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Abstract 
We investigate the frequency of complete sets for 

t•ar·ious complexity classes within EXP under several 
polynomial-time reductions in the sense of resource 
bounded measure. We show that these sets are scarce: 

• The sets that are complete under ::;~,,-tt­
reductions for NP, the levels of the polynomial­
time hierarchy, and ?SPACE have p2-measure 
zero for any constant a: < 1. 

• The ::;~"-T-complete sets for EXP have p2 -

measure zero for any constant c. 

• Assuming MA f. EXP, the :'.Sit-complete sets for 
EXP have p-measure zero. 

A key ingredient is the Small Span Theorem, which 
states that for any set A in EXP at least one of its 
lower span {i.e., the sets that reduce to A) or its upper 
span (i.e., the sets that A reduces to) has p2-measure 
zero. Previous to our work, the theorem was only 
known to hold for :'.Shu -reductions. We establish it for 

:=;~ 0<,>-tt-reductions. 

1 Introduction 
Lutz introduced resource bounded measure (15] to 

formalize the notions of scarceness and abundance in 
complexity theory. His approach makes it possible to 
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express statements like "only a few" or "most" sets in 
a complexity class C have property P. Many papers 
investigate resource bounded measure in relation with 
complexity theory [13, 19, 21, 1, 20, 24, 18, 2]. 

We can also use resource bounded measure as a tool 
for separating complexity classes. For example, if we 
could show that the complete sets in complexity class 
C have measure zero and the complete sets in 'D do 
not, we would have separated C from 'D. 

In this paper we follow that line of research. We 
investigate complete and hard sets for NP, the levels 
of the polynomial-time hierarchy, PSPACE and EXP, 
and give some evidence that they have p2-measure 
zero. On the other hand, the results of Bennett and 
Gill [8] imply that the :'.Sft-hard sets for BPP do not 
have p2-measure zero; Allender and Strauss [l] even 
showed they have p2-measure 1 in EXP. 

We use three different approaches to obtain our re­
sults. Two of them yield unhypothesized statements 
on the border of what is provable by relativizable tech­
niques. First, we significantly improve the Small Span 
Theorem of Juedes and Lutz [13]. The Small Span 
Theorem for a reducibility S~ states that for any set 
A in EXP, either the class of sets that ::;~-reduce to A 
(called the lower span of A) or the class of sets that 
A ::;~-reduces to (the upper span of A) or both have 
p2-measure 0. Since the degree of a set is the inter­
section of its lower and upper span, it implies that ev­
ery ::;~-degree has P2-measure zero, and in particular 
the ::;~-complete degree of any complexity class within 
EXP. The strongest Small Span Theorem previous to 
our work was due to Ambos-Spies, Neis, and Terwijn 
[4], who proved it for Shtt-reductions. The extension 
to reductions with a non-constant number of queries 
was a notorious open problem in the area. We estab­
lish the Small Span Theorem for :'.S~o(ll _£reductions, 
i.e., for non-adaptive reductions that make a subpoly­
nomial number of queries. Longpre [14] informed us 
that he obtained independently a Small Span The-



orem for <P1 o(t) -reductions using the compress-- og n-tt 

ibility method [9). 
Lutz [17] obtained a Small Span Theorem for non­

uniform reductions w.r.t. pspace-measure. Similar to 
his proof, our Small Span Theorem follows from the 
fact that most sets in EXP have a :S~o('l-tt-upper span 
with p2-measure zero. We actually establish this fact 
for :S~"'-tt-reductions for any constant o < 1. This 
way, we get stronger results on the scarceness of com­
plete sets than the ones that follow from the Small 
Span Theorem: Any s;,"_tt-degree within EXP has 
p2-measure zero. Previously, it was only known for 
:S~tt-reductions that the prrneasure of the complete 
sets for EXP have prmeasure zero [4, 10]. We also ob­
tain that the P2-measure of the :S~" -tt-hard sets for 
E and EXP is zero. 

Then we take a look at EXP in particular, and use 
an ad hoe technique to improve the results of the first 
approach for this particular case. We show that the 
:S~c_rcomplete sets for EXP have P2-rneasure zero 
for any constant c. Our proofs relativize and are on the 
edge of the scope of relativizable techniques: Showing 
the last theorem for unbounded growing exponent c 
would separate BPP from EXP. 

Therefore, we next look at what we can show un­
der a non-relativizing reasonable but yet unproven 
complexity theoretic hypothesis, namely the assump­
tion that MA -j::. EXP. Babai, Fort.now, Nisan and 
Wigderson [5) established the existence of a pseudo­
random generator that can be used to simulate BPP in 
subexponential time for infinitely many input lengths 
unless MA = EXP. Using this pseudo-random gen­
erator, Buhrman et al. [11) showed that the class 
of :Sft-complete sets for each of the ~-levels of the 
polynomial-time hierarchy has p-measure zero unless 
EXP = MA. Combining our second approach with 
theirs and some new ingredients, we are able to prove 
that the complete sets for EXP under :SPr·-reductions 
that make their queries in lexicographic order, have 
p-measure zero unless EXP= MA. In particular, the 
:Sft-complete sets for EXP have ]>-measure zero unless 
EXP= MA. 

Summarizing our results: 

• We prove a Small Span Theorem for :S~o('l-tt­
red uctions. 

• We show that the complete sets for NP, the levels 
of the polynomial-time hierarchy, and PSPACE 
under :S~" -tt-reductions have P2-measure zero for 
any a < 1. 

• We show that the hard sets for E and EXP under 
:S~" -u-reductions have Prtneasure zero for any 
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(} < 1. 

• We show that the :S~c-T-complete sets for EXP 
have pz-measure zero for any constant c. 

• We show that the :Sft-complete sets for EXP 
have p-measure zero unless MA =EXP (and the 
polynomial-time hierarchy collapses). 

The organization of this paper is as follows. We first 
give the necessary background on resource bounded 
measure and on pseudo-random generators. Section 3 
describes our results for arbitrary subclasses of EXP. 
Then we discuss our results particular to EXP. Sec­
tion 4 contains those without any complexity theo­
retic assumption; Section 5 those using the hypothesis 
MA #- EXP. Finally, we give some comments and 
mention remaining open problems. 

2 Notation and Preliminaries 
Most of our complexity theoretic notation is stan­

dard. We refer the reader to the textbooks by 
Balcazar, Diaz and Gabarr6 [7, 6], and by Papadim­
itriou [23). 

A reduction of a set A to a set B is a polynomial­
time oracle Turing machine M such that l'v1 8 = A. 
We say that A reduces to B and write A :::;~ B ('T' 
for Turing). The reduction M is non-adaptive if the 
oracle queries i\1 makes on any input are independent 
of the oracle. In that case we write A :Sft B ('t.t' 
for truth-table). If in addition, the number of queries 
on an input of length n is bounded by q(n), we write 
A :S~(n)-tt B. For a reducibility :S~, we define the 
lower span of a set A as Pr(A) = {BIB g A}, and 
the upper span of A as P;:- 1 (A.) ={BI A :S~ B}. The 
g-degree of A equals Pr (A) n P;:- 1 (A). 

An autoreduction M is a reduction that never 
queries its own input, i.e., for any input x and any 
oracle B, M 8 with input x does not query x. A set 
A is autoreducible if there is an autoreduction of A to 
itself. 
2.1 Background on Resource Bounded 

Measure 
For our purposes, we only have to define what it 

means to have resource bounded measure zero. 

Definition 2.1 A supermartingale is a function d : 
:E• -7 [O, oo) satisfying 

d(w) > d(wO) + d(wl) 
- 2 ( 1) 

for every w E :E*. If equality holds in (1) for all w, d 
is called a martingale. 
A supermartingale succeeds on a sequence w E 2:00 if 



d(w) = limsupwCw,w-+w d(w) = oo. It covers a class 
C of sequences if it succeeds on every sequence in C. 

A martingale d describes a strategy for an infinite one­

person betting game. At the beginning of the game, 

an infinite bit sequence w is fixed but not revealed. 

The player starts with initial capital d(,\), and in each 

round guesses the next bit of w and bets some of his 
capital on that outcome. Then the actual value of 

the bit is revealed. On a correct guess, the player 

earns the amount of money he bet; otherwise he loses 

it. The value of d(w) equals the capital of the player 

after being revealed the bit sequence w. The player 
wins on w if he manages to make his capital arbitrarily 

high during the game. A supermartingale describes a 

similar game, but now the player is allowed to throw 

away some of his capital in every round. 
Martingales yield the following characterization. 

Theorem 2.1 A class C ~ :E00 has Lebesgue measure 

zero iff it can be covered by a martingale iff it can be 

covered by a supermartingale. 

\Ve obtain a resource bounded variant by putting re­
source bounds on the martingales. 

Definition 2.2 ([16]) A (.super)martingale d is a p­

(super)martingale (resp. p2-(super)martingale) if we 

can compute d(w) in time polynomial in lwl (resp. in 
. I 0(1) I I tune 2 og w ). 

A system d; of (super) martingales is p-uniform (r·esp. 

p2-uniform) if we can compute d;( w) in time polyno­

mial in \w\ + i (resp. in time 210go(l)(!wl+i) ). 

A class C ~~=hasp-measure (resp. P2-measure) zero 

if it can be covered by a p-supermartingale ( resp. P2-

supermartingale ). We denote this by µP ( C) = 0 (resp. 

µp 2 (C) = 0). 

As in the unbounded case, the resource bounded 

measure-zero relations are monotone and closed un­
der union. The following resource bounded version of 
closure under countable unions holds. 

Theorem 2.2 ([16]) Let d; be a p-uniform (resp. P2-

uniform) system of supermartingales such that d; cov­

ers the class C;. Then U;C; has p-measure (resp. p2 -

measure) zero. 

Characteristic sequences provide the link between re­

source bounded measure and complexity theory: We 

associate with a set A ~ ~· its characteristic sequence 

\A= A(so)A(s1)A(s2) ... , where so,s 1,s2 , ... is t.he 
enumeration of~· in lexicographical order. 

The crucial property of the resource bounded 
measure-zero concepts not shared with the Lebesgue 

measure-zero concept, is that µP (E) f. 0 and 
µr 2 (EXP) f. 0 (16]. 
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2.2 Background on Pseudo-Random Gen-
erators 

Definition 2.3 ([22]) The hardness HA(n) of a set 

A at length n is the largest integers such that for any 

circuit C of size at most s with n inputs 

l 1 
\ ~r[C(x) = A(x)] - 21:::; -;' 

where x is uniformly distributed over En. 

A pseudo-random generator is a Junction G that, for 

each n, maps En into Er(n) where r(n) > n. The 

security Sc ( n) of G at length n is the largest integers 

such that for any circuit C of size at most s with r( n) 
inputs 

1 
\ Pr[C(x) = l] - Pr(C(G(y)) = 1]\:::; -, 

x y s 

where x is uniformly distributed over Er(n) and y over 
En. 

For our purposes, we will need a pseudo-random gen­

erator computable in E that stretches seeds super­

polynomially and has superpolynomial security at in­

finitely many lengths. We will use the one provided 
by the following theorem: 

Theorem 2.3 If MA f. EXP, there is a pseudo­

random generator G computable in E with r(n) E 
nB(logn) such that for any integer k, S'c(n) ::'.': nk for 

infinitely many n. 

The proof follows directly from the next results of 

Babai, Fortnow, Nisan and Wigderson (5], and Nisan 

and Wigderson [22], combined with some padding. 

Theorem 2.4 ([5]) If MA f. EXP, there is a set A E 

EXP such that for any integer k, HA ( n) 2: nk fur 

infinitely many n. 

Theorem 2.5 ([22]) Given any set A E EXP, there 

is a pseudo-random generator G computable in EXP 
with r·(n) E n 9 (logn) such that S'c(n) 2': JH,t(y'n). 

3 Complete Sets under Non-Adaptive 
Reductions with ncx Queries and a 
Small Span Theorem 

In this section, we establish our results on the mea­

sure of complete and hard sets for complexity classes 

within EXP. The following theorem forms the main 

ingredient. It states that most sets in EXP have a 

small upper span under :S~"-tt-reductions for con­
stant er < 1, and has a strong connection with the 
Small Span Theorem we will prove further. 



Theorem 3.1 For any a< 1, 

We first give an outline of the proof. 
Fix a :'.S~"-u-reduction M running in time nc for 

some constant c > 0, and a set A E EXP. We would 
like to construct a p 2-martingale that succeeds on any 
set B for which MB = A. Suppose we are given the 
initial segment w; of \B corresponding to all strings 
of length less than m;. See Figure 1. We can se­
lect an input x of length n; = mj/< for some con­
stant f > 0, and divide the available capital uniformly 
among the extensions w;+ 1 of w; corresponding to all 
strings of length less than m;+ 1 (m;+ 1 ~ ni) for which 
Mw:+i(x) = A(x). This way, our capital at the end 
of stage i is definitely not smaller than at the begin­
ning, and in case only half or fewer of the extensions 
pass the consistency test on x, we actually double it 
or even better. In order to be able to bet on the sets 
A E EXP for which this strategy fails on some set B 
such that MB = A, we will perform the consistency 
check not for a single input J: of length n;, but for 
a certain collection lM,i of n? + 1 inputs x of length 
n;: We distribute the available capital uniformly over 
all extensions w:+l for which Mw:+ 1 (x) = A(x) for 
every x E IM,i. If there is an input x E ht,i for 
which only half or fewer of the extensions w:+ 1 satisfy 

M"0:+1 (.r) = A(.r), we gain a factor of 2 or more in 
stage i while l)('tting on B. We will try this strategy 
at every stagr· i, and we succeed on B if the latter 
situation occurs for infinitely many of them. 

Now, suppose that for some B to which Al reduces 
A, this situation only occurs for finitely many stages. 
So for almost all stages i, on any input x E lM,i 
more than half of the extensions w;+l of w; satisfy 

Mw:+1 (x) = A(x). We would like to construct a p­
martingale that succi>eds on any suc:h A E EXP by 
betting on these x 's according to the majority vote 
of the extensions. We do not know the prefix Wi of 
\B we need for that, but we can guess the values 
of the bits in this prefix which M queries on inputs 
x E ht,i, i.e., divide our capital uniforrnly over all 
possible correspoucling strategies. In order for this to 
work, we will make sure that the set lM,i consists of 
nf + 1 strings of length n; on which M makes the same 
queries of length less than m;. This implies we have to 
distribute our capital among no more than 2n~ strate­
gies, and at least one of them will realize a relative 
gain of 2lhr .. I = 2"~+ 1 = 2. 2n~. So, if we do this 
at every stage with ~ of the capital available at the 
beginning of that stage, and leave the other ~ intact, 
we succeed on A: At almost all stages, we increase our 

capital with a factor of ~ · 2 = ~' and at the finitely 
many other stages, we do not loose all of it. 
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We define the stages as follows: 

1 

(2) 

Note that, no matter for what constant c the reduc­
tion M runs in time nc, the stages do not interfere at 
sufficiently high levels, i.e., m;+ 1 :S n'f for i sufficiently 
large. 

Next, we show that for sufficiently large i, the sets 
hr ,i exist for any :S~" -tt-reduction M, and that we 
can construct them efficiently. Here we need the fact 
that a < 1. 

Lemma 3.2 Let a < 1, f E (0, 1 - a), and m; and 
n; defined by (2). There is an integer io such that for 
any i 2: io and for any :S~" -tt-reduction M, there is 
a set of strings Q M,i such that 

l{x E :E"• I QM(x) n :E<m, = QM,;}I 2: nf + 1, 

where Q !'.'f(x) denotes the set of queries M maJ.:es on 
input x. Moreover, we can find the le:i:icographically 
first set Q M,i and the lexicographically first subset ht,i 
of 

{x E :En, I QM(x) n :E<m, =OM,;} 

with I ht,i I = nf + 1 in time 22"'. 

Proof (of Lemma 3.2) 
For sufficiently large i, the number of possible values 
of QM(J') n ~<m, for x E :E"• is bounded by 

(3) 

from which the existence of QM,i follows. A brute 
force search does the job. D 

We now formalize the above outline. 

Proof (of Theorem 3 .1) 
We use the notation from Lemma 3.2. Fix A E 
DTIME[2"k]. Let 

{ 
l if lwl < 2m•o 

11'A,M(w) = Prw;)w['ef x E lM,i: Mw(x) = A(x)] 
if 2m•o :S 2m, :S lwl < 2m•+ 1 • 

We define the martingale dA,M as follows: 

1 

{ 

2·71'A,M(wb) - • dA M(w) 
71'A,M(wb)+11'A,M(wb) ' -

if 11'A,M(wb) + 11'A,M(wb) -=I 0 
dA,M(w) otherwise. 



A B 

w;: 

'\'<m, 
'--' 

= r:<n~ 

L<rn1+1 = :E<n~+ 1 

::::i I;<< 

Figure 1: Betting strategies at stage i 

This means that for any sufficiently large i (such that 
i 2: i 0 and stage i + 1 does not interfere with stage i) 
and for any prefix w; of length 2m, - l, the martingale 
dA,M distributes 2:r"+ 1 - 2 m, · dA,M(wi) uniformly over 

all extensions w;+l of w; with lw:+i 1 = 2m•+ 1 - 1 for 

which lvfw;+1 and A agree on the membership of every 

string in IM ,i. 

The defining predicate of rr A, M depends on at most 

lht,i I· nf E 0( (log lwl) 2
·") positions of w not fixed by 

w. It follows that 7rA,M and dA,!vf can be computed in 
O(~) 

time 2(log lw!) ' . 

We distinguish between two cases for the behavior 
of M and A: Either there are infinitely many stages 
i such that no matter what the prefix w; is, there is 
always an input in h1,; on which only half or fewer of 
the extensions pass the consistency check between Al 
and A; or else for almost all stages i, there is a prefix 
w; such that for any input from IM,i, a strict majority 
of the extensions of w; make lvJ and A agree on that 
input. 

Case 1 :icvi,Vw E E 2='- 1 ,:lx E fM,i 

Prw~w[Mw(.r) = A(x)] :S ~­

Then for any w = XB such that M reduces A to 
B, and for any sufficiently large stage i for which 
the Case 1 condition holds, 

dA,M(Wi+t) 2: 2dA,M(wi), 

where Wj represents the prefix of w of length 
2"' 1 - l. This is because at least half of the ex ten-
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sions i<+i of w; with lw;+ 1 I = 2""+ 1 - 1 fail some 
consistency test. It follows that dA,M(w) = oo, 
and that 

µp 2 ({BIM reduces A to LJ}) =U. (4) 

Case2V°"i,3w E ~2 ""- 1 ,VJ'. E IM,i 

Prw~w[Mw(x) = A(J:)] > ~-

For any stage i and any b E ~IQ,\r,,I, let JM,i,b be 
the martingale with initial capital 1 that only bets 
on strings of h1,i, and for such a string J: E l.r,,1,; 

bets all of its money according to the rnajority of 
J\fw(.r) over all sequences w ~ 11;, wlwre u; is the 
characteristic string of le11gth 2"" - I in which 
the bit corresponding to tlw j-th element of QM,i 

equals the j-th bit of b, alld all other l>its are say 
0. Ties are broken arbitrarily. Tlw martingale 

J . - __ 1_ \' J . 
Af,i - 2IQM,,I ~1, M,1,1, 

has initial capital l and is cornpntablf· l!l time 
O(n2 ). It has the property that 

2lh1,.J 
JM,i(XA!~<",+1) 2: 2IQM,.I 2: 2 = 2J,\f,;(\,.il:s<•,), 

provided i satisfies the Case 2 condition. Since 
almost all i's do, the following p-rnartillgale JM 
succeeds on A: During stage i, it u:-;e:,; JM,i as a 
strategy on ~ of the capital it has at the beginning 
of stage i, and does nothing with the other ~-



Fix an enumeration Mj of all :::;~ .. -u-reductions such 
that we can compute Mj(x) in time polynomial in 
2lxl + j. Then the martingale system OMj is p-uniform, 
so there is a p-martingale o that succeeds on all sets 
A for which Case 2 applies for some :::;~"'-ti-reduction 
M. Consider any set A E EXP not covered by o. Since 
the martingale system dA,Mj is p2-uniform, equation 
{ 4) implies that the P2-measure of P;:;-Ltt (A) is zero. 
D 

Luc Longpre noticed that Theorem 3.1 also holds 
for :::;~"-T-reductions that make their queries in lexi­
cographical order. It actually suffices that the queries 
are made in length non-decreasing order. 

Theorem 3.3 Let :::;~ denote the reducibility by 
polynomial-time Turing machines that query no more 
than n"' strings on inputs of length n for some con­
stant a < 1, and make these queries in le:i:icographical 
order. Then 

µp({A E EXP I µp 2 (P; 1 (A)) f- O}) = 0. 

Proof sketch 
The betting strategy for P; 1 (A) is the same as in 
Theorem 3.1, except that we choose the set IM,i 

from Lemma 3.2 now of size n;. The construction 
in the proof of Lemma 3.2 still works, because for any 
x E En', the set of small queries QMw (x) n E<m, only 
depends on the prefix of w of length 2m, - 1, since Mw 
makes its queries in length non-decreasing order. 

The martingale OM,i is the average over several 
strategies. Now there is one strategy corresponding 
to every candidate set Q ~ E<m, of small queries, 
and every possible answer string b to these queries. 
The strategy only bets on the lexicographically first 
n; strings of length n; for which M queries exactly Q 
in the range E<m,, assuming the answers b to these 
queries. On such an input, it bets all of its money 
according to the majority of Mw ( x) over all sequences 
w that are consistent with b on Q. Note that we can 
determine this majority in time 20(n~) ~ 0(211 •) by 
computing the fraction of strings j3 E En~ such that 
Mw queries exactly Q in the range E<m, on input x 
and accepts/rejects, when the oracle queries of length 
less than m; are answered according to b, and the i-th 
different query of length at least m; is answered as (3;. 

By a similar argument as in (3), we can upper 
b net+~ 2n" bound the total number of strategies y 2 • · • « 

2n,. Their average yields the p-martingale OM,i. Since 
at least one strategy always bets correctly, OM,i real­
izes a gain factor of at least 
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during stage i. 
The rest of the construction and the analysis is the 

same as in the proof of Theorem 3.1. D 

Our results on the measure of complete sets follow 
directly from Theorem 3.1. By Theorem 3.3, they 
also hold for the more general reducibility introduced 
in Theorem 3.3. 

Corollary 3.4 For any a < 1 and C E EXP, the 
:::;~"-tt-degree of C has P2-measure zero. In particu­
lar, the classes of :::;fi., _u-complete sets for NP, the 
levels of the polynomial-time hierarchy, ?SPACE, and 
EXP all have p2 -measure zero. 

Proof 
Suppose not, then for any set A in the ::;;,., -u-degree 
of C, the p2-measure of P;;-Ltt (A) is not zero, since 
it contains the sfi"-tt-degree of C. But, by Theorem 
3.1 this would imply that the p-measure of the ::;;,., -tt­
degree of C is zero. D 

For the class of S~"-tt-hard sets, we get: 

Corollary 3.5 For any a < 1 and any complnity 
class C such that µp(CnEXP) # 0, the class of sfi"-tt­
hard sets for C has p2-measure ::ero. In particular, 
the ::;;,., -tt-har·d sets for E and EXP have p:i-measure 
::ero. 

Proof 
By definition, for any set A E C, the S~"-tt-hard 
sets for Care contained in P;;-Ltt(A). If the class of 
::;~ .. -tt-hard sets for C does not have P2-measure zero, 
Theorem 3.1 yields that µp(C n EXP) = 0. D 

The s;f,.,_tt-hard sets for NP, the levels of the 
polynomial-time hierarchy, and PSPACE also have p2-
rneasure zero, provided these classes themselves do not 
have p-measure zero. 

From Theorem 3.1, we can also deduce a Small 
Span Theorem. However, we have to settle for a more 
restrictive reducibility than ::;~., -tt, because we need 
transitivity in the proof, and s~"-tt is in general not 
transitive for any constant a > 0. It suffices to keep 
the number of queries subpolynomial, i.e., asymptoti­
cally smaller than ne for any c > 0. 

Theorem 3.6 (Small Span Theorem) For any 
set A at least one of the following holds: 

' -1 -µp (P 71oc1>-tdA) n EXP) = 0 or µp 2 (P n•<IJ -tt (A)) - 0. 

Proof 
We distinguish between two cases: 



• Either Pno(tl-tt(.4) contains a set B such that 
µp 2 (P;,o\ll-tt(B)) = 0. Then the transitivity of 

:S~oll l-tt and the monotonicity of p2-measure im­

ply that µp,(P;, 0\ 1l-tt(.4)) = 0. 

• Or else P no(1J_tt(A) n EXP is included in {B E 
EXP I µp2 (P~Lu(B)) f. O} for any o > 0. Then 
Theorem 3.1 says that µp(P no(t)_tt(.4) n EXP)= 
o. 

0 

For any set A E EXP, Theorem 3.6 states that 
at least one of its lower span or upper span under 
:S~•(ll-tt-reductions is small. 

4 Complete Sets for EXP under Adap­
tive Reductions with nc Queries 

We now show how, in the case of EXP, we can ex­
tend the results of the previous section on the measure 
of complete sets from :::;;,o -tt-reductions for any o < 1 
to :::;;,c_y-reductions for any constant c: 

Theorem 4.1 For any constant c, the class of 
:S~c_y-complete sets for EXP has p2-measure ::ero. 

The proof technique differs significantly. We exploit 
the diagonalization power of EXP against :::;;, 0 _y­

reductions to show that all :S~c-rcomplete sets for 
EXP share a structural property that allows the con­
struction of a p2-martingale succeeding on all of them. 
We first establish the structural property. 

Let M1, M2, ... be an enumeration of :S~c_y­
reductions, where /1.1; runs in time ni. 

Lemma 4.2 For any constant c, and for any :S~c_y­
complete set C for EXP, there is an index j such that 

V n, 'Vx E En : MF ( (Oj, x)) = 
minorityw;)x.cl:c<n [.Mj((Oj, .r))]. (5) 

The right-hand side of ( 5) denotes the least probable 
value of Mj ((Qi, x)) when w is uniformly distributed 
over all extensions of the initial segment of xc cor­
responding to all strings of length up to n. Ties are 
broken in some fixed way, say always 0. 

Proof (of Lemma 4.2) 
Let 

. . 1 
D={(O',.r)i Pr [Mt((01 ,x))=l]<-}. 

w;)x.cl:c<l.rl 2 

The above probability is a weighted sum of the accept­
ing leaves of the reduction tree of M; on input (Qi, x). 
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The weight of a leaf is only nonzero if on its path P 
all queries of length less than Ix I are answered consis­
tent with C, and in that case its weight equals 2-q(P), 
where q(P) denotes the number of other queries made 
along P. Wlog. we are assuming here that on no path 
the reduction asks the same query more than once. 
So, we can decide Don instances (Qi, x) of length n in 
time 2n°(nc · timec(n) +ni). Since C E EXP, this im­
plies D E EXP, and since C is :'S~c-T-hard for EXP, 
that there is a :S~c-T-reduction Mj reducing D to C. 
The index j satisfies ( 5), because for any x E En, 

MF((OJ,x)) = 1 

{::} (OJ, x) E D 
. 1 

{::} Pr [Mj((01 ,x)) = 1] < -
w;)x.cl:c<• 2 

{::} minorityw;)xcl:c<.[Mj((Oj,x))] = l. 

0 

Lemma 4.2 provides a consistency test that elimi­
nates at least half of the remaining possibilities. We 
now use it in a straightforward way to construct a p2-

martingale covering all :S~c-T-complete sets for EXP. 

Proof (of Theorem 4.1) 
For any index j, we construct a (uniform) p2-

martingale di that succeeds on any set C for which 
(5) holds. The martingale di has initial capital 1, and 
works in stages defined by 

1 
(n; + j)J. 

The i-th stage starts when the martingale has to 
bet 011 the string on.. Let Wi denote the prefix 
seen up to that moment. During stage i, dj <lis-
t 'b 2~"•+l 2n' d ( ) . 1 rt utes ~ - · j w; umform y over all exten-
sions wi+ 1 of w; with Jwi+i I = 2n•+ 1 - 1 for which 

MJw:+, ((OJ, on·)) = minorityw;)w, [Mj( (OJ, on'))]. 
Note that for any set C satisfying ( 5), dj at least 

doubles its capital along C at every stage, so it suc­
ceeds on any such C. Therefore, by Lemma 4.2, the 
martingale system (dJ)J°= 1 covers the class of :S~c-T­
complete sets for EXP. 

Using the approach of Lemma 4.2, we can compute 
the minority and the probabilities underlying dj(w) in 
time 0(2(loglwl+J) 0 (log Jwl + j)J ). So, the martingale 
system (dj )f=, 1 is P2-uniform. D 

In an analogous way, we get the following theorem 
for E: 



Theorem 4.3 For any constant c, the class of 
<P T-complete sets for E hasp-measure zero. -en-

Ambos-Spies informed us very recently that he and 
Lempp have a new proof of Theorems 4.1 and 4.:3 [3]. 

5 Complete Sets for EXP under Adap­
tive Reductions 

Theorem 4.1 cannot be improved using relativiz­
able techniques, since it fails for unbounded growing 
exponent c in a world where BPP = EXP, and such 
a world exists [ 12]. This follows from the relati vizable 
result of Allender and Strauss [l] that the class of sets 
that are not ::=;~-hard for BPP has µ-measure zero. In 
this section, we will see what results we can get on the 
measure of the EXP-complete sets for polynomial-time 
reductions without an explirit bound au the number of 
queries, under the likely but unrelativizing hypothesis 
MA i= EXP. We obtain: 

Theorem 5.1 The class of sets complete for EXP (or 
E) under ::=;~-reductions that make their queries in lcr­
icographical order, has p-rneasure zero unless EXP = 
MA. In particttlar, the class of ::=;ft-complete sets for 
EXP {or E) has p-mtasure zero unfrss EXP= MA. 

Buhrman et al. [11] used the hypothesis MA i= EXP 
to show that the class of autoreducible sets under the 
same type of reductions has p-measure zero. \\,"e will 
use the same idea, narnely applying pseudo-random 
generators to efficiently approximate the probabilities 
underlying the martingales constructed ill the previ­
ous section, and that way mimic their behavior by 

an easier-to-compute martingale. The pseudo-random 
generators whose existenre is known to follow from the 
assumption MA i= EXP by Theorem 2.:1, have super­
polynornial security at i!lfinitely many lengths. They 
will allow us to approximate the undrrlying probabil­
ities well enough, but only at infinitely many lengths. 
Therefore, in order for the mimicing martingale to suc­
ceed, we will make sure we make a lot of money on 
these lengths. We will use the following lemma in­
stead of Lemma 4.2 to do so: 

Lenuna 5.2 Fix· a pseudo-random generator com­
putable in time 2'm for 8ome constant a > l, and with 

stretching r·( n). There is an oracle Turi11g machine T 
running in time 22 an with the following property: For 
any set C complf.'le for EXP under ~~-T'tductions that 
make their queries in le.ricographic order, there is an 
index· j of such a reduction Mj such that for any string 
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x, 

(6) 

where n = lxl and In= {l,2, ... ,:3logn}, prouided 
r(n), Sc(n) ~ n1+ 1 and n is sttfficiently large. 

Lemma .5.2 also holds if we substitute 'length uon­
decreasing' for 'lexicographic'. 

Proof (of Lemma 5.2) 
C' ·c1 . "'" fi E .,,.,n_1 ,ons1 er an mput J.' E ~ , a pre x w '-'- , a 
string b E ~J log n, and an index j such that M1 makes 
its queries in length non-decreasing order. We can 
compute the probability 

as the fraction of strings ;3 E ~n'+' such that the 
predicate underlying rr1 holds when the oracle queries 
of length less than n are answered according to w, 

and the k-th different query of length at least n is an­
swered as /A. The predicate depends on o( nJ +l) bits 
of the prefix w in total, because the queries of length 
less than 11 made by 1\1 are the same for any (f. It 
follows that the test has circuit complexity, say 11.i + 1 

for sufficiently large n. Therefore, we can approxi­
mate rri (.r, w, b) to within an additive term of n\ usiBg 
the psf~udo-randorn generator G at length n, provided 
r(n) 2: n.i+ 1 and S'c(n) 2: nH 1 • 

On input (OJ, .r, Oi), the machine Tw will compute 
these approximations irJ (1-, w, b) to irj(J.', w, b) for ev­
ery b E I;310g 11 , select the lexicographically first value 
b for b that rninimizes irJ(x, w, b), and output the i-t.h 

bit of b. T can do this in time 22"". 

Note that there is a setting b* E ~3 logn such 

that rr1(x, w, b*) ~ n\: Inductively set bi such that 
at least half of the extensions w ~ w satisfying 
Mj((Oi,x:,Ok)) = b'k for 1 ::=; k < i, fail the test 

Mw ( (O.i x Oi)) = b~. Therefore, J l l l 

rr1(x,w,b) < 

< 

< 

- 1 
irj(X, W, b) + 4 

n 
- • 1 
rrJ(x,w,b) + n4 

2 1 2 
ir1(x,w,b*) + n4 :'.:'. 17 3 + 114 ::=; 

2 
3' n 

which establishes the first part of (6) for any set C. 



Now fix a set C complete for EXP under :::;~­
reductions that make their queries in lexicographic or­
der, and consider the set 

D {(QJ,x,Qi)ll:Si:S3loglxland 

yCnE<lrl ((QJ, x, Qi)) accepts}. 

Since C E EXP, we can also decide D in EXP, and 
since C is hard for EXP under ::;~-reductions that 
make their queries in lexicographic order, there is such 
a reduction Mj reducing D to C. This establishes the 
second part of ( 6). D 

Lemma 5.2 gives a consistency test that eliminates 
a fraction at least 1 - ~ of the possibilities, and 

3 
therefore multiplies the capital by a factor of n,, . For 
Lemma 4.2 these figures are ~ and 2 respectiveiy. We 
will now see how we can expl;it the larger increase in 
capital to construct a p-martingale that succeeds on 
the complete sets for EXP under ::;~-reductions that 
make their queries in lexicographical order, using the 
above pseudo-random generator once more. 

Proof (of Theorem 5.1 for EXP) 
Fix a :S~-autoreduction Mj running in time nJ that 
makes its queries in lexicographical order. Let T be 
the oracle Turing machine given by Lemma 5.2 based 
on the pseudo-random generator G that follows from 
the hypothesis MA f. EXP by Theorem 2.3. 

Let 

11"j,m(w) 

and consider 

{ m3 · ll"J·,m(w) 
dj,m(w) = 2 

if lwl ~ 2m 
otherwise. 

The function dj,m is computable in time 20(logi+i n), 

as well as the function dj = :L:=l n! 2 dj,m· They 
are non-negative and satisfy the supermartingale in­
equality (1) for all strings w, except possibly for those 
of length 2m - l. In case of a set C satisfying (6) for 
X = Qm, the inequality also holds for W !;:; \C of length 
2m - 1. Moreover, dj,m(\c) = m3 , and d1(X.c) = oo. 

We now want to construct (super)martingales dj,m 
and di that behave like dj,m and dj along \'. c, and are 
computable uniformly in time lwla for some constant 
a, i.e., independent of the running time of Mi. The 
key idea is to efficiently approximate the probability 
7rj,m using the pseudo-random generator G as we did 
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in the proof of Lemma 5.2. Following that approach, 
for some constant a1 , we can compute in time lwJa 1 

an approximation ITj,m(w) of 11"j,m(w) to within f.j,m = 
m-U+4 ), provided r·(m) ~ mi+1 and Sc(m) 2'.: mH4 . 

By Theorem 2.3 (assuming MA f:. EXP), infinitely 
many m satisfy the latter conditions; we call such m's 
good. 

There are still two technical problems we have to 
solve in order to make sure that dj,m is a supermartin­
gale: First, what to do along sets C for which (6) does 
not hold for x = Qm, and what if m is not good? We 
will deal with that in a moment. Second, even for 
a good m along a set c satisfying (6) for x = Qm, 
just replacing 11"j,m with irj,m in the definition of dj,m 
might not work. For example, if irj,m underestimates 
11"j,m on input w, and overestimates it on input wQ and 
wl, condition (1) is violated. Note that such a situ­
ation can only occur in case the string corresponding 
to the position right after w is either an element of the 
form (Qi. Qm, Qi) for some i E Im, or a query Mi makes 
on such an input. As the queries are made in lexico­
graphical order, there can be no more than 3mi log m 
such strings along any sequence w. Since the limit lj,m 

on the estimation error is such that (3mi logm) · lj,m 

remains bounded, we can remedy this problem by ac­
cumulatively subtracting a term 2<j,m from the ap­
proximation for "Tr"j,m, and adding a constant to the 
resulting approximation for dJ,m. The former modifi­
cation guarantees that condition ( 1) is met; the latter 
is needed after the former in order to keep the values 
non-negative. More precisely, we define 

{ 
m3 (irj,m(w) - 2qj,m(w)<j,m) + 1 

d~ (w) = if lwl > 2m J,m -
4 otherwise, 

(7) 

where Qj,m(w) denotes the number of positions in w 
that correspond to elements of the form (Q.i, Qm' Qi) for 
some i E Im, or a query Mj makes on such an input. 
Note that Q ~ Qj,m(w)::; Qj,m(w) s; 3mi log m. 

We solve the first problem by explicitly checking 
for each prefix w that the values d": proposes for J,m 
the one bit extensions wQ and wl, satisfy the defin-
ing conditions of a supermartingale. If they do, we 
accept them; otherwise we enforce the conditions by 
r:ot betting. So, we define the function dj,m as follows: 
dj,m(.A) = 4 and 

dj,m(wb) = 

{ 

dJ,m(wb) 
if dJ": m(wQ) > Q and dJ": m(wl) > Q and 

* ' - • . ' - - (8) 
_ dj,m(wQ) + dj,m(wl) :S 2dj,m(w) 
dJ,m(w) otherwise. 



It follows that Jj,m is a supermartingale computable 
in time lwl 42 for some constant a2 independent of Mj 
and m. 

Claim 5.1 If m is good and sufficiently large, 
dj,m(w) = dj,m(w) for any w !;; xc, where C is a 
set satisfying (6). 

Proof (of Claim 5.1) 
We show that JJ,m(w) = d),m('w) for any w !;; Xc 
by induction on lwl. Clearly, the statement holds for 
w = >.. So, it suffices to argue for any string w that 
the conditions on the right-hand side of (8) are met, 
assuming that Jj,m(w) = d),m(w). 

If lwl < 2m -1, this is true because dj,m(v) = 4 for 
lvl < 2m. If lwl 2'.: 2m - 1 , the first two conditions on 
the right-hand side of (8) are satisfied, since for any 
string v of length lvl 2'.: 2m, 

dj,m(v) > 1 - 2qj,m(v)m3 <j,m 

. 6logm 
> 1 - 6<1· mm1 +3 logm = 1- ---, 

' m 

which is positive for sufficiently large m. In case lwl = 
2m - 1, the remaining condition is met, because 

dj,m(wO) + dj,m(wl) 

< m 3 (1i"j,m(w0) + ii"J,m(wl)) + 2 

< m 3 (7rj,m(w0) + 11"j,m(wl) + 2fj,m) + 2 

= 2m3 (rrJ,m(w) + ij,m) + 2 

< 2(2 + 1+1) = 2Jj,m(w). 

In case lwl 2'.: 2m, the remaining condition certainly 
holds if d),m(wO) ::::: dj,m(wl) = dj,m(w). Otherwise, 
qJ,m(wO) = qj,m(wl) = qj,m(w) + 1, and we have that 

dj,m(wO) + dj,m(wl) 

m 3 (7i"j,m(w0) + ii"j,m(wl)) + 2 

-2(qj,m(w0) + qj,m(wl))m3 fj,m 

< m 3 (7rj,m(w0) + 11"j,m(wl) + 2fj,m) 

+2 - 4(qJ,m(w) + l)m3 Ej,m 

2m3 (rrJ,m(w) - <j,m) + 2 - 4qj,m(w)m3 €j,m 

< 2m3 ii"j,m(w) + 2 - 4qj,m(w)m3 €j,m 

::::: 2dj,m(w)::::: 2dj,m(w). 

0 

So, for a good and sufficiently large m we get that 

JJ,m(xc) 

dj,m(Xc) 

> dj,m(Xc) + 1 - (2qj,m(w) + l)m3 fj,m 

> dJ,m(Xc) 
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for any set C satisfying ( 6). Since there are infinitely 
many good m's and dJ,m(Xc) = m3 , this implies that 

Ji = I::=l r!;rdJ,m is a supermartingale that succeeds 
on any such set C. It is computable in time lwla for 
some constant a independent of j. 

Since for a standard enumeration Mi including all 
::;~-reductions that make their queries in lexicograph­
ical order and such that M; (x) is computable in time 
(21xl + i)O(l), the supermartingale system J; is '{>­

uniform, Lemma 5.2 finishes the proof of the theorem. 
0 

6 Discussion and Open Problems 

The question of whether Theorem 3.1 holds for 
some constant a ::?: 1, remains open. A positive an­
swer would be the best result provable by relativizable 
techniques, because of a similar reason why our results 
in Section 4 are optimal. By the same token, rela­
tivizable techniques cannot establish the Small Span 
Theorem for ::;ft-reductions. 

It seems unlikely that our approach allows to estab­
lish Theorem 3.1 for o > 1, because of Lemma3.2. For 
some constant € > 0 and a given ::;~"-tt-reduction .M, 
this would require the construction of sets IM,i con-

taining nf ( 1 l strings of length n; and slightly smaller 
sets Q M,i, such that all queries of length less than nj 
that M makes on inputs from IM,i are in Q,w,;. How­
ever, the following argument shows that for a 2'.: 1, it 
is not even possible for IJM,il to equal IQM,d when fo; 
every input x E r;n. the queries are chosen from ~<n, 
in a Kolmogorov random way. The concatenation u 
of all these queries is a Kolmogorov random string 
of length 2n•nf+'. Given a listing of the elements of 
QM,i, we can describe the queries for elements of IM,i 

by pointers to that list. Assuming IIM,;I = IQM,il = q, 
this leads to a description of u of length at most 
qnf+q(n;+nf logq)+(2n•-q)nf+e+O(logq), which is 
asymptotically less than lul as long as logq::; cni for 
some constant c < 1. Since we have log q E O(log ni), 
we get a contradiction to the Kolmogorov randomness 
of u. 

Ambos-Spies, Neis, and Terwijn [4] focused on p­
measure, and they established the equivalent of The­
orem 3.1 and the Small Span Theorem within E for 
<Pk -reductions for any constant k. A similar Kol­- -tt 
mogorov argument as above indicates that our tech-
niques are not powerful enough to extend these results 
to stronger reductions. Even the :S~tt -case remains 
open. 
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