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Combinations of type theory and rewriting are of obvious interest for the study 
of higher-order programming and program transformation with algebraic data 
types specifications; somewhat more recently, they also found applications in 
proof-checking. A natural question in this field concerns the termination or 
strong normalisation of such systems and is as follows: given a terminating type 
system T and a terminating rewriting system R, is the combination of T and 
R terminating? It is not surprising that this question has already received con­
siderable attention, see for instance [1, 2, 4, 7, 11, 12, 15-17, 19, 24]. However, the 
situation is in our opinion not yet satisfactory, since most of the proofs of termi­
nation of a combination of a type theory and a rewriting system consist basically 
in redoing the proof of termination of the type theory. Ideally, one would like to 
have a modular proof of these modularity results, i.e. a proof that uses but does 
not re-prove the facts that the type theory and the term rewriting system are 
terminating. 

The question we embark on is hence to develop general methods that permit 
to derive termination of the combination of a type theory and a rewriting system 
from termination of those systems separately. We make the question precise in 
the framework of algebraic type systems [7] which combine pure type systems 
and term rewriting systems. The advantage of this setting is its generality; for 
instance the combination of the calculus of constructions with a term rewriting 
system, as defined e.g. in [4], is an algebraic type system. 

The first method we present is called termination by translation. An algebraic 
type system A is terminating if there exists a map into a terminating algebraic 
type system A' such that derivable judgements in A are mapped to derivable 
judgements in A' and rewrite steps in A are mapped to non-empty rewrite 
sequences in A'. This technique, which is well-known in type theory, is an elab­
oration of termination by translation in first-order term rewriting. Despite its 
extreme simplicity, it permits to obtain, in a very easy way, useful termination 
results for algebraic type systems. 

* A part of this work has been carried out while the second author was at INRIA 
Sophia Antipolis, France, on a grant of the HCM Cooperation Network EXPRESS. 
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The second method, which we call termination by stability, has not only use­
ful applications but is also interesting in itself. The method is inspired from 
[16] where Dougherty considers untyped .A-calculus with .B-reduction in combi­
nation with a first-order, single-sorted, term rewriting system 'R. In particular, 
Dougherty shows that the union of -+ f3 and -+n is terminating on a suitably 
defined subset Stable('R) of the set of ,B-strongly normalising terms. Elements 
of Stable('R) are called stable terms, after which the method is named. Our in­
terest in Daugherty's method lies in the fact that termination of the combined 
reduction relation is reduced to termination of its components, i.e . .B-reduction 
and 'R-reduction. In Section 3, we extend Dougherty's method to algebraic type 
systems. 

In Section 5, we apply the two methods to find easy proofs of well-known 
results. For example, we give easy proofs of termination for the combination of 
higher-order >.-calculus .Aw and a terminating term rewriting system. Further­
more, we derive from the two methods a number of new results: 

- The combination of higher-order >.-calculus, >.w, with .811-reduction and a 
terminating term rewriting system is terminating. 

- Under certain mild conditions, the combination of a terminating pure type 
system and a terminating non-collapsing term rewriting system is terminat­
ing. As a corollary, we obtain that the combination of a pure type system 
and a ground rewriting system is terminating, under some mild conditions. 

Our methods are flexible and robust. Firstly, they apply to several notions of re­
ductions such as ,B-reduction, 11-reduction, and, we claim, 77-expansion. Secondly, 
they carry over to variations of algebraic type systems such as type-assignment 
systems, domain-free pure type systems or pure type systems with .IT-conversion. 
Thirdly, the method scales up when other type constructions, such as the ones 
for products and sums, are considered. 

Moreover, our methods are simple. They can be carried out in a weak system 
of arithmetic. This is the case since we reduce termination of an algebraic type 
system to that of a pure type system and do not prove the latter, which of course 
may require a strong system of arithmetic. 

Finally, our methods are informative. In particular, they shed some light on 
the logical status of algebraic type systems. For example, a simple application of 
derivation-preserving translations shows that the internal logic of an algebraic 
type system cannot distinguish between two distinct closed algebraic terms. 

Related work. The problem of termination for combinations of >.-calculus and 
term rewriting systems has already received considerable attention in higher­
order rewriting but here we limit ourselves to termination results for algebraic 
type systems. 

One of the first termination results for algebraic type systems is due to 
Breazu-Tannen and Gallier. In [12], they prove that the combination of the 
polymorphic >.-calculus -system F- with the curried version of a terminating 
first-order term rewriting system is terminating. The proof makes use of the 
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'candidats de reductibilite' and, for an essential part, consists in redoing the 
proof of termination for system F. 

The combination of polymorphic ,\-calculus with higher-order term rewrit­
ing is studied by Jouannaud and Okada in [19]. Using a computability argu­
ment, they show that provided some conditions on the form of the rewrite rules 
are satisfied, the combination of the polymorphic >.-calculus and a terminating 
higher-order rewriting system is again terminating. This result is generalized by 
Barbanera, Fernandez and Geuvers in a series of papers first to intersection type 
systems, then to higher-order ,\-calculus and finally to the so-called algebraic >.­
cube p,3,4]. Termination of the algebraic >.-cube is proved along the lines of [18] 
by using a computability predicate and two reduction preserving translations. 

In [7J, Barthe and Geuvers introduce the notion of algebraic type system 
and provide a general criterion for termination of an algebraic type system. The 
criterion is proved by a model construction based on saturated sets -so it re-does 
the termination proof for the corresponding pure type system. Unfortunately, 
the criterion requires the algebraic type system to have the subject reduction 
property, a severe restriction in the current state of knowledge. The problem 
is partially overcome in [9] where Barthe and Mellies use a labelled syntax to 
prove termination and subject reduction of algebraic type systems. However, 
the approach is complicated and requires to redo the proof of termination of the 
underlying pure type system. 

Using a completely different approach, van de Pol shows in [24] termination of 
the combination of simply typed >.-calculus and the curried version of a terminat­
ing first-order term rewriting system. This result is obtained in the framework of 
higher-order rewriting systems, so in particular simply typed ,\-calculus is coded 
as a higher-order rewriting system. The proof consists of extending a termina­
tion model of the term rewriting system to a termination model for simply typed 
,\-calculus. 

Finally, several authors have recently considered algebraic type systems with 
17-expansion [14, 15}. In a nutshell, two techniques are used to prove termina­
tion: reducibility candidates and simulation of 17-expansion. The first one is not 
modular, since it involves doing the termination proof again. The second one 
consists in defining a translation from legal terms to legal terms so that every 
infinite reduction sequence with 17-expansions is translated into an infinite reduc­
tion sequence without 17-expansions. This approach is in a sense orthogonal to 
ours as we translate an infinite reduction with algebraic reduction steps into an 
infinite reduction sequence without algebraic reduction steps. It turns out that 
our approach yields shorter and conceptually simpler proofs. 

Organisation of the paper. The paper is organised as follows: in Section 2, we 
introduce the framework of algebraic type systems. Section 3 presents the tech­
niques of termination by translation and termination by stability. In Section 4 we 
consider algebraic rewriting of algebraic pure type systems. Section 5 contains 
several applications of the two techniques, yielding new proofs of old results as 
well as new results. We conclude in Section 6. 
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2 Algebraic Type Systems 

In this section we present the definition of an algebraic type system as the 
combination of a pure type system and a typed term rewriting system. First we 
recall the definition of a pure type system and give a suitable definition of a 
typed term rewriting system. 

2.1 Pure Type Systems 

Pure type systems were introduced by Berardi and by Terlouw as a general 
framework to define and study typed >.-calculi. The definition we present is a 
slight modification of the one given in [5). 

Definition 1. A pure type system S is specified by a triple (U, TA, T R) with 

1. U a set of universes, 
2. TA ~ U x U a set of typing axioms, 
3. TR ~ U x U x U is a set of typing rules. 

We assume a set V of variables, written as x, y, z, .... The set of pseudo-terms 
of a pure type system S = (U, TA, T R) is defined by 

T ::= v I u I IIV: T.T I >.V: T.T I TT 

An environment is an ordered list of pairs of the form x : A with x E V and 
A E T. A judgement is a triple of the form I' f- M : A with I' an environment 
and M, A pseudo-terms. Intuitively, a judgement assigns in a given environment 
a type to a term. The meaningful judgements of a pure type system are defined 
by means of a set of rules. One of these rules, the conversion rule, makes use of a 
rewrite relation on the set of pseudo-terms of the pure type system. For the sake 
of uniformity, we present the rules parametrised over the rewrite relation used 
in the conversion rule. A judgement then takes the form I' f-c M : A, where C 
is the rewrite relation used in the conversion rule. 

Definition 2. Let -c be a rewrite relation on the set of pseudo-terms of a pure 
type system S = (U,TA,TR). 

1. A judgement I' f-c M : A is said to be derivable if it can be derived using 
the rules given in Table 1. 

2. A pseudo-term M is said to be C-legal if for some I' and some A the judge­
ment I' f-c M : A is derivable. The set of C-legal terms of the pure type 
system Sis denoted by C(S,C). 

If we simply state I' f-c M : A, we mean that I' f-c M : A is a derivable 
judgement. 

The most important rewrite relation on the set of pseudo-terms of a pure 
type system is the ,8-reduction relation, denoted by -13, which is defined as the 
compatible closure of 

(>.x : A.M)N - M[x := N) 
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axiom 
1-c c: s 

if {c,s) ETA 

start 
I' 1-c A: s 

if x ~ r, x e v 
I',x: A 1-c x: A 

weakening 
r 1-c M: A I' 1-c B: s 

if x ~ r, x e v 
I', x : B 1-c M : A 

product 
I' f-c A: s1 I', x : A 1-c B : s2 

if (s1, s2, ss) ET R 
I' 1-c II x : A.B : ss 

application 
I' 1-c M : II x : A.B I' 1-c N: A 

I' f-c M N : B[x := M] 

abstraction 
I',x:Af-cM:B I' 1-c (IIx: A.B): s 

I' 1-c ,\x: A.M: IIx: A.B 

conversion 
I' 1-c u: A I' f-c B: s ifALcB 

I' 1-c u: B 

Table 1. PURE TYPE SYSTEMS 

Often one considers the set of ,B-legal terms of a pure type system, equipped 
with the ,8-reduction relation, that is, the rewriting system (.C(S, /3), -+f3 ). 

An important example of pure type system is the calculus of constructions, 
defined by Coquand and Huet in [13]. Barendregt presents in [5] a fine-grain 
analysis of the calculus of constructions in terms of the .A-cube, a cube consisting 
of eight pure type systems. They all have { *• D} as the set of universes, and 
*: D as only typing axiom. Their sets of typing rules are as follows {here (s1 , s2 ) 

abbreviates (si. s2, s2)): 

).. -+: {*,*) 
)..2 :(*,*),{D,*) 
A!:!l : {*,*),(D,D) 
AW :(*,*),(D,*),{D,D) 

)..P : (*, *), (*, D) 
)..P2 : (*, *), (D, *), (*, D) 
)..p!:!l: (*, *), (D, D), (*, D) 
)..Pw: (*, *), (D, *), {D, D), (*, D) 

Most of the systems of the A-cube are of independent interest and appear in 
the literature, often in a variant form, see [5] for references. The calculus of 
constructions, .APw, is the most complex system of the cube. 

Morphisms of Pure Type Systems. Morphisms of pure type systems are maps 
between the sets of universes which preserve typing axioms and typing rules. 
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Definition 3. Let A = (U, TA, T R) and A' = (U', TA', T R') be pure type 
systems. A pure type system morphism between A and A' is a mapping 

<P: U-+ U' 

such that: 

l. if (u1,u2) ETA, then (</>(u1),</J(u2)) ETA', 
2. if (u1,u2,u3) E TR, then (</>(u1),</>(u2),Q>(u3)) E TR'. 

For a pure type morphism 4> as in the previous definition, we write </> : A -+ A' 
by a slight abuse of notation, also to denote the homomorphic extension of <P 
mapping pseudo-terms of S to pseudo-terms of S'. A morphism as defined in 
this way is only concerned with the signature of a pure type system. If one is 
interested in a morphism that maps C-legal terms in S to C'-legal terms in S', 
then we should require in addition that M !c N in S implies </>(M) !c• <P(N) 
in S'. Then it follows that C-legal terms are mapped to C'-legal terms by a 
straightforward induction on derivations. 

2.2 Typed Term Rewriting Systems 

In this subsection, we define typed term rewriting systems in such a way that 
they can be conveniently combined with pure type systems. We use the following 
notion of sorted signature. 

Definition 4. 

1. Let S be a set. An algebraic type over S is an expression of the form 

s1 X ... X Sn-+ S 

with n 2::: 0 and s1 , ... , Sn, s E S. We writes instead of-+ s. 
2. A sorted signature is a pair (S, F) consisting of a set of sorts, written as 

s, s', .. . , and a set of function symbols, written as f, g, .. . , such that every 
function symbol f E F has a unique algebraic type over S. 

Note that we simply assume every function symbol to have an algebraic type; we 
don't consider explicitly a function assigning algebraic types to function symbols. 
If a function symbol f has an algebraic type s1 x ... x Sn-+ s, then n is said to 
be the arity of f. The arity of a symbol f is denoted by ar(f). 

In order to define terms, we assume a set V of variables, written as x, y, z, .... 
We define an environment as an ordered list of type declarations of the form x: s, 
with x E V and s a sort. We say that a variable x is declared in I' if x : s E I' 
for some s and we assume that variables are declared at most once. 

Definition 5. An expression Mis a typed algebraic term (also simply called a 
term) over a sorted signature (S, F) if I' I- M : sis derivable for some environ­
ment I' and sort s, using the rules given in Table 2. 
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I',x:sl-x:s 
ifs ES 

r 1- M1 : s1 r 1- M.,. : s.,. r / r I- f(M M ) i : 81 x ... x Sn -+ s 
1, ... , n : S 

Table 2. TYPED ALGEBRAIC TERMS OVER (S, F) 

Rewrite rules of a typed term rewriting system are defined as follows. Here 
var(M) denotes the set of variables occurring in M. 

Definition 6. Let (S, F) be a sorted signature. A rewrite rule over (S, F) is a 
pair of terms over (S,F), written as l-+ r, such that 

1. for every environment I', we have I' 1- l: A implies I' I- r: A, 
2. l ~ v, 
3. var(r) ~ var(l). 

Now we have collected all ingredients for the definition of a typed term rewriting 
system. 

Definition 7. A typed term rewriting system n is specified by a pair ((S, F), R) 
with 

1. (S, F) a sorted signature, 
2. Ra set of rewrite rules over (S, F). 

The rewrite relation -+R of a typed term rewriting system 1l = ((S, F), R) is 
defined as follows. We have M -+R N if M is a typed algebraic term and there 
is a context C[•], a substitution e and a rewrite rule l -+ r E R such that 
M = C[ZB] and N = C[re]. Here a context is a term with a unique occurrence of 
a special constant•, and C[M] denotes the result ofreplacing • in C[•] by M. 
Substitutions are supposed to preserve the typing. 

We will assume the reader to be familiar with well-known properties of (un­
typed) term rewriting system, which can be found in [22, 23). In the following, 
we will often simply say 'term rewriting system' instead of 'typed term rewriting 
system'. 

Morphisms of Sorted Signatures. In the sequel, we shall use mappings that pre­
serve the structure of sorted signatures. These mappings are defined as follows. 

Definition 8. Let (S, F) and (S', F') be sorted signatures. A sorted signature 
morphism between (S, F) and (S', F') is a pair of mappings 1/J = ('1/J1, 'ljJ2) with 

1/J1 : S-+ S' 
1/J2: F-+ F' 

such that for every f: s1 x ... x Sn. -+sin (S, F), we have 1/J2(/) : 1/J1 (s1) x ... x 
1P1(sn.)-+ 'l/J1(s) in (S',R'). 
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2.3 Algebraic Type Systems 

The definition we present in this subsection is equivalent to the one given in [9] 
and inspired from (4, 7]. An algebraic type system is a combination of a pure type 
system and a typed term rewriting system. In order to define the combination, 
we need to specify how sorts are embedded into universes. This is the purpose 
of the embedding axioms EA below. 

Definition 9. An algebraic type system is specified by a triple S +EA 'R, con­
sisting of 

l. a pure type system S = (U, TA, T R), 
2. a typed term rewriting system 'R, = ((S, F), R), 
3. a set of embedding axioms EA ~ S x U such that for every s E S there 

exists au EU such that (s,u) E EA. 

In the sequel, we let codom(EA) denote the set of u E U such that there exists 
an s E S with (s, u) E EA. Usually, e.g. in the algebraic >.-cube, codom(EA) 
is a singleton, but it is not necessarily desirable that all sorts live in the same 
universe. For instance, one could have a typed term rewriting system with sorts 
nat for natural numbers and ord for ordinals, and relate them to universes set 
and class in a pure type system by declaring nat : set and ord : class. 

In the remainder of this subsection consider an algebraic type system A = 
S +EA n with S = (U, TA,TR) and 'R, = ((S, F),R). 

Definition 10. 

1. The set T of pseudo-terms of A is defined as follows: 

T ::= v I u I s I IIV : T.T I >. v : T.T I TT I f (T, ... , T) 

where f E F and the arity of f is respected. 
2. The rules used to form derivable judgements of A are parametrised over a 

rewrite relation ~c on the set of pseudo-terms of A. They are given in Table 
3. 

3. A pseudo-term Mis said to be a C-legal term if there exist an environment 
I' and a pseudo-term A such that I' f-c M : A is a derivable judgement. The 
set of C-legal terms is denoted by .C(A, C). 

Traditionally, the rewrite relation considered for algebraic type systems is 
the union of ,B-reduction with algebraic reduction. It is defined as follows. 
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Definition 11. 

1. The /3-rewrite relation -+f3 is defined as the compatible closure of 

(..\x : A.M)N-+ M[x := N] 

2. The algebraic rewrite relation -+n is defined by M -+n N if there exists a 
context C[•], a substitution() and a rewrite rule l -+ r such that M = C[ZB] 
and N = C[rB]. 

axiom 

start 

weakening 

product 

application 

1-c s: s 

I' 1-c A: s 

I', x : A 1-c x : A 

I' 1-c t : A I' 1-c B : s 
I', x : B 1-c t : A 

I' 1-c A : s1 I', x : A 1-c B : s2 

r 1-c II x : A.B : S3 

I' f-c t : II x : A.B I' 1-c u : A 
I' 1-c t u : B[u/x] 

abstraction I', x: A f-c t: B I' 1-c (IIx: A.B) : s 
r f-c AX: A.t: Ilx: A.B 

function 

conversion 

I' 1-c M1 : 0'1 I' 1-c Mn. : O'n 

I' 1-c J{M1, ... , Mn) : r 

I' 1-c u : A I' 1-c B : s 
r 1-c u: B 

if (s, s') ET AU EA 

if x ~I', x E V 

if x ~I', x E V 

if I : a1 x . . . x O',. --... r 

if Ak B 

Table 3. ALGEBRAIC PURE TYPE SYSTEMS 

3. The rewrite relation -+mi: is defined as -+mi:c = -+13 U -+n. 

In the sequel, we will make use of the following well-known definition. 
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Definition 12. Let -+c and -+v be rewrite relations on the set of pseudo-terms 
of A. Then .C(A, C) is said to have the subject reduction property for -+v is for 
every ME .C(A,C) we have that I' 1-c M: A and M -+v N implies I' 1-c N: A. 

Morphisms of Algebraic Type Systems. We define a morphism between algebraic 
type systems as a pair consisting of a morphism of pure type systems and a 
morphism of signatures. 

Definition 13. Let A = S +EA R and A' = S' +EA' R' be algebraic type 
systems. An algebraic type system morphism between .A. and A' is a pair of 
mappings </> + 'lj; such that 

1. </> : S -+ S' is a pure type systems morphism, 
2. 'l/J = ( '1/J1, 1/J2) : (S, F) -+ (S', F') is a sorted signature morphism, 
3. if (s, u) E EA, then ('1/;1 (s), </>(u)) E EA'. 

Every morphism </> + 'lj; of algebraic type systems from A to A' can be extended 
homomorphically into a map from the set of A-pseudo-terms into the set of 
A'-pseudo-terms. By abuse of notation, we denote this map by</>+ 'lj;. 

3 Techniques 

In this section we present two techniques that can be used to derive termination 
of an algebraic type system .A. = s +EA R from termination of s and n. First 
we briefly comment on which problems occur. 

A first problem is caused by the fact that an algebraic type system might have 
more terms than its underlying pure type system because of the conversion rule. 
So if A= S +EAR, then .C(.A., mix) is not necessarily contained in .C(S, (3). As a 
consequence, we cannot immediately conclude termination of -+ f3 on .C( A, mix) 
from termination of -+ /3 on .C( S, /3). 

Second, a well-known result originally due to Klop [21) (see also [11)) states 
that the rewrite relation -+mix is not necessarily confluent on the set of pseudo­
terms of an algebraic type system. As a consequence, the traditional proof of 
subject reduction of .C(A, mix) for -+f3 breaks down [4, 9]. 

A third problem is how to infer termination of -+n on some set of terms of 
an algebraic type system from termination of R. This is discussed in Section 4. 

3.1 Termination by Translation 

A well-known technique to show termination of a rewriting system (A1, -+i) is 
to map it into a terminating rewriting system (Az, -+2) such that one step in 
the former corresponds to at least one step in the latter. In this subsection, we 
extend this technique to the case of algebraic type systems. Then the mapping 
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should not only preserve the rewrite relation but should also map a derivable 
judgement to a derivable judgement. We have the following result; its proof is 
very easy and is omitted. 

Proposition 14. Let A = S +EA n. and A' = S' +EA' 'R.' be algebraic type 
systems. Let -+e, -+v be rewrite relations on the set of pseudo-terms of A and 
let -+e', -+v' be rewrite relations on the set of pseudo-terms of A'. Let </> + 'I/; : 
A -+ A' be a morphism of algebraic type systems. 

1. Suppose that for all pseudo-terms M and N in A, we have 
{a) M le N implies (if>+ 'lf;)(M) !c, (</> + t/;)(N), 
{b} M -+v N implies(</>+ 'lf;)(M) -+!,, (</> + 7/;)(N). 
Then termination of (.C(A', C'), -+v') implies termination of (.C(A, C), -+v ). 

2. If in addition we have that for all pseudo-terms M and N in A, M -+ e N 
implies (</>+'lf;)(M) -+£, (</>+7/J)(N), for a rewrite relation -+e on the set of 
pseudo-terms of A and a rewrite relation -+e' on the set of pseudo-terms of 
A', then we have that termination of 1J' relative to &' on .C(A', C') implies 
termination of 1J relative to£ on .C(A,C) 

We stress that one of the purposes of the present paper is not to show that 
termination by translation is a technique to infer termination, because this is of 
course well-known, but to show that Proposition 14 has useful applications. 

3.2 Termination by Stability 

In this subsection we present a second technique to infer termination of an 
algebraic type system: termination by stability. The principle of this technique 
is due to Dougherty. He shows in (16] that termination of -+13 U -+n follows from 
termination of -+ /3 and termination of -+n, provided that we restrict attention 
to a set of stable terms. Stability is in fact an abstract form of typing, and 
Daugherty's result is obtained for untyped >.-calculus. In this subsection we adapt 
Dougherty's result to the case of algebraic type systems. Instead of making use 
of a generalisation of the notion of stability, adapted to the case of algebraic 
type systems, we will make use of a similar notion which we call preservation of 
sorts. It is defined as follows. 

Definition 15. Let A = S +EA n. be an algebraic type system and let -+c be 
a rewrite relation on the set of pseudo-terms of A. 

1. Two pseudo-terms M and N are said to be C-legally convertible if there is 
an environment I' and a sequence of terms P1, ... , Pn such that I' 1-c Pi : s 
for every i E {1, ... , n} and 

M le P1 !c ... le Pn le N. 

2 . .C(A, C) has preservation of sorts if no two sorts are C-legally convertible and 
no sort is C-legally convertible with a pseudo-term of the form IIx: A.B. 
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Preservation of sorts plays a r6le similar to arity-checking in (16]. In (4], it is 
proved that an algebraic type system obtained by a A-calculus from the >.-cube 
with a term rewriting system enjoys preservation of sorts. 

Preservation of sorts is used to show that algebraic reduction preserves {3-
normal forms. 

Lemma 16. Let A = s +EA n be an algebraic type system that has preservation 
of sorts. Let M be a {3-normal form with M -n M'. Then M' is a {3-normal 
form as well. 

Proof. First, let l - r be a rewrite rule of n and suppose that l(J is in {3-normal 
form. We show that r8 is in {3-normal form as well. To start with, since r consists 
only of function symbols of n and variables, there are no {3-redexes in the r-part 
of rO. Further, there are no {3-redexes in the 0-part of rO, since all variables 
occurring in r occur also in l and lO is supposed to be in ,8-normal form. Finally, 
there are no ,8-redexes 'on the border between r and 0' in rB, since no sorts is 
,B-convertible to a term of the form II y : A.B, so neither l nor r has a subterm 
of the form xP. 

Then we can proceed by induction on C[•] to prove that C[UJ] is in {3-normal 
form implies that C[rB] is in {3-normal form. In the induction also preservation 
of types is used. 

In the proof of the main result of this section, Theorem 19, we make use of a 
lemma concerning reduction diagrams. In these diagrams, we make use of com­
plete developments of the set of all ,8-redexes in a term. The result of performing 
such a complete development in a term Mis defined inductively as follows. 

Definition 17. The term M* is inductively defined as follows. 

1. (aM1 ... Mn)* = aMi ... M~ with a E VU U US and n ~ 0, 
2. (>.x : P.M)* = >.x : P* .M*, 
3. (!Ix: P.Q)* =!Ix: P*.Q*, 
4. ((>.x: Q.M)NPi ... Pn)* = M*[x := N*]Pt ... P,:: with n;:::: 0, 
5. f(M1, ... , Mn)* = f(Mi, ... , M~) with n;:::: 0. 

We will make use of the following diagrams. 

Lemma 18. 1. If M -fJ N, then M* -~ N*. In a diagram: 

M---*N 1 (3 1 
M*~N* 

(J* 

2. If M -n. N, then M -R. N*. In a diagram: 

M~N 

1 1 
M*~N* 

'R.* 
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If the step M -+n N takes place at position e, then M' = N'. 

Now we present the theorem which is the core of the termination by stability 
method. 

Theorem 19. Let A= s +EA n be an algebraic type system. Suppose that 

1. .C(A,C) has the subject reduction property for -+mix, 
2 . .C(A, C) has preservation of sorts 
3. (.C(A,C),-+p) is terminating, 
4. (.C(A, C), -+n) is terminating. 

Then (.C(A, C), -+mi:z:) is terminating. 

Proof. Let M E .C(A, C). We prove that M is terminating with respect to -+mix 
by induction on the maximal length of a ,8-rewrite sequence starting in M, 
denoted by maxredp(M). 

1. maxredp(M) = 0. Let u be a rewrite sequence starting in M. By Lemma 16 
u is of the form 

u : M = Mo -+n Mi -+n M2 -+n .... 

By hypothesis 4, u is finite. 
2. maxredp(M) > 0. We proceed by induction on M, only the two difficult cases 

are treated here. 
(a) M = (.>..x : A.P)QQ1 ... Qn with n 2:: 0. Let u : M = Mo -+mix 

Mi -+mix M2 -+mix ... be a rewrite sequence starting in M. Two cases 
are distinguished. 

i. Every term in u is of the form (.>..x: A'.P')Q'Qi ... Q~ with A-+;;.,,ix 
A',P -+;;.,,ix P',Q -+;;.,,ix Q',Qi -+;;.,,ix Q~. Then u is finite by the 
induction hypothesis on M. 

ii. There is a k such that Mk = (.>..x: A'.P')Q'Qi ... Q:.n and Mk+l = 
P'[x := Q']Qi ... Q:.n. Now Mk+i is a mix-reduct of M' = P[x := 
Q]Qi ... Qm. By the induction hypothesis on maxredp(M), M' is 
terminating and hence O" is finite. 

(b) M = f(M1, ···,Mn)· Let fJ: M =Mo -+mix M1 -+mix M2 -+mix ... be 
a rewrite sequence starting in M. Using Lemma 18 we build a rewrite 
sequence q* starting in M* as follows: 

u : Mo ---:-+ Mi ---:-+ M2 ---:-+ · · · 1 mix 1 mix 1 mix 

u* Mo ~Mi~ M2 ----:-* · · · 
mix mix m'iz 

Since clearly maxredp(M*) < maxredp(M) if Mis not in ,8-normal form, 
the induction hypothesis on maxredp(M) yields that u* must be finite. 
Therefore, there is a k such that for every l ;:::: k every redex contracted 
in Mi -+mix Mi+i is in a subterm Q1 of a subterm (>.x : B.Qo)Q1 of Mi. 
The subterm (.>..x : A.Qo)Q1 is a subterm of a reduct of a subterm of M 
and hence by the induction hypothesis terminating. 
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Note that we need preservation of sorts in order to be able to apply Lemma 16. 
Further, we use the properties that a subterm of a term in .C(A,C} is in .C(A,C) 
and that a -miz-reduct of a term in .C(A, C) is in .C(A, C). Indeed, subject 
reduction of .C(A, C} for -mi:z: is crucial. 

4 Algebraic Reduction 

In order to show termination of (..C(A,mix),-mix) for some algebraic type sys­
tem A = s +EA n, we need to show in particular that -n is terminating on 
.C(A,mix). As already mentioned in the introduction, this is not guaranteed by 
termination of 'R, only. In this section we present two results concerning termi­
nation of -+n on some set of terms in an algebraic type system. 

If a typed term rewriting system n is terminating, then it is not necessarily 
the case that its untyped version E(n), which is obtained by erasing all infor­
mation concerning the sorts, is terminating. A counterexample is for instance 
an adaptation of the counterexample by Toyama, showing that termination is 
not a modular property of term rewriting system, see [25]. Now the difficulties 
can simply be avoided by considering term rewriting systems that are persis­
tently terminating. A typed term rewriting system n is said to be persistently 
terminating is its untyped version E('R) is also terminating. 

It is quite easy to see that if a term rewriting system n is persistently termi­
nating, meaning that also E('R) is terminating, then -+n is terminating on the 
set of pseudo-terms of an algebraic type system of the form A = S +EA n, as 
follows. We assume that the single sorted term rewriting system E('R,) is termi­
nating. Now we extend the signature of E('R) with fresh symbols 6 of arity O, 
and II, .6_, Appl of arity 2. Note that this extension £(1?,)' is still terminating. 
All pseudo-terms of an algebraic type system A = S +EA 'R can be mapped to 
terms of the only sort of E('R}, says, by means of the following mapping: 

lal = 6 for a E VU U U S 
IM NI= App(IMl,INJ) 

l,\x: A.Ml = .6.(IAI, IMJ) 
jIIx: A.BI= II(IAI, IBJ) 

lf(t1, ... , tn)I = J(lt1I, ... , ltnl) if f E F and ar(J) = n 

Since this mapping preserves the one-step' rewrite relation, it follows that -n 
is terminating on the set of pseudo-terms. 

Now the question is which terminating term rewriting systems are persis­
tently terminating. An answer to this question is given by Zantema, who shows 
in [25] that termination is a persistent property both for non-collapsing and for 
non-duplicating term rewriting systems. Using the observation above, we have 
the following corollary of Zantema's result. It will be used in Section 5 to show 
that under certain conditions the combination of a terminating pure type system 
and a terminating and non-collapsing term rewriting system is terminating. 

Theorem 20. Let A = S +EA 'R be an algebraic type system such that: 
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1. 'R is terminating, 
2. 'R is either non-collapsing or non-duplicating. 

Then -+n is terminating on the set of pseudo-terms of A. 

Another way to obtain termination of -+n on some set of terms of an algebraic 
type system A = S +EA 'R is by instead of imposing restrictions on 'R imposing 
restrictions on A. Using the techniques sketched above, the following result can 
be obtained; for lack of space the proof is omitted. 

Theorem 21. Let A = S +EA 'R be an algebraic type system such that 

1 . .C(A, C) has preservation of sorts, 
2 . .C(A, C) has the subject reduction property for -+n, 
9. 'R is terminating. 

Then (.C(A,C), -+n) is terminating. 

This result will be used in Section 5 in order to show that the combination of a 
terminating pure type system without dependent types and a terminating term 
rewriting system is terminating. 

5 Applications 

In this section we apply the methods presented in Section 3 to several situations 
of interest. 

5.1 Non-dependent Algebraic Type Systems 

In this subsection we consider a restricted class of algebraic type systems where 
only ,8-reduction, not mix-reduction, is used in the conversion rule. So the set 
of legal terms we consider is of the form .C(A, /3). If we have that the set of legal 
terms .C(A, ,8) has the subject reduction property for -+n., then the termina­
tion by stability method can be presented in a somewhat simpler form. This is 
expressed in the following proposition. 

Proposition 22. Let A = S +EA 'R be an algebraic type system and suppose 
that: 

1 . .C(A,/3) has the subject reduction property for -+n, 
2. ( .C( S, ,8), -+ p) is terminating, 
9. R is terminating. 

Then (.C(A, ,8), -+mix) is terminating. 

Proof. First, since C(S, ,8) has the subject reduction property for -+13, it follows 
easily that .C(A,/3) has the subject reduction property for -+p. Because moreover 
we have by hypothesis that ..C(A,/3) has the subject reduction property for -+n., 
we can conclude that C(A, /3) has the subject reduction property for -+mi::c· 
Second, C(A, /3) has preservation of sorts. Third, termination of (C(A, /3), -+13 ) 
follows from termination of (.C(S, ,8),-+.13). Fourth, we have by Theorem 21 that 
(..C(A, /3), -+n) is terminating. 

Hence we can by Theorem 19 conclude that (..C(A,/3),-+mi:i:) is terminating. 
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Non-dependent A-calculi. We obtain a useful corollary of Proposition 22 by ap­
plying it to the case that the pure type system of the algebraic type system is a 
A-calculus with non-dependent types, for instance a A-calculus in the left plane 
of the A-cube, and all sorts are declared to live in*· 

Corollary 23. Let A = S +EA n be an algebraic type system such that: 

1. S is A -+, A2 or Aw, 
2. codom(EA) = {*}, 
9. n is terminating. 

Then (.C(A, (3), -+mix) is terminating. 

Proof. Let S be A-+, A2 or ,\w. It can be shown that I' l-13 lB: A implies I' 1-.a 
rO : A. Then, since there are no rewrite steps in the types, and we have s : * for 
every sorts, we can show by induction on the context that I' 1-13 C[lB] : A implies 
I' l-13 C[rB] : A. This yields that .C(A, (3) has the subject reduction property for 
-+n. termination of (.C(A, (3), -+13) follows from termination of (.C(S, (3), -+13 ). 
We can conclude by Proposition 22 that (.C(A, (3), -+mix) is terminating. 

11. An inspection of the proof of Corollary 23 yields that we have the same 
result for the combination of a A-calculus in the left plane of the cube with {311-
reduction, and a terminating term rewriting system. The ri-reduction relation, 
denoted by -+1,, is defined as the smallest compatible closure of 

,\x: A.Mx-+ M 

with the side-condition that x has no free occurrence in M. If A = S +EA n, 
then we denote by -+mi:i:,, the rewrite relation -+13 U -+71 U -+n. We have the 
following result. 

Corollary 24. Let A = s +EA n be an algebraic type system such that: 

1. S is,\-+, A2 or Aw, 
2. codom(EA) = {*}, 
3. n is terminating. 

Then (.C(A,(311),-+mi:i:,,) is terminating. 

For A -+ and A2, a similar result for the union of (3-reduction, ?]-expansion and 
algebraic reduction can be obtained. 

5.2 Non-collapsing Term Rewrite Rules 

In this subsection we consider combinations of a pure type system and term 
rewriting system without collapsing rules. Throughout this section, we assume 
an algebraic type system A = S +EA n with n a non-collapsing term rewriting 
system. Recall that a rewrite rule is said to be collapsing if it is of the form l -+ x 
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with x E V. We will suppose that for every sort s in a term rewriting system 
there is a distinguished constant c8 of sort s. This is not a serious restriction. 

We denote by 'R/ the term rewriting system 'R extended with a rewrite rule 

f(x1, ... ,Xn) -+Cs 

for every function symbol f : s1 x ... x Sn -+ s in 'R. Further, we denote by -+mix' 
the rewrite relation -+13 u -+n' which is defined on the set of pseudo-terms of A 
and on the set of pseudo-terms of S +EA 'R'. 

Now the termination by stability method can be presented in a slightly more 
simple way. For the proof, we need (.C(A, mix'), -+13) to be terminating. This 
follows from termination of (.C(S, /3), -+13) by the termination by translation 
method, provided that S has enough axioms and enough products, which can 
be enforced in a rather crude way by requiring A to be regular, a property that 
is defined as follows. 

Definition 25. An algebraic type system A = S +EA R is said to be regular if 
the following two conditions are satisfied: 

l. Universes are connected, that is: for every u E U there exists u' E U such 
that either (u,u') ETA or (u',u) ETA. 

2. Universes which contain an algebraic sort have products, that is: for all 
s1, s2 E codom(EA) there exists s3 E codom(EA) such that (s1, s2, s3) E TR. 

Regularity is closely related to the notion of fullness for pure type systems. We 
have the following result. 

Proposition 26. Let A = S +EA 'R be an algebraic type system such that: 

1. S is regular, 
2. (.C(S,(3),-+p) is terminating, 
3. 'R is non-collapsing, 
4. 'R is terminating. 

Then (.C(A, mix), -+mix) is terminating. 

Proof. Let A = S+ EA 'R be an algebraic type system and assume that 'R is a non­
collapsing term rewriting system. We can show that the rewrite relation -+mix' 
is confluent on the set of pseudo-terms of A, by projecting a rewrite sequence to 
one where the algebraic part is replaced by constants c8 • As a consequence, we 
obtain that .C(A, mix') has the subject reduction property for -+mfa:, and that 
.C(A, mix') has preservation of sorts. 

Since 'R is terminating and non-collapsing, we have by Theorem 20 that the 
rewrite relation -+n is terminating on the set of pseudo-terms of A. 

Using regularity, we can show using similar techniques to the one presented in 
[8], that termination of (.C(S, (3), -+p) implies termination of (.C(A, mix'), -+p). 

It then follows by Theorem 19 that (.C(A, mix'), -+mix) is terminating. Hence 
also the subsystem (.C(A, mix), -+mix) is terminating. 
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Ground Rewriting. Proposition 26 can be applied to the case where we consider 
the ground rewriting relation (the rewrite relation restricted to terms without 
variables) of an arbitrary terminating rewriting system, since the ground rewrit­
ing relation can be considered as generated by the infinitely many ground in­
stances of the rewrite rules. A ground instance of a rewrite rule is clearly a 
non-collapsing rewrite rule. If A = S +EA n is an algebraic type system, then 
we denote by -+n9 the ground rewrite relation of R, and by -+mix the rewrite 
relation -+ /3 U -+n9 • We have the following corollary of Propositio~ 26. 

Corollary 27. Let A = S +EAR be an algebraic type system such that: 

1. S is regular, 
2. ( C( S, /3), -+ /3) is terminating, 
3. n is terminating on ground terms. 

Then (.C(A, mix9 ), -+mix 9 ) is terminating. 

'f/. Again, the results presented in this subsection can easily be adapted to the 
case of an algebraic type system with /3ry-reduction. 

5.3 Non-duplicating Term Rewrite Rules 

If we consider an algebraic type system A = S +EA R such that n is non­
duplicating, then termination by translation may be applied to obtain several 
results. Indeed, we can define for every algebraic type system 'universal' alge­
braic type system such that /3-strong normalisation of the latter imply mix­
strong normalisation of the latter. Then, using termination of translation and 
postponement techniques, one can prove, provided n is terminating and non­
duplicating, that termination of -+13 in the 'universal' algebraic type system 
implies termination of -+mix in A. 

This illustrates that, despite its extreme simplicity, Proposition 14 can take 
us quite some way in the study of termination for algebraic type systems. 

6 Concluding Remarks 

We have developed purely syntactic methods to prove termination of algebraic 
type systems. Although we do not establish termination as a modular property 
of algebraic type systems, our methods yield simple proofs of well-known re­
sults as well as new results. Moreover they lead to a better understanding of 
the interaction between a type system and a rewriting system. In addition, the 
methods developed in this paper, especially termination by stability, may also 
be adapted to yield similar results for confluence, extending the 'confluence by 
stability' result in [16]. 

The most outstanding question left unanswered is termination of /3-reduction 
for 'universal' algebraic type systems. A positive answer to that question would 
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be a definite step towards modular proofs of strong normalization for alge­
braic type systems. It would also be interesting to see whether our methods 
can be adapted to algebraic type systems with higher-order term rewriting a la 
Jouannaud-Okada [19] or to typed A-calculi with pattern matching [20]. 

Finally, the technique of derivation-preserving translations reveals the im­
possibility of distinguishing in the internal logic of the algebraic type system 
between two closed algebraic terms of the same type. This is clearly a weakness 
of algebraic type systems for dependent type theories. Some possible ways to fix 
this are described in [6, 20] and [10]. 
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