
Beyond Success and Failure
Sandra Etalle
Dept. of Computer Science, Universiteit Maastricht
P.O. Box 616, 6200 MD Maastricht, The Netherlands
etalle@cs.unimaas.nl

Femke van Raamsdonk
CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
femke@cwi.nl

Abstract

We study a new programming framework based on logic programming where
success and failure are replaced by predicates for adequacy and inadequacy.
Adequacy allows to extract a result from a partial computation, and inad
equacy allows to flexibly constrain the search space. In this parameterized
setting, the classical result of independence of the selection rule does not
hold. We show that, under certain conditions, whenever there exists an
adequate derivation there is one in which only so-called needed atoms are
selected. This result is applied in a practical setting where adequacy is
expressed using a notion of request.

1 Introduction

In logic programming, success and failure determine when the computation
should stop and return the result and when it should start backtracking.
In this sense, success and failure form the cornerstones of control. In the
traditional approach, a resolution sequence is considered to be successful if
it ends in the empty query, and failing if the resulting query is non-empty
but no clause can be applied to the selected atom. In the present paper we
propose to take a more general point of view by parameterizing over notions
of success and failure, which we then call adequacy and inadequacy.

The important point of using adequacy is that it permits to extract a
result from an incomplete computation, which is particularly useful in the
presence of potentially infinite data structures. As an example we consider
the following program, which computes the list of Fibonacci numbers.

fib([xn,Xn+1,Xn+2ll]) ~ Xn+2 is Xn+Xn+l,

f ib([xn+l, Xn+2ll]).

Suppose we are interested in computing the fifth Fibonacci number. Then
we start computing in the query fib([O, 1, _, _, xll]) and specify that a cam-

191

putation is adequate if it computes the value of x. The derivation

fib([O,l,_,_,xll]) =>* fib([l,l,_,xll]) =}* fib([l,2,xll]) =>* fib([2,3,l]).

instantiates x to 3 and is hence considered to be adequate, although it is not
successful in the traditional sense.

The inadequacy predicate can be used to cut away an infinite branch
never leading to an adequate state. Consider for instance the program de
fined by the following clauses:

p(f (y)) ~

p(a) ~

q ~ q.

Consider the query p(x), q and suppose that a derivation is considered to be
adequate if it computes the value of x. Consider the derivation

(p(x),q;i:) =} (q;x>-+f(y)).

It is clear that there is no way to extend this derivation to an adequate
one, because y will never be instantiated and the only possible extension is
to enter the one-step loop (q;x >-+ f(y)) => (q;x i-+ /(y)). At this point
it becomes extremely useful to be able to backtrack instead of entering an
infinite branch. This is possible by specifying an inadequacy predicate as
follows: the inadequacy predicate 'I holds for a state (Q; a) if xa is not
ground and the variables in xa do not occur in Q.

It is easy to see that in this general setting independence of the selection
rule does not hold. Hence it is important to investigate when appropriate
selection rules can be devised. Following the approach initiated by Huet
and Levy in [5] in the context of rewriting, we introduce needed atoms,
and we show that, under certain conditions, whenever there is an adequate
derivation, there is one in which only needed atoms are selected. This result
is obtained in a quite abstract setting. We then introduce for logic programs
with guards and delay declarations the notion of request, which allows to
formulate a notion of adequacy that is useful in practice, and we formulate
conditions that permit to apply the result concerning needed atoms.

The remainder of the paper is organized as follows. In the next section we
fix the notation. In Section 3 we discuss our approach of parameterizing over
success and failure by means of predicates for adequacy and inadequacy. In
Section 4 the notion of needed atoms is introduced, and we show that, under
certain conditions, there is an adequate derivation in which only needed
atoms are selected whenever there is an adequate derivation. Section 5
is concerned with logic programming with guards and delay declarations
enriched with requests. Finally we discuss some other possible uses of the
(in)adequacy predicates.

192

2 Preliminaries

We assume a set V of infinitely many variables written as x, y, z, We
write function symbols as f, g, a, b, ... and relation symbols asp, q, Some-
times we use more suggestive notation. Both function and relation symbols
are supposed to have a fixed arity. If F is a set of function symbols, then
terms over :F are built from variables and function symbols in :F in the usual
way. If in addition n is a set of relation symbols, then atoms over F and
n are built from terms over F and relation symbols in n in the usual way.
Terms are written as s, t, . .. and atoms as A, B, H,. . .. In the sequel, we
won't specify the sets of function and predicate symbols if no confusion can
arise. A query is defined as a finite sequence of atoms. Queries are denoted
by Q, ... or by specifying a finite sequence of atoms. A sequence of atoms
Ai, ... , An with n 2: 0 is often abbreviated to A. The empty query is de
noted by D. A substitution is a mapping from variables to terms, written
as a-, T, .• . , that is extended to terms and atoms homeomorphically. The
identity substitution is denoted by E. We will consider pairs consisting of
a query and a substitution, written as (Q; o-), and call such pairs states.
Instead of states one often considers queries only. The dynamics of logic
programming is defined using clauses. A clause is an expression of the form
H +- B 1, ... , Bm with H, B 1 , ... , Bm atoms. A set of clauses is also called
a program.

3 Success and Failure Revisited

In the approach we propose, the control part of a logic program is specified
by two control predicates: one for adequacy and one for inadequacy. The ad
equacy predicate is used to express that a computation has yield sufficient
information, and the inadequacy predicate to express that it is no use to con
tinue the computation under consideration. Before we discuss the meaning
and use of these predicates, we first need to introduce some more notions.

In logic programming languages with a dynamic selection rule there is
often a way to express whether an atom can be selected. This can for instance
be done by means of delay declarations, or, somewhat more implicitly, using
guards. These two concepts will be considered in Section 5. Until then, it is
sufficient to consider an abstract predicate for selectability.

Definition 3.1 Let a program P be given. A predicate S defined on atoms
is said to be a selectability predicate if it satisfies the following requirements:

1. if S(A) holds then for every clause H +- Bin Pit is decidable whether
A and H unify,

2. if S(A) holds then S(Aa-) holds for every substitution CJ. 0

193

The first requirement makes sense for instance when considering guarded
unification; note further that the selectability predicate is required to be
monotonic.

A selection rule is a mapping that given a state returns a selectable atom
in that state whenever the state contains a selectable atom, and returns o
otherwise.

In the following we will consider predicates A for adequacy and I for
inadequacy. These predicates depend on the program and the selection rule
under consideration; note that the latter in its turn depend on the selectabil
ity predicate. In the notation these parameters are suppressed: we denote
by A{(Q;a)) that a state (Q;a) is adequate and by 'I{(Q;a)) that it is in
adequate. The (in)adequacy predicates are subject to the following three
assumptions. We will suppose that

1. (in}adequacy predicates are invariant under renaming,

2. there is no state in which both A and 1 hold,

3. if there is no clause the head of which unifies with the selected atom,
then I holds.

If a state is neither adequate nor inadequate and applying the selection rule
to it yields 15, then we say that it is in deadlock. Note that it can be the case
that inadequacy is defined to hold if the selection rule yields 15; in that case
no state is in deadlock. By definition, adequacy, inadequacy and deadlock
are mutually exclusive.

Now the dynamics are defined as follows.

Definition 3.2 Let P be a program. Suppose that

1. (Q; a) is a state that is neither adequate, nor inadequate, nor in dead
lock,

2. Q = A1, ... , Am-1, Am, Am+1, ... , An with Am the selected atom,

3. c = H +- B, is a suitable renaming of a clause in P,

4. T is a most general unifier of Am and H.

Then we have a derivation step

(Q; u) ~ (Q'; CIT)

with Q' = (A1, ... ,Am-1, B, Am+li ... , An)r.
We say that the clause c is applied to Am in (Q; a). For every i E

{l, ... , m -1, m + 1, ... , n}, the atom A;r in Q' is said to be the descendant
of the atom Ai in the query Q. The atoms BT in Q' are said to be created
in the derivation step. 0

194

We omit the labels specifying the most general unifier and/ or the clause
whenever possible. Further, we usually specify only the relevant part of a
substitution in a state. A sequence of derivation steps is called a derivation.

Derivations can be finite or infinite. The definition of descendant is extended
in a natural way to derivations consisting of more than one derivation step.
We make use of the following terminology.

Definition 3.3 Let P be a program and let an adequacy predicate .A and
an inadequacy predicate I be given. Let

be a finite derivation.

1. ~ is said to be adequate if .A((Qm; crm)) holds.

2. ~ is said to be inadequate if I((Qm; o-m)) holds.

3. ~ is said to deadlock if (Q; cr) is in deadlock. 0

The standard approach to logic programming is obtained by specifying that
.A coincides with the usual notion of success, that is, it holds for (Q; o-) and
P if and only if Q = D, and that I coincides with the usual notion of fa·ilure,

that is, it holds for (Q; cr) and P if and only if Q f= D and no clause in P
can be applied to the selected atom. The general, parameterized, setting
permits however to express many more notions of (in)adequacy, as discussed
in the introduction.

Non-determinism. As is well-known, a derivation step is subject to four
dimensions of non-determinism (c.f. Section 3.5 of [2]):

1. the choice of a renaming of the program clause used,

2. the choice of a most general unifier,

3. the choice of an atom,

4. the choice of a program clause.

Since (in)adequacy predicates are supposed to be invariant under renaming,
it follows as for the classical approach to logic programming that neither the
choice of a renaming of a clause nor the choice of a most general unifier is
relevant. Further, the choice of a program clause yields non-determinism as
in the classical approach.

The essential difference with the classical approach lies in the third di
mension of non-determinism, the choice of an atom. In the classical ap
proach, an important result is the independence of the selection rule. More
precisely, it is shown (see [2]), that for every successful derivation~ and for
every selection rule R, there exists a derivation that is via R, successful, has

195

the same length as ~ and that yields the same computer answer substitu
tion as ~· This result fails in the present, generalized setting. Consider for
instance the program defined by the following clauses:

q f- q.

p(a) f- .

Suppose that we specify our adequacy condition to hold if and only if x is
instantiated to a ground term. Then

(q,p(x); c):::} (q; x H- a)

is an adequate derivation, but there is no adequate derivation using the
leftmost selection rule.

4 Call by Need

In the light of the negative result concerning independence of the selection
rule, it is important to identify useful selection rules. Our approach is in
spired by a line of research initiated by Huet and Levy in [5] (for more recent
contributions concerning also notions of partial result see for instance [6, 4]).
They show in [5] that in an orthogonal term rewriting system, every term
not in normal form contains a needed redex, and that repeatedly contracting
needed redexes yields a rewrite sequence ending in normal form, whenever
the initial term has a normal form. Intuitively speaking, the contraction
of a needed redex cannot be avoided and needed rewriting is normalizing.
Needed redexes are not computable.

In this section we define needed atoms as atoms that must be resolved in
order to obtain an adequate state. We identify conditions on the selectability
predicate and the (in)adequacy predicates that guarantee that if a state
admits an adequate derivation, then it admits one in which only needed
atorm are selected. We call such a derivation a call by need derivation.
Note that due to the fourth dimension of non-determinism (the choice of the
program clause), we cannot hope that every derivation via the call by need
selection rule is adequate.

N ceded atoms. Needed atoms are defined using the notion of descendant
(see Definition 3.2).

Definition 4.1 Let P be a program and let .A. be an adequacy predicate.
An atom A in a state (Q; u) is needed with respect to .A if for every adequate
derivation (Q; u/ :::}* (Q'; u') we have that Q' does not contain a descendant
of A. 0

Note that in a state that is not the starting point of an adequate derivation,
every atom is needed.

196

Example 4.2

1. If we take for adequacy the traditional notion of success, then in any
state (Q; a/ every atom in Q is needed.

2. If A((A; a)) does not hold, then A is needed. 0

The first part of the pr_evious example reveals that needed atoms are simply
not interesting in the traditional approach to logic programming.

Requirements. What we aim at now, is to identify requirements that
guarantee the following property to hold: if there is an adequate derivation,
then there is one in which only needed atoms are selected. This is not the case
in general. It can be the case that needed atoms do not exist. Moreover,
problems occur when atoms that are not needed can make needed atoms
available. This can happen in three ways: by creating an atom (in the sense
of Definition 3.2), by turning an atom that is not needed into a needed one,
and by turning a non-selectable needed atom into a selectable one. This is
illustrated in the following example.

Example 4.3
1. Consider the program P defined by the clauses

a +-- c

b +-- c

Let the adequacy predicate A be defined as follows: A((Q; er/) holds if and
only if Q contains an atom c. Consider the state (a, b; E). Neither a nor b
is a needed atom, since both (a, b; E) ::::} (c, b; E) and (a, b; E) ::::} (a, c; E) are
adequate derivations. Hence the state (a, b; E) does not contain a needed
atom.

2. Consider the program P defined by the clauses

a +-- a'
a' +-- a"
b +-- b'
b' f- b"

Let the adequacy predicate A be defined as follows: A((Q; er/) holds if and
only if Q E { (a", b), (a, b")}. Then the state (a, b; E) does not contain a needed
atom, since we have adequate derivations (a, b; E) ::::} (a', b; c) ::::} (a", b; E) and
(a, b; E) ::::} (a, b'; E) ::::} (a, b"; <). Note that in this case resolving an unneeded
atom creates a needed atom.

3. Consider the program defined by the clauses

q(a, b) +--

q(a', b') +--

p(a) +--

p' (a') +--

197

Suppose that S(q(s, t)) holds only ifs is a ground term. Suppose further
that a derivation starting in (p(x),p'(x), q(x, y); t:) is adequate only if y is
instantiated to a ground term. The query p(x),p'(x), q(x, y) does not contain
a needed atom, essentially because there is more than one way to make a
descendant of q(x, y) selectable. D

This example motivates the following two definitions; the first one concerns
the predicates for (in)adequacy and the second one concerns the selectability
predicate.

In the rest of this section we refer to an fixed unspecified program P and
set of queries Q, which we assume to be closed with respect to P, i.e. that
for every derivation step (Q; o-) => (Q'; (J"T), using a clause of P we have that
Q E Q implies Q' E Q.

Definition 4.4 (In)adequacy predicates A and I are said to be serializable
if for each Q E Q the following conditions are satisfied.

1. If { = (Q;o-) => (Q';o-') is a derivation step with A((Q';o-')) and not
A((Q; o-)), then the atom selected in~ is needed.

2. Let { = (Q; o-) => (Q'; o-1) be a derivation step in which the selected
atom is not needed, and suppose that (Q'; o-1) admits an adequate
derivation. Then all needed atoms in (Q'; o-'} are descendants of needed
atoms in (Q; o-). D

Definition 4.5 A selectability predicate S is said to be serializable if for
every Q E Q the following requirement is satisfied. Let { = (Q; !) => (Q'; o-')
be a derivation step with selected atom A, and let B be an atom in Q that
is not selectable in (Q; t:), but which descendant B' is selectable in (Q'; o-1).

Then for every derivation (Q; !) =>* (Q"; o-'') such that the descendant of B
is selectable in (Q"; o-"), we have that Q" does not contain a descendant of
A. D

Call by need is adequate. Now we have the following result.

Theorem 4.6 If the {in}adequacy predicates A and I and the selectability
predicate S are serializable, then for each Q E Q.

1. if a state (Q; o-) is not adequate then it contains a needed atom,

2. · if there is an adequate derivation starting in (Q; o-) consisting of n
derivation steps, then there is an adequate derivation starting in (Q; o-)
in which only needed atoms are selected and which does not contain
more than n steps.

Proof. Let

198

be an adequate derivation of n steps starting in (Q; a-). We proceed by
induction on n.

1. Suppose that~ consists of one step: ~ = (Qo; (}o) =} (Q 1; ()1). By the
first property, we have that the selected atom in ~ is needed.

2. Suppose that ~ = (Qo; (}o) ==> (Q1; ()1) ==>* (Qn; (}n) consists of more
than one step. By the induction hypothesis, there is a call by need
derivation 6 issuing from (Q1 ; ()1) that is adequate. Let Ao be the
atom that is selected in the first step of~- Two cases are distinguished.

(a) Ao is needed. Then the derivation step ~o = (Qo;(}o) ==? (Q1;(}1)
followed by 6 is an adequate call by need derivation.

(b) Ao is not needed. We construct a call by need derivation that is
adequate, using serializability.

This result is quite abstract. In the following section we discuss a concrete
application.

5 Using (In)adequacy Predicates

In this section we consider logic programs with guards and delay declara
tions. We extend the language with so-called requests, which permits to
formalize a simple notion of adequacy which is useful practice. The first
subsection contains preliminaries, in the second subsection the notion of
request is introduced.

5.1 Guards and Delay Declarations

Guards. We roughly follow the approach described by Shapiro in [8]. A
guard is a conjunction of atoms built from function symbols and guard rela
tion symbols, which possibly don't coincide with the relation symbols used in
the program. Guards are written as G1, ... , Gk, which can be abbreviated
to G. A guarded clause is an expression of the form

We assume that it i8 decidable whether a ground instance of a guard holds.
The operational semantics as given in Definition 3.2 changes as follows. Let
A be the selected atom in some query and let T be a most general unifier of
the head of a clause c = H +-- G [B and A. If GT is ground and holds,
then c can be applied to A. If GT is ground and does not hold, then the
computation faib. If GT is not ground, then the computations suspends. As
in the case without guards, with classical notions of success and failure, the
computations also fails if A does not unify with the head of any clause of
the program.

199

Delay Declarations. Logic programming languages which employ a dy
namic selection rule need a mechanism for determining when an atom is
selectable. Here we use delay declarations as introduced by Naish in [7]. We
roughly follow the approach described by Apt and Luitjes in [l]. A delay

condit·ion is a conjunction built from delay base conditions of the following
form:

.. gro·und(s), which holds iff sis a ground term,

• nonvar(s), which holds iff sis a non-variable term

A difference with the delay declarations as in [1] is that we do not consider
delay conditions that are disjunctions.

Now a delay declaration for a relation symbol p is an expression of the
form

delay A ·unl'il c

with A an atom with relation symbol p and c a delay condition. We suppose
that a program is equipped with delay declarations. We admit the possibility
that there is more than one delay declaration for a relation symbol; in this
respect our approach differs from the one in [1].

Delay declarations influence the operational semantics as follows. An
atom B is said to be delay-safe if for every delay declaration delay A until c

and for every substitution (]" we have that A(]" = B implies that w holds. In
this setting we make use of the following notion of selectability: S(A) iff A is
delay-safe. Note that this selectability predicate is monotonic. Now in order
for the first requirement of Definition 3.1 to hold, we assume the following
relation bet.ween guards and delay declarations:
J or every delay-safe atom A and every guarded cla·use H ~ G [B of P we

have that -if A and H have a most general un·ifier e then Ge is ground.

Natural Programs. A moding is a function assigning to every argument
of a predicate symbol In or O·ut. In the first case an argument is said to
be ·input and in the second case it is said to be outp·ut. In the remainder
of this paper we assume every predicate symbol to have a unique moding.
An argument of a predicate symbol occurring in a clause (query) is said to
be produc·ing either if it occurs in the head and is input or if it occurs in
the body and is output. An argument of a predicate symbol is said to be
cons·uming otherwise.

Definition 5.1

1. A clause is said to be nat'Ural if the family of terms in its producing
positions is linear, i.e. no variable appears more than once. A program
is nat·urnl if every clause is natural.

200

2. A delay declaration delay A ·until c is natural if every variable of
c occurs in an input position of A, and moreover A has only fresh
distinct variables in its output positions. D

In the remainder of this section we consider natural programs with guards
and delay declarations as described in this subsection.

5.2 Requests

In the examples we have seen that some reasonable notions of (in)adequacy
depend not only on the program and the state under consideration, but also
on the the deg.Tee of instantiation of the variables of the initial state. This is
for instance the case if we start computing the list of prime numbers with the
aim to find only the first one (or the first few ones). Then we would like to
start in (prime(x); <) and specify the adequacy predicate to hold on (Q; CJ)
and p if the first element of XCJ is specified. In this subsection we introduce
a way to formalize such notions of (in)adequacy by means of requests.

A request condition or shortly a request is a conjunction built from the
following request base conditions:

• Val(x), which holds in a state (Q; C!J if Var(xC!) n Var(A) = r/J,

• Root(x), which holds in a state (Q; CJ) if either XCJ is not a variable or
Var(w) n Var(A) == 0,

Definition 5.2 A request configuration is an expression of the form r :
(Q; C!) with r a request.

The definition of a derivation step is extended to request configurations
as follows: if (Q; C!) :=? (Q'; 171), then r : (Q; CJ) =? r : (Q'; CJ1). A request
configuration r: (Q; 17) is natural if (Q; CJ) is natural. D

Other notions concerning derivations are extended in the natural way.
Natural request configurations are closed under resolution with natural

clauses.
In this setting we will consider the following notion of adequacy (now

defined on a request configuration and a program): A(r : (Q; C!)) holds if
and only if r holds in (Q; 17). We take for inadequacy the usual notion of
failure.

Example 5.3 The following program implements the sieve of Eratosthenes.

primes(x) ..._ from(2, y), sieve(y, x) .

jram(x,y) ..._ from(x + 1, z), y = [x!z] .
sieve([x!y], [xlz]) ..._ f ilter(x, y, u), sieve(u, z) .

f ilter(x, [y!z], u) ..._ div(x,y) I filter(x,z,u) .

f ilter(x, [y!z], u) ..._ nondiv(x, y) I filter(x, z, u'), u = [y!u'] .

201

We have the following derivation:

Val(x): (primes([xlxs]); £) =?

Val(x): (jrom(2,y),sieve(y,[xlxs]);£) =?

Val (x) : (f rom(3, z), y = [2lz], sieve(y, [xJxs]); £) =?

V al(x) : (Jrom(3, z), sieve([2Jz], [xJxs]); £) =?

Val(x): (Jrom(3,z),filter(2,z,u),sieve(u,xs);x ..._, 2)

This derivation is adequate because in the last request configuration the
request is satisfied. D

5.3 Call by need

The aim of the present subsection is to apply Theorem 4.6 in the practi
cal setting of logic programs with guards and delay declarations, with the
notion of request as defined above. So we need to show that the adequacy
predicate using requests and the selectability predicate using delays are se
rializable. This can be shown provided we impose one further requirement
on the programs we consider; this requirement is defined as follows.

Definition 5.4 We say that P is non-destructive if for every selectable atom
A, for every clause H +- G I ii in P and for every most general unifier er of
H and A, we have that Au is in its input positions a variant of A. D

Thus, a non-destructive progTam is a program which never instantiates the
input positions of the selected atoms. A large class of programs satisfies this
requirement, as is argued in [3].

Assuming programs to be non-destructive, we can show that the se
lect.ability predicate and the (in)adequacy predicates of the present setting
are serializable. Hence we have the following corollary of Theorem 4.6

Corollary 5.5 Let P be a natural and non-destructive program. Every re
quest configuration that is not adequate contains a needed atom, and if a
request configuration admits an adequate derivation of length n then it ad
m·its an adequate call by need derivation of length not more than n.

Finding needed atoms. We now discuss how to find needed atoms.

Definition 5.6 Let r: (Q; a) be a request configuration.

1. If r = Val (x), then we say that r demands an atom B in Q if a variable
in xcr occurs in a producing position of B.

2. If r = Root(x) then we say that r demands an atom B in Q if xa is a
variable occurring in a producing position of B.

202

3. If r == r 1 /\. r2, then we say that r demands an atom B in Q either if
r 1 demands B or if r2 demands B. 0

We need one last concept.

Definition 5.7 Let A be an atom and x E Var(A). We say that A is locked
on x if for every ground substitution a not having x in its domain, we have
that Au is not selectable. 0

It can be proven that if A is not selectable then there is a variable x in its
input positions such that A is locked on x. There might be more than one
such variable.

Definition 5.8 (Demanded Atom) Let r: (A; u) be a request configura
tion. The set of demanded atoms is the minimal subset of A such that the
following conditions are satisfied.

• if ra demands x and x occurs in an output position of A;, then Ai is
demanded,

• if A; is demanded and it is locked on a variable x, and x occurs in an
output position of Aj, then Aj is demanded. 0

Now we have the following result.

Theorem 5.9 In a natural and non-destructive program, demanded atoms
are needed. Moreover, every state that ·is not adequate contains a demanded
atom.

Example 5.10 Consider the program quicksort using difference lists:

qsort(x,y)
qsorLdl ([xlx'], y, z)

partition(x, [ylys], [ylls], bs)
partition(x, [ylys], ls, [ylbs])

partition(x, [], [], []).
qsort..dl(O, x, x).

+- qsorLdl(x, y, []).
+- partition(x', x, ls, bs),

qsorLdl (ls, y, [xly']), qsorLdl(bs, y', z).
+- x?_y lpartition(x,ys,ls,bs).
+- x < y I partition(x, ys, ls, bs).

Let l be a ground list. Using the specification of the adequacy predicate as
above, the request configuration

Val(x) : (qsort(l, [xlx']); E)

is the starting point of an adequate derivation that ends in a request config
uration in which the value of the first element of l is known. It is important
to observe that in order to obtain the desired result the computation does
not have to order the whole list, and it will not do so, provided that the
selection rule is sufficiently "intelligent", which is the case if a call-by-need
selection rule is employed; in this case it is worth noticing that the above
request configuration generates a derivation in which only half of the atoms
of the form qsorLdl(xs, ys, zs) which are introduced along the derivation
will eventually be resolved. 0

203

6 Concluding remarks

In this section we discuss some possible other uses of t.he parameterization
over success and failure.

Interactive Computing

The computation with requests can be extended such that one is allowed
to add requests on the fly. In this way we obtain in a very natural way a
notion of interactive computing. The interaction then is between a requesting
and a resolving agent. The requesting agent specifies a request of the form
ro: (Q; e). Then it is the turn of the resolving agent, who will try to construct
a derivation ending in a state that is adequate with respect to the request
ro. Having reached this point, it is again the turn of the requesting agent,
who might decide either to be satisfied, or to add another request r 1. One
can for instance think of a computation that is supposed to yield an infinite
list; first one asks for the first value and having got that one, one may decide
to ask in addition for the second one.

Expert Systems

As yet we did not fully exploit the possibility to specify an inadequacy pred
icate other than the usual notion of failure in logic programming. A domain
where it is useful is in that of expert systems. Suppose we are in presence of
a diagnosis system based on backward chaining. Then we can be interested
in knowing whether the system, in order to provide a certain explanation <l,
has been used a certain information (or inference rule} inf (or, equivalently,
if the explanation d would hold also if inf was not present). Generally, this
can be done by removing inf from the knowledge base; in our framework this
can be simply achieved by specifying together with the query an appropriate
inadequacy predicate which triggers every time that some information in inf
is being used. This has the advantage of not requiring internal modifica
tions. Furthermore, it could allow arbitrarily sophisticate control over the
inference mechanism, by forbidding certain "undesired" forms of reasoning.

Acknow ledgments

We thank Krzysztof Apt for feed-back.
This research was supported by NWO/SION project number 612-33-003,
entitled 'Parallel declarative programming: transforming logic programs to
lazy functional programs'. The first author was working at the faculty of
mathematics, computer science, physics, and astronomy of the University of
Amsterdam when this research was initiated.

204

References

[1] K. R. Apt and I. Luitjes. Verification of logic programs with delay dec
larations. In A. Borzyszkowski and S. Sokolowski, editors, Proceedings
of the Fourth International Conference on Algebraic Methodology and
Software Technology, {AMAST'95}, Lecture Notes in Computer Science,
pages 1-19, Berlin, 1995. Springer-Verlag.

[2] K.R. Apt. From Logic Programming to Prolog. Prentice-Hall, 1997.

[3] K.R. Apt and S. Etalle. On the unification free prolog programs. In
A. Borzyszkowski and S. Sokolowski, editors, Proceedings of the Confer
ence on Mathematical Foundations of Computer Science (MFCS '93},
number 711 in Lecture Notes in Computer Science, pages 1-19, Gdansk,
Poland, 1993. Springer Verlag.

[4] J. Glauert and Z. Khasidashvili. Relative normalization in orthogonal
Expression Reduction Systems. In N. Dershowitz and N. Lindenstrauss,
editors, Proceedings of the 4th International Workshop on Conditional
and Typed Rewriting Systems {CTRS 'g4), number 968 in Lecture Notes
in Computer Science, pages 144-165, Jerusalem, Isreal, 1994. Springer
Ver lag.

[5] G. Huet and J.-J. Levy. Computations in orthogonal rewriting systems, I
and II. In Jean-Louis Lassez and Gordon Plotkin, editors, Computational
Logic: Essays in honor of Alan Robinson, pages 395-443. MIT Press,
Cambridge, Massachusetts, 1991.

[6] A. Middeldorp. Call by need computations to root-stable form. In Pro
ceedings of the 24th Symposium on Principles of Programming Languages
{POPL '97}, pages 94-105, Paris, France, January 1997. ACM Press.

[7] L. Naish. An introduction to mu-prolog. Technical Report 82/2, The
University of Melbourne, 1982.

[8] E. Y. Shapiro. The family of concurrent logic programming languages.
ACM Computing Surveys, 21(3):412-510, 1989.

