yet satisfactory, since most of the proofs of termi
nation of a combination of a type theory and a rewriting system consist basically
in redoing the proof of termination of the type theory. Ideally, one would like to
have a modular proof of these modularity results, i.e. a proof that uses but does
not re-prove the facts that the type theory and the term rewriting system are
terminating.

The question we embark on is hence to develop general methods that permit
to derive termination of the combination of a type theory and a rewriting system
from termination of those systems separately. We make the question precise in
the framework of algebraic type systems [7] which combine pure type systems
and term rewriting systems. The advantage of this setting is its generality; for
instance the combination of the calculus of constructions with a term rewriting
system, as defined e.g. in [4], is an algebraic type system.

The first method we present is called termination by translation. An algebraic
type system A is terminating if there exists a map into a terminating algebraic
type system A' such that derivable judgements in A are mapped to derivable
judgements in A' and rewrite steps in A are mapped to non-empty rewrite
sequences in A'. This technique, which is well-known in type theory, is an elab
oration of termination by translation in first-order term rewriting. Despite its
extreme simplicity, it permits to obtain, in a very easy way, useful termination
results for algebraic type systems.

* A part of this work has been carried out while the second author was at INRIA
Sophia Antipolis, France, on a grant of the HCM Cooperation Network EXPRESS.

175

The second method, which we call termination by stability, has not only use
ful applications but is also interesting in itself. The method is inspired from
[16] where Dougherty considers untyped .A-calculus with .B-reduction in combi
nation with a first-order, single-sorted, term rewriting system 'R. In particular,
Dougherty shows that the union of -+ f3 and -+n is terminating on a suitably
defined subset Stable('R) of the set of ,B-strongly normalising terms. Elements
of Stable('R) are called stable terms, after which the method is named. Our in
terest in Daugherty's method lies in the fact that termination of the combined
reduction relation is reduced to termination of its components, i.e . .B-reduction
and 'R-reduction. In Section 3, we extend Dougherty's method to algebraic type
systems.

In Section 5, we apply the two methods to find easy proofs of well-known
results. For example, we give easy proofs of termination for the combination of
higher-order >.-calculus .Aw and a terminating term rewriting system. Further
more, we derive from the two methods a number of new results:

- The combination of higher-order >.-calculus, >.w, with .811-reduction and a
terminating term rewriting system is terminating.

- Under certain mild conditions, the combination of a terminating pure type
system and a terminating non-collapsing term rewriting system is terminat
ing. As a corollary, we obtain that the combination of a pure type system
and a ground rewriting system is terminating, under some mild conditions.

Our methods are flexible and robust. Firstly, they apply to several notions of re
ductions such as ,B-reduction, 11-reduction, and, we claim, 77-expansion. Secondly,
they carry over to variations of algebraic type systems such as type-assignment
systems, domain-free pure type systems or pure type systems with .IT-conversion.
Thirdly, the method scales up when other type constructions, such as the ones
for products and sums, are considered.

Moreover, our methods are simple. They can be carried out in a weak system
of arithmetic. This is the case since we reduce termination of an algebraic type
system to that of a pure type system and do not prove the latter, which of course
may require a strong system of arithmetic.

Finally, our methods are informative. In particular, they shed some light on
the logical status of algebraic type systems. For example, a simple application of
derivation-preserving translations shows that the internal logic of an algebraic
type system cannot distinguish between two distinct closed algebraic terms.

Related work. The problem of termination for combinations of >.-calculus and
term rewriting systems has already received considerable attention in higher
order rewriting but here we limit ourselves to termination results for algebraic
type systems.

One of the first termination results for algebraic type systems is due to
Breazu-Tannen and Gallier. In [12], they prove that the combination of the
polymorphic >.-calculus -system F- with the curried version of a terminating
first-order term rewriting system is terminating. The proof makes use of the

176

'candidats de reductibilite' and, for an essential part, consists in redoing the
proof of termination for system F.

The combination of polymorphic ,\-calculus with higher-order term rewrit
ing is studied by Jouannaud and Okada in [19]. Using a computability argu
ment, they show that provided some conditions on the form of the rewrite rules
are satisfied, the combination of the polymorphic >.-calculus and a terminating
higher-order rewriting system is again terminating. This result is generalized by
Barbanera, Fernandez and Geuvers in a series of papers first to intersection type
systems, then to higher-order ,\-calculus and finally to the so-called algebraic >.
cube p,3,4]. Termination of the algebraic >.-cube is proved along the lines of [18]
by using a computability predicate and two reduction preserving translations.

In [7J, Barthe and Geuvers introduce the notion of algebraic type system
and provide a general criterion for termination of an algebraic type system. The
criterion is proved by a model construction based on saturated sets -so it re-does
the termination proof for the corresponding pure type system. Unfortunately,
the criterion requires the algebraic type system to have the subject reduction
property, a severe restriction in the current state of knowledge. The problem
is partially overcome in [9] where Barthe and Mellies use a labelled syntax to
prove termination and subject reduction of algebraic type systems. However,
the approach is complicated and requires to redo the proof of termination of the
underlying pure type system.

Using a completely different approach, van de Pol shows in [24] termination of
the combination of simply typed >.-calculus and the curried version of a terminat
ing first-order term rewriting system. This result is obtained in the framework of
higher-order rewriting systems, so in particular simply typed ,\-calculus is coded
as a higher-order rewriting system. The proof consists of extending a termina
tion model of the term rewriting system to a termination model for simply typed
,\-calculus.

Finally, several authors have recently considered algebraic type systems with
17-expansion [14, 15}. In a nutshell, two techniques are used to prove termina
tion: reducibility candidates and simulation of 17-expansion. The first one is not
modular, since it involves doing the termination proof again. The second one
consists in defining a translation from legal terms to legal terms so that every
infinite reduction sequence with 17-expansions is translated into an infinite reduc
tion sequence without 17-expansions. This approach is in a sense orthogonal to
ours as we translate an infinite reduction with algebraic reduction steps into an
infinite reduction sequence without algebraic reduction steps. It turns out that
our approach yields shorter and conceptually simpler proofs.

Organisation of the paper. The paper is organised as follows: in Section 2, we
introduce the framework of algebraic type systems. Section 3 presents the tech
niques of termination by translation and termination by stability. In Section 4 we
consider algebraic rewriting of algebraic pure type systems. Section 5 contains
several applications of the two techniques, yielding new proofs of old results as
well as new results. We conclude in Section 6.

177

2 Algebraic Type Systems

In this section we present the definition of an algebraic type system as the
combination of a pure type system and a typed term rewriting system. First we
recall the definition of a pure type system and give a suitable definition of a
typed term rewriting system.

2.1 Pure Type Systems

Pure type systems were introduced by Berardi and by Terlouw as a general
framework to define and study typed >.-calculi. The definition we present is a
slight modification of the one given in [5).

Definition 1. A pure type system S is specified by a triple (U, TA, T R) with

1. U a set of universes,
2. TA ~ U x U a set of typing axioms,
3. TR ~ U x U x U is a set of typing rules.

We assume a set V of variables, written as x, y, z, The set of pseudo-terms
of a pure type system S = (U, TA, T R) is defined by

T ::= v I u I IIV: T.T I >.V: T.T I TT

An environment is an ordered list of pairs of the form x : A with x E V and
A E T. A judgement is a triple of the form I' f- M : A with I' an environment
and M, A pseudo-terms. Intuitively, a judgement assigns in a given environment
a type to a term. The meaningful judgements of a pure type system are defined
by means of a set of rules. One of these rules, the conversion rule, makes use of a
rewrite relation on the set of pseudo-terms of the pure type system. For the sake
of uniformity, we present the rules parametrised over the rewrite relation used
in the conversion rule. A judgement then takes the form I' f-c M : A, where C
is the rewrite relation used in the conversion rule.

Definition 2. Let -c be a rewrite relation on the set of pseudo-terms of a pure
type system S = (U,TA,TR).

1. A judgement I' f-c M : A is said to be derivable if it can be derived using
the rules given in Table 1.

2. A pseudo-term M is said to be C-legal if for some I' and some A the judge
ment I' f-c M : A is derivable. The set of C-legal terms of the pure type
system Sis denoted by C(S,C).

If we simply state I' f-c M : A, we mean that I' f-c M : A is a derivable
judgement.

The most important rewrite relation on the set of pseudo-terms of a pure
type system is the ,8-reduction relation, denoted by -13, which is defined as the
compatible closure of

(>.x : A.M)N - M[x := N)

178

axiom
1-c c: s

if {c,s) ETA

start
I' 1-c A: s

if x ~ r, x e v
I',x: A 1-c x: A

weakening
r 1-c M: A I' 1-c B: s

if x ~ r, x e v
I', x : B 1-c M : A

product
I' f-c A: s1 I', x : A 1-c B : s2

if (s1, s2, ss) ET R
I' 1-c II x : A.B : ss

application
I' 1-c M : II x : A.B I' 1-c N: A

I' f-c M N : B[x := M]

abstraction
I',x:Af-cM:B I' 1-c (IIx: A.B): s

I' 1-c ,\x: A.M: IIx: A.B

conversion
I' 1-c u: A I' f-c B: s ifALcB

I' 1-c u: B

Table 1. PURE TYPE SYSTEMS

Often one considers the set of ,B-legal terms of a pure type system, equipped
with the ,8-reduction relation, that is, the rewriting system (.C(S, /3), -+f3).

An important example of pure type system is the calculus of constructions,
defined by Coquand and Huet in [13]. Barendregt presents in [5] a fine-grain
analysis of the calculus of constructions in terms of the .A-cube, a cube consisting
of eight pure type systems. They all have { *• D} as the set of universes, and
*: D as only typing axiom. Their sets of typing rules are as follows {here (s1 , s2)

abbreviates (si. s2, s2)):

).. -+: {*,*)
)..2 :(*,*),{D,*)
A!:!l : {*,*),(D,D)
AW :(*,*),(D,*),{D,D)

)..P : (*, *), (*, D)
)..P2 : (*, *), (D, *), (*, D)
)..p!:!l: (*, *), (D, D), (*, D)
)..Pw: (*, *), (D, *), {D, D), (*, D)

Most of the systems of the A-cube are of independent interest and appear in
the literature, often in a variant form, see [5] for references. The calculus of
constructions, .APw, is the most complex system of the cube.

Morphisms of Pure Type Systems. Morphisms of pure type systems are maps
between the sets of universes which preserve typing axioms and typing rules.

179

Definition 3. Let A = (U, TA, T R) and A' = (U', TA', T R') be pure type
systems. A pure type system morphism between A and A' is a mapping

<P: U-+ U'

such that:

l. if (u1,u2) ETA, then (</>(u1),</J(u2)) ETA',
2. if (u1,u2,u3) E TR, then (</>(u1),</>(u2),Q>(u3)) E TR'.

For a pure type morphism 4> as in the previous definition, we write </> : A -+ A'
by a slight abuse of notation, also to denote the homomorphic extension of <P
mapping pseudo-terms of S to pseudo-terms of S'. A morphism as defined in
this way is only concerned with the signature of a pure type system. If one is
interested in a morphism that maps C-legal terms in S to C'-legal terms in S',
then we should require in addition that M !c N in S implies </>(M) !c• <P(N)
in S'. Then it follows that C-legal terms are mapped to C'-legal terms by a
straightforward induction on derivations.

2.2 Typed Term Rewriting Systems

In this subsection, we define typed term rewriting systems in such a way that
they can be conveniently combined with pure type systems. We use the following
notion of sorted signature.

Definition 4.

1. Let S be a set. An algebraic type over S is an expression of the form

s1 X ... X Sn-+ S

with n 2::: 0 and s1 , ... , Sn, s E S. We writes instead of-+ s.
2. A sorted signature is a pair (S, F) consisting of a set of sorts, written as

s, s', .. . , and a set of function symbols, written as f, g, .. . , such that every
function symbol f E F has a unique algebraic type over S.

Note that we simply assume every function symbol to have an algebraic type; we
don't consider explicitly a function assigning algebraic types to function symbols.
If a function symbol f has an algebraic type s1 x ... x Sn-+ s, then n is said to
be the arity of f. The arity of a symbol f is denoted by ar(f).

In order to define terms, we assume a set V of variables, written as x, y, z,
We define an environment as an ordered list of type declarations of the form x: s,
with x E V and s a sort. We say that a variable x is declared in I' if x : s E I'
for some s and we assume that variables are declared at most once.

Definition 5. An expression Mis a typed algebraic term (also simply called a
term) over a sorted signature (S, F) if I' I- M : sis derivable for some environ
ment I' and sort s, using the rules given in Table 2.

180

I',x:sl-x:s
ifs ES

r 1- M1 : s1 r 1- M.,. : s.,. r / r I- f(M M) i : 81 x ... x Sn -+ s
1, ... , n : S

Table 2. TYPED ALGEBRAIC TERMS OVER (S, F)

Rewrite rules of a typed term rewriting system are defined as follows. Here
var(M) denotes the set of variables occurring in M.

Definition 6. Let (S, F) be a sorted signature. A rewrite rule over (S, F) is a
pair of terms over (S,F), written as l-+ r, such that

1. for every environment I', we have I' 1- l: A implies I' I- r: A,
2. l ~ v,
3. var(r) ~ var(l).

Now we have collected all ingredients for the definition of a typed term rewriting
system.

Definition 7. A typed term rewriting system n is specified by a pair ((S, F), R)
with

1. (S, F) a sorted signature,
2. Ra set of rewrite rules over (S, F).

The rewrite relation -+R of a typed term rewriting system 1l = ((S, F), R) is
defined as follows. We have M -+R N if M is a typed algebraic term and there
is a context C[•], a substitution e and a rewrite rule l -+ r E R such that
M = C[ZB] and N = C[re]. Here a context is a term with a unique occurrence of
a special constant•, and C[M] denotes the result ofreplacing • in C[•] by M.
Substitutions are supposed to preserve the typing.

We will assume the reader to be familiar with well-known properties of (un
typed) term rewriting system, which can be found in [22, 23). In the following,
we will often simply say 'term rewriting system' instead of 'typed term rewriting
system'.

Morphisms of Sorted Signatures. In the sequel, we shall use mappings that pre
serve the structure of sorted signatures. These mappings are defined as follows.

Definition 8. Let (S, F) and (S', F') be sorted signatures. A sorted signature
morphism between (S, F) and (S', F') is a pair of mappings 1/J = ('1/J1, 'ljJ2) with

1/J1 : S-+ S'
1/J2: F-+ F'

such that for every f: s1 x ... x Sn. -+sin (S, F), we have 1/J2(/) : 1/J1 (s1) x ... x
1P1(sn.)-+ 'l/J1(s) in (S',R').

181

2.3 Algebraic Type Systems

The definition we present in this subsection is equivalent to the one given in [9]
and inspired from (4, 7]. An algebraic type system is a combination of a pure type
system and a typed term rewriting system. In order to define the combination,
we need to specify how sorts are embedded into universes. This is the purpose
of the embedding axioms EA below.

Definition 9. An algebraic type system is specified by a triple S +EA 'R, con
sisting of

l. a pure type system S = (U, TA, T R),
2. a typed term rewriting system 'R, = ((S, F), R),
3. a set of embedding axioms EA ~ S x U such that for every s E S there

exists au EU such that (s,u) E EA.

In the sequel, we let codom(EA) denote the set of u E U such that there exists
an s E S with (s, u) E EA. Usually, e.g. in the algebraic >.-cube, codom(EA)
is a singleton, but it is not necessarily desirable that all sorts live in the same
universe. For instance, one could have a typed term rewriting system with sorts
nat for natural numbers and ord for ordinals, and relate them to universes set
and class in a pure type system by declaring nat : set and ord : class.

In the remainder of this subsection consider an algebraic type system A =
S +EA n with S = (U, TA,TR) and 'R, = ((S, F),R).

Definition 10.

1. The set T of pseudo-terms of A is defined as follows:

T ::= v I u I s I IIV : T.T I >. v : T.T I TT I f (T, ... , T)

where f E F and the arity of f is respected.
2. The rules used to form derivable judgements of A are parametrised over a

rewrite relation ~c on the set of pseudo-terms of A. They are given in Table
3.

3. A pseudo-term Mis said to be a C-legal term if there exist an environment
I' and a pseudo-term A such that I' f-c M : A is a derivable judgement. The
set of C-legal terms is denoted by .C(A, C).

Traditionally, the rewrite relation considered for algebraic type systems is
the union of ,B-reduction with algebraic reduction. It is defined as follows.

182

Definition 11.

1. The /3-rewrite relation -+f3 is defined as the compatible closure of

(..\x : A.M)N-+ M[x := N]

2. The algebraic rewrite relation -+n is defined by M -+n N if there exists a
context C[•], a substitution() and a rewrite rule l -+ r such that M = C[ZB]
and N = C[rB].

axiom

start

weakening

product

application

1-c s: s

I' 1-c A: s

I', x : A 1-c x : A

I' 1-c t : A I' 1-c B : s
I', x : B 1-c t : A

I' 1-c A : s1 I', x : A 1-c B : s2

r 1-c II x : A.B : S3

I' f-c t : II x : A.B I' 1-c u : A
I' 1-c t u : B[u/x]

abstraction I', x: A f-c t: B I' 1-c (IIx: A.B) : s
r f-c AX: A.t: Ilx: A.B

function

conversion

I' 1-c M1 : 0'1 I' 1-c Mn. : O'n

I' 1-c J{M1, ... , Mn) : r

I' 1-c u : A I' 1-c B : s
r 1-c u: B

if (s, s') ET AU EA

if x ~I', x E V

if x ~I', x E V

if I : a1 x . . . x O',. --... r

if Ak B

Table 3. ALGEBRAIC PURE TYPE SYSTEMS

3. The rewrite relation -+mi: is defined as -+mi:c = -+13 U -+n.

In the sequel, we will make use of the following well-known definition.

183

Definition 12. Let -+c and -+v be rewrite relations on the set of pseudo-terms
of A. Then .C(A, C) is said to have the subject reduction property for -+v is for
every ME .C(A,C) we have that I' 1-c M: A and M -+v N implies I' 1-c N: A.

Morphisms of Algebraic Type Systems. We define a morphism between algebraic
type systems as a pair consisting of a morphism of pure type systems and a
morphism of signatures.

Definition 13. Let A = S +EA R and A' = S' +EA' R' be algebraic type
systems. An algebraic type system morphism between .A. and A' is a pair of
mappings </> + 'lj; such that

1. </> : S -+ S' is a pure type systems morphism,
2. 'l/J = ('1/J1, 1/J2) : (S, F) -+ (S', F') is a sorted signature morphism,
3. if (s, u) E EA, then ('1/;1 (s), </>(u)) E EA'.

Every morphism </> + 'lj; of algebraic type systems from A to A' can be extended
homomorphically into a map from the set of A-pseudo-terms into the set of
A'-pseudo-terms. By abuse of notation, we denote this map by</>+ 'lj;.

3 Techniques

In this section we present two techniques that can be used to derive termination
of an algebraic type system .A. = s +EA R from termination of s and n. First
we briefly comment on which problems occur.

A first problem is caused by the fact that an algebraic type system might have
more terms than its underlying pure type system because of the conversion rule.
So if A= S +EAR, then .C(.A., mix) is not necessarily contained in .C(S, (3). As a
consequence, we cannot immediately conclude termination of -+ f3 on .C(A, mix)
from termination of -+ /3 on .C(S, /3).

Second, a well-known result originally due to Klop [21) (see also [11)) states
that the rewrite relation -+mix is not necessarily confluent on the set of pseudo
terms of an algebraic type system. As a consequence, the traditional proof of
subject reduction of .C(A, mix) for -+f3 breaks down [4, 9].

A third problem is how to infer termination of -+n on some set of terms of
an algebraic type system from termination of R. This is discussed in Section 4.

3.1 Termination by Translation

A well-known technique to show termination of a rewriting system (A1, -+i) is
to map it into a terminating rewriting system (Az, -+2) such that one step in
the former corresponds to at least one step in the latter. In this subsection, we
extend this technique to the case of algebraic type systems. Then the mapping

184

should not only preserve the rewrite relation but should also map a derivable
judgement to a derivable judgement. We have the following result; its proof is
very easy and is omitted.

Proposition 14. Let A = S +EA n. and A' = S' +EA' 'R.' be algebraic type
systems. Let -+e, -+v be rewrite relations on the set of pseudo-terms of A and
let -+e', -+v' be rewrite relations on the set of pseudo-terms of A'. Let </> + 'I/; :
A -+ A' be a morphism of algebraic type systems.

1. Suppose that for all pseudo-terms M and N in A, we have
{a) M le N implies (if>+ 'lf;)(M) !c, (</> + t/;)(N),
{b} M -+v N implies(</>+ 'lf;)(M) -+!,, (</> + 7/;)(N).
Then termination of (.C(A', C'), -+v') implies termination of (.C(A, C), -+v).

2. If in addition we have that for all pseudo-terms M and N in A, M -+ e N
implies (</>+'lf;)(M) -+£, (</>+7/J)(N), for a rewrite relation -+e on the set of
pseudo-terms of A and a rewrite relation -+e' on the set of pseudo-terms of
A', then we have that termination of 1J' relative to &' on .C(A', C') implies
termination of 1J relative to£ on .C(A,C)

We stress that one of the purposes of the present paper is not to show that
termination by translation is a technique to infer termination, because this is of
course well-known, but to show that Proposition 14 has useful applications.

3.2 Termination by Stability

In this subsection we present a second technique to infer termination of an
algebraic type system: termination by stability. The principle of this technique
is due to Dougherty. He shows in (16] that termination of -+13 U -+n follows from
termination of -+ /3 and termination of -+n, provided that we restrict attention
to a set of stable terms. Stability is in fact an abstract form of typing, and
Daugherty's result is obtained for untyped >.-calculus. In this subsection we adapt
Dougherty's result to the case of algebraic type systems. Instead of making use
of a generalisation of the notion of stability, adapted to the case of algebraic
type systems, we will make use of a similar notion which we call preservation of
sorts. It is defined as follows.

Definition 15. Let A = S +EA n. be an algebraic type system and let -+c be
a rewrite relation on the set of pseudo-terms of A.

1. Two pseudo-terms M and N are said to be C-legally convertible if there is
an environment I' and a sequence of terms P1, ... , Pn such that I' 1-c Pi : s
for every i E {1, ... , n} and

M le P1 !c ... le Pn le N.

2 . .C(A, C) has preservation of sorts if no two sorts are C-legally convertible and
no sort is C-legally convertible with a pseudo-term of the form IIx: A.B.

185

Preservation of sorts plays a r6le similar to arity-checking in (16]. In (4], it is
proved that an algebraic type system obtained by a A-calculus from the >.-cube
with a term rewriting system enjoys preservation of sorts.

Preservation of sorts is used to show that algebraic reduction preserves {3-
normal forms.

Lemma 16. Let A = s +EA n be an algebraic type system that has preservation
of sorts. Let M be a {3-normal form with M -n M'. Then M' is a {3-normal
form as well.

Proof. First, let l - r be a rewrite rule of n and suppose that l(J is in {3-normal
form. We show that r8 is in {3-normal form as well. To start with, since r consists
only of function symbols of n and variables, there are no {3-redexes in the r-part
of rO. Further, there are no {3-redexes in the 0-part of rO, since all variables
occurring in r occur also in l and lO is supposed to be in ,8-normal form. Finally,
there are no ,8-redexes 'on the border between r and 0' in rB, since no sorts is
,B-convertible to a term of the form II y : A.B, so neither l nor r has a subterm
of the form xP.

Then we can proceed by induction on C[•] to prove that C[UJ] is in {3-normal
form implies that C[rB] is in {3-normal form. In the induction also preservation
of types is used.

In the proof of the main result of this section, Theorem 19, we make use of a
lemma concerning reduction diagrams. In these diagrams, we make use of com
plete developments of the set of all ,8-redexes in a term. The result of performing
such a complete development in a term Mis defined inductively as follows.

Definition 17. The term M* is inductively defined as follows.

1. (aM1 ... Mn)* = aMi ... M~ with a E VU U US and n ~ 0,
2. (>.x : P.M)* = >.x : P* .M*,
3. (!Ix: P.Q)* =!Ix: P*.Q*,
4. ((>.x: Q.M)NPi ... Pn)* = M*[x := N*]Pt ... P,:: with n;:::: 0,
5. f(M1, ... , Mn)* = f(Mi, ... , M~) with n;:::: 0.

We will make use of the following diagrams.

Lemma 18. 1. If M -fJ N, then M* -~ N*. In a diagram:

M---*N 1 (3 1
M*~N*

(J*

2. If M -n. N, then M -R. N*. In a diagram:

M~N

1 1
M*~N*

'R.*

186

If the step M -+n N takes place at position e, then M' = N'.

Now we present the theorem which is the core of the termination by stability
method.

Theorem 19. Let A= s +EA n be an algebraic type system. Suppose that

1. .C(A,C) has the subject reduction property for -+mix,
2 . .C(A, C) has preservation of sorts
3. (.C(A,C),-+p) is terminating,
4. (.C(A, C), -+n) is terminating.

Then (.C(A, C), -+mi:z:) is terminating.

Proof. Let M E .C(A, C). We prove that M is terminating with respect to -+mix
by induction on the maximal length of a ,8-rewrite sequence starting in M,
denoted by maxredp(M).

1. maxredp(M) = 0. Let u be a rewrite sequence starting in M. By Lemma 16
u is of the form

u : M = Mo -+n Mi -+n M2 -+n

By hypothesis 4, u is finite.
2. maxredp(M) > 0. We proceed by induction on M, only the two difficult cases

are treated here.
(a) M = (.>..x : A.P)QQ1 ... Qn with n 2:: 0. Let u : M = Mo -+mix

Mi -+mix M2 -+mix ... be a rewrite sequence starting in M. Two cases
are distinguished.

i. Every term in u is of the form (.>..x: A'.P')Q'Qi ... Q~ with A-+;;.,,ix
A',P -+;;.,,ix P',Q -+;;.,,ix Q',Qi -+;;.,,ix Q~. Then u is finite by the
induction hypothesis on M.

ii. There is a k such that Mk = (.>..x: A'.P')Q'Qi ... Q:.n and Mk+l =
P'[x := Q']Qi ... Q:.n. Now Mk+i is a mix-reduct of M' = P[x :=
Q]Qi ... Qm. By the induction hypothesis on maxredp(M), M' is
terminating and hence O" is finite.

(b) M = f(M1, ···,Mn)· Let fJ: M =Mo -+mix M1 -+mix M2 -+mix ... be
a rewrite sequence starting in M. Using Lemma 18 we build a rewrite
sequence q* starting in M* as follows:

u : Mo ---:-+ Mi ---:-+ M2 ---:-+ · · · 1 mix 1 mix 1 mix

u* Mo ~Mi~ M2 ----:-* · · ·
mix mix m'iz

Since clearly maxredp(M*) < maxredp(M) if Mis not in ,8-normal form,
the induction hypothesis on maxredp(M) yields that u* must be finite.
Therefore, there is a k such that for every l ;:::: k every redex contracted
in Mi -+mix Mi+i is in a subterm Q1 of a subterm (>.x : B.Qo)Q1 of Mi.
The subterm (.>..x : A.Qo)Q1 is a subterm of a reduct of a subterm of M
and hence by the induction hypothesis terminating.

187

Note that we need preservation of sorts in order to be able to apply Lemma 16.
Further, we use the properties that a subterm of a term in .C(A,C} is in .C(A,C)
and that a -miz-reduct of a term in .C(A, C) is in .C(A, C). Indeed, subject
reduction of .C(A, C} for -mi:z: is crucial.

4 Algebraic Reduction

In order to show termination of (..C(A,mix),-mix) for some algebraic type sys
tem A = s +EA n, we need to show in particular that -n is terminating on
.C(A,mix). As already mentioned in the introduction, this is not guaranteed by
termination of 'R, only. In this section we present two results concerning termi
nation of -+n on some set of terms in an algebraic type system.

If a typed term rewriting system n is terminating, then it is not necessarily
the case that its untyped version E(n), which is obtained by erasing all infor
mation concerning the sorts, is terminating. A counterexample is for instance
an adaptation of the counterexample by Toyama, showing that termination is
not a modular property of term rewriting system, see [25]. Now the difficulties
can simply be avoided by considering term rewriting systems that are persis
tently terminating. A typed term rewriting system n is said to be persistently
terminating is its untyped version E('R) is also terminating.

It is quite easy to see that if a term rewriting system n is persistently termi
nating, meaning that also E('R) is terminating, then -+n is terminating on the
set of pseudo-terms of an algebraic type system of the form A = S +EA n, as
follows. We assume that the single sorted term rewriting system E('R,) is termi
nating. Now we extend the signature of E('R) with fresh symbols 6 of arity O,
and II, .6_, Appl of arity 2. Note that this extension £(1?,)' is still terminating.
All pseudo-terms of an algebraic type system A = S +EA 'R can be mapped to
terms of the only sort of E('R}, says, by means of the following mapping:

lal = 6 for a E VU U U S
IM NI= App(IMl,INJ)

l,\x: A.Ml = .6.(IAI, IMJ)
jIIx: A.BI= II(IAI, IBJ)

lf(t1, ... , tn)I = J(lt1I, ... , ltnl) if f E F and ar(J) = n

Since this mapping preserves the one-step' rewrite relation, it follows that -n
is terminating on the set of pseudo-terms.

Now the question is which terminating term rewriting systems are persis
tently terminating. An answer to this question is given by Zantema, who shows
in [25] that termination is a persistent property both for non-collapsing and for
non-duplicating term rewriting systems. Using the observation above, we have
the following corollary of Zantema's result. It will be used in Section 5 to show
that under certain conditions the combination of a terminating pure type system
and a terminating and non-collapsing term rewriting system is terminating.

Theorem 20. Let A = S +EA 'R be an algebraic type system such that:

188

1. 'R is terminating,
2. 'R is either non-collapsing or non-duplicating.

Then -+n is terminating on the set of pseudo-terms of A.

Another way to obtain termination of -+n on some set of terms of an algebraic
type system A = S +EA 'R is by instead of imposing restrictions on 'R imposing
restrictions on A. Using the techniques sketched above, the following result can
be obtained; for lack of space the proof is omitted.

Theorem 21. Let A = S +EA 'R be an algebraic type system such that

1 . .C(A, C) has preservation of sorts,
2 . .C(A, C) has the subject reduction property for -+n,
9. 'R is terminating.

Then (.C(A,C), -+n) is terminating.

This result will be used in Section 5 in order to show that the combination of a
terminating pure type system without dependent types and a terminating term
rewriting system is terminating.

5 Applications

In this section we apply the methods presented in Section 3 to several situations
of interest.

5.1 Non-dependent Algebraic Type Systems

In this subsection we consider a restricted class of algebraic type systems where
only ,8-reduction, not mix-reduction, is used in the conversion rule. So the set
of legal terms we consider is of the form .C(A, /3). If we have that the set of legal
terms .C(A, ,8) has the subject reduction property for -+n., then the termina
tion by stability method can be presented in a somewhat simpler form. This is
expressed in the following proposition.

Proposition 22. Let A = S +EA 'R be an algebraic type system and suppose
that:

1 . .C(A,/3) has the subject reduction property for -+n,
2. (.C(S, ,8), -+ p) is terminating,
9. R is terminating.

Then (.C(A, ,8), -+mix) is terminating.

Proof. First, since C(S, ,8) has the subject reduction property for -+13, it follows
easily that .C(A,/3) has the subject reduction property for -+p. Because moreover
we have by hypothesis that ..C(A,/3) has the subject reduction property for -+n.,
we can conclude that C(A, /3) has the subject reduction property for -+mi::c·
Second, C(A, /3) has preservation of sorts. Third, termination of (C(A, /3), -+13)
follows from termination of (.C(S, ,8),-+.13). Fourth, we have by Theorem 21 that
(..C(A, /3), -+n) is terminating.

Hence we can by Theorem 19 conclude that (..C(A,/3),-+mi:i:) is terminating.

189

Non-dependent A-calculi. We obtain a useful corollary of Proposition 22 by ap
plying it to the case that the pure type system of the algebraic type system is a
A-calculus with non-dependent types, for instance a A-calculus in the left plane
of the A-cube, and all sorts are declared to live in*·

Corollary 23. Let A = S +EA n be an algebraic type system such that:

1. S is A -+, A2 or Aw,
2. codom(EA) = {*},
9. n is terminating.

Then (.C(A, (3), -+mix) is terminating.

Proof. Let S be A-+, A2 or ,\w. It can be shown that I' l-13 lB: A implies I' 1-.a
rO : A. Then, since there are no rewrite steps in the types, and we have s : * for
every sorts, we can show by induction on the context that I' 1-13 C[lB] : A implies
I' l-13 C[rB] : A. This yields that .C(A, (3) has the subject reduction property for
-+n. termination of (.C(A, (3), -+13) follows from termination of (.C(S, (3), -+13).
We can conclude by Proposition 22 that (.C(A, (3), -+mix) is terminating.

11. An inspection of the proof of Corollary 23 yields that we have the same
result for the combination of a A-calculus in the left plane of the cube with {311-
reduction, and a terminating term rewriting system. The ri-reduction relation,
denoted by -+1,, is defined as the smallest compatible closure of

,\x: A.Mx-+ M

with the side-condition that x has no free occurrence in M. If A = S +EA n,
then we denote by -+mi:i:,, the rewrite relation -+13 U -+71 U -+n. We have the
following result.

Corollary 24. Let A = s +EA n be an algebraic type system such that:

1. S is,\-+, A2 or Aw,
2. codom(EA) = {*},
3. n is terminating.

Then (.C(A,(311),-+mi:i:,,) is terminating.

For A -+ and A2, a similar result for the union of (3-reduction, ?]-expansion and
algebraic reduction can be obtained.

5.2 Non-collapsing Term Rewrite Rules

In this subsection we consider combinations of a pure type system and term
rewriting system without collapsing rules. Throughout this section, we assume
an algebraic type system A = S +EA n with n a non-collapsing term rewriting
system. Recall that a rewrite rule is said to be collapsing if it is of the form l -+ x

190

with x E V. We will suppose that for every sort s in a term rewriting system
there is a distinguished constant c8 of sort s. This is not a serious restriction.

We denote by 'R/ the term rewriting system 'R extended with a rewrite rule

f(x1, ... ,Xn) -+Cs

for every function symbol f : s1 x ... x Sn -+ s in 'R. Further, we denote by -+mix'
the rewrite relation -+13 u -+n' which is defined on the set of pseudo-terms of A
and on the set of pseudo-terms of S +EA 'R'.

Now the termination by stability method can be presented in a slightly more
simple way. For the proof, we need (.C(A, mix'), -+13) to be terminating. This
follows from termination of (.C(S, /3), -+13) by the termination by translation
method, provided that S has enough axioms and enough products, which can
be enforced in a rather crude way by requiring A to be regular, a property that
is defined as follows.

Definition 25. An algebraic type system A = S +EA R is said to be regular if
the following two conditions are satisfied:

l. Universes are connected, that is: for every u E U there exists u' E U such
that either (u,u') ETA or (u',u) ETA.

2. Universes which contain an algebraic sort have products, that is: for all
s1, s2 E codom(EA) there exists s3 E codom(EA) such that (s1, s2, s3) E TR.

Regularity is closely related to the notion of fullness for pure type systems. We
have the following result.

Proposition 26. Let A = S +EA 'R be an algebraic type system such that:

1. S is regular,
2. (.C(S,(3),-+p) is terminating,
3. 'R is non-collapsing,
4. 'R is terminating.

Then (.C(A, mix), -+mix) is terminating.

Proof. Let A = S+ EA 'R be an algebraic type system and assume that 'R is a non
collapsing term rewriting system. We can show that the rewrite relation -+mix'
is confluent on the set of pseudo-terms of A, by projecting a rewrite sequence to
one where the algebraic part is replaced by constants c8 • As a consequence, we
obtain that .C(A, mix') has the subject reduction property for -+mfa:, and that
.C(A, mix') has preservation of sorts.

Since 'R is terminating and non-collapsing, we have by Theorem 20 that the
rewrite relation -+n is terminating on the set of pseudo-terms of A.

Using regularity, we can show using similar techniques to the one presented in
[8], that termination of (.C(S, (3), -+p) implies termination of (.C(A, mix'), -+p).

It then follows by Theorem 19 that (.C(A, mix'), -+mix) is terminating. Hence
also the subsystem (.C(A, mix), -+mix) is terminating.

191

Ground Rewriting. Proposition 26 can be applied to the case where we consider
the ground rewriting relation (the rewrite relation restricted to terms without
variables) of an arbitrary terminating rewriting system, since the ground rewrit
ing relation can be considered as generated by the infinitely many ground in
stances of the rewrite rules. A ground instance of a rewrite rule is clearly a
non-collapsing rewrite rule. If A = S +EA n is an algebraic type system, then
we denote by -+n9 the ground rewrite relation of R, and by -+mix the rewrite
relation -+ /3 U -+n9 • We have the following corollary of Propositio~ 26.

Corollary 27. Let A = S +EAR be an algebraic type system such that:

1. S is regular,
2. (C(S, /3), -+ /3) is terminating,
3. n is terminating on ground terms.

Then (.C(A, mix9), -+mix 9) is terminating.

'f/. Again, the results presented in this subsection can easily be adapted to the
case of an algebraic type system with /3ry-reduction.

5.3 Non-duplicating Term Rewrite Rules

If we consider an algebraic type system A = S +EA R such that n is non
duplicating, then termination by translation may be applied to obtain several
results. Indeed, we can define for every algebraic type system 'universal' alge
braic type system such that /3-strong normalisation of the latter imply mix
strong normalisation of the latter. Then, using termination of translation and
postponement techniques, one can prove, provided n is terminating and non
duplicating, that termination of -+13 in the 'universal' algebraic type system
implies termination of -+mix in A.

This illustrates that, despite its extreme simplicity, Proposition 14 can take
us quite some way in the study of termination for algebraic type systems.

6 Concluding Remarks

We have developed purely syntactic methods to prove termination of algebraic
type systems. Although we do not establish termination as a modular property
of algebraic type systems, our methods yield simple proofs of well-known re
sults as well as new results. Moreover they lead to a better understanding of
the interaction between a type system and a rewriting system. In addition, the
methods developed in this paper, especially termination by stability, may also
be adapted to yield similar results for confluence, extending the 'confluence by
stability' result in [16].

The most outstanding question left unanswered is termination of /3-reduction
for 'universal' algebraic type systems. A positive answer to that question would

192

be a definite step towards modular proofs of strong normalization for alge
braic type systems. It would also be interesting to see whether our methods
can be adapted to algebraic type systems with higher-order term rewriting a la
Jouannaud-Okada [19] or to typed A-calculi with pattern matching [20].

Finally, the technique of derivation-preserving translations reveals the im
possibility of distinguishing in the internal logic of the algebraic type system
between two closed algebraic terms of the same type. This is clearly a weakness
of algebraic type systems for dependent type theories. Some possible ways to fix
this are described in [6, 20] and [10].

Acknowledgements. The diagrams in this paper are designed using the package
Xy-pic of Kristoffer H. Rose. We thank the referees for their help in improving
the presentation of the paper.

References

1. F. Barbanera and M. Fernandez. Combining first and higher order rewrite systems
with type assignment systems. In M.Bezem and J.-F. Groote, editors, Proceed
ings of TLCA '93, volume 664 of Lecture Notes in Computer Science, pages 60-74.
Springer-Verlag, 1993.

2. F. Barbanera and M. Fernandez. Modularity of termination and confluence in
combinations of rewrite systems with Aw. In A. Lingas, R. Karlsson, and S. Karls
son, editors, Proceedings of ICALP'93, volume 700 of Lecture Notes in Computer
Science, pages 657-668. Springer-Verlag, 1993.

3. F. Barbanera and M. Fernandez. Intersection type assignment systems with higher
order algebraic rewriting. Theoretical Computer Science, 170(1-2):173-207, 15 De
cember 1996.

4. F. Barbanera, M. Fernandez, and H. Geuvers. Modularity of strong normalisation
and confluence in the algebraic >.-cube. In Proceedings of LICS'94, pages 406-415.
IEEE Computer Society Press, 1994.

5. H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, pages 117-309.
Oxford Science Publications, 1992. Volume 2.

6. G. Barthe and H. Geuvers. Congruence types. In H. Kleine Buening, editor,
Proceedings of CSL '95, volume 1092 of Lecture N ates in Computer Science, pages
36-51. Springer-Verlag, 1996.

7. G. Barthe and H. Geuvers. Modular properties of algebraic type systems. In
G. Dowek, J. Heering, K. Meinke, and B. Moller, editors, Proceedings of HOA '95,
volume 1074 of Lecture Notes in Computer Science, pages 37-56. Springer-Verlag,
1996.

8. G. Barthe, J. Ratcliff, and M.H. S~rensen. Weak Normalization implies Strong
Normalization in Generalized Non-Dependent Pure Type Systems. Draft, 1997.

9. G. Barthe and P.-A. Mellies. On the subject reduction property for algebraic type
systems. Proceedings of CSL'96. To appear as LNCS, 1996.

10. G. Barthe, M. Ruys, and H. Barendregt. A two-level approach towards lean proof
checking. In S. Berardi and M. Coppa, editors, Proceedings of TYPES'95, volume
1158 of Lecture Notes in Computer Science, pages 16-35. Springer-Verlag, 1996.

193

11. V. Breazu-Tannen. Combining algebra and higher-order types. In Proceedings of
LICS'88, pages 82-90. IEEE Computer Society Press, 1988.

12. V. Breazu-Tannen and J. Gallier. Polymorphic rewriting conserves algebraic strong
normalisation. Theoretical Computer Science, 83:3-28, 1990.

13. T. Coquand and G. Huet. The Calculus of Constructions. Information and Com
putation, 76(2/3):95---120, February /March 1988.

14. R. Di Cosmo. A brief history of rewriting with extensionality. In F. Kamared
dine, editor, International Summer School on Type Theory and Term Rewriting,
Glasgow, September 1996. Kluwer, 199x. To appear.

15. R. Di Cosmo and D. Kesner. Combining algebraic rewriting, extensional lambda
calculi, and fixpoints. Theoretical Computer Science, 169(2):201-220, 5 December
1996.

16. D. Dougherty. Adding algebraic rewriting to the untyped lambda calculus. Infor
mation and Computation, 101:251-267, 1992.

17. M. Fernandez. Modeles de calcul multiparadigmes fondes sur la reecriture. PhD
thesis, Universite Paris-Sud Orsay, 1993.

18. H. Geuvers and M.-J. Nederhof. A modular proof of strong normalisation for the
Calculus of Constructions. Journal of Functional Programming, 1:155-189, 1991.

19. J.-P. Jouannaud and M. Okada. Executable higher-order algebraic specification
languages. In Proceedings of LICS'91, pages 350-361. IEEE Computer Society
Press, 1991.

20. J.-P. Jouannaud and M. Okada. Abstract data type systems. Theoretical Computer
Science, 173(2):349-391, 1997.

21. J.W. Klop. Combinatory reduction systems. Number 127 in Mathematical Centre
Tracts. OWi, 1980.

22. J.W. Klop. Term-rewriting systems. In S. Abramsky, D. M. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, pages 1-116. Oxford
Science Publications, 1992. Volume 2.

23. K. Meinke and J.V. Tucker, editors. Many sorted logic and its applications. John
Wiley and Sons, 1993.

24. J. van de Pol. Termination of higher-order rewrite systems. PhD thesis, University
of Utrecht, 1996.

25. H. Zantema. Termination of term rewriting: Interpretation and type elimination.
Journal of Symbolic Computation, 17(1):23-50, January 1994.

