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This paper will concentrate on contributions of CWI to the development of par­

allel Runge-Kutta (RK) methods. We shall describe two approaches to constrnct 

such methods. In both approaches, a conventional RK method is used 

as a corrector equation whose sclution is approximated by an iterative method. 

In the first approach, the iteration method uses a fixed number of iterations 

without solving the corrector. Assuming that a one-step predictor is used, this 
approach again results in an RK method, however, an RK method possessing a 

lot of intrinsic parallelism. In the second approach, the corrector is solved by 
modified Newton iteration and the linear systems arising in each Newton itera­

tion are solved by a parallel iteration process which is tuned to the special form 

of these linear systems. Furthermore, we apply the parallel iteration process in 
a step-parallel fashion which further enhances the amount of parallelism. Fi­
nally, the application of parallel RK methods within the framework of waveform 

relaxation is briefly discussed. 

1. lNTRODl'CTION 

\Ve will be concerned with the solution of the initial-value problem (IVP) 

dy - f \ 
dt - (y,, =Yo, y,f E ~ 

by Runge-Kutta (RK) methods on parallel computers. 
the RK method 

Yn = Yn--,l + h(br ('; I)F(Y,.), 

R(Y,.) := Y,, - •S) I)F(Y 11 ) - e g Yn--1 = 0. 
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( 1.1) 

Our starting point is 

(1.2) 



Here, A is the s-by-s Butcher matrix, b is an s-dimensional vector containing 
the step point weights, e is the s-dimensional vector with unit entries, I is 
the d-by-d identity matrix, h is the stepsize tn - tn-1, and ® denotes the 
Kronecker product. The s components Y ni of the sd-dimensional solution 
vector Y n (the stage vector) represent s numerical approximations to the s 
exact solution vectors y(tn-l + cih) where c = (ci) := Ae denotes the abscissa 
vector. Furthermore, for any vector V = (Vi), F(V) contains the derivative 
values (f(Vi)). It is assumed that the components of care distinct and arranged 
in increasing order. In the following, we shall use the notation I for any identity 
matrix. However, its order will always be clear from the context. 

This paper will concentrate on contributions of CWI to the development of 
parallel RK methods. We shall describe two approaches to construct such meth­
ods. In both approaches, (1.2) is used as a corrector equation whose solution 
is approximated by an iterative method. In the first approach, the iteration 
method uses a fixed number of iterations and (1.2) is not necessarily solved. 
Assuming that a one-step predictor is used, this approach again results in an 
RK method, however, an RK method possessing a lot of intrinsic parallelism. 
In the second approach, (1.2) is solved by modified Newton iteration and the 
linear systems arising in each Newton iteration are solved by a parallel iteration 
process which is tuned to the special form of these linear systems. Sections 2 
and 3 describe the construction and analysis of the parallel RK methods and 
the parallel iterated RK methods. In Section 4, the parallel iteration process 
is applied in a step-parallel fashion which further enhances the amount of par­
allelism. Finally, the application of parallel RK methods within the framework 
of waveform relaxation is briefly discussed in Section 5. 

2. PARALLEL RK METHODS 

Consider the method 

Y}~l = e 0 Yn-1 

y~) =e@Yn-1 

Yn = Yn-1 

+ h(B Q9 I)F(Y~0l) + h(C Q9 I)F(e 0 Yn-1), 

+ h(B @ I)F(Y~!l) + 

+ h((A - B) ® J)F(Y~- 1 l), j = 1, ... , m, 

+ h(bT@ I)F(Y~ml), 

(2.1) 

(2.2) 

(2.3a) 

where B and C are appropriately chosen matrices and m is a fixed integer. 
This method can be interpreted as an iterative method with a fixed number 
of iterations. Evidently, if m --+ oo and if y}!l converges, then vk'l converges 
to the solution Y n of (1.2). However, for m fixed, we may also interpret 
{ (2.1),(2.2),(2.3a)} as an RK method with Butcher tableau as given in Figure 
2.la. 
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In the case of stiff problems it is recommendable to replace (2.:3a) the 

formula (see SHAMPINE [49]} 

I) rylm) 
\ " - e Yn-il· 

provided that A is nonsingular (we remark that for stiffly accurate RK meth­

ods, where bT = e~·A, formula (2.3b) reduces to Yn = ). The 

step-point formulas (2.3a) and (2.3b) will be referred to as the conventional 

and the Shampine step-point formula. The Butcher tableau for l 
(2.3b)} is given in Figure 2.1 b. h.Iethods of the type can also be based on 

more general correctors than RK formulas (for a surwy \Ve refer to BURRAGE 

[10, 11, 12] and to [51]). 
The order of accuracy. the linear stability and the a.mount of intrinsic par-

allelism of the methods {(2.1),(2.2),(2.3)} are determined by the matrices B 
and C. \Ve have the foHowing result for the (nonstiff) order of accuracy 

e.g. JACKSON and N0RSETT [35], JACKSON. K\".'ERNO and NORSETT [3·1], 

BURRAGE [8,9], VAN DORSSELAER [17], and the C\VI papers [22, 

THEOREM 2.1. The orders of accuracy of the RK methods { 

and {{2.1).(2.2),(2.3b)} are respectively given by p := min{p*, m + q + l} and 

p : = min {p*, m + q}, where and q denote the orders the corrector 

and of the predictor formula for Y~01 . If (B + C)e = c, then q ~ 1 and if also 

Be = Ac. then q 2:: 2. D 

Results for the stiff order of accuracy are given in [25]. From now on, the orde 

of a method is always meant to be the nonstiff order of accuracy. 
The linear stability properties are obtained by applying {(2.1).(2.2),(2.3)} 

to the basic stability test equation y' = >.y. For the step point formulas (2.3a) 

and (2.3b), this leads to the respective stability functions 

Rm(z) = R(z) + zbTZ"'(z)Q(z)e, 

R 111 (z) = R(z) + bTA- 1Z"'(z)Q(z)e, 
(2.4) 

where z := h>. and where the matrices Z, Q and thf' fuuction Rare given by 
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Z(z) := z(I - zB)-1(A- B), 

Q(z) :=(I - zB)-1 (1 + zC) - (I - zA)- 1 , 

R(z) := 1 + zbT(J - zA)- 1e. 

(2.5) 

Here, R(z) is the stability function of the corrector (1.2). In the following 
sections, we discuss the cases where B vanishes and where B is diagonal. 

2.1. Explicit RK methods 
For nonstiff problems, we may set B = C = 0 to obtain an explicit s(m + 1)­
stage RK method requiring sm + 1 right-hand side evaluations (in [22] we 
called such methods Parallel Iterated RK methods, or briefly PIRK methods, 
in order to indicate that they are based on iterating an RK method). Since 
in nonstiff situations it is natural to use the conventional step-point formula 
(2.3a), Theorem 2.1 implies that the order of accuracy is given by 

p := min {p*, m + q + 1} = min {p*, m + 1}. 

Each block of s stages of this PIRK method can be computed in parallel, 
so that for m ::; p* - 1, we effectively have an (m + 1)-stage method of or­
der m + 1 (provided that s processors are available). Hence, for m::; p* - 1, 
{(2.1),(2.2),(2.3a)} generates an explicit RK method (ERK method) the order 
of which equals its number of effective (or sequential) stages. !SERLES and 
N0RSETT [33] showed that this is an optimal result, because the order p of ex­
plicit RK methods cannot exceed the number Sseq of sequential stages (see also 
N0RSETT and SIMONSEN [47]). If we choose for the underlying corrector, the 
s-stage Gauss-Legendre method, then p* = 2s, so that the number of proces­
sors is half the order. The stability polynomials of optimal ERK methods are 
given by truncated Taylor expansions of exp(z), the stability regions of which 
can be found in the literature (cf., e.g., [19]). Experiments on four-processor 
Alliant computers were performed at the University of Trondheim [36, 40] and 
at CWI [22]. These experiments showed that parallel RK methods of the above 
type are quite efficient. 

REMARK 2.1. Optimal ERK methods can also be generated by Richardson ex­
trapolation (see, e.g., (23] and (50]). In particular, extrapolation of the explicit 
midpoint rule generates an optimal ERK of order p which only needs (1 + p/4] 
processors (here, [.] denotes the integer part function). However, the experi­
ments in [23] indicate that they are more expensive than Gauss-Legendre-based 
methods. o 

2. 2. Diagonally implicit RK methods 

Parallel diagonally implicit RK methods arise if B is a diagonal matrix D. Be­
cause of the 'diagonal' implicitness, each block of s stages can be computed in 
parallel, so that effectively, we only have m + 1 implicit stages. The stability 

36 



·~ --.. "~·-···~"--~-~-----

Order Pst ·'seq K Stability Remarks 

p•3 I p-1 A DIRK. N0RSE1T {44) 
p-3 2 p-1 >A DIRK. ('ROllZEIX [lb} 
p-4 p-1 I A DIRK. <'ROllZEIX [lb], ALEXANDER {l J 
p-4 p-2 2 L PARK. ISERLES & NCIRSE.11" [33) 

p- 3. 4, 5 p-1 >A Parallel DIRK. C = 0. D : diug(c/. (27] 

p-6. 7 p-1 >A(a) Parallel DIRK. C = 0, D = diug(c). [27) 
p- 3, 5. 7 s p >A Parallel DIRK. C: A-D. {X/-D-1 A! -0. {24J 
p:Sb,p•S p L Parallel DIRK. C = 0, D • ol, [27]. [45) 
p:SS,p•IO p+I L Parallel DIRK. C = 0, D" 01, [27), [45) 

TABLE 2.1. Characteristics of DIRK, PARK and Parallel DIRK methods. 

regions can be computed from the stability functions (2.4). In [27J and [24], 
this has been done for several choices of B = D and C. Table 2.1 specifies 
the main characteristics of a number of these parallel DIRK methods. For rea­
sons of comparison, we also list characteristics of conventional DIRK methods 
and a parallel RK (PARK) method of !SERLES and N0RSETT [33]. In this 
table, Pst denotes the block-stage order, Sseq the number of implicit sequen­
tial stages, and K the number of processors needed. furthermore, A-stability, 
A( a)-stability, £-stability, and strong .4-stability and A(n)-stability are respec­
tively indicated by A, A(a), L, > A, and > A(a). All these methods need only 
one LU-decomposition per processor. The methods referred to in the fifth and 
sixth row of this table use either Gauss-Legendre or Radau IIA as the under­
lying corrector, both with step-point formula (2.3a). In the methods of the 
last three rows, the corrector is Radau IIA with step-point formula (2.3b), and 
in the methods of the last two rows, D is determined by the restricted Pade 
approximants of N0RSETT [45] (see also WOLFBRANDT [54]). With respect to 
its order, the PARK method of !SERLES and N0RSETT needs a surprisingly low 
number of sequential stages and yet it is L-stable. The parallel DIRK methods 
have the advantage of a relatively high stage order and step-point order. 

3. PARALLEL ITERATED RK METHODS 

The conventional approach of solving the corrector equation (1.2) is the modi­
fied (or simplified) Newton iteration scheme 

(I - A® hJnHYWl - YW- 1') = -R(Y!;i-1 1 ), i = 1, ... , m, (3.1) 

where Jn is the Jacobian of the right-hand side function f at tn and Y~o) is the 
initial iterate to be provided by some predictor formula. The most powerful 
RK methods with respect to order of accuracy and stability (such as those 
based on Gaussian quadrature) possess a full Butcher matrix A, so that each 
iteration with (3.1) requires the solution of an sd-dimensional linear system for 
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the Newton correction y;p - YW- 1). If direct solution methods are used, then 
the costs for solving the linear systems usually are extremely high, particularly 
for large values of sd, because of the expensive LU-decompositions. As pointed 
out by Butcher in 1976, LU-costs can be reduced by using a transformation 

y~l = ( Q 0 I) uWl to obtain transformed linear systems with a matrix of coef­
ficients of the form I -Q-1 AQ®hJn (assuming that Q is nonsingular). Hence, 
by choosing Q such that Q-1 AQ has a (block) diagonal or (block) triangular 
structure, the transformed systems can be split into subsystems of dimension 
less than sd (see [13, 14]). Unfortunately, RK methods of Gauss-Legendre and 
Radau type possess a Butcher matrix with at most one real eigenvalue, so that 
the best we can achieve is either complex-valued subsystems of dimension d or 
real-valued subsystems of dimension 2d (cf. HAIRER and WANNER [19, p.130]). 
To circumvent this overhead in the linear algebra part, N 0RSETT [46] intro­
duced RK methods with an A-matrix possessing a real, one-point spectrum. 
Using the BUTCHER transformation [13], these methods can be implemented in 
such a way that only real-valued systems of dimension d have to be solved. This 
work was then extended by BURRAGE [7], who also derived reference formulas 
for error control. These so-called SIRK methods are particularly suitable for 
implementation on sequential computer systems, since they require only one 
LU-decomposition of dimension d per Jacobian or stepsize update. On par­
allel computer systems, we may drop the 'one-point spectrum' requirement, 
because the LU-decompositions needed in the transformed subsystems can be 
computed in parallel. Hence, the Butcher transformation is a means to intro­
duce parallelism into RK schemes. For example, if A has a real spectrum such 
as the multi-implicit RK methods of N0RSETT [46] and 0REL [48]. Effectively, 
these methods require only one LU-decomposition of dimension d per Jacobian 
or stepsize update. 

At CWI we did not change the RK method, but we changed the iteration 
process for solving the corrector equation (1.2). We designed parallel iteration 
processes with the property that only real-valued, linear systems of dimension 
d are to be solved. 

3.1. PDIRK and PTIRK methods 

In the preceding section, we used (2.2) with a fixed number of iterations and 
B was chosen to achieve high accuracy and good stability. Let us now use 
(2.2) as a (nonliuear) iterative solver for approximating the solution of the 
corrector ( 1.2) and let B be chosen to achieve fast convergence to the corrector 

solution. We remark that in an actual application, the solution y~l of (2.2) 
is often aj.>proximated by just one modified Newton iteration. In that case, the 
iteration method (2.2) reduces to a process of the form (3.1) with A replaced 
by B. 

3.1.1. PDIRK methods. As in Section 2.2, we may choose B diagonally. This 
results into the Parallel Diagonal-implicit Iterated RK (PDIRK) methods anal-
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ysed in (24]. They possess the same parallel features as the parallel DIRK 
methods. It turned out that in the case of stiff IVPs, it is crucial for a fast 
convergence that p(Z(oo)) = p(I - n-1 A) is small (here, Z(z) is defined as 
in (2.5)). In [24], the matrix B = D was determined by minimizing the value 
of p(I - n-1 A) by a computer search. The resulting matrices D indicated 
that it is highly likely that there exist matrices D such that p( z ( oo)) actually 
vanishes. This led us to pose the problem: 

PROBLEM 3.1. For what class of Butcher matrices A do there exist diagonal 
matrices D with positive diagonal entries such that n-1 A has a one-point 
spectrum at 1? o 

If such a matrix D exists, then the diagonal entries of D are determined by the 
(nonlinear) system that is obtained by requiring that the equation 

det(n- 1 A - µI) = o 

has only zeros equal to 1. In this way, L!OEN [41] showed the following result: 

THEOREM 3.1. For s-stage Radau IIA correctors with s = 2, ... , 8, there do 
exist diagonal matrices D with positive diagonal entries such that n- 1 A. has a 
one-point spectrum at 1. O 

The matrices D derived by Lioen all generate A-convergent PDIRK methods 
(here, a method is called A-convergent if its region of convergence contains the 
whole left halfplane, see Section 3.2.1.). However, the convergence in the initial 
phase of the PD IRK iteration process may be rather slow. 

3.1.2. PTJRJ( methods. One of the research issues of the ODE group at 
CWI has been the improvement of the rate of convergence of PD IRK methods, 
particularly with respect to the initial phase of the iteration process. One op­
tion is to choose the matrix B = T where T is lower triangular with positive 
diagonal entries. Such methods were called PTIRK methods [30]. The LU­
decomposition of I -T@hJn again splits into s parallel LU-decompositions of 
dimension d. If T is nondefective, then we may perform a Butcher transforma­

tion y~l = (Q@I)Y!/l, with nonsingular Q, such that Q- 1TQ is diagonal. In 
this way, we can obtain 'diagonal' implicitness as in the PDIRK methods. As 
for the PDIRK methods, it is again crucial that p(Z(oo)) = p(I -T-1 A) is as 
small as possible. The following result was proved in [20, 30]: 

THEOREM 3.2. Let A be defined by any collocation method with positive abscis­
sae and let A = TU be the Crout decomposition of A with T lower triangular 
and U unit upper triangular. Then, p(I - r- 1 A) vanishes and T has positive 

diagonal entries. D 

For a large number of RK methods, we computed the convergence regions of 
the generated PTIRK method which were all found A-convergent. Moreover, 

39 



the rate of convergence in the initial phase is considerably improved (see the 

experiments reported in [30]). 

3.2. PILSRK methods 
The iteration processes described in the preceding section are nonlinear solvers 

for RK systems. Quite recently, we started an alternative approach. Our 

point of departure is the modified Newton method (3.1). In order to avoid 

linear systems of dimension 2d, we solved the linear Newton systems in (3.1) 

iteratively by an inner iteration process which only requires the solution of 

d-dimensional systems. This leads to the inner-outer iteration method 

y~O,r) =initial approximation to Y n 

For j = 1 tom 

Y (j,O) _ y(j-1,r) 
n - n 

For v = 1 tor 

(I - B 0 hJn)(YW'") - Y~,v-l)) = 
(3.2) 

-(I - A 0 hJn)(Yfj,v-1) - yfj-1,r)) - R(Yfj-1,r)), 

either yW·"l = y;,'~:;·i + h(br 0 J)F(YW·"l) 

or (j,v) = (m,r) + (bT A-1 AA I)(Y(j,v) - fV>, (m,r)) 
Yn Yn-1 '61 n e'<YYn-1 , 

where B is a free matrix with real entries and positive eigenvalues. The inner 

loop of (3.2) represents the inner iteration process with inner iterates y;J•"l and 

yW·"l, v = 1, ... , r. We shall refer to this process as a Parallel Iterative Linear 

System method for RK systems (PILSRK method). The process defining the 

outer iterates Y~,r) and YW,r), j = 1, ... , m, will be called the outer iteration 

process. Obviously, if the inner iterates converge as r -t oo, then they converge 

to the solution YWl of (3.1). Before discussing the choice of suitable matrices 

B, we consider convergence and stability aspects of the iteration process (3.2). 

3.2.1. The region of convergence. In order to derive convergence conditions, 

let uWl be the solution of the equation 

(I - A 0 hJn)(uWl - YW-l,r)) = -R(YW-l,rl), (3.1') 

and define the inner iteration error Jj,v, the modified Newton error Oi, and the 
total iteration error e: j,v, i.e., 

J. ·= y(J,v) - uUJ e. ·= yUl _ y C'. ·= yU,v) _ y 
J,v · n n ' J · n n, c..J,v · n n (3.3) 

with E:j,O := E:j-1,r· Furthermore, we need 
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------------ ':,,_..,. ----------·----
G(A) := F(Y n +A) - F{Y n) - (I© .ln)A, 

M (3.4) 

Ni :=(I - B ® h.ln)- 1(A © /), N2 :=(I -A© hJn)- 1(.4 0 /). 

From (3.1) and (3.2} we derive the error recursions 

Oj,11 == Moj,11-1' Oj == hN2G(Oj_i), e;,11 == Mej,v-1 + hN1G(ej-l.r), (3.5) 

where j = 1, ... , m and v = 1, ... , r. From the relation for 01,11 we see that 
the inner iteration process converges if the spectral radius p{M) of M is less 
than 1. Since the spectrum a(M) of M is given by that of the matrix Z(z) 
defined in (2.5) with z E a(hJn), we are led to define the region of convergence 
of the inner iteration process by r := {z: p(Z(z)) < I}. We shall call Z(z) the 
amplification matrix at the point z and p(Z(z)) the (asymptotic) amplification 
factor at z. Its maximum in the nonpositive halfplane Re(z) ~ 0 will be denoted 
by p. If p < 1, i.e. r contains the whole nonpositive halfplane, then the inner 
iteration process will be called A-convergent. 

THEOREM 3.3. The PILSRK method converges as r -too if a(hJn) E r. D 

A simple manipulation reveals that 

(3.6) 

Hence, if a(hJn) Er and if e 1,o = Oo, then it follows from (3.5) and (3.6) that 
ej,oo and OJ satisfy the same error recursion. Thus, if the modified Newton 
method (3.1) converges and if a(hJn) E r, then the iteration process (3.2) 
converges as m, r -t oo. 

3.2.2. The order of accurocy of the iterotes. To obtain further insight into the 
convergence behaviour, we consider the order of accuracy of the method (3.2) 
after a finite number of inner and outer iterations. Let ei,r = O(h"Ul). Then 
it follows from (3.4) and (3.6) that p(j) satisfies the recursion 

p(O) = q + 1, p(j) = p(j - 1) + min{r, 2}, j = 1,. .. , m, (3.7) 

where q is the order of the predictor. Since Y~m,r) = Y n + em,r. we derive 
from (3.7) the result: 

THEOREM 3.4. Let Po = min{r, 2} and let p* and q denote the orders of 

the corrector (1.2) and of the predictor formula for Y~O,r). Irrespective the 
structure of B, the order of accurocy of the method (3.2) is git1en by p := 
min {p*, q + 1 + mPo} when using the conventional step-point formula and by 
p := min {p*, q + mJJo} when using the Shampine step-point formula. D 

This theorem shows that with respect to order of accuracy, it is recommend­
able to perform at least two inner iterations, so that for the step-point formulas 
(2.3a) and (2.3b) the order of the corrector is reached within [(p* - q)/2] and 
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[(p* - q + 1)/2] outer iterations (we recall that the order of accuracy is un­
derstood to be the nonstiff order; for stiff order considerations of Newton-like 
processes we refer to the work of VAN DORSSELAER and SPIJKER [17, 52]). 
For example, for Radau IIA correctors with extrapolation predictor of order 
q = s - 1 (see (3.11) below) and step-point formula (2.3b), we find that for 
at least two inner iterations (i.e., r 2::: 2), the order of accuracy is given by 
p := min{2s -1,s -1+2m}. Thus, the order of the corrector is attained for 
[(s + 1)/2] or more outer iterations. 

3.2.3. The PILSRK amplification factors. Next we address the speed of con­
vergence of the PILSRK method. Since M is not expected to be a normal 
matrix, the asymptotic amplification factor p defined above only gives infor­
mation on the speed of convergence after many inner iterations and does not 
give insight into the convergence behaviour in the initial phase of the iteration 
process. However, by using a generalization of a theorem of Von Neumann due 
to NEVANLINNA [43] (see also [19, p.356]), we can prove the theorem: 

THEOREM 3.5. Let 11·112 denote the Euclidean matrix norm, and let µ 2 [.] be the 
corresponding logarithmic norm. If µ2[Jn]::::; 0, thenllMrll2::::; max llZr(z)ll2· 

Re(z):S::O 
D 

This theorem suggests characterizing the convergence behaviour of PILSRK 
methods by the (averaged) amplification factors 

p(r) = rnax p(r)(z), p(r)(z) := v'llzr(z)ll2. 
Re(z)::;o 

(3.8) 

3.2.4. Stability. Finally, we discuss the stability of the method after a finite 
number of inner and outer iterations. Stability also plays an important role, 
because stability for small values of r and m implies that we can produce 
stable results at low computational costs. This is particularly important in 
step-parallel applications of the scheme (3.2) (cf. Section 4). Therefore, it is 
of interest to know the minimal number of iterations in order to ensure that 
(3.2) is sufficiently stable. For the test equation y' = >..y, we have Yn = 
(I - zA)- 1 ey~~·;), so that we deduce from (3.3) and (3.6) 

y~m,r) = y n + zmr(y~O,r) _ y n) 

=(I_ zmr)(I _ zA)-ley~~·;) + zmry~D,r). 
(3.9) 

The stability behaviour is highly dependent on the predictor formula for Y~?,rJ 
used. WP shall consider last step-point value (LSV) predictors that are only 

based on y~~·;l and extrapolation (EPL) predictors based on y~~·;) and Y~~·;). 
They can both be cast into the form 

y(O,r) = p@ Y(m,r) + (P '°' I)Y(m,r) 
n n-1 '<Y n-1 ' (3.10) 
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,,.,~ 

B s-4 • s- 8 * r r 

PDIRK (3.6, 2.5, 1.6, ... , 0.52} 5 (20, 12, 7.7 •... '0.90} >40 

PTIRK [0.6, 0.5, 0.5 •... '0.50} 11.0. 0.9, 0.9, .... 0.86J 2 

(3.14),Aij-O,y• l (2.2, 1.0. 0.8 •...• 0.441 3 114.2.6, 1.6 ..... 0641 7 

TABLE 3.1. PILSRK amplification factors (p(l),p(2l,p(3l, ... ,p(00 )] for Radau 
IIA correctors. 

where the s-by-s matrix P and the s-dimensional vector p are determined by 
order conditions. For LSV predictors we have p = e, P = 0 and order q = O. 
If c8 = 1, then we have for EPL predictors 

p := o, P := wv- 1, 

V:=((c-e)i-1 ), W:=(ci- 1), i=l, ... ,s; q=s-1, 
(3.11) 

where powers of vectors are defined componentwise. On substitution of (3.10) 
into (3.9), we find for the test equation the relation 

y~m,rl = (/ - zA)-1ey~~il - zmr(I - zA)-1ey~~·;l 

+zmrpy(m,r) + zmrpy(m,r). 
n-1 n-1 

Together with the step-point formulas (2.3), we obtain a linear recursion for 
the pair (y~m,r), Y~m,r)). The stability is determined by the magnitude of the 
characteristic roots of this recursion. In the particular case of stiffly accurate 
RK methods (as in Radau IIA correctors) where c8 = 1 and bT = ef,4, we 
have y~m,r) = (e; ® J)Y~m,r), so that 

Yn(m,r) S ( )Y(m,r) = mr Z n-1 ' 
(3.12) 

Bmr(z) := (/ - zmr)(I - zA)- 1eef + zmr(pef + P), 

the characteristic roots of which are given by the spectrum a(Smr(z)) of the 
stability matrix Smr(z). In applications, it is advantageous to have an L­
stable method. Since A-stability automatically implies L-stability if p(Smr(oo)} 
vanishes, we are led to consider Smr(oo) = zmr(oo)(pef + P). Since B is 
nonsingular (because B is assumed to have positive eigenvalues), Smr(oo) = 
(/-B-1 Aynr(pef +P). By observing that (J-B- 1,4)mr vanishes for mr;::: s 
if p(J - B-1 A) vanishes, we have the result: 

THEOREM 3.6. Let Cs= 1, mr;::: s, p(l-B-1 A)= 0, let the pr-edictor formula 
be defined by {(3.10),(3.11}} and let the Shampine step-point formula be used. 
Then, the method (3.2} is L-stable whenever it is A-stable. D 

Using (3.12), we can compute the maximal spectral radius in the left halfplane 
Re(z) ~ 0 of the stability matrix Bmr(z). This maximum value will be denoted 
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by p(Smr). We have A-stability or L-stability if p(Smr) = 1. The following 
subsections are devoted to the region of convergence, the amplification factors 
p(v), and to stability for a few special choices of the matrices B. The starting 
point for choosing B is that the linear systems in (3.2) are more efficiently 
solved than the linear system (3.1) when implemented on a parallel computer 
system. 

3.2.5. PDIRK matrices. Suppose that we choose B = D, where Dis a diagonal 
matrix with nonnegative diagonal entries. The linear system in (3.2) is only 
'diagonally implicit' and splits into s subsystems, each of dimension d, which 
can be solved in parallel. In particular, if a direct linear solver is used, then 
the s LU-decompositions can be computed in parallel, so that effectively only 
one decomposition is required. Similarly, in each iteration, the s components 
of the right-hand side and the s forward-backward substitutions can also be 
computed in parallel. 

Evidently, we may use the PDIRK matrices D employed in the PDIRK 
methods discussed in Section 3.1. However, since the PDIRK methods exhibit 
a poor initial convergence, we may expect that the inner amplification factors 
p(r) associated with the generated linear solver are relatively large for small r, 
particularly for larger values of s. In the first row of Table 3.1, these factors 
are listed for the four-stage and eight-stage Radau IIA correctors (note that 
p(oo) equals p). In addition, we listed the valuer* of r for which the PILSRK 
amplification factor becomes less than 1. The relatively large values of r* 
'ndicate that the number of iterations needed to achieve sufficient stability is 

•ected to be high when using PDIRK matrices. The value of mr for which 
rir) becomes and remains less than or equal to a given number ry will be 
>ted by (mr),.. For a few values of ry, Table 3.2 lists (mr)ry for the LSV 

A EPL predictor and for a number of Radau IIA correctors (in order to 
demonstrate how fast the (mr)ry-values increase with s, we have included all 
correctors with s :S 8). These values show that for s = 4 the (mr)-y-values are 
acceptable, but for s = 8, PDIRK becomes stable only after a dramatically 
large number of iterations. 

3.2.6. PTIRK matrices. Next we use the PTIRK matrices T used in the 
PTIRK methods of Section 3.1.2. For the four-stage and eight-stage Radau 
IIA correctors, the range of inner amplification factors is given in Table 3.1. 
These figures clearly show the superior convergence behaviour obtained by the 
PTIRK matrices for small r. Moreover, for finite mr-values the stability is also 
much better as can be concluded from the (mr)7 -values listed in Table 3.2. 

3.2. 7. Matrices with positive eigenvalues. Our most recent attempt to improve 
the convergence chooses for B a matrix with the only requirement that its 
eigenvalues are positive. By performing a Butcher transformation, it is possible 
to transform the PILSRK method into 
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TABLE 3.2. Values of 

u-t 
(3.13) 

-(Q-1 ~: l)R((Q cs; I)Y~t-1.ri), 

where A. = Q- 1 A.Q and where T = Q- 1 BQ is triangular or even if B 
is ncmdl'fective. A first result is 

THEOREM 3. 7. Let A have 
, K = { k : 1/& ::/= and B 

~k ± with ~k > 0 and Ok := 
= QtQ- i, u.1here Q is such that the 

uu.1,Qu111ii blocks of = Q- 1 .4Q = ) are 

and where 

tn 0 

f 22 
t·-.-

.431 .432 

0 

0 

f33 

/(r 2nk -- 2-y~k + ak) 

1 +12 

0 

0 

0 
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Cll .. -ay ----------

( 1'ak 0 ) tkk := 
1+12 

if k EK, tkk := ~k if k (/. K. 
£/£. --1-ak 
I 

(3.14b) 

Then: 

(a) The PILSRK method is A-convergent for all "( > 0. 
(b) In the left halfplane Re(z) ::; 0, the asymptotic amplification factor vanishes 

at infinity and is bounded by 
p = max{ll - 21("/2 + 1)-1.;ka;; 1

1 : k EK}. D 

The value of the asymptotic amplification factor p is minimized for 1' = 1. 
However, if"! = 1, then Tkk is defective for k E K, so that B cannot be 
diagonalized. At the cost of a slight increase of p, the defectness of Tkk can be 
removed by choosing "! close to but different from 1. The resulting values of p 
are smaller than for the PILSRK method generated by the PD IRK and PTIRK 
matrices (see Table 3.1 and recall that p = p( 00l). In [31] we analysed the case 
where the lower triangular blocks A;j in T vanish. Using a numerical search, 
transformation matrices Q with minimal condition number (with respect to the 
Euclidean norm) were determined for "( ~ 1. The averaged inner amplification 
factors and the (mr)1 -values corresponding with these matrices Q are listed 
in the Tables 3.1 and 3.2. Table 3.1 shows that the initial and asymptotic 
amplification factors are respectively larger and smaller than those associated 
with PTIRK matrices, while Table 3.2 implies that for s = 8 block-diagonal 
matrices of the form (3.14) are much more stable than the PTIRK matrices. 

4. STEP-PARALLEL ITERATION 
In methods employing step-parallel iteration, the iteration procedure is concur­
rently applied at a number of step-points, that is, the iteration process at the 
point tn is already started without waiting until the iterates y(jl at tn-l have 
converged. Step-parallel methods and its various versions (also called frontal 
methods) have been discussed and analysed in a number of papers, among 
which MIRANKER and LINIGER [42], BELLEN [3], BELLEN et al. (4, 6], BUR­
~AGE [12], GEAR and Xu XUHAI [18], CHARTIER (15], and AUGUSTYN and 
UBERHUBER [2]. Further references can be found in BURRAGE [12]. 

In the following, we survey step-parallel methods developed at CWI. These 
methods can be seen as step-parallel versions of the scheme (3.2). The 'step­
parallelization' of (3.2) consists of a modification of the predictor formula and 
of the residual function R. In order to specify this modified scheme, we write 
R(Yn,Yn-1) instead of R(Yn). Then the step-parallel version of (3.2) is de­
fined by 
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For n = 1 to N 

=p 

For = l tom 

= 
For 11 = l tor 

(l- B 
1) 

-(I - A. @hJ,, 

-R(Y}!-1,r1' 

either 

or ), 

wher(' S denotes the number of integration steps. In the case of one inner 
iteration (r = 1), this scheme has been analysed in [28, 29. The coupling 

between the iterates Y!t''"1 and in ( 4.1) allows us to start the iteration 
process at the point tn already after just one outer iteration at t 11 _. 1 , that is, as 

soon as Y~1_:_~l is computed, we can compute Y!,2_:_~l and Y!,1 concurrently. In 
•!., , . l . . " y'<J,r) yU-l.r) yU-2.ri .. , 11 l. »! •. us ~ay, tie outer iterates 1 , 2 , :i , ... tan a ie computu 

In fact, we may write: 

For j = l tom 

For i = l to min{j, N} 

If i = j then YjO.ri = p C': Yl~-·~l + 
yU-i+Llll = yU-i,rJ 

' ' 
For 11 = l to r-

'I_ B ® hJ )(Y(j-i+l,11) _ yU-Hl,v-l)) = 
\ - 11 1. I 

-(I - A.® hJ;)(Y;1-i+Li•-ll _ y:J -i,r)) 

-R(YU-i.r) U-Hl,rl) , , Y,-1 , 

(4.2) 

·";here we assumed m 2: N and where we mnitted the step-point formula. 
effectin'ly, only N + m - l outer iterates have to be computed, instead 

of 2Vm outer iterates as required by (3.2). The sequential (or effedive) number 
of outer iterations per step becomes mseq = + N - l)N- 1 ~ mN- 1 + 1. 
However. the step-parallel approach requires that the predictor formula needed 
t t i . . . b ed ffi . l . """. yO.rl Th" o start 11e 1terat10n at tn is as on a su cient y "'sa1e · iterate 11 _ 1·. 1s 
requirement implies that we should perform sufficiently many inner iterations 
in the first outer iteration. The condition m 2: ;V imposed on (4.2) implies that 
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we need N processors for a parallel implementation. In practice, the number 
of steps may be much larger than the number of processors available. This can 
be accounted for by dividing the integration interval in subintervals (windows) 
and by applying the integration process successively on these subintervals. 

For r = 1, a convergence analysis of ( 4.2) and related versions can be found 
in [28, 29, 53]. Here, we shall consider the case r 2:: 1. For simplicity, we only 

consider step-point formulas of the form y}/,r) = (ef ®I)Y1r/'r). An elementary 
derivation reveals that for the usual test equation the iteration error 
e:~j,n) := Y~,v) - Y n satisfies the relation 

e~,v) = Me:k,v-l) +(I - B ® hJn)- 1 (ee'I ® I)e:~~{, (4.3) 

where M is defined in (3.4). This leads to 

e(j,r) - L e(j,r) - Mre:U-1,r) 
n r n-I - n , 

(4.4) 

or equivalently, 

( 
e(j,r) 

} 1 

e:U+l) = MN,re(j), e(j) := 
e(j,r) 

2 

e(j,r) 
N 

MN,, ~ ( 

0 
(4.5) 

Mr 0 0 

l LrMr Mr 0 0 ... 
Lr2Mr LrMr Mr 0 
Lr3Mr L/ lvfr LrMr Mr 

Evidently, we have convergence whenever the spectrum u(M) of M is within 
the unit circle. In Section 3 we already saw that this is precisely the convergence 
condition for the inner iteration process. However, since MN,r is defective for 
N > 1, the inner amplification factors may be large for small r. Proceeding as 
in Section 3, we define the inner amplification factors ( cf. (3.8)) 

(4.6) 

where 

( 
zr 0 0 0 

Krzr zr 0 0 
ZN,r(z) := Kr2zr KrZ" zr 0 

Kr3zr K,.2zr KrZ'' zr } (4.7) 

and 
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TABLE 4.1. Inner amplification factors for Radau 
HA correctors. 

K,. :=(I - (I -

"'"'""'""'L of Table 3.1 where Hw inner fact.ors for ;\' :::: l are 
is given by Table 4.1 where N = 2. 3, 4 (note that. ). This 

table shows the same trends as Table 3.1, but much more"~ .. ,,,, .. ., ...... ,,,, 

5. \\'A\'EFORM RELAXATION 

The derivation of waveform relaxation (WR) methods starts with ,..,,".""'"""t 
the IVP ( l. l) in the form 

= <J.i(y,y), y(to) =Yo, y,</J E 1) 

where is a satisfying = f(y). This spHHing 
function is chosen such that the .Jacobian matrix J* = o<jJ/fJu has a simple 
structure, so that, given an approximation ylk~ to the solution y of (5.1), a 
next approximation yU<l is more easily solved from the system 

(5.2) 

than y is solved from l ). Here. k = 1. 2 ..... q, and yl 01 denotes an initial 
to the solution of ( 5.1). The iteration process ( 5.2) is called ron­

tin1.wus WR iteration with WR iterates yWI. This was introduced by 
LELARASMEE [38] and Ht'EHLl and SANGIO\'ANNl-V!NCENTELLi 

in 1982 and since then has intensively been analysed and applied to IVPs 
(see e.g. WR iteration has a lot of potential parallelism. For example, 
a popular choice for the splitting function 4> is such that the matrix J• is u­

by-a block-diagonal (block-Jacobi \VR method). Then, each iteration of the 
WR method {5.2) requires the integration of s uncoupled IVP systems which 
can be done in parallel on s processors. For a detailPd survey of the potential 
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------------ CWIQ-rly --------------

for parallelism of WR methods, we refer to the recent book of BURRAGE [12]. 
Here, we present a brief description of a WR approach based on RK methods 
and its relation with the step-parallel methods of the preceding section. 

Let us integrate the IVP for (5.2) numerically by the RK method (1.2). 
Then, we obtain the scheme 

Fork= 1 to q 

For n = 1 to N (5.3) 

Here, y~k), y~k), and+ are the analogues of Yn-1, Y n and F occurring in (1.2). 
As soon as y~k) is computed, the step-point value y~) can be obtained by one 
of the following two formulas ( cf. (2.3)) 

Y~) = Y~k2 1 + h(bT ® I)F(Y~kl), 

(k) 
Yn 

(5.4) 

The scheme {(5.3),(5.4)} is called the discrete WR iteration process with (dis­
crete) WR iterates y~l and y~k). Its stability and convergence properties have 
recently been investigated by BELLEN, JACKIEWICZ and ZENNARO [4, 5] and 
by IN 'T HOUT (21]. 

Observe that (5.3) has a substantial amount of parallelism, irrespective the 
structure of the splitting function +. It has a similar type of step-parallelism 

) . . (k) (k-1) (k-2) as (4.2 , because for given k, all iterates Y 1 , Y 2 , Y 3 , ... can be com-
puted in parallel (see also [5]). Hence, effectively, (5.3) does not require the 
computation of qN iterates, but only of N + q - 1 iterates. 

Finally, we remark that the nonlinear system for y~k) in (5.3) is of the same 
type as the system (1.2), so that it can be solved by modified Newton using the 
iterative linear system solver as described in Section 3. First results are pub­
lished in [26]. Extensions to general implicit differential equations (including 
DAEs) are subject of current research [32]. 
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