
Explicit Substitutions for the A.L\-Cakulus * 

Gilles Barthe1 Fa.irouz Kamareddine2 Alejandro Rios2 

1 CWI, P.O. Box 94079, 1090 GB Amsterdam, the Netherlands, ema.il gilles@cwi.nl 
2 University of Glasgow, Department of Computing Science, 17 Lilybank Gardens, 

Glasgow Gl2 8QQ, Scotland, UK, email {f&irouz,rios}@dcs.gla..ac.uk 

Abstract. The >.A.-calculw is a >.-calculus with a control-like operator tahose 
reduction rules are closely related to normalisation procedures in classical logic. 
We introduce >.A.exp, an explicit substitution calculus for >.A., and 8tudy its 
properties. In particular, tae shotD that >..aexp preserves strong normalisation, 
tahich prooides us tDith the first e:r:ample -moreooer a oery natural one indeed­
of explicit subatitution calculus tDhich is not structure-preserving and has the 
preseroation of strong normali&ation property. One particular application of 
this result i& to prooe that the simply typed version of >..Aexp i& strongly nor­
mali&ing. 
In addition, we show that Plotkin'& call-by-name continuation-passing style 
tran&lation may be e:r:tended to >....1exp and that the e:i:tended trani1lation pre­
seroes typing. Thu seemJI to be the first study of CPS trarulations for calculi 
of e:i;plicit subi1titutions. 

1 Introduction 

Explicit substitutions were introduced by Abadi, Cardelli, Curien and Levy in [1] as 
a. bridge between >.-calculus and its implementation. The fundamental idea behind 
explicit substitutions is simple: in order to provide a full account of the computations 
involved in computing a A-term, one must describe a method to compute substitutions. 
Since the seminal work of Abadi, Cardelli, Curien and Levy, explicit substitutions have 
developed into a subject of their own, finding further applications e.g. in proof-search 
(29], unification [11], representation of incomplete proofs [23, 21] and proof theory 
(16]. 

In this paper, we generalise some of the results on explicit substitutions for >.­
calculi to classical A-calculi, i.e. >.-calculi with control-like structures. More precisely, 
we consider a specific calculus with a control-like operator, called >.Ll [28], and define 
its explicit substitution variant >.Llexp. Then we prove that the >.Llexp enjoys some 
important properties: 

- >.Llexp preserves strong normalisation, i.e. every strongly normalising Ail-term is 
strongly normalising with respect to the reduction relation of >...::lexp; 

- the simply typed A..::lexp calculus is strongly normalizing; 

* This work is supported by NWO and the British council under UK/Dutch joint scientific 
research project JRP240 and EPSRC grant GR/K 25014. 



210 

- .:\Llexp ma.y be translated to .Aexp -a.named explicit .A-calculus- using an extension 
of the continuation-passing style tra.nsla.tion; 

- the CPS translation maps simply typa.ble .:\Llexp-terms to simply typable >..exp­
terms a.nd generalises Kolmogorov's double-negation translation. 

The motivation for this work is three-fold: 

1. control-like operators play a crucial role in functional programming languages, 
such a.s LISP [30], SML [2], Scheme [12], etc. We will only be able to claim that 
explicit substitutions provide a bridge between higher-order rewriting systems 
and their implementation if the theory of explicit substitutions can be extended 
-among other- to control-like operators; 

2. control-like operators a.nd explicit substitutions both have applications in theorem 
proving and proof theory. (See e.g. [24] for applications of control-like operators 
in theorem proving a.nd [5, 14, 24] for applications of control-like operator in 
proof theory.) The former are used in classical theorem proving and the latter 
to represent incomplete proofs. By studying explicit substitutions with control 
operators, we lay the foundations for a classical theorem prover with the ability 
to handle incomplete proofs and for a classical proof theory based on explicit 
substitutions. 

3. control-like operators fundamentally differ from .:\-calculus in that they a.re not 
structure-preserving in the sense of [9]. Hence the results of [9] do not apply. Yet 
we will show that the decency method [7] ca.n be adapted to our setting. This 
constitutes the first study of explicit substitutions for non-structure-preserving 
calculi and suggests the possibility of extending the results of [9] to a large and 
useful class of combinatory rewrite systems. 

Organisation of the paper In Section 2, we introduce the .:\Li-calculus and state some 
ofits properties. In Section 3, we extend the .:\..1-calculus with explicit substitutions. In 
Section 4, we establish the confluence a.nd preservation of strong normalisation (PSN) 
of the .:\Llexp-calculus. We use the interpretation method [15] to show confluence and 
the decency method to establish PSN [7]. We also show that the structure preserving 
method of [9] does not apply to the .:\..dexp-calculus. In Section 5 we introduce the 
simply typed version of .:\..dexp a.nd show that it has the desirable properties such as 
subject reduction and strong normalisation. In Section 6, we present the first study of 
CPS-translations for calculi of explicit substitutions by providing a CPS-translation 
for .:\..dexp a.nd showing its soundness. In Section 7, we discuss related work. We 
conclude in Section 8. 

Prerequisites and terminology We assume some basic familiarity with .:\-calculus [4] 
and abstract rewriting [19]. We let <1 denote the subterm relation and -+ R denote the 
compatible closure of a. relation R -compatibility is defined as usual. The transitive 
and reflexive-transitive closures of -+ R are denoted by - "Ji and _,. R respectively. 
Finally, we let SN(R) denote the set of strongly normalising terms w.r.t. -+R· 



211 

2 The .A.4-calculus 

Control operators are programming constructs which allow the programmer to have 
more direct control over the evaluation of a program. In the late SO's, Griffin [14] 
observed that control operators could be simply typed by the classical axiom of dou­
ble negation. After Griffin's discovery, there has been a great interest .A-calculi with 
control-like structures. The .ALl-calculus is such calculus. More precisely, the .ALl­
calculus is an extension of the .A-calculus with a binding double negation operator Ll 
whose computational behavior is closely related to normalisation procedures for clas­
sical natural deduction [27] (and of course to reduction rules for control operators). 

The following definition is taken from [28]. 

Definition 1 

1. The aet T of (pure) terma ia gi11en by the abatract ayntaz: 

T = VITTl.AV.Tl.LlV.T with V = { :t" : n E N} 

where .A and .Ll are binding operatora. 
2. Meta-aubatitution .[./.],free and bound variablea are defined aa uual. We let FV(a) 

and BV(a) denote reapectively the aets of free and bound 11ariablea of a term a. 
3. /3-reduction -+fJ ia defined aa the compatible cloaure of 

(.A:t.a) b -+tJ a[b/:i:] 

4. µ-reduction-+,. ia defined aa -+,., U -+µ 2 U -+µs where µs-reduction for 1 ~ i:::; 3 
ia defined to be the compatible closure of the correaponding i-rule: 

(Ll:t.a) b -+,., Lly.a[.\w.y (w b)/:i:] 
.::l:i:.:i; a -+µ 2 a 
.::l:t.:i: (.::ly.:t a) -+µs a 

5. -+tJµ=-+tJ u -+µ. 

if y, w r;_ FV(b), y # tu 

if :i: r;_ FV(a) 
if :i:, yr;_ FV(a) 

For motivations and explanations of the Ll-operator, we refer the reader to [28]. We 
shall briefly mention however that the rule µ 1 is what makes the Ll-operator into 
a control one. Note that µ 1 , does not destroy the control nature of the term. After 
application, a ..:1-term remains a Ll-term. J.'2 acts like an 77-rule and together with µa 
allows to define a catch and throw mechanism. 

We let z, y, z, w, . .. range over V and a, b, c, ... range over T and 0 to range over 
{A, Ll}. For the sake of hygiene, we consider terms modulo a-conversion -generalised 
over Ll- and assume Barendregt's variable convention [4]. 

The following proposition is taken from [28]. 

Proposition 2 -+tJµ ia confluent {CR). 

Finally, we define the norm /3µ-norm f3µ(a) of a pure term a as the maximal number 
of /3µ-reduction steps in a reduction starting from a. It is finite if a E SN(/3µ) and 
infinite otherwise. The norm of a term will be used in Section 4. 



212 

3 The .:\..&exp-calculus 

The J.."1exp-calculus is a named. calculus of explicit substitutions for J..41. 

Definition 3 

1. The set T" of terms of the J.."1exp-calculus is given by the abstract 11ynta.z: 

T" = VI T•T• I >.V.T" I ."1V.T" I T"[V := T"] with V = {:i:,.: n EN.} 

where .X, .41, .[. := .] are binding operator11. Free and bound variables a.re defined in 
the obvious way. 

2. §_-reduction -~ i11 defined as the compatible closure of 

(J.:c.a) b -+[!_ a[:c := b] 

3. µ.-reduction ..... ,. is defined as ->µ 1 U ..... ,.. U ..... ,.. where µt-reduction for 1 5 i 5 3 
iS defined to be the compatible cTosure Of the corresponding i-rule: 

(."1:i:.a) b -+e.t ."1y.a[:c := .X.w.y (w b)] 
."1:c.:c a ..... ,., a 
."1:c.:c (."1y.:c a) ..... ,.. a 

if y, tu'/. FV(b), y ;6 w 

if :c ~ FV(a) 
if:c,y~FV(a) 

4. CT-reduction ..... .,. is defined as the compatible closure of 

:c[:c := b] -0' b 
y[:c := b] -0' y if :c f. y 
(a a')[:c := b] -+O' (a[:c := b]) (a'[:c := b]) 
(Oy.a)[:c := b] -+O' Oy.(a[:c := b]) if y '/. FV(b) 

5. ->13µu=->l U -~ U -+u and -+f3µ,=-+~ U -+!!i. for 1 :5 i :5 3. 

Again we let a, b, c, ... range over T•. The variable convention, a-conversion, meta­
substitution, etc are generalised in the obvious way. In particular, 

FV(a[:c := b]) = FV(b) U (FV(a) \ {:e}) 

Definition 4 The set uFV(a) of substitutable free variables of a. term a is defined 
inductively as follows: 

D"FV(:c) = {:c} 
O"FV(ab) = O"FV(a) U O"FV(b) 

CTFV(O:c.a) = o-FV(a) \ {:i:} 

{ O"FV(a) if :c '/. FV(a) 
O"FV(a[:i: := b]) = (uFV(a) \ {:c}) U uFV(b) if :c E FV(a) 

We conclude this section by noting that .X."1exp contains .Xexp as a subcalculus. The 
latter is a named explicit A-calculus, called A:c in [8], a.nd obtained from .X."1exp by 
leaving out Ll. 



213 

4 Confluence and preservation of Strong Normalisation 

In this section, we show that the A.dexp-calculus enjoys confiuence and preservation 
of strong normalisation. 

4.1 Confluence 

Confiuence is proved as usual, using the interpretation method of [10, 15]. 

Lemma 5 Let a, b E T•. The follcrunng hold&: 

1. -+O' is SN and CR. Hence, every termc ET" ha.8 a unique u-normalform, denoted 
u( c). 

2. cr(ab) = u(a)u(b), u(.A:z:.a) = A:z:.u(a), u(..i:l:z:.a) = ..i:l:z:.u(a), cr(a[z := b]) = 
u(a)[cr(b)/:z:]. 

9. Projection: If a. -fJµtr b then u(a.) -{J,. cr(b). 

4. Simulation: for pu:;; terms a., b, if a. -+tJµ b then a-%,..,. b. 

Proof: Analogous to the proofs of the corresponding results for .Aexp [8]. We just 
remark that the function used to prove SN should be here extended with h(.d:i:.a) = 
h(a.) + 1. D 

Theorem 6 The .A.dexp-ca.lculu.s is confluent. 

Proof: If a -13,..,. bi and a -/3P." b2 then by Lemma 5, er( a.) -.81' cr(O.), for i E {1, 2}. 
By CR of .A.d,there exists c such that u(b•) -/3µ, c, and by Lemma 5 u(~) -13,.,, c. 
Hence, bi -fJP." c. - D 

4.2 Preservation of strong normalisation 

Every term is /3µo"-strongly normalising if the u-normal forms of its subterms are 
/3µ-strongly normalising. 

Lemma 7 If a E SN(.Bµcr) and b<10.1 then u(b) E SN(.Bµ). 

Proof: If O"(b) rJ. SN(.Bµ), then b ~ SN(.Bµcr) as b -0' O"(b) and we use Lemma 5.4. 
Absurd as b <1 a and a. E SN(,BµO"). D 

Corollary 8 If a is a pure term such that a E SN(.Bµu), then a. E SN(.Bµ). 

Proof: If a. is pure, er( a) = a.. D 

In other words, SN(~u)nT ~ SN(.Bµ). The question a.rises if the converse holds, i.e. 
whether SN(,6µ) ~ SN(,BµO"). 



214 

Definition 9 

1. A term a E T obeys the preservation of strong normalisation (PSN) property if 
a E SN(,Bµ) =>a E SN(,Bµa'). 

2. A term a E T• obeys the generalised preservation of strong normalisation (GPSN) 
property if (Vb<1a.O'(b) E SN(,6µ)) =>a E SN(,Bµa). 

The G PSN property is a mild generalization of the PSN property. 3 In our view, the 
GPSN property is more fundamental than the PSN property for two reasons: 

I. the GPSN property applies to all terms, not only the pure ones; 
2. for most typed A-calculi with explicit substitutions, strong normalisation is an 

immediate consequence of the GPSN property and of strong normalisation of the 
standard calculus without explicit substitutions. 

We shall prove that the ..\~exp-calculus has the GPSN property using the decency 
technique of [7] -the technique was introduced to prove that ..\exp has the PSN prop­
erty. First, we start with some technical definitions. 

Definition 10 

1. A substitu.tion item [:z: := b] is superfluous in a i/:z: fi. O'FV(c) for every c[:z: := b]<1a. 
2. A reduction a -+f3w, b is superfluous if the contracted redez in a occurs in a 

superffoo?.£8 substitution item [ :z: : = d]. 

Superfluous reduction plays a role similar to the internal reduction notions of [6, 18] 
-but the two notions are different from each other. The following is a refinement of 
Lemma 5. 

Lemma 11 If a -+13,,. bis not superfiuov.s, then O'(a) -%,,. O'(b). 

Proof: By induction on the structure of a. 0 

The following definition of decent term is central to the GPSN proof. Note that 
every a E SN(,Bµa) is decent and every decent term is decent of order n. 

Definition 12 

1. A term a is called decent if for every [:z: := b] in a, b E SN(,6µ0'). 
2. A term a is called decent of order n if for every [:z: := b] in a, b E SN(,i3µ0') or 

f3µ(0'(b)) < n. -

Finally, the following notion of ancestor gives a full characterisation of how a. substi­
tution item might have been generated. Thls notion aims to achieve similar conditions 
to those used in the backtracking lemmas of [6, 18] in the minimal derivation method. 
Note that we use ")a" to denote an application item. For example, in (.A:z:.a)b the 
application item is )b. 4 

Definition 13 For a reduction a -fjµv a', we define th.e notion of the ancestor of a 
substitution item in a' as follows: -

3 It is easy to show that a pure term obeys PSN i:ff it obeys GPSN. 
• One can even go further as in [17] by calling A.:z: the ..\ item but this is not needed here. 



215 

1. If a --+tJµ." a' and b = b' or if b -+fJµ.tr b' and a = a' then the substitution item 
[:z: := b'fin a'[:z: := b'] has ancestor[;°:= b] in a[:z: := bJ. 

2. In the following reductions, the first underlined item (which may be an application 
written j."} is ancestor of the second underlined (substitution) item: 

(bc)[:z: :=a] -+fJµ.u (b[:z: := a])c[:z: :=a] 
(bc)[:z: :=a] -+[Jµ.u (b[:z: := a])c[:z: :=a] 
(Oy.b)[:z: :=a] -+[Jµ.tr Oy.b[:z: := a-J --
((A:z:.b)a) -+[Jµ.tr b(:z: := aJ 
((..::l:z:.a)b) -+[Jµ.u Ay.a[:z: := >.w.y(wb)] 

3. The ancestor relation behaves as ezpected in the confrontation with <T-reduciions; 
i.e., if e[:z: := a) is a conte:z:t in which [:z: := a] appears, then: 

(>.y.b)e[:z: :=a] -+{Jp.tr b[y := e[:z: :=a]] 
(..::ly.b)e[:z: :=a] -+tJµ.u ..::lz.b[y := >.w.z( we[:z: :=a])] 
(>.y.e[:z: := a])b -+{Jµ.17 e[:z: := a][y := b] --
(..::ly.e[:z: := a])b -fJµ.tr ..::lz.e[:z: := a][y := >.w.z(wb)] 
(Oy.e[:z: := a])[z := b] -+tJ"'"' Oy.e[:z: := a][z := b] 
(Oy.b)[z := e[:z: :=a]] -+fJµ.u Oy.b[z := e[:z: :=a]] 
(bc)[z := e[:z: := a]] -{Jµtr b[z := e[:z: := a]]c[z := e[:z: :=a]] 
(be[:z: := a])(y := c] -+fJµ.tr b[y := cJe[:z: := a][y := c)--
(e[:z: := a]b)[y := c] -+{Jµ.tr e[:z: := a][y := c]b[y := c] 

4. The ancestor relation is compatible; e.g.: if a --+pµ.17 a' where [:z: := b'] in a' has 

ancestor [:z: := b] resp., )b in a, and if c -+tJµ. 17 c' then [:z: := b'] in a'c' has ancestor 
[:z: := b] resp., )b in ac. -

The following lemma is similar to bactra.cking in the minimal derivation method of 
[6, 18]. 

Lemma 14 If a --+tJµ.<r a' and [:z: := b1 is in a', then one of the following holds: 

1. Ezactly one [:z: := b] in a is an ancestor of [:z: := b1 in a' and b-fJµu b'. 
2. [:z: := b'] has an application item )b as ancestor with b = b' orb'= ~w.y(wb) for 

some y, w 'I. FV(b) and y-:/; w. 

Proof: By induction on the structure of a. 0 
The following technical lemma is informative about the subterms b of a tenn a that 
are not part of substitution items (y := d] in a. It says that for any such b, performing 
some meta-substitutions on O'"(b) results in a subterm of o-(a). 

Lemma 15 

1. Ifb<ia and bis not a part of dforsome [y := d] in a, then 3m,:z:1, ... :z:m., ci, .•. c,,. 

such that <T(b)[cif :z:t][c2/:z:2] ..• [em/:z:m] is a subterm of <T(a). 
2. If (Oz.b)c <Ja which is not part of d for any [y := d] in a, and if <T(a) E SN(,Bµ) 

then ,Bµ(o-(c)) < ,Bµ(O"(a)). 



216 

Proof: 1: By induction on the structure of a. 2: By 1 and Lemma 5, there exists 
c;, :z:;, 1 $ i :5 m such that (O:z:.O'(b))O'(c)[c1/:z:i] ... [em/:z:m] <1 er( a). Hence 
,8µ(((0:z:.er(b))O'(c))) $ ,8µ(q(a)). It follows that /3µ(q(c)) < ,Bµ(O'(a)). 0 

The following lemma is the key to proving GPSN. It says that any /3µ0'-reduct a' 
of a decent term a whose er-normal form has no infinite /3µ-derivations, is itself decent 
and its er-normal form has no infinite ,8µ-derivations. 

Lemma 16 If a is a decent teMn s.t. O'(a) E SN(.Bµ) and a-,,,..,a', then a' i4 decent 
of order /3µ(q(a)). -

Proof: By induction on the number of reduction steps in a -fJ,.., a'. 

- For the base case, as a is decent, a is decent of order /3µ(er(a)). 
- For the induction step, assume a -fJµv a" -+fJpv a'. By IH, a" is decent of order 

/3µ(er(a)). Let [:z: := b] in a'. We mut showthat b E SN(.Bµq) or f3µ(0'(b)) < 
/3µ(er(a)). -
The ancestor of [:z: := b] in a." is either: 
1. (:z: := b'] in a" where b' -{J,.., b 
2. )bin a" and (>.:z:.c)b -+fJ,..,-;;j::z: := b] is the contracted redex in a" -+tJisv a'. 
3. )b' in a" where (.A:z:.c)V -+fJ'""" c[:z: := >.w.y(wb')] is the contracted-;edex in 

a" -+tJµv a' and b = >.w.y(wb'). 
Case 1 As a" is decent of order f3µ(CT(a)), then either b' E SN(.Bµu) or ,Bµ(CT(b')) < 

/3µ(er(a)). Hence, b E SN(.eµo-) or f3µ(q(b)) $ ,8µ(0'(b1}f < f3µ(o-(a)) using 
Lemmas. 

Case 2 If)bis not part of d for some (y := d] in a.", then by Lemma 15, as f3µ(q(a")) < 
oo, /3µ(q(b)) < f3µ(0'(a")) :5 ,8µ(er(a)) by Lemm.a 5. If )b is part of d for 
some (y := d] in a", then we may assume that there is no [z := e] such 
that )b is part of e and (z := e] is part of d. Then as a" is decent, either 
d E SN(,8µer) or f3µ(u(d)) < /3µ(0-(a")). If d E SN(,Bµer) then b E SN(.eµu). 
If /3µ(0'(d)) < /3µ(u(a")) $ ,Bµ(o-(a)) then as (>.:i:.c)b is not part of some 
[z := e] in d, we get by Lemma 15 that /3µ(µq(b)) < f3µ(µo-(d)). Hence, 
fJµ(µq(b)) < ,Bµ(µq(a)). 

Case 3 Similar to the second but note that ,Bµ(o-(>.w.y(wb'))) = /3µ(µq(b')) by Lemma 5, 
and b' E SN(.8µ0-) i:fF >.w.y(wb') E SN(.8µ0-). o 

Finally, we show that every decent term whose O'-normal form is {3µ-strongly normal­
ising is itself ,BµO"-strongly normalising: 

Theorem 17 If a is a decent teMn and u(a) E SN(,8µ), then a E SN(.eµo-). 

Proof: By strong induction on /3µ(u(a)) < oo (note that u(a) E SN(/3µ)). By 
Lemma 16, Va', if a-{J,..,a', then a' is decent of order ,Bµ(O'(a)). 

Assume a has an infinite derivation. We shall derive a contradiction. As <7 is SN 
{Lemma 5), this derivation can be written as 



217 

Again by Lemma 5, <T(a) = u(b1) -f'µ u(c1) -fJ,,. o-(c2 ) -fJµ .. .. 
By Lemma 11 and the fact that ,Bµ(<T(a)) < oo, only finitely many of the reductions 
b,,. -+fjµ c,,. a.ze not superfluous 4'therwise, we will have an infinite ,6µ-de:rivation 
starting at O'(a) which is impossible since ,Bµ(a(a)) < oo. So let bM -+f'µ CM be the 
last non-superfluous -+fjµ-reduction and define h2 as follows: -

h2(:z:) = 1 h2(ab) = h2(a) + h2(b) + l 
h2(0:z:.b) = h2(b) + 1 h2 (a[:i: := b]) = { h2(a).(h2(b) + 2) if :z: E c:FV(b) 

2h2(a) otherwtSe 

It is easy to prove by induction on the structure of terms that: 

- If a -+fjµ.rr bis superfluous then h2(a) = h2(b); 
- If a-+µ,µ, bis not superfluous then hz(a) > h2(b); 
- If a-+"' bis not superfluous then hz(a) > h2 (b). 

Now, 3N > M such that Vn 2: N, h2 (c,,.) = h2(cN), as 'Vn > M, b,. -+f3µ. 1 c,,. is 
superfluous. Hence, h2(b.,.) = hz(c,,.). Moreover, h2(d) < oo for any term d. 

Next, look at the part of the derivation: CN -0' bN+l -+f'µ CN+l - ....... 

We know that in this derivation, all ,Bµ-reduction steps axe superfluous. As 'r/n > N, 
h2 (c,.) = hz(cN) = hz(b11 ) = h2(b.,.+J.""it must be also the case that c,. -rr b,.~1 is 
superfluous for all n 2: N, otherwise, h2(c,.) > h2(b,.+i), contradiction. 

Hence, one [:z: := dJ in CN has an infinite ,Bµa-derivation. Otherwise, there wouldn't 
be an infinite ,6,uu-derivation starting at CN,c;;ntradicting infinity of CN - ... bN+l -+f'µ - -
CN+l·· .. 

Now, take one innermost [a::= dJ in CN which has an infinite ,8,u<T-derivation. Then dis 
decent. As CN is a ,Bµ<T-reduct of a, then CN is decent of order ,Bµ(u(a)) by Lemma 16. 
Moreover, f3µ(<T(d))< ,Bµ(<T(a)). 

Hence, by IH, we get that d E SN(,Bµu). Absurd. O 
Now, the proof of GPSN is immediate: 

Theorem 18 (Generalised Preservation of Strong Normalisation) 
Let a E T 0 , if every subterm b of a satisfies <T(b) E SN(,Bµ), then a E SN(,Bµu). 

Proof: By induction on the structure of a. As a is a subterm of a, then cr(a) E SN(,Bµ). 
If [:z: := b] is a substitution item in a, then the IH holds for band b E SN(,Bµo') and 
hence a is decent. So by Theorem 17, a E SN(,Bµ<T). - 0 

5 A type-assignment for ..\A.exp 

In [28], a classical type-assignment system for >....:l is presented. The type-assignment 
system is simply typed, with a specific type J. standing for absurdity . .d is typed with 
double negation. 

Definition 19 

1. The set of types is given by the abstract syntaz:: T = J. I T -+ T 



218 

2. A variable declaration is a pair :i: : A where :i: E V and A E T. 
3. A contezt u a finite list of declaratio1U I' = :i:1 : Ai, ... , :i:" : A,. auch that 

i # j => :Z:i # :i:;. If r = :Z:1: Ai. ... ' Zn: A,. u a contezt, BET and :i: doea not 
occur in I', then I', :i:: B is uaed to denote the contezt :z:1 : A1, ..• , :i:,.: A,,,, :i:: B. 

4. The .!et of contezta is denoted by C. 
5. The derivability relation 1-p,.~ C x T x Tia defined a.a follow.! {uaing the .ftandard 

notation): 

(var) r I- . A if (:i:: A) Er 
,8µ :i:. 

(ap) I'l-p,.a:A-B I'l-p,.b:A 
I' l-11,. a b: B 

(.X) I', :i:: A 1-p,. a : B 
I' l-11,. .X:z:.a : A - B 

(..:1) r, :i: : A-+_!_ l-11,. a : 1-
r l-11,. ..:l:i:.a: A 

6. The derivability relation 1-pµO'~ C x T• x T u defined by the above rulea and the 
ne10 rule: -

I', :i: : A 1-11,.0' a : B I' 1-pl'D' b: A 

I' 1-11,.0' a(:i: := b] : B 

The following lemma establishes three basic properties of the type system: 

Lemma 20 

1. Subject Reduction: if I' 1-pµO' a : A and a -11!'0' b, then I' l-11µ0' b: A. 
2. CoMeMJati'llity: if I' 1-pl'D'-;: A then I' l-11,. O"(a) : A. -
3. Clonre under aubtermi: every aubterm of a well-typed term ia well-typed. 

Proof: By an easy induction on the derivation of I' l-11!'0' a: A. D 
The following ptoposition establishes that the simPfy typed version of .X..:lexp is 

SN. Its proof is simple thanks to the genetalised PSN. 

Proposition 21 

1. If I' 1-p,. a: A, then a E SN(.Bµ). 
2. If I' 1-.8,.o- a: A, then a E SN(,Bµq). 

Proof: 1: proved in [28]. 2: assume a is a term of minimal length such that I' 1-11µa 

a : A and a <I. SN(,8µ0"). By Lemma 20.2 and 1 above, O"(a) E SN(.Bµ). By GPSN 
(Theorem 18), a must therefore contain a strict subterm b such that O"(b) '/. SN(,Bµ). 
By Lemma 4, -+pµ~ -.8,.0'• hence it follows that O'(b) <I. SN(~) and sob <I. SN(~O"). 
By Lemma 20.3, b is a well-typed term. This contradicts the minimality of a. D 

6 CPS translation 

Continuation-passing style (CPS) translation is a standard compilation technique. Its 
properties have been thoroughly studied in the context of pute and typed A-calculus, 
see for example [26, 22]. In this section, we extend these results to the .X..:lexp-calculus. 
To our knowledge, it is the first study of CPS translations for calculi of explicit 
substitutions. 



219 

Definition 22 Th.e CPS tramlation .:. takea a.s input 11 .A.dexp-term and retuMU a.s 
output a .Aexp-term. It ii defined a.s followa: 

1. CPS tranalation on terma: 

£= .AA:.:z: k 

.A:c. M = .. U. k (.A:z:. M) 

Mi M2 =.AA:. Mi (.Ay. y M2 k) 
.d:c. M = .AA:. M[ :c := .Ah.. h. .Aj • ..Xi. i (i k )]Az. z 

M[:c := N] = M[:c := JY.l 

2. CPS tranalationa on typea: 

(a}= ...,...,a 

(A-+ B} =-.-.((A}-+ (B}) 

where -.A::: A-+ .L for aome fi=ed type .L. 

The translation is an extension of Plotkin's call-by-name translation for the untyped 
.A-calculus. When considered as a translation on typed terms, the translation corre­
sponds to Kolmogorov's double-negation translation . .Also note that the explicit CPS 
translation yields a CPS translation .:. from pure .A.d-terms to pure .A-terms in the 
obvious way; this translation is proved correct in [5]. 

Theorem 23 (Correctness of CPS translation) 

1. For e11ery two terma M, N, 

M =tJµv N ::} M =t11 N 

£. For e11ery judgement (I', M, A), 

I' 1->.µexp M : A ::} (I'} 1->.exp M: (A} 

Proof. The fust item is proved in three steps: 

1. prove by induction on the structure of the terms that for every term a, 

u(b)[u(c)/:c] -~v u(b)[u(c)/:c] 

2. prove that for every term a, we have g-~11u(a). We treat the case where a= 
b[:i: := c]. We have 

g -~v u(b)[:z: := cr(c)] 

-~v cr(b)[cr(c)/:c] 

-~v cr(b)[u(c)/:z:] 

::: cr(b[:z: := c]) 

by I.H. 



220 

3. use the interpretation method, the correctness of.:. and the fact that g-,sO'!! to 
conclude. - - -

M =,s,,.O' N => o-(M) =,s,,. o-(N) 

=> o-(M) =.s O'(N) = = 
=> o-(M) =f!..tr o-(N) 

=>M=f!..O'N 

For the second item, proceed by induction on the structure of derivations. 

The above theorem proves that the CPS translation preserves equalities. One may 
consider whether the CPS translation preserves reductions. Unfortunately,.:. does not. 

Lemma 24 Let a 1111.d b be >.Llexp-terms. 

1. a-+f!..O' b => 
=> 2. a-+e_ b 

Proof. Show that for every term a, we have >.A:.g k->.exp!!· Then proceed by induction 
on the structure of the terms. 

In the J.Ll-calculus, it is possible to obtain a reduction-preserving translation by defin­
ing an optimized CPS-translation which performs some so-called administrative re­
ductions. This reduction correspondence may be used for example to deduce strong 
normalisation of the >..:1.-calculus from strong normalisation of the simply typed ..\­
calculus [5]. 

The question arises whether such an optimized CPS translation may be used to 
prove PSN for >.Llexp. In calculi on explicit substitutions, it is however not possible 
to obtain such a reduction-preserving translation unless some form of composition of 
substitutions is assumed: 

a(:i: := b][y := c] -+ a(:i: := b[y := c]] if y ~ FV(a) 

The above rule is needed in order to obtain an optimized CPS translation which is 
not too optimizing. Indeed, assume that we want to find optimizations c1 and c2 s. t. 

(Ll:r:. a) b ->.exp c1 

.Lly. a(:r: := ..\w.y (w b)] ->.exp c2 

C1 ->.exp C2 

In the current calculus, we have to perform too many steps to find such a c1 . We have: 

(Ll:i:. a) b = >.k.(>.k'.g(:r: := >.h.h >..j . .>..i.i (j k')] )..z.z) >.j.j Q. k 

- >..k.g(:r: := >..h.h >..j.>.i.i (j k')][k' := >..j.j Q k] AZ.Z 

If we want to proceed further without reducing the substitution items, then some 
form of composition of substitutions, as indicated above, is necessary. Unfortunately, 
the rule (•) breaks PSN, as shown in (8]. It remains open whether one can find a 



221 

restriction of ( *) which does not break PSN and which allows to obtain a reduction 
correspondence for CPS. 

Remark: it may be possible to obtain a reduction-preserving translation by using 
meta-substitution instead of explicit substitution in the definition of the CPS transla­
tion for Ll-abstractions. However, we consider that a CPS translation between calculi 
of explicit substitutions should use explicit substitution rather than meta-substitution. 

7 Related work 

7.1 On preservation of strong normalisation 

In a recent paper [9], Bloo and Rose describe how to construct an explicit substitution 
CRS from an arbitrary CRS. 5 Moreover they show that PSN holds for a restricted class 
of CRSs, which they call structm:e-preserving. Unfortunately, PSN for the >.Llexp­
calculus cannot be derived from [9]. Indeed, the first µ.-rewrite rule is written in the 
CRS framework as (µ:z:.X(:z:)) Y-+ µy.X(> .. w.y (w Y)). The condition ofstructure­
preserving requires the argument >.w.y (w Y) of the meta-application in the right­
hand side to be a subterm of the left-hand side. Obviously this is not the case. 

Independently of [9], Bloo and Geuvers have developed a technique based on re­
cursive path ordering (RPO) to prove PSN for various calculi of explicit substitutions. 
As was pointed to us by Roel Bloo, the RPO technique may be used to prove PSN 
for >.Llexp. Finally, the minimal derivation technique of [6, 18] may be used to prove 
PSN of >.Llexp. 

7.2 On explicit substitutions for control-like operators 

Audebaud and Pym, Ritter and Wallen have studied calculi of explicit substitutions 
for another classical >.-calculus, namely Parigot's >.µ.-calculus [25]. Audebaud's cal­
culus [3] of explicit substitutions is an explicit substitution calculus with de Bruijn 
indices and composition of substitutions -in the spirit of >.u- whereas Pym, Ritter 
and Wallen's >..µ.E [29] calculus is a named explicit substitution calculus without com­
position of substitutions -in the spirit of >.exp. 

In [3], the system presented is shown to be confluent on open terms. Confluence 
on open terms is not however a question that is usually studied in calculi written with 
named variables (such as the >.L\exp ). 

In (29], it is shown by a computability predicate argument that simply typa.ble 
>..µe-terms are strongly normalising. Their result and ours do not imply each other 
in neither way. Yet we a.re confident that the GPSN proof of this paper ma.y be 
adapted to >.µE. The advantage of GPSN is that it implies strong normalisation of 
the simply-typed, polymorphic, higher-order >..µe-calculus. 

~ The theory of Combinatory Reduction Systems was developed by J.W. Klop (20]. 



222 

8 Conclusion 

We have introduced a calculus of explicit substitutions >..:lexp for the calculus .\.::1 
and proved various properties of the calculus. 

On the one hand, we showed that ..\.:lexp has the GPSN property. To our knowl­
edge, .\.dexp is the first calculus of explicit substitutions which has the PSN property 
and is not structure-preserving. Its study suggests that one may be able to prove PSN 
for a class of CRSs substantially bigger than the class of structure-preserving CRSs. 

On the other hand, we showed that Plotkin's call-by-name CPS translation can 
be extended to the .\.:lexp in such a way that typing is preserved. Studying CPS 
translations for calculi of explicit substitutions seems to be an interesting subject, 
which we plan to investigate in greater depth. 

Our choice of the .\.::1-calculus rather than other calculi of control-like operators is 
based on the fact that the >..::1-calculus is the simplest (and most restrictive) control 
calculus. It is an open question to study explicit substitutions for non-local control 
operators such as Felleisen's C [13]. Interestingly, expliciting such calculi will require 
an explicit handling of contexts. This subject is left for future work. 

Finally, it remains to exploit the results of this paper in classical theorem-proving 
and proof theory and other applications mentioned in the introduction. An imple­
mentation of a proof/type checker based on >..dexp is currently being developed at 
Glasgow. 

Aclcnowledgements We are grateful for Roel Bloo for his observation that the RPO 
method of [8] does apply to .\.:lexp. The first author would al.so like to thank John 
Ratcliff and Morten Heine S9lrensen for discussions on classical >.-calculi. 

References 

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit Substitutions. Journal of 
Functional Pro(/'l'fJmming, 1(4):375-416, 1991. 

2. A. W. Appel. Compiling 111ith Continuatiom. Cambridge University Press, 1992. 
3. P. Audebaud. Explicit substitutions for the ~µ-calculus. Technical Report RR.94-26, 

Ecole Normal Superieure de Lyon, 1994. 
4. H. Barendregt. The Lambda Calculua: Ita Synta:i: and Semantic•. North Holland, 1984. 
5. G. Barthe, J. Ratcliff', and M.H. Sf/lrensen. A notion of classical pure type system. In 

Proceeding• of MFPS'97, volume 6 of Electronic Notea in Theoretical Computer Science, 
1997. To 11.ppear. 

6. Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. A111 a calculus of explicit 
substitutions which preserves strong normalisation. Journal of JUnctional Programming, 
6(5), 1996. 

7. R. Bloo. Preservation of Strong Normalisation for Explicit Substitution. Technical 
Report CS-95-08, Department of Mathematics and Computing Science, Eindhoven Uni­
versity of Technology, 1995. 

8. R. Bloo and H. Geuvers. Explicit substitution: On the edge of strong normalisation. 
Technical Report CS-96-10, Department of Mathematics and Computing Science, Eind­
hoven University of Technology, 1996. 



223 

9. R. Bloo and K. Rose. Combinatory reduction systems with explicit substitutions that 
preserve strong normalisation. In H. Ganzinger, editor, RTA '96, volume 1103 of Lecture 
Notes in Computer Science. Springer-Verlag, 1996. 

10. P.-L. Curien, T. Ha.rdin, and J .-J. Levy. Con:6.uence properties of weal!: a.nd strong calculi 
of explicit substitutions. Jourflal of the ACM, 43(2):362-397, March 1996. 

11. G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit substitu­
tions. In Proceedings of the Tenth Annual Symposium on Logic in Computer Science, 
pages 366-374. IEEE Computer Society Press, 1995. 

12. R.K. Dybvig. The Scheme Programming Language. Prentice-Hall, 1987. 
13. M. Felleisen, D.P. Friedman, E. Kohlbecker, and B. F. Duba. A syntactic theory of 

sequential control. Theoretical Computer Science, 52(3):205-237, 1987. 
14. T.G. Griffin. A formulae-as-types notion of control. In Principlea of Programming 

Languagea, pages 47-58. ACM Press, 1990. 
15. T. H&rdin. Con:6.uence Results for the Pure Strong Categorical Logic CCL : >.-calculi aa 

Subsystems of CCL. Theoretical Computer Science, 65(2):291-342, 1989. 
16. H. Herbelin. Elimination des coupures dam les aequents qu'on calcule. PhD thesis, 

Universite de P&ris 7, 1994. 
17. F. Ka.mareddine and R. P. Nederpelt. A useful >.-notation. Theoretical Computer Sci­

ence, 155:85-109, 1996. 
18. F. Kamareddine and A. Rios. A >.-calculus 8. la de Bruijn with explicit substitutions. 

Proceedings of PLILP'95. Lecture Notes in Computer Science, 982:45-62, 1995. 
19. J.-W. Klop. Term rewriting systems. Handbook of Logic in Computer Science, II, 1992. 
20. J.-W. Klop, V. van Oostrom, a.nd F. van Ra.a.msdonk. Combinatory reduction systems: 

Introduction a.nd survey. Theoretical Computer Science, 121:279-308, 1993. 
21. L. Magnusson. The implementation of ALF: a proof editor based on Martin-Lof's 

monomorphic type theory with explicit aubatitution. PhD thesis, Department of Com­
puter Science, Cha.lmers University, 1994. 

22. A.R. Meyer a.nd M. Wa.nd. Continuation sema.ntics in typed la.mbda.-calculi (summary). 
In R. Parikh, editor, Logics of Programa, volume 193 of Lecture Notes in Computer 
Science, pages 219-224. Springer-Verlag, 1985. 

23. C. Munoz. Proof representation in type theory: State of the art. XXII Latinamerica.n 
Conference of Informatics CLEI Pa.nel 96, June 3-7, 1996, Sa.ntafe de Bogot8., Colombia., 
April 1996. 

24. C. Murthy. E:z:tracting Constructfoe Contents from Classical Proofs. PhD thesis, Cornell 
University, 1990. 

25. M. Parigot. >.~calculus: An algorithmic interpretation of classical natural deduction. 
In International Conference on Logic Programming and Automated Reasoning, volume 
624 of Lecture Notes in Computer Science, pages 190-201. Springer-Verlag, 1992. 

26. G. Plotkin. Call-by-name, call-by-value and the >.-calculus. Theoretical Computer Sci­
ence, 1(2):125-159, December 1975. 

27. D. Prawitz. Natural Deduction: A proof theoretical study. Almquist & Wiksell, 1965. 
28. N .J. Rehof and M.H. Siz1rensen. The ..\4 calculus. In M. Hagiya a.nd J. Mitchell, editors, 

Theoretical Aapecta of Computer Software, volume 789 of Lecture Note1 in Computer 
Science, pages 516-542. Springer-Verlag, 1994. 

29. E. Ritter, D. Pym, a.nd L. A. Wallen. On the intuitionistic force of classical 
search. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors, Procedinga 
of TABLEA U'96, volume 1071 of Lecture Notes in Artificial Intelligence, pages 295-311. 
Springer Verlag, 1996. 

30. G. L. Steele. Common Lisp: The Language. Digital Press, Bedfotd, MA, 1984. 


