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Basic Quantifier Theory 
JAAP VAN DER DOES AND JAN VAN EIJCK 

1 Preamble 

According to Lindstrom 1966 a quantifier is a functor which assigns to 
each non-empty domain a relation among relations which is closed under 
isomorphisms. A simple instance of this notion is given by the quantifier 
'more than half of the', which for each domain E gives the relation between 
sets A, B i;; E defined by: 

l{a EA: a E B}I > l{a EA: a It B}I 
In the present collection of articles the authors investigate several aspects 
of such quantifiers, also of quantifiers with relational arguments. 

This introduction presents some basic insights and techniques of quan­
tification theory. After a brief history, we pay attention to application of 
the theory in linguistics, and then to its more logical features. The linguis­
tic topics include: denotational constraints, behaviour in certian linguistic 
contexts, and polyadic forms of quantification. On the logical side, we dis­
cuss metaproperties of weak and of 'real' quantifier logics. In particular, 
we concentrate on the tableau method for weak quantifier logics, and on 
decidability results. 

It is impossible to write an introduction to this field which does not 
overlap with the comprehensive overviews in Westerstahl 1989, van Eijck 
1991, Keenan and Westerstahl 1995, Westerstahl 1995, and the reader is 
encouraged to study some of these as well. For surveys of recent work we 
recommend van Benthem and Westerstahl 1994, Westerstahl 1995, Keenan 
and Westerstahl 1995. 

Quantifiers, Logic, and Language. 
Jaap van der Does and Jan van Eijck, eds. 
Copyright © 1995, Stanford University. 
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2 A Trace of History 
2.1 .A..ristotle 
Aristotle was already aware that quantifiers play a key. role .in t.he proce~ 
of making inferences, so ever since Aristotle's d~y quant1fic~t10n is a cent_r 
topic in logic. In his theory of the syllogism, Aristotle studied the following 

inferential pattern: 
Quantifier1 Restriction1 Body1 
Quantifier2 Restriction2 Body2 
Quantifier3 Restrictions Bodya 

As an example we give the valid syllogism FESTINO: 

No A are B 
Some Care B 
Some C are not A 

Syllogistic theory focusses on the quantifiers in the so-called Squar~ of 
Opposition given in figure 1. The quantifiers in the square express relations 

All A are B No A are B 

Some A are B Not all A are B 

FIGURE 1 The Aristotelian Square of Opposition 

between a first and a second argument (the restriction and the body), where 
both arguments denote sets of entities taken from some domain of discourse. 
In the square the quantified expressions are related across the diagonals by 
external (sentential) negation, and across the horizontal edges by internal 
(or verb phrase) negation. It follows that the relation across the vertical 
edges of the square is that of internal plus external negation; this is the 
relation of quantifier duality. 

Aristotle interprets his quantifiers with existential import: All A are 
B and No A are B are taken to imply that there are A. Under this as­
sumption, the quantified expressions at the top edge of the square imply 
those immediately below them. The universal affirmative quantifier all im­
plies the individual affirmative some and the universal negative no implies 
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the individual negative not all. Existential import also makes that the 
two quantified expressions on the top edge of the square cannot both be 
true; these expressions are called contraries. For the same reason, the two 
quantified expressions on the bottom edge cannot both be false: they are 
so-called subcontraries. See van Benthem 1984, and van Eijck 1985 for in­
formation on the connection between syllogistics and generalized quantifier 
theory. 

Aristotle's syllogistics is quite an impressive theory of quantification, 
but it has some shortcomings. In the first place, quantifier combinations 
are not treated: only one quantifier per sentence is allowed. Secondly, 
'non-standard quantifiers' such as most, half of the, at least five, ... are 
not covered. A minor additional flaw is the assumption of existential pre­
supposition. In mathematical reasoning, and sometimes also in everyday 
reasoning, one wants to be able to assert universally quantified statements 
without assuming existence. Cf. De Jong and Verkuyl 1985 for a discussion. 

2.2 Frege, Peirce 

Independently, Gottlob Frege and Charles Sanders Peirce invented predi­
cate logic, and the theory of quantification that goes with it. Their ap­
proaches are based on the introduction of individual variables bound by 
the quantifiers V ('for all') and 3 ('there exists'). These are the so-called 
standard quantifiers. This account of quantification removes the first of the 
three defects of the Aristotelian theory. Quantifiers with their associated 
variables can combine with arbitrarily complex predicate logical formulae 
to form new predicate logical formulae, and a formula may contain an 
arbitrary number of quantifiers. 

The quantifiers V and 3 are interdefinable with the help of negation: 
Something is rotten means the same as It is not so for every x that x is 
not rotten, and Everybody is happy means the same as It is not so that 
there is a person x who is not happy. More formally: 3xAx is true if and 
only if -,'efx-,Ax is true, and VxAx is true if and only if ....,3x....,Ax is true. 
On this view, the Square of Opposition looks like figure 2. Apart from the 
existential presuppositions, the Aristotelian quantifiers from the Square of 
Opposition can be expressed in terms of the Fregean standard quantifiers, 
as follows (with ""' for 'translates as') : 

All A are B ""' Vx(Ax-+ Bx) 
Some A is/are B ""' 3x(Ax /\Bx) 
No A is B ""' Vx(Ax-+ -iBx) 
Not all A are B 3x(Ax /\ -.Bx) 
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Vxcp 

3xcp 

FIGURE 2 The Fregean Square of Opposition 

If one takes the existential presuppositions into account, the translations 
become: 

All A are B 
Some A is/are B 
No A is B 
Not all A are B 

"'-+ 3xAx /\ V'x(Ax-+ Bx) 
"'-+ 3x(Ax /\Bx) 
"'-+ 3xAx /\ V'x(Ax-+ -iBx) 
"'-+ 3x(Ax /\ -iBx) 

Note that these translations make the presupposition a part of the asser­
tion. 

2.3 Mostowski, Lindstrom 

Full generality was attained in the relational perspective on quantifiers, 
which is due to Mostowski 1957 and Lindstrom 1966. On this view a 
(simple binary) quantifier is a two-place relation on the power set of a 
domain E satisfying certain constraints (cf. section 3.2). The power set of 
E, notation p(E), is the set of all subsets of E, so a two-place relation on 
p(E) is a set of pairs of subsets of E. This perspective on quantification 
was first systematically applied to natural language analysis in Barwise and 
Cooper 1981, Higginbotham and May 1981, Keenan and Stavi 1986, and 
van Benthem 1984, 1986. 

The relational view covers non-standard quantifiers, it allows combina­
tions of arbitrary complexity, it does not syntactically eliminate quantified 
noun phrases, and it can be used as one of the ingredients in a non ad 
hoe translation procedure from natural language to a language of logical 
representations. In short, it removes most of the defects of its predecessors, 
and it is so eminently suited for natural language analysis that generalized 
quantifiers theory has become a showcase of interaction between logic and 
linguistics. 
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3 Linguistic Issues 
On the linguistic side, quantifier theory has several things to offer. In the 
first place, it provides the means for a compositional semantics for natural 
language sentences. Secondly, it gives insight into which natural language 
determiners are realized among the many possibilities. Thirdly, it describes 
and sometimes even explains the behaviour of noun phrases in particular 
linguistic contexts. Finally, it allows us to give the truth-conditions for 
sentences which are hard to understand otherwise. In this section, we give 
examples of all these features of the theory. 

3.1 Misleading Form vs. Compositionality 
In a previous era of natural language semantics, initiated by Russell and 
Wittgenstein, the familiar formulation of first-order predicate logic was 
considered the one and only tool for semantic analysis. As a consequence, 
quantified noun phrases were commonly regarded as systematically mis­
leading expressions. This is called the misleading form thesis. 

Consider the translation of example (1). 

(1) Every farmer bought a cow. 
Vx(Fx-+ 3y(Cy /\ Bxy)). 

Example (1) illustrates that first-order logic has no difficulty with quan­
tifier combinations. But observe that the translation does not contain 
phrases corresponding to the noun phrases every farmer or a cow. Given a 
natural language sentence and its translation into first-order logic, as pre­
sented in the familiar way, it is impossible to pinpoint the subexpression 
in the translation that gives the meaning of a particular noun phrase in 
the original. In the translation into first-order logic, the noun phrases have 
been syntactically eliminated, so to speak. This illustrates that the natu­
ral language syntax of quantified expressions does not correspond to this 
predicate logical syntax. In natural language, quantified noun phrases are 
separate constituents, but they evaporate during the process of translation 
into first-order logic. 

To demonstrate that in the relational perspective on quantification the 
suggestion of misleading form disappears, we consider two simple example 
sentences. We show that a representation language with generalized quan­
tifier expressions (expressions denoting two place relations between sets) 
and a notation for lambda abstraction is well suited for the compositional 
analysis of natural language sentences with quantified noun phrases. 

First consider example (2). 

(2) Every woman smiled. 

This sentence is composed of a noun phrase every woman, composed in 
turn of a determiner every and a noun woman, and a verb phrase smiled. 
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The determiner every translates into an expression every denoting a func­
tion from properties to a function from properties to truth values. More 
precisely, every denotes the function mapping property P to (the char­
acteristic function of) the set of all properties having P as a subset. The 
noun woman translates into >.x.Wx, the verb phrase smiled into >.y.Sy, 
the noun phrase every woman into every(>.x.Wx), and, finally, the whole 
sentence into the expression (every(>.x.Wx))(>.y.Sy). The reader is urged 
to check that this expression yields true in case the property of being a 
woman is included in the property of smiling, false otherwise. 

As a second example we consider example (1) again, also to see how 
quantifier combinations are dealt with compositionally. The trick is finding 
the right translation for the transitive verb. This turns out to be the lambda 
expression >.X>.y.X(>.z.Byz), where X is a variable over noun phrase type 
expressions. The verb translation is of the right type to take the object 
noun phrase translation as its argument; this gives translation (3a) for the 
verb phrase, which reduces to (3b). 

(3) a. >.X>.y.X(>.z.Byz)(a(>.u.Cu)) 
b. >.y.(a(>.u.Cu))(>.z.Byz) 

Here a denotes the function which maps every property P to (the charac­
teristic function of) the set of all properties having a non-empty overlap 
with P. Feeding (3b) as argument to the expression every(>.x.Fx), the 
translation of the subject, one gets (4) as translation for the whole sen­
tence. 

( 4) ( every(>.x.Fx) )(>.y.( a(>.u.Cu)) (>.z .Byz) ). 
This translation can still be simplified somewhat, by writing F and C for 
the property denoting expressions >.x.Fx and >.u.Cu, respectively. 

(5) ( every(F)) (>.y.(a( C) )(>.z.Byz) ). 

The compositional semantic analysis of natural language sentences involv­
ing quantifiers is the reverse of the process of compositional synthesis 
demonstrated here. 

3.2 Quantifier Constraints 
The sentence All men walk is true in a given model if and only if the 
relation of inclusion holds between the set of men in the model and the set of 
walkers in the model. Abstracting from the domain of discourse, we can say 
that determiner interpretations (henceforth: determiners) pick out binary 
relations on sets of individuals, on arbitrary universes (or: domains of 
discourse) E. Notation: DEAB. We call A the restriction of the quantifier 
and B its body. If DE AB is the translation of a simple sentence consisting 
of a quantified noun phrase with an intransitive verb phrase then the noun 
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denotation is the restriction and the verb phrase denotation the body. See 
figure 3 for a graphical representation. 

A B 

CJD 
FIGURE 3 Quantifiers as Relations 

A simple binary quantifier D on a domain E is a relation between 
subsets of E: 

DEE p(p(E) x p(E)) 

The trivial quantifiers are TE and 1-E, which hold of all and of no pairs of 
sets, respectively. 

Not all elements in p(p(E) x p(E)) serve as natural language determiner 
denotations. In fact, one of the first insights provided by quantification 
theory is that such determiners have to satisfy some constraints. A first 
requirement is extension: 

EXT For all A,B ~ E ~ E': DEAB <=> DE1AB. 

A relation observing EXT is stable under growth of the universe. So, given 
sets A and B, only the objects in the minimal universe AU B matter. See 
figure 4. 

·---------------------, .---------------. 
E 

E' I 

A 
AnB 

B 

L---------------~ 

L---------------------~ 

FIGURE 4 The Effect of EXT 
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An example of a natural language determiner which does not satisfy 
EXT is many in the sense of relatively many: 

JAnBI > o.5* IEI 
In this sense many crucially depends on E. 

A second requirement for quantifier relations is conservativity: 

CONS For all A, B ~ E: DEAB?? DEAA n B. 

In the context of EXT, this property expresses that the first argument 
of a relation (the interpretation of the noun) plays a crucial role: it sets 
the stage, in the sense that everything outside the extension of the first 
argument is irrelevant. 

There are a few noun phrase determiners which do not satisfy CONS. 
One example is only as in (6). 

(6) Only men came to the party. 

This example is true in a situation where all partygoers were men; only 
denotes the superset relation: 2. Starting out from a situation like this, and 
adding some women to the partygoers will make (6) false. This shows non­
conservativity. All is still well if it can be argued that noun phrases starting 
with only, mostly or mainly (two other sources of non-conservativity) are 
exceptional syntactically, in the sense that these noun phrase prefixes are 
not really determiners. In the case of only, it could be argued that only 

men has structure [np[modonly][npmen]], with only not a determiner but 
a noun phrase modifier, just as in (7). 

(7) Only John came to the party. 

See De Mey, this volume, for more information concerning only. 
Despite the small number of counterexamples, separating out the de­

terminers satisfying CONS and EXT is important, for the combination of 
EXT and CONS is equivalent to the principle UNIV: 

UNIV For all A,B s:;; E: DEAB?? DAAAn B. 

The right-handside of this equivalence shows that for UNIV D the truth 
of DEAB only depends on the sets A and An B; or, on finite domains 
equivalently, on the sets A - B and A n B (respectively, the things which 
are A but not B, and the things which are both A and B). See figure 5. 

[8-----: 
I B : 
' ' 

FIGURE 5 The Combined Effect of EXT and CONS 
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An UNIV determiner still lacks the property that it is only sensitive to 
the cardinalities of the sets A - B and An B. But such insensitivity is 
something one would surely expect from a quantifier. The relational per­
spective suggests a very natural way of distinguishing between expressions 
of quantity and other relations. Quantifier relations satisfy the following 
condition of isomorphy, formulated in terms of bijections. 

ISOM If f is a bijection from E to E', then D EAB {::> DE' f [Alf [BJ. 

Here f[A], the image of A under f, is the set of all things which are !­
values of things in A. If D satisfies EXT, CONS and ISOM, it turns out 
that the truth of DAB depends only on the cardinal numbers IA - BI and 
IA n Bj. See figure 6 for the combined effect of these three conditions, and 
section 4.3 for a proof. By definition a quantifier is a relation D satisfying 
EXT, CONS and ISOM. 

A B A B 

CID ® 
FIGURE 6 The Combined Effect of EXT, CONS, ISOM 

The semantic effect of a quantifier DAB can always be described in 
terms of the properties of the numbers IA- BI and IA n BI. All A are B is 
true if and only if the number of things which are A and not B is 0. Some 
A is B is true if and only if the number of things that are both A and B is 
at least 1. Most A are B is true if and only if the number of things that are 
both A and B exceeds the number of things that are A and not B. Some 
further examples are in section 4.3.1. 

3.3 Distribution and Logical Behaviour 

We now turn to the distribution of noun phrases in existential sentences, 
and to their logical behaviour in naked infinitive perception reports. 

3.3.l Existential Sentences 

Not all noun phrases may occur in so-called existential sentences. For 
instance, the noun phrases in (8a) are acceptable while those in (8b) are 
not. 

(8) a. There are two/some/no students at the party 
b. *There are all/the/not all students at the party 
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In Milsark 1977 the noun phrases which are allowed in these contexts are 
categorized as the weak ones, while those who are not he calls strong. 
(Weak determiners are also called 'indefinite'.) Barwise and Cooper 1981 
give these notions semantical content by means of familiar relational prop­
erties: 

Definition I A determiner D is positive strong iff D is reflexive: 

VX.DXX 

D is negative strong iff D is irreflexive: 

VX.-iDXX 

D is strong iff D is either positive or negative strong. D is weak iff Q is 
not strong. 

It accords nicely with Milsark's taxonomy that two, some, and no are weak 
in this semantic sense. Typical examples of strong quantifiers are all and 
not all. Indeed, the positive strong conservative determiners extend all, 
while the negative strong ones are part of not all. E.g., if A ~ B, then by 
conservativity and reflexivity: DAA, DAA n B, DAB. So, all ~ D. 

The proposal of Barwise and Cooper offers an explanation of why strong 
noun phrases cannot occur in existential sentences. A sentence of the form 
(9a) can be said to be true (relative to a domain E) iff (9b) is true. 

(9} a. There are [np DET N] 
b. (DET]E(N]E 

In case the determiner is conservative this would mean that (9a) is true iff 
[DET)E[N][N]. So, in an existential sentence positive strong determiners 
yield logical truths, while negative strong determiners yield contradictions. 
But a simple existential sentence is contingent: sometimes true, sometimes 
false. 

A problem for the above proposal is that all proportional determiners 
n% of the are semantically weak: 

n % of the AB ~IA n BI~ n/100 * IAI 

but none of them is acceptable in an existential sentence. 

(10) *There are five percent of the students at the party 

These counterexamples suggest to redefine the weak determiners as the 
symmetric ones. This notion of weakness is more restrictive than that of 
Barwise and Cooper. Assuming conservativity, it can be seen that the 
only strong symmetric determiners are the trivial T and l.. For DAB 
iff (conservativity) DAA n B iff (symmetry) DA n BA iff (conservativity) 
DA n ~An B, and the latter is always true or always false for strong 
determmers. Therefore, non-trivial symmetric determiners are weak. 
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Identifying weakness with symmetry squares well with attempts to gen­
eralize the notion to determiners of higher arities, such as the comparative 
determiners more than, as many as, fewer than, which are 3-place deter­
miners. These all occur felicitously in existential sentences. 

(11) a. as many asABC <=> jAnBj = jAnCj 
b. There are as many students as teachers at the party 

A proposal for a generalization of weakness by Keenan 1987a is to iden­
tify the indefinite (or weak) determiners with the intersective ones (the 
following definition is equivalent to Keenan's): 

Definition 2 Ann-place determiner Dis intersective iff Dis conservative 
and DA1 ... AnB <=> DA1 n B ... Ann BB. 

Keenan's formalization of weakness is as general as one would like it to be. 
To see that it generalizes the notion of symmetry to the n-ary case, note 
that binary conservative determiners are intersective iff they are symmetric. 
For assume that D is symmetric. Then DAB iff ( conservativity) D AA n B 
iff (symmetry) DAnBA iff (conservativity) DAnBAnB iff (conservativity) 
DA n BB. Conversely, if we assume that D is intersective, then DAB iff 
(intersectivity) DAnBB iff (conservativity) DAnBAnB iff (intersectiv­
ity) DBA n B iff (conservativity) DBA. It follows that Keenan's proposal 
is empirically more adequate than that of Barwise and Cooper: the pro­
portional determiners are not intersective but numerals and comparatives 
are. 

3.3.2 Naked Infinitive Perception Reports 
Studying quantifiers in a partial setting is necessary, among other things, 
to be able to deal with the semantics of naked infinitive perception reports 
(Barwise 1981, Barwise and Perry 1983, Higginbotham 1983, Kamp 1984, 
Asher and Bonevac 1987, Asher and Bonevac 1989). Examples of such 
perception reports are in (12a-c), where the complement of the perception 
verb is unconjugated. 

(12) a. I saw some bears prepare sandwiches. 
b. I saw no bears prepare sandwiches. 
c. I saw two bears prepare sandwiches. 

A key feature of the semantics of naked infinitives is the fact that sen­
tences like (13) have a reading which does not imply variants where the 
perception complement is replaced by a classically equivalent complement, 
as in (13a,b). 

(13) a. I saw John help Mary. 
b. I saw John help Mary and help Bill or not help Bill. 

In a classical framework the complements in (13a,b) are logically equiva­
lent, so the semantic distinction between the two examples gets lost. To 
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preserve it one must distinguish between partial models (or situations) sup­
ported by what I saw, partial models refuted by what I saw, and partial 
models untouched by what I saw. This threefold distinction accounts for 
the difference between (13a) and (13b), for it may be that a situation where 
John helps Mary is supported by what I saw, while on the other hand none 
of the situations supported by what I saw have Bill in it. 

The switch to a partial perspective involves for every predicate P a 
distinction between things satisfying P, things not satisfying P, and things 
doing neither. Restricting attention to the case of predicates A on a uni­
verse E, a partial predicate A divides E in a region of things that do satify 
A (call this set A+), a region of things that do not satisfy A (call this set 
A-) and a region of things with unknown A status (call this set A*). 

Now, the starting point of the logical investigation of naked infinitives 
is the followinq question: which quantifier property licences the inference 
called veridicality in (14)? 

(14) I saw DAB./ Therefore: DAB. 

In this regard notice that from the truth of sentence (12a) it follows that 
some bears were indeed preparing sandwiches, so (15a) is a consequence of 
(12a). 

(15) a. Some bears were preparing sandwiches. 
b. No bears were preparing sandwiches. 
c. Two bears were preparing sandwiches. 

But from the truth of (12b) it does not follow that no bears were preparing 
sandwiches, so (15b) is not a consequence of (12b). The same holds for the 
relation between (12c) and (15c), in case 'two' is understood as 'exactly 
two'. For 'at least two' (15c) does follow from (12c). 

A considerable part of the logic of naked infinitives can be studied by 
restricting the partialisation to the non-logical relations in the way indi­
cated. Given this much, van der Does 1991 considers, among other things, 
naked infinitive complements which consist of an iteration of noun phrases. 
Following up on observations by Barwise, Higginbotham, and Asher and 
Bonevac, he characterizes the iterations that validate veridicality as pre­
cisely those which consist of MONt noun phrases except perhaps for an 
even number of MON.i ones. These notions are defined as follows. 

Definition 3 The right monotone determiners D are those with: 

MONt: if DAB and B ~ B', then DAB'. 
MON.i: If DAB and B' ~ B then DAB'. 

~he left monotone determiners D have: 

tMON: If DAB and A~ A' then DA'B . 
.iMON: If DAB and A'~ A then DA'B. 
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Examples of MONt determiners are: all, some, at least two, while Not all 
and no are MON.j. determiners. Some and not all are tMON; All and no 
are .j.MON. There are also non-monotonic determiners; e.g., exactly two 
and an even number of are neither MONt nor MON.j.. 

The characterization of veridical complements in terms of MONt corre­
sponds nicely with the logical implication relations between (12,15a-c). An 
explanation for this behaviour is that the verb see restricts the extensions of 
verbal elements within in its scope, and these verbal elements occur within 
the right-hand side argument of the determiners within the complement of 
see. Still one may wonder whether left monotonicity is important as well. 
This does not seem to be the case. E.g., (16a) has (16b) as a consequence, 
and (16c) (16d). But every is .j.MON and most is not left monotone. 

(16) a. 
b. 
c. 

At the party, John saw every student leave 
At the party, every student left 
At the party, John saw most students leave 

d. At the party, most students left 

Naked infinitive perception reports make plain that it is of considerable 
interest to extend quantifier theory to cover the many-valued case. As 
Van Eijck, this volume, shows, the extension involves providing suitable 
extensions of the principles EXT, CONS and ISOM, among many other 
things. See also Muskens 1989, and Langholm 1988. 

3.4 Polyadic Quantification 

In section 3.1, we have seen that a transitive sentence such as (17a) can be 
interpreted by iterating the noun phrases denotations as in (17b). 

(17) a. Every farmer bought a cow 
b. every (>..x.Fx)(>.y.a (.Az.Cz)(>..z.Byz)) 

Due to the work of Higginbotham and May 1981, Keenan 1987b, 1992, van 
Benthem 1989, Westerstahl 1994a it has become more and more apparent 
that not all sentence meanings can be obtained in the iterative way. In this 
section, we give some examples of such non-iterative forms of quantification; 
see Keenan 1987b, this volume, and Ben-Shalom 1994 for more examples. 

3.4.1 Cumulative Quantification 
Cumulation is perhaps the simplest form of non-iterative quantification, 
and is first observed by Scha 1981. Sentence (18a) may be true if there are 
ten firms which each own twenty computers, as in (18b). 

(18) a. Ten firms own twenty computers 
b. I{! E F: l{c EC: O/c}I = 20}1=10 
c. I{! E F: 3c EC Ofc}I = 10 & l{c EC: 3/ E F Ofc}I = 20 
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But (18a) can also be used to state that ten firms own computers and 
that twenty computers are owned by firms. This is (18c), which leaves the 
numerals ten and twenty outside each others scope. · 

3.4.2 Branching Quantification 

Branching, like cumulation, is a form of quantification where the scopes 
of the noun phrases remain independent. Following up on Hintikka 1974, 
Barwise 1979 studies sentences like (19a-c), which require branching of 
non-first-order quantifiers. 

(19) a. Most men and most women like each other 
b. Few men and few women like each other 
c. Four men and two women like each other 

The meanings of (19a-c) are respectively given by (20a-c): 

(20) a. 3XY[MMX /\MWY A(XxY)n(MxW) ~ Rn(MxW)] 
b. 3XY[FMX /\FWY /\Rn (M x W) ~ (X x Y) n (M x W)] 
c. 3XY[4MX /\ 2WY /\ (X x Y) n (M x W) =Rn (M x W)] 

Notice that these meanings are not uniform across all determiners. The 
recipe in (20a) is intended for MONt and that in (20b) for MON-!. determin­
ers (cf. Barwise 1979). Van Benthem introduced (20c) for non-monotone 
determiners. Westerstahl 1987 has a first proposal for a more general defi­
nition of branching. Cf. also Sher 1990, or Liu and Spaan, this volume. 

Cumulation and branching are closely related; in each of the above 
cases branching implies cumulation. As Westerstahl 1987 observes, they 
are even equivalent for MON-!. determiners. A further observation is that 
the branching of non-monotone determiners is equivalent to cumulation 
plus the statement that Rn Ax Bis a cartesian product. The MONt case, 
however, is quite different. Then, cumulation and branching are still equiv­
alent on cartesian products, but there is no statement in first-order logic 
with the MONt determiners added which defines the branching reading. 

3.4.3 Reciprocals 
Another form of polyadic quantification, which appears similar to branch­
ing, is used to give one of the several meanings of reciprocals. For instance, 
the prominent readings of (21a-c) are formally represented by means of 
(variants of) the so-called Ramsey quantifier in (22a-c). Cf. Dalrymple et 
al. 1994, Keenan and Westerstahl 1995. 

(21) a. Most men like each other 
b. Few men like each other 
c. Twelve men like each other 

(22) a. 3X[MMX /\ (X x X - A(X)) n M x M ~ R] 
b. 3XY[FMXRn M x M ~ (X x x - A(X)) n M x M] 
c. 3XY[l2MX /\ (X x x -A(X)) n M x M = RnM x M] 
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Here, ~(X) := { (d, d) : d E X}. The use of 6. ensures that in none of the 
cases the relevant men have to like themselves. 

3.4.4 Resumptive Quantification 
Explicit quantification can also be found outside noun phrases, in particular 
in adverbial modifiers. English has explicit adverbs of quantification which 
run over locations (everywhere, somewhere, nowhere), over periods of time 
(always, sometimes, never), and over states of affairs (necessarily, possibly, 
impossibly). Like noun phrase quantifiers, these standard adverbial quan­
tifiers have non standard cousins: often, seldom, at least five times, more 
than once, exactly twice, and so on. 

Adverbial quantifiers behave very much like noun phrase quantifiers, 
the main difference being their different domain of quantification. An ex­
act specification of the domain of quantification can be difficult. Contextual 
information may be needed to determine whether an adverbial quantifier 
ranges over periods of time, events, or occasions, and to determine the 
'granularity' of the domain of quantification. E.g., the fact that the tem­
poral adverb in (23) ranges over days has to be inferred from the overall 
meaning of the sentence. 

(23) Dinner is always served at six p.m. here 

A very influential proposal for the treatment of adverbs of quantification 
is that of Lewis 1975. He argues that the adverb in (24a) quantifies over 
cases, which are identified with the tuples in a the relation >.xy.Mx A Wy /\. 
Lxy. 

(24) a. Mostly, a man loves a woman 
b. M (>.xy.Mx /\. Wy /\. Lxy) 

Formally, this means that the quantifier most as it applies to sets has to be 
lifted so that it can take relational arguments. This can be done as follows 
(cf. Westerstahl 1989): 

M£.Rn <=? MEnRn 

By this definition Mn is a property of n place relations, since 

ME"~ g:{E x ·~· x E) 
n times 

It should be observed that the relational view on adverbs of quantification 
assumes that the indefinites an N are open expressions of form N x. In 
particular, they are not quantifiers. This position is developed further in 
the discourse representation theory of Kamp 1981 and Heim 1982. Ladu­
saw, this volume, applies this approach to negative polarity items. Cf. also 
De Swart, this volume, for the issue of temporal expressions and quantifi­
cation. In this volume, discussions of other linguistic issues can be found in 
van den Berg (quantifiers and anaphora), Hoeksema (exception phrases), 
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Lapierre (conditionals), de Mey (topic and focus) and Verkuyl and van der 
Does (plural noun phrases). 

4 Logical Issues 
This part of the introduction aims to make the logical papers in this collec­
tion accessible to a larger audience. More in particular, it is intended for 
the reader who has some knowledge of EL (elementary logic, also known 
as first-order logic), and wants to have an overview of some key topics in 
the study of quantifier logics. We focus on two such topics: 

i) logics as an instrument of deduction, 
ii) logics as an instrument for the characterization of structures. 

In the first case one would like to have nice proof systems which are sound 
and complete, and perhaps even decidable for the intended semantics. In 
the second case, one is rather more interested in the expressive power of a 
logic, and in its model-theoretic tools such as compactness and Lowenheim­
Skolem-Tarski theorems. Using the notion of a quantifier as a recurrent 
theme, we give several examples of logics that combine (i) and (ii) in dif­
ferent ways. We will include proofs of most of the theorems we mention. 

To present a logic as an instrument of deduction we use variants of ana­
lytic tableaux whenever possible (Smullyan 1968). In particular, section 4.1 
introduces their application to so-called weak quantifier logic, ELwq, which 
is EL with a quantifier ranging over an arbitrary set of sets added (Keisler 
1970). The tableaux are obtained by adapting Anapolitanos and Viiiinanen 
1981. A glimpse of logic as a tool to characterize structures is given in 
section 4.3, which has an overview of ELq. This logic extends EL with 
an abstract real quantifier: a set of sets which is closed under permuta­
tions (Mostowski 1957, Thomason 1966). The results reported on here 
are mainly due to Yasuhara 1969. Next, we discuss some logics, which lie 
between ELwq and ELq (Doets 1991, Thomason and Johnson, jr. 1969). 
We also mention Lindstom's results, which indicate what we can hope for 
in mediating between expressiveness and nice metaproperties. The section 
also discusses a decidable logic due, again, to Anapolitanos and Vaananen 
1981. 

In this section we concentrate on simple monadic quantifiers. General­
izing the results to binary or n-ary quantifiers is often straightforward. The 
important issue of polyadic quantification is presented in section 3. It is 
also a main theme in the overviews of Westerstahl 1989, Westerstahl 1995 
and of Keenan and Westerstahl 1995. 

4.1 Weak Quantifier Logic 

In his study of the quantifier 'there are uncountably many', Keisler 1970 
was the first to consider the weak quantifier logic EL wq_ In this logic Q 
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varies over arbitrary sets of sets which are not required to be permutation 
invariant. Strictly speaking, this makes Q a qualifier rather than a quan­
tifier (but we retain the familiar way of speaking). It captures the general 
notion of a property of sets, but does not impose the further condition that 
this property should have to do with size. The main reason to study EL wq 
is that it has nice properties, which makes it suitable to approximate 'real' 
quantifier logics. Keisler 1970 already used this with great effect in his 
completeness theorem for 'there are uncountably many'. In his proof the 
intended model emerges as the limit of uncountably many weak ones. (Cf. 
also Van Lambalgen, this volume.) 

As we will see below, weak quantifier logic is very closely related to 
first order logic. We will show that the proofs of the key metaproperties of 
first order logic (completeness, compactness, the Lowenheim-Skolem-Tarski 
property and undecidability) carry over in a straightforward fashion. This 
sketch may also serve as a brief rehearsal of the metatheory of first-order 
logic. 

4.1.l Syntax, Semantics, Logical Consequence 
A logic comes in three parts: a syntax which specifies its sentences, a seman­
tics which specifies its models, and a satisfaction relation which specifies 
whether or not a sentence is true in a model. EL wq fits into this tripartition 
in the following way. 

Syntax 
The syntax of EL wq specifies the notion of a formula. The formulas of 
ELwq are given by the specification in (25). 

(25) ip ::= Rt1 ... tn I ''P I ip /\ '1/1 I ip V '1/1 I ip -t '1/1 I 3xip I Vxip I Qxip 

Here t; is a variable or a constant. Call this language L. Note that L does 
not have identity statements or complex terms (terms built with function 
symbols). We left those out for reasons of simplicity. We say that 3x in 3xip 
binds all free variables x in ip, and similarly for 'r/x and Qxip. A formula is 
a sentence iff it has no free variables. A theory is a set of sentences. 

Semantics 
Sentences speak about structures, which are sets E of elements standing in 
various relations to each other. Structures are turned into models .1\1 by 
adding an interpretation function[-]~ (a an assignment; a: VAR -7 E). 
In this way the basic elements of a sentence are linked to truth-functions, 
or to objects obtained from the domain E: 

i) [-il,., [/\]a, [VL, [--+Lare the familiar functions from (pairs of) truth 
values to truth values; 

ii) [c]a is an element of E, and [x]a is the element a(x) EE; 
iii) [Rn]a is an n-place relation between elements of E; and 
iv) [3]a = {X ~ E; X f= 0}, ['v']a = {E}, and [Q] ~ p(E). 
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Here and elsewhere the superscript .M is dropped if no confusion is likely, 
and so is the subscript a. Note that the quantifiers are treated as higher­
order objects: they are sets of sets over the basic domain E. This is typical 
of the generalized quantifier view on logic. 
Satisfaction 
The missing link between formulas and models is provided by the satisfac­
tion relation. This relation defines the notion of a formula cp being true in a 
model .M under an assignment a, formally: [cp]~ = 1, or .M f= cp [a]. Let 
o E {A, V,-+ }, and q E {3, 'v', Q}. We define the function[-]~: L-+ {O, 1} 
by recursion on the structure of r.p, as follows: 

• [Rt1 · · · tn]~ = 1 iff ([ti]a, ... , [tn]a) E [R]M 
• [-.cp]~ = 1 iff [-.]([cp]~) = 1 

• [o(cp,1/1)]~ = 1 iff [o]([cp]~, [1/1]~) = 1 

• [qxcp]~ = 1 iff x.[<p]~ E Ma· 
Here, x.[cp]~ = {d E D : [cp]Zf = 1}, with a~ the assignment defined by: 

a~(y) = d if y::: x, a(y) other.;'ise. 
The above satisfaction relation is defined categorematically: each ele­

ment in the language has a denotation of its own. Indeed, this semantics 
of EL wq is compositional, in that the denotation of a sentence under an 
assignment is a function of the denotations of its compounds under that 
assignment and the way they are compounded. Also, the categorematic 
treatment makes the type of object associated with a quantifier fully ex­
plicit, so that they become objects of study in themselves. 

Usually the logical constants are treated syncategorematically. Then, 
their contribution to the truth condition of a sentence is specified within 
the context of a formula, e.g.: 

(26) [3xcp]a = 1 {:;} There is a d E E : [cp]ad = 1 . 
The two approaches are equivalent as far as satisfaction is concerned. The 
syncategorematic view highlights that we quantify over the objects in E and 
not over the higher-order objects obtainable from E, such as: p(E), p(E) x 
p(E), p(p(E) x p(E)). For this reason ELwq is called a first-order logic. 
The syncategorematic approach is less suitable if the focus is on quantifier 
properties. 
Truth, Consequence, Expressiveness 
Until now we have followed the Tarskian route of obtaining sentences as a 
special kind of formulas. Semantically this means that truth is a special 
case of satisfaction under an assignment. A sentence u is true in a model 
.M, .M f= u, iff a is satisfied in .M by some {hence: every) assignment. 
Besides truth, the following notions are important. 
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Definition 4 A sentence is satisfiable iff it has a model. A sentence is 
valid iff it is true in all models. A sentence q is a logical consequence of 
a set of sentences r, r F u, iff for all M: if M F T for all r E r, then 
Mf=u. 

Observe that a sentence is a consequence of the empty set iff it is valid i:ff 
its negation is unsatisfiable. 

Each sentence u in ELwq gives rise to the class of models in which it 
is true: MOD(u) = {M: M f= u}. When generalized to other logics, these 
classes provide a natural measure for expressive power. 

Definition 5 The logic L' is at least as expressive as the logic L (L $ L') 
iff for each sentence u in L there is a sentence u' in L' such that 

MOD1(u) = MOD11 (u') 

L and L' are as strong (L = L') iff L $ L' and L' $ L. L' extends L iff 
L $ L' and L ~ L'. 

One way to prove that the logic L' extends the logic L is to give a sentence 
in L' with MODL(u) -:j:. MODL'(cr'), for all a in L. Another way is to show 
that L and L' do not share all properties. In the next section, which 
introduces tableaux for EL wq, we come across some such properties. 

4.1.2 Tableaux 
One of the aims of formalizing a logic is to study its properties in a precise 
way. For example, does the logic give a method to determine for each pair 
(r, u) whether r F er, and perhaps even whether r ~ u? And are its 
sentences sensitive to the size of their models? In this section we shall 
quickly prove some of these properties for weak quantifier logic. We do 
so by means of semi-analytic tableaux, which are refinements of so-called 
Beth tableaux. Following up on work by Hintikka, Smullyan 1968 uses 
analytic tableaux to give elegant proofs of the completeness of EL besides 
some of its other metaproperties. In this section we extend his approach 
to EL wq using insights from Anapolitanos and Vaananen 1981. 

Now we view ELwq as an instrument of deduction. We do so by pre­
senting a tableau method which allows us to derive a conclusion u from 
a set of premisses r, notation: r I- CT. Our first aim is to show that this 
syntactic relation coincides with logical consequence: 

r1-u~rf=cr 

The proof of this result also gives some information on EL wq as an instru­
ment to characterize structures. For a start we concentrate on EL, but go 
on to show how the tableaux can be extended to ELwq. Next we prove 
some important metaproperties of this logic. 
Tableaux for First-Order Logic 
Tableaux are constructed by means of rules which are formulated in terms 
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of signed sentences. Such sentences are of the form Tep and Fcp with cp a 
sentence. The signs keep track of whether a sentence is true or false in a 
model: 

M f=Tip 
M f=Fip 

Signed sentences allow us to give a succinct formulation of the rules for 
constructing a tableau. These rules are based on a categorization of the 
sentences in a:'s (conjunctive), ,8's (disjunctive), -y's (universal), and J's 
(existential). The details of this categorization are in (27). 

(27) a: T(cp A7./;), F(r.pV'lj;), F(r.p-t 'l/J), T-ir.p 
(3 T(cp V 7./;), F(r.p /\ 'l/J), T(r.p -t 1/J), F-iip 
'Y TVxcp, F-i3xcp 
8 T:3xcp, F-i'<:/xr.p 

The a:'s are conjunctive and the (J's disjunctive (modulo a little trick to 
subsume negations under these cases). In (28) we specify the signed con­
and disjuncts for the different possibilities. 

(28) 
a 0:'1 a2 f3 /31 f32 
T(cp /\ 'lf;) T<p T'lj; F(<p/\1/J) F<p F'ljJ 
F(cp v 'lf;) Fcp F'lf; T(cpV'lf;) Tep T'l/J 
F(cp -+ 7./;) Tep F'l/; T(cp -t 'lj;) Fcp T'lj; 
T-.ip Fcp Fr.p F-ir.p Tip Tep 

As to the J's and i's we define: 

(29) 
I 1(c) J J(c) 
TVxcp T[c/x)r.p T3xcp T[c/x)cp 
F3xcp F[c/x]cp F'efxcp F[c/x]cp 

The above definitions ensure that relative to a model M which has a name 
for each element we have: 

i) M f= a: i:ff: M f= 0:1 and M f= 0:2 

ii) M f= (3 i:ff: M f= /31 or M f= ,82 
iii) M f= / i:ff: M f= -y(c) for all c EC 
iv) M f= 8 i:ff: M f= t5(c) for some c E C 

Note that in case of such a model we can dispense with formulas and 
assignments in favour of sentences. The model has a constant c for each 
din its domain with [c] =d. If we write one of these constants as g, the 
equivalence in (30) shows that sentences will do. 

(30) M f= cp(x1, ... , Xn) [a] <=> M f= cp(a(x1 ), ... , a(xn)) 
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In wha~ follows we will assume that every element has a name, 
otherwise. · stat~d 

Now we give rules to check the validity of a sentence. The idea is that if 
a ~ente:ice a is valid its negation is unsatisfiable. So, one way to prove that 
a is valid would be to show that it is impossible to construct a countermodel 
for a; i.e., a model for Fa. In attempting such a construction, we first 
Fa at the root of a tree, and start building the tree by use of the rules A-D. 

A a B f3 

/31 I /32 

c D 

'Y(c) for any c 8(c) for a new c 

The rules use the structure of a tree. In a tree the formulas above a certain 
formula-the formulas in between this formula and the root of the tree, 
-form a linear order. Rules A-D state that if the upper occurs 
somewhere on such a finite branch, it can be extended as indicated. 
in case of rule B the final node of the branch gets the two successors 
and f32. 
Definition 6 A branch in a tableau is a sequence of signed sentences whkh 
starts at the root of the tree and consists further of immediate successors. 
A branch is closed if there is a sentence a such that both Tcr and Fu an• 
on it, otherwise it is open. A tableau is closed iff all of its branches arc 
closed. It is open iff at least one of its branches is open. 

In terms of open and closed tableaux we can define the notion of a 

Definition 7 A sentence a is provable, I- a, iff there is a closed tableau 
with Fa at its root. A sentence a is provable from a finite set of sentences 
riff f- /\ r -t er. A sentence a is provable from a set of sentences r, f I- a, 

iff there is a finite ro i;; r with 1-- /\ ro -+a. 

For the moment we restricted ourselves to provability from finite sets of 
sentences. 

Tableaux for Weak Quantifier Logic 
To include rules for expressions of form Qxr,p we supplement the 
a, (3, /, 8 introduced in 27 with the new category E. 

(31) 
c(c) 

{FQxr,p, TQy'l/J} F([c/x]ip B [c/y]l/•) 
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Observe that c: is a pair of formulas. This is because we cannot draw an 
immediate consequence from a sentence Qxcp, as we can in the case of '</xcp. 
Only in larger contexts such inferences are possible. To be more precise, 
whenever M f= {TQxcp, FQy¥i} the sets x.[cp]M and y.['!j!]M cannot be 
identical. So, if M has a name for each of its elements we can infer that 
there is a constant c such that M f= F([c/x]cp tt [c/y]~). For this reason 
we let c: vary over pairs of signed quantifier formulas, and define c:(c) ac­
cordingly. It also motivates rule E, which determines how to reason with 
such pairs. 

E c: 

c:(c) for a new constant c 

Rule E states that if both elements of c: occur on a finite branch, it can 
be extended by appending c:(c), where c does not occur on the tree. The 
notions of open and closed tableaux are changed to include rule E, but 
remain the same otherwise, and similarly for all other notions. 

It should be observed that there is an important difference in the rela­
tion between c: and c:(c) on the one hand and, say, I and 1(c) on the other. 
Whereas 1(c) can be considered a subformula of/, c:(c) is built from sub­
formulas of the elements of c:. For this reason we speak of semi-analytical 
tableaux for ELwq. 

By way of example, here is a proof of Qxcp f- Qy[y/x]cp (with y free for 
x in cp). 

(32) F(Qxcp-+ Qy[y/x]cp) 
TQxcp 

FQy[y/x]cp 
F([c/x]cp tt [c/y][y/x]cp) 
F[c/x]cp I F[c/y][y/x]cp 

T[c/y][y/x]cp T[c/x]cp 

Because y is free for x in cp, [c/y][y/x]cp is the same sentence as [c/x]cp. 
Therefore, tableau (32) is closed. Under the same proviso one proves that 
Qy[y / x]cp f- Qxcp. The combination of these two facts gives (33a). 

(33) a. f- Qxr.p tt Qy[y/x]r.p (y free for x in cp) 
b. f- '</x(rp tt ~)-+ (Qxcp tt Qx¥i) 

We leave it to the reader to show that (33b) holds as well. The theorems 
(33a,b) are introduced as axioms by Keisler 1970, who proved ELwq to 
be sound and complete. We do the same but use adaptations of Smullyan 
1968, and Anapolitanos and Viiiiniinen 1981 for this purpose. 
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4.1.3 Metalogical Properties 
In this section we prove that EL wq is sound and complete, and that it has 
some other properties as well. 

Soundness 
A proof system should at least be sound (or correct). That is, we should 
be able to prove O' from r only if O' is a logical consequence of r: 

rl-a=>rl=a 
The soundness of semi-analytic tableaux follows from Lemma 1. 

Lemma 1 If there is a closed tableau with the signed sentence a at its root, 
then a is unsatifiable. 

PROOF. Assume for a contradiction that a has a closed tableau but is 
satisfiable. Since the set of sentences on a closed branch is unsatisfiable, it 
is enough to observe that the rules A-E preserve satisfiability. 

S.1 If the set SU {a} is satisfiable, then so is SU {a, a 1 , a 2 }. 

S. 2 If the set S U {/3} is satisfiable, then so is either S U {/3, /'1} or S U 
{,B, /32}. 

S.3 If the set SU {r} is satisfiable, then so is SU {I, -y(c)} for any c. 
S.4 If the set SU { 8} is satisfiable and c is a constant which does not 

occur in this set, then s u {8, o(c)} is satisfiable. 
S. 5 If the set S U { e} is satisfiable and c is a constant which does not 

occur in this set, then so is SU {e, e(c)}. 

That S.1-3 are true is immediate. As to S.4, let M be a model such that 
M I= Su { 8}. Since 8 is existential, there is a d E E so that M I= Su { 8 (4)}. 
Alter M to M* by setting [c] := d. The constant c does not occur in 
SU {8}, so we have M* I= SU {8, 8(c)} as required. 

As to S.5, let e = {FQxrp, TQy'l/i}, and let M be a model for SU e. 
This means that x.[rp]M f. y.[1,b]M. There is ad E E which is one of the 
sets but not in the other. Say, M I= [4./x]rp and M ~ [,4/y].,P. We alter M 
to M* by setting [c] :=d. Since c does not occur in SU {e}, we conclude 
that M* I= SU {c:, c:(c)}. 

Because a is satisfiable and satisfiablity is preserved under the rules 
A-E, each tableau with a at its root should have at least one open branch. 
This contradicts that a has a closed tableau. D 

Corollary 2 The provability relation is sound: r I- a => r I= a. 

PROOF. Assumer I- a. Then F(J\ r-+ a) has a closed tableau. According 
to Lemma 1, F(J\ r-+ a) has no model. This means that each model for 
r is a model for a: r F a. D 

We go on to show that the converse of Corollary 2 is also true: if r I= a 
then r 1- a. This result is known as the completeness theorem. 
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Completeness 
A crucial step in proving the completeness theorem consists in proving the 
converse of Lemma 1, namely: 

Lemma 3 If a signed sentence <Y is unsatisfiable it has a closed tableau. 

The proof of Lemma 3, which is slightly more involved than that of Lemma 
1, proceeds in two steps. First we define the notion of a systematic tableau, 
which has the property that each of its open branches yields a so-called 
Hintikka set (see below for a definition). Next we show that each Hintikka 
set has a model. This is sufficient, for if 17 has no closed tableaux, then 
in particular all its systematic tableaux have an open branch. Since the 
sentences along such a branch form a Hintikka set, they have a model. But 
the branch starts with <Y, so 17 is satisfiable. Therefore, if 17 is unsatisfiable, 
it should have at least one closed tableau. 

The systematic tableaux are defined inductively: we first describe how 
to start, and then how to continue assuming that the previous step is 
completed. In order the have sufficiently many 'fresh' constants available, 
we add a countable infinite set C of new constants to our language. 

The first step consists in placing the signed sentence whose satisfiablity 
we are testing at the root of the tableau. Now assume that the n-th step 
is completed, and that the construction is not yet finished. Choose a non­
atomic formula a which is as close as possible to the root (i.e., all non­
atomic formulas above it have been used). With every open branch e 
passing through this occurrence of a, we do one of the following: 

a. If <Y is an a extend e by forming() o:1 o:2 according to rule A; 

b. If (J" is a /3, branch at the end of e by simultaneously appending f31 
and (32 as in rule B; 

c. If <Y is a 'Y take the first constant c which does not occur on f) and 
form 8 1(c) / as in rule C (note: 'Y is repeated!); 

d. If <Y is a 8, choose the first constant c which does not appear on the 
tree and form f) 8(c) according to rule D. 

e. If u is of the form TQx.<p add to() the formula F([c/x]<p +-t [c/y]'l,ii), 
c a new constant, for all FQy.'!f; above TQx.<p (the case o- :::: FQx.<p 
is similar). 

Next we mark a as used, and check (i) whether the tableau is closed and (ii) 
whether all non-atomic signed sentences have been used. If both (i) and (ii) 
hold, the construction halts, otherwise we repeat the above construction 
step. A systematic tableau is finished if it is infinite or if it cannot be 
continued by means of the above recipe. To say a bit more about open 
tableau branches we need the following definition. 

Definition 8 A set S of signed formulas is a Hintikka set for a set of 
constants C iff: 



H.1 For no u both Ta and Fa are in S. 
H.2 If a ES, then a1 ES and a 2 ES. 
H.3 If j3 ES, then f31 ES or f32 ES. 
H.4 If 'YES, then 'Y(c) ES for all c EC. 
H.5 If J E S, then J(c) ES for a c EC. 
H.6 If c: <;; S, then c:(c) for a c EC. 
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It is not difficult to see that the set of formulas occurring at the open 
branch of a systematic tableau is a Hintikka set. 

Hintikka sets always have a model. This means that constructing a 
systematic tableau serves the purpose it was designed for: the formula at 
its root occurs on every open branch, hence it is satisfiable. 

Lemma 4 (Hintikka's lemma) Each Hintikka set for a denumerable set of 
constants C has a denumerable model. 

PROOF. Let S be a Hintikka set for set of constants C. Assume C is 
denumerable. We have to find a denumerable model M with 

Tep E S => M I= <p => Fcp ~ S 

for all <p of the language. Such a model can be defined as follows. As its 
universe we take the denumerable set C of constants. This choice ensures 
that M is denumerable. 

In defining the interpretation function, the following stipulations will 
prove useful: 

x.[cp]T 
x.[cp] 
x.[cp]F ·-

{c EC I T[c/x]<p ES} 
{c EC IM I= [c/x]cp} 
{c EC I F[c/x]<p t/. S}. 

The interpretation function [-] is now defined by: 

1. [c] := c 
2. [Rn]:= { (c1, ... , Cn) I TRc1 · · · Cn ES} 

3. [Q] := {X <;; c I :JAE s: A= TQxcp & x.[cpf <;; x <;; x.[cp]F}. 
It remains to be established that M has property (*). We only give the 
cases for atomic sentences and for sentences of form Qx<p; the others are 
immediate from the induction hypothesis. 

That M I= Rc1 , .•. , Cn in case T Rc1 , ..• , Cn E S is clear. So assume 
that FRc1, ... ,cn ES. Then by H1, TRc1, ... ,cn t/. S. So (c1, ... ,cn} </. 
[ R], and therefore M ~ Rei, ... , Cn. 

As to quantified sentences, assume that TQx<p E S. By the induction 
hypothesis: x.[cpf ~ x.[cp] <;; x.[cp]F. So x.[cp] E [Q] and M I= Qxcp. 
Conversely, assume that FQxcp E S. Suppose for a contradiction that 
M I= Qxcp. Then x.[cp] E [Q]. By definition, there are y, '1j; such that 
TQy'lj; ES, and 
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(i) y.[1Jif ~ x.[cp] ~ y.[1Jit. 
Since {FQxcp, TQy1Ji} ~ S, there is a c EC with F([c/x)cp ++ [c/y)1Ji) E S. 
It follows that either a or b holds: 

a. T[c/y)1Ji, F[c/x]cp ES 

b. T[c/x]cp, F[c/y]1Ji E S 

If a, then c E y.[1Jif and hence by (i) c E x.[cp]. By the induction hy­
pothesis for cp, c E x.[cpt, which contradicts F[c/x)cp E S. So b must 
hold. But then c E x.[cp]T, and hence by the induction hypothesis for cp: 
c E x.[cp]. By (i), c E y.[1Ji]F, which contradicts F[c/y]'l,b ES. We conclude 
that M ~ Qxcp. D 

The above lemmas have some important consequences. 

Theorem 5 (Completeness) Provability and logical consequence are equiv­
alent: 

PROOF. With a view to Lemma 2, we only have to prove that r F a 
implies r f- a. So assume r Ii a. Each tableau with F(/\ r --+ a) at its 
root is open. Choose an open branch of a systematic tableaux with this 
property. The formulas on this branch form a Hintikka set, and hence have 
a model. This model is a countermodel to r F a. D 

In fact theorem 5 also holds for infinite r. For simplicity assume that r is a 
countably infinite set of sentences enumerated by: /l, ... , /n, .. .. We have 
to ensure that the Hintikka set used in the proof of theorem 5 contains r. 
But this is simple. Before completing the n-th step in the construction of 
a systematic tableau, just add In to all its open branches. 

We finish this section with some further important consequences of 
Hintikka's lemma. 
Other Metaproperties 
When viewing EL wq as an instrument to characterize structures, the next 
three results are basic. 

Theorem 6 (Downward Lowenheim-Skolem-Tarski) If r has an in.finite 
model, it has a denumerable model. 

PROOF. Suppose r has an infinite model M and assume that M is un­
countable. Let C be an infinite denumerable set of constants and let L be 
a language of weak quantifier logic based on C and appropriate for M (in 
the sense that L has relation symbols for all relations of M). Let u range 
over sentences of L. Then the set H given below is a Hintikka set for C: 

H := {Ta : M f= u} U {Fa : M ~ a} 
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By Hintikka's lemma H has a denumerable model, which is also a model 
for r. 0 

Theorem 7 (Compactness) If each finite subset of a theory r has a model 
then r has a model. 

PROOF. Suppose that r does not have a model. Then r F ..l, for some 
contradiction j__ By completeness: r I- ..l, so there is a finite r 0 ~ r with: 
r 0 I- J_. Since EL wq is sound, r 0 does not have a model. D 

Theorem 8 (Upward Lowenheim-Skolem-Tarski) If a theory r has an in­
finite model of cardinality K-, it has models for all cardinalities larger than 
K- as well. 

PROOF. Let >. be a cardinal larger than K-, and let C be a set of new 
constants of size >.. Consider the theory: 

A:= r u {ci =I- Cj: i,j <>.and i ¥= j} 

Each finite Ao ~ A contains at most finitely many constants from C, say 
c1 ... Cn. Since r has an infinite model M we can find d1 ••. dn such that 
(M, d1 .•. dn) f= Ao. By compactness A has a model. As in the proof of 
downward LST, this model yields a Hintikka set for C. A check of Hintikka's 
lemma now shows that A has a model of size IC! = >.. D 

It follows immediately from the fact that upward LST holds for first order 
logic and for weak quantifier logic, that these logics cannot define the struc­
ture of the natural numbers. No first order theory (or weak quantifier logic 
theory) r can provide a definition, for all these theories also have models 
that are 'too large'. 

It should be noted that the reasoning to establish these metaproperties 
of EL wq is almost the same as for EL. Adding a weak quantifier to first­
order logic does hardly change a thing. 

Doets, this volume, proves interpolation for ELwq. Moreover, he shows 
that the formulas in this logic which are preserved under homomorphisms 
are exactly the positive ones. Cf. his paper for details. 

A property which EL and EL wq both lack is decidability: there is no 
mechanical way to compute whether f= a or ~ u. Yet, tableaux do have a 
'machine' to enumerate all valid sentences. To see this, let a 1 , ... ,an, ... 
be an enumeration of all sentences. The first action of the machine consists 
in placing Fu1 at the root of a systematic tableau T 1 . If the tableaux Ti, 
... , T n are available, it makes a step in each of them, and checks whether 
or not they are closed. In case Ti is closed, the machine appends <Ji to the 
enumeration of valid sentences and removes Ti from the list of tableaux. 
When all available tableaux have been checked, it starts Tn+I with Fan+I · 
Clearly this gives an effective (or: recursive) enumeration of all sentences 
a with f= a. So if a sentence is valid, this can be determined in a finite 
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number of steps. The logician Church has shown that there is no machine 
to enumerate the invalid sentences. Notice that for this reason ELwq is 
undecidable. Such a machine would enable us to decide whether or not 
a sentence is valid after all. Simply let both machines run and check in 
whose output the sentence occurs. This test halts in finitely many steps. 

The next section uses compactness and the LST theorems to give an 
indication of the expressive power of EL (we forget about Q for the mo­
ment). 

4.2 Intermezzo: First-order Logic 

4.2.1 First-order Definable Quantifiers 
The present formulation of EL interprets quantifiers as properties of sets. 
However, in natural language quantifiers often appear as relations between 
sets. E.g., in stating that 'some man walks' we claim that the men and the 
walkers are not disjoint. As is well-known, EL can use its connectives to 
define the relational version of 'some': 

(34) [some]e[A][B] {::> (E, [A], [B]) f= 3x(Ax /\Bx) 

for each E. More in general we say that a two-place determiner D is 
definable in the language of the two one place predicates A and B iff there 
is a sentence ip(A, B) with for all E: 

(35) [D]e[A][B] {::> (E, [A], [B]) f= <p(A, B) 

We now give an impression of the quantifiers which are first-order definable, 
but also of show of some that they are not. 

Plainly, EL defines such quantifiers as some A, all A, no A, and not all 
A: 

(36) some AB - 3x(Ax /\Bx) 
no AB = -.3x(Ax /\Bx) 
not all AB - 3x(Ax /\-,Bx) 
all AB = -.3x(Ax /\-.Bx) 

These quantifiers are given in terms of.....,, /\, and 3. If we add the identity 
sign '= ', it is also possible to define the numerical expressions at least n A: 

(37) at least 1 AB _ 3x(Ax /\Bx) 
at least n + 1 AB = 3x[Ax /\Bx /\ 

at least n (Ay.(y -:f. x /\ Ay))(.Ay.By)] 

This recursive definition is based on the idea that, e.g., at least three A are 
B is equivalent to: There is an A which is a B and at least two other A are 
also B. Using the same distribution of negation as in (36), we get less than 
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n A are B, at least n A are not B and less than n A are not B. Moreover, 
we have: 

(38) at most n AB 
between n and m AB 
exactly n AB 

= less than n + 1 AB 
at least n AB /\ at most m AB 
between n and n AB. 

Restricting ourselves to models with a finite domain, we can fully de­
scribe what is possible within EL. It is shown in van Benthem 1984 and 
Westerstahl 1984 that on finite models all first-order definable quantifiers 
D(..\x.Ax)(.Xx.Bx) are disjunctions of conjunctions of the form: 

(39) between k and k + 1 (..\x.Ax)(>.x.Bx) /\ 
between n and m (..\x.Ax)(..\x.--,Bx) 

4.2.2 Non-first-order Definable Quantifiers 
Not all quantifiers are first-order definable. Perhaps the simplest examples 
to show this are the cardinality quantifiers QI<: 

Q£X <:=:> IXI 2: K. 

with K. an uncountable cardinal. The sentence Q"'x.x = x has the infinite 
model (K.) but lacks a countable one, so by downward LST it cannot be 
first-order definable. Indeed, EL discerns each finite cardinal but no infinite 
ones. In a sense, the situation is reversed as to the general concepts of 
'finite' and 'infinite'. There are sets of first-order sentences (but no finite 
sets!) which only have infinite models. For instance, 

( 40) b..c := { c =/= d : c, d different elements of C} 

with C a countably infinite set of constants. But, as we shall see, there are 
no first-order theories with just finite models. 

Another example of a non-first order-definable quantifier is the Rescher­
quantifier R. On its intended meaning Rx.<p states that most things have 
<p: 

REX<:=:> IXI > IE - XI 
A standard application of the compactness theorem and downward LST 
shows that EL cannot define R. 

Theorem 9 The quantifier R is not first-order definable. 

PROOF. Suppose for a contradiction that Rx.Ax is first-order definable, 
say by ·1V(A). Now consider the theory: 

rr := b..cuD U {Aci: i E w} U {-iAdj: j E w} U {'l,ll(A)} 

with C, D disjoint countably infinite sets of constants, and with 6..cuD as 
in (40). Let r* ~ r be finite, say: 

r* = {Ac1 , ... , Acn} U {-iAd1 , ... , -iAdm} U 

U A{c1, ... ,cn,di, .. .,dm} U {1V(A)} 
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Assume m > n (the other case is similar). Take E with IEI = 2m + 1 and 
A r;;; E with IAI = m + 1, and interpret the constants accordingly. Then 
(E, A) f= I'*. This means that each finite part of rr has a model, and 
thus, by compactness, rr has a model. Downward LST gives a countable 
model M F rr. In M, IAI = IE - Al= lwl, but also M F ,,pr(A). This 
contradicts the assumption that ,,µr (A) defines R. D 

Along similar lines we can prove, e.g., that the quantifier finitely many, 
and hence infinitely many, is not definable within EL. The proof is like 
that of theorem 9 but uses the theory rf instead. 

rf := {'1/Jf (A)} U {Ac: c E C} u .6.c 

We have already indicated that the set of sentences {Ac : c E C} U Ac 
defines infinitely many. However, this wider concept of definability still 
leaves R and finitely many outside the scope of EL. By the above reason­
ing both rr and rr have models which do not comply with these quantifiers. 
Notice, by the way, that these non-definability arguments also go through 
for ELwq. 

4.2.3 Finitism 

The previous discussion may give the impression that EL is a weak logic 
in some absolute sense, which is hence of limited use. This impression 
would be incorrect. First, there are many areas in which the apparent 
limitations of EL are in fact very useful. First-order non-standard models 
are a powerful tool in the study of arithmetic, analysis, and set-theory. 
Moreover, there is a hidden parameter in our discussion of EL's expressive 
power, in that the class of models is unlimited. For certain subjects this is 
too liberal. For instance, the relational databases of computer science are 
much like models, but are all finite. And in the study of natural language 
quantification one often finds the same restriction. 

On the class of finite models EL can define some important finitistic 
notions. But in this area its model theory looks very different. On the 
finite models EL loses many of the metaproperties which we encountered 
above. 

i) Relative to finite models EL is incomplete. 
ii) El has no upward LST analogue for finite cardinals. There is no n 

such that tp has a model of size n only if it has models of size m, 
m>n. 

iii) El has no downward LST analogue for finite cardinals. There is non 
such that if 'P has a model of size m, m > n, it has a model of size n. 

iv) Relative to finite models EL is no longer compact. 

Fact (i) was proved in Trahtenbrot 1950 by recursion-theoretic means. 
Facts (ii-iii) are immediate since EL can define the class of models with 
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a domain of size n. Loss of compactness remains. Here there are some 
options. First, 'compact' could mean, as before, that if each finite part of 
r has a finite model so has r. This is false for finitistic EL, as is show by 
the theory { 'there are n things' : n E w}. Second, 'compact' could mean 
that if all -y E r have a finite model so has r. This is refuted by a finite 
counterexample. 

{V'x-iRxx, V'xyz(Rxy A Ryz--+ Rxz), \>'x3y.Rxy} 

Cleary, there are finite irreflexive relations, finite transitive relations, and 
finite relations with a successor for each element in its domain. But if a 
relation is to satisfy all three requirements it can only be infinite. (An 
irreflexive, transitive relation allows no finite cycles.) To get a taste of the 
issues involved in finite model theory we refer to Gurevich 1985. 

There are logics which show a similar pattern on the class of all models 
as EL does on the finite ones: expressive but with few model theoretic 
tools. Still, logics more expressive than EL, or ELwq for that matter, are 
useful, in mathematics as well as in linguistics. Perhaps the simplest way 
to obtain such logics is to enrich EL with real quantifiers that correspond 
to non-first-order properties of sets. The next section has examples of such 
logics. 

4.3 Quantifier Logics 

In defining EL wq we interpreted Q as an set of subsets of the universe 
E. We also saw that the quantifier 3 got interpreted as the set of non­
empty subsets of the universe, and the quantifier V' as the set containing 
only the universe. The property of being a non-empty set and the property 
of coinciding with the whole universe are not arbitrary properties, so the 
interpretation of Q is indeed too weak. As we have seen in connection with 
the ISOM constraint in Section 3.2, the defining property for a quantifier 
should have something to do with quantity. 

In Section 3, we focussed on binary (or restricted) quantifiers, here we 
will consider unary (unrestricted) quantifiers. Let us first see which insights 
from Section 3 carry over to the unary case, if we consider a unary quan­
tifier Q on universe E as a binary quantifier with restriction set E. First 
note that the constraint UNIV, which combines EXT and CONS, becomes 
trivial, for we have indeed for all B <;;; E : QE(E, B) <=> QE(E, En B). 
The constraint ISOM now takes the following shape (writing the universe 
of quantification as a subscript): 

ISOM If 7r is a bijection from E to E', then QEB <=> QE17r[B]. 

This very idea was captured in Mostowski 1957 by means of the following 
definition. 

Definition 9 A quantifier Q is a functor such that for all domains E, E': 
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i) QE c; p(E) 
ii) QE(X) <::> QE' ('rr[X]), for all X c; E, and all bijections 7r : E ---+ E'. 

In (41) we give some examples of unary quantifiers. 

(41) TE = f?(E) 
allE = {E} 
nOE = {0} 

not allE = {X c; E: X i: E} 
at least nE = {X EE: IXI ~ n} 
exactly nE = {X EE: IXI = n} 
at most nE = {X c; E: IXI ~ n} 

between n an IDE {X c; E: n ~ IXI ~ m} 
most things E = {X ~ E: 1x1 > IE - XI} 

less than half of theE = {X ~ E: IXI ~ IE-Xi} 
an even number ofE = {X ~ E: 3n(IXI = 2n)} 

finitely manyE = {X ~ E: 3n(IXI = n)} 
infinitely manyE = {X ~ E: IXI ~ ~o} 

uncountably many E = {X c; E: IXI ~ ~i} 
J_E = 0 

It is not hard to see that the examples in (41) are all quantifiers in the sense 
of Mostowski. Each of these quantifiers Q gives rise to a logic EL(Q). By 
adding an indexed set Qi of quantifiers to EL, we obtain an extension 
EL(Q;);Ef· 

We have already seen that for some of the Q's in ( 41) the logic EL(Q) is 
more expressive than weak quantifier logic, because EL wq cannot define Q. 
E.g., finitely many was such. This illustrates, by the way, that first-order 
definability has nothing to do with the general concept of a quantifier. 

There is an alternative way to capture the idea that quantifiers should 
be insensitive to particular individuals. Relative to a domain E, the sets 
X and Y are strongly equal, X = Y, iff IXI = IYI and IE - XI = IE - YI. 
Notice that only on finite domains strong equality is identical to equicar­
dinalty! For example, the natural numbers have the same cardinality as 
the even numbers. But relative to the natural numbers these sets are not 
strongly equal. On a domain E the quantifiers can now be characterized 
as those sets of sets which do not discern between strongly equal sets. 
Proposition 10 generalizes this characterization across universes. 

Proposition 10 A functor Q such that for all E QE ~ p(E) is a quan­
tifier iff for all E, E' and all X c; E, Y c; E' with IXI = IYI and 
IE-XI = IE'-YI: 

QE(X) <=> QE, (Y) 

PROOF. [:::}:] Suppose Q is a quantifier and IXI = IYI and IE - XI 
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IE' - YI. Then the injections given by the identities can be joined to give 
a bijection n: : E ---+ E'. Since Q is a quantifier and 7r(X) = Y, we 
have: QE(X) {::} QE' (Y). [<=:] This is immediate, since for each bijection 
7l" : E ---+ E' we have IXI = 17l"(X)I and JE - XI = IE' - 7r(X)I for all 
X~E. o 
Proposition 10 says that the truth of a statement QE(X) depends en­
tirely on the cardinalities IXI and JE - XI (not just JXJ!). On top of this 
Mostowski 1957 notes that a quantifier QE can be represented as a two 
place relation TQE between cardinals µ, "" with µ + "' = IEI. More in 
particular, one defines TQ and QT by: 

(42) T~(n, m) <::? 3X[QE(X) A IE - XI = n A JXI = m] 
QE(X) {:} TE(IE - XJ, IXI) 

for all E. That these views are indeed equivalent boils down to showing 
that converting a quantifier into a relation and then back into a quantifier 
yields nothing new, and that the same holds for the converse process: 

(43) Q = QTQ and T = TQT 

4.3.1 The Tree of Numbers 

Restricting our attention to finite domains, the quantifiers become subsets 
of the plane IN2 which can be visualized as a number tree. In figure 7, we 
give the general format of this tree. 

0,0 
1,0 0,1 

2,0 1,1 0,2 
3,0 2,1 1,2 0,3 

4,0 3,1 2,2 1,3 0,4 
5,0 4,1 3,2 2,3 1,4 0,5 

FIGURE 7 General Format of a Numerical Tree 

If ( i, j) is a number pair in the tree for Q, then i + j is the cardinality 
of the universe E, i is the cardinality of E - X, and j is the cardinality 
of X. Note that the same kind of representation also works for binary 
quantifiers satisfying EXT, CONS and ISOM, for here we can take i to be 
the cardinality of A- B, where A is the first and B the second argument of 
the quantifier, and j the cardinality of An B. (Thanks to EXT and CONS 
we can define a unary quantifier Q' so that: QA,A n B {:} QEAB.) 

A sequence (r, i) for a certain r E IN is called a 'row', and a sequence 
(j, c) for a certain c E IN is called a 'column'. The diagonal n, which 
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consists of the pairs (i,j) with i + j = n, corresponds to t~e _d~m~ins of 
size n. If a pair (IE-XI, IXI) is an element of a quantifier, this is md1cated 
by a '+ '. To get used to the tree representation, one should _try and answer 
some questions about numerical trees, such as the following. What are 
the tree patterns for all, some, no and not all? How are these patterns 
related? What are the relationships between the tree patterns for at most 
three, exactly three, and at least three? Figure 8 has some examples. 

+ 
+ + 

+ + + 
at least three 

+ 
+ 

+ + 
+ + 

less than half 

+ 
+ 

+ + 
+ + 

+ + + 
+ + + 

An even number 

FIGURE 8 Examples of Numerical Trees 

The tree of numbers can be used to represent quantifiers. But much 
more important is the observation that they give a method of proof ( cf. 
Mostowski 1957, van Benthem 1984, 1986 Westerstahl 1984, a.o.). For 
instance, several quantifier properties translate to regularities of tree pat­
terns. E.g., the tree pattern corresponding to MONt is: If a node has a 
+, then all nodes to the right on the same row have +-s. And similarly 
with nodes to the left of a+ in case of MON.!-. This 'geometry of quantifi-
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ation' is used by van Benthem 1984 and Westerstahl 1984 to characterize 
rst-order definable quantifiers on finite domains . 

• 3.2 Logics with Quantifier Variables 

[1 the previous section we introduced the notion of a quantifier logic EL( Q). 
'hese logics add a specific quantifier to EL, such as R or finitely many. 
'allowing up on Mostowski 1957, Thomason 1966 introduced a more ab­
tract quantifier logic in which Q varies over an arbitrary quantifier (in the 
ense of definition 9). In the sequel we use ELq to refer to this logic. 

The move from ELwq to ELq may seem innocent, but this impression is 
.eceptive: by making this move we obtain a very powerful logic! The reason 
; that in defining ELq we use a higher-order concept,for we quantify over 
'ermutations. It is well-known that higher-order logics are very expressive, 
.nd much of this power is imported into ELq. Cf. van Benthem and Doets 
983, Vaananen 1978. We now give some examples indicating the increase 
f strength. 

The crucial observation, implicit in Thomason 1966, is emphasized by 
rasuhara 1969: ELq can be used to give information concerning the cardi­
.alities of sets (cf. proposition 10). 

44) a. If (E, [A], [B], Q) I= Qx.Ax tt -.Qx.Bx 
then l[A]I f- l[B]I or IE - [A]I f- IE- [B]I 

b. If (E, [A], [B], Q) I= lfx(Ax -r Bx)/\ (Qx.Ax tt -.Qx.Bx) 
then l[A]I < l[B]I or IE - [A]I > IE- [B]I 

['he implications in ( 44a, b) are sufficient to define, e.g., the ordering of the 
tatural numbers up to isomorphism, in the following sense: 

Cheorem 11 There is an EL( Q) sentence v such that: 

a. (IN, <, even) I= v 
b. If (E, <, Q) I= v then (E, <):::::<(JN,<), for all Q. 

:>ROOF. To following argument is essentially due to Yasuhara. Consider 
he sentences ( 45) in the language L = { <}. 

45) lfx.-.x < x irreflexivity 
lfxyz(x < y /\ y < z -r x < z) transitivity 
lfxy(x < y V x = y Vy< x) total order 
3x-.3y.y < x initial point 

~ach model of (45) is a linear order with an initial point. To (45) we add 
46), which states that each n has an immediate successor with either more 
>redecessors or with less succesors than n has. 

46) lfx:Jz[x < z /\ --,::Ju(x < u < z) /\ (Qv.v < x tt -.Qw.w < z)] 

Co see this, just notice that if x < y the predecessors of x are among 
hose of y, so we may apply (44b). Call the conjunction of these sentences 
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v. We claim that v characterizes (JN,<) up to isomorphism. Clearly, 
(JN,<, even) I= v. So assume (E, <, Q) I= v, Q a quantifier. Then (E,_ <) 
is a discrete total order with an initial point but without an endpoint. 
This means that E is infinite. Due to ( 46) it holds of an arbitrary e E E 
that either (i) the set of e's predecessors is strictly smaller than that of its 
immediate successor f, or (ii) this f has strictly less successors. But (ii) 
cannot obtain: the sets of successors of e and f are unbounded, and hence 
both infinite. Since these sets differ in just one element they have the same 
size. Therefore (i) is true. Again, there is but one element in the difference 
of these sets. So E must be countable. From this one may deduce that 
(E, <) is isomorphic to (JN,<): the initial point in E can be linked to 0, 
its immediate successor to 1, and so on... D 

Theorem 11 makes clear that the expressive power of ELq exceeds that of 
ELwq (for, as we have seen, ELwq cannot define (JN,<)). By the same 
token we see that upward LST is false for ELq. Further, ELq is not com­
plete: its set of valid sentences is not recursively enumerable. Using Godel 's 
theorems, Mostowski 1957 noted that a logic which defines the ordering of 
natural numbers is incomplete. Besides upward LST and completeness, 
ELq lacks compactness. Consider the theory rw0 : 

rwo := {I/} U { Cj < Ci : i, j E W and i < j} 

Each finite re £:;; rwo has a model (interpret eo, say, as the maximal sub­
script in re in (JN, <, even)). But rwo is unsatisfiable, since IN allows no 
infinite descending chains. (A total order with no such chains is called a 
well-ordering. On the assumption that vis first-order, the argument can be 
adapted to show that EL does not define well-orderings.) Finally, ELq does 
not have downward LST either. Thomason 1966 proved this, as follows. 
Let r be the theory in ( 4 7). 

(47) r := D.cuv U {Ac: c EC} U {-.Ad: d ED} U {Qx.Ax /\ -.Qy.-.Ay} 

with C and D disjoint countably infinite sets of constants, and D.cuD as in 
(40). The theory r has an uncountable model. Take for example the real 
numbers with A interpreted as the natural numbers, and Qxip as: 'there 
are at most countably many t.p's'. However, r has no countable model 
(E, [A], Q). For in such a model l[A]I = IE - [A]I, which contradicts 
Qx.Ax /\ -.Qy.-.Ay for any quantifier Q. Cf. (44a). 

All in all we see that the price for more expressiveness is rather high. 
The desirable metaproperties named in section 4.1.3 all have to go. In 
fact, other such properties suffer the same fate. Yasuhara 1969 shows that 
ELq has no LST theorems whatsoever. In particular, it has no downward 
variants with uncountable cardinals instead of the countable version given 
here. And therefare also no upward variants with a certain uncountable 
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cardinal as lowerbound. In this respect ELq behaves on all models much 
like EL does on all finite ones. 

At this point one may wonder whether there is a deeper reason as to 
why the search for an expressive system can only be satisfied at the loss 
of some of EL's metaproperties. Such a reason is given by Lindstrom's 
theorems, which state that some combinations of these metaproperties can 
never be realised by logics stronger than EL. Let us say that a logic L 
relativizes (or: is closed under relativisation) iff for every sentence cp E L 
and every one-place predicate constant P not in cp, L defines a sentence 
<.pp with the property that M f= cpp iff MIPM f= cp (here MIPM is the 
submodel of M with domain [P]). It is clear that EL relativizes. 

Theorem 12 (Lindstrom's theorems) A logic L is equivalent to EL iff: 

1. L relativizes, has downward LST, and is either complete or has up­
ward LST; or 

2. L has downward LST and is compact. 

For nice proof sketches, see Hodges 1983 and Lindstrom 1969. A more 
detailed proof can be found in Chang and Keisler 1990. 

In the above we have restricted ourselves to comparing ELq with EL. This 
is only the tip of an iceberg. In current investigations of extensions of 
EL much attention is paid to comparing their expressive power. In doing 
so one often uses other tools than compactness and LST theorems, sim­
ply because such means may not be present. A powerful tool is given by 
Ehrenfeucht-Fralsse games. Westerstahl 1989 introduces their application 
to logics EL(Q), Q a binary quantifier. Cf. also Barwise and Cooper 1981, 
Kolaitis and Vaananen 1992, and Weese 1980, and the collection of papers 
Barwise and Feferman 1985. 

Rather than stop here, with a logic which lacks many metaproperties, 
we consider a few variants of ELq. First we show that the combination of 3, 
\:/,and Q gives ELq its power. Once we eliminate 3 and V, a decidable logic 
remains. Finally, we end our introduction by considering some extensions 
of ELwq. 

4.4 A Decidable Quantifier Logic 

We have already seen that the logic EL wq is undecidable. Anapolitanos 
and Anapolitanos and Vaananen 1981 made the nice observation that the 
logic Lwq, which is obtained from ELwq by removing the -y's and the 8's, 
is decidable. This is not difficult to see. In defining systematic tableaux for 
EL the -y's are repeated, which results in possible infinite finished tableaux. 
But as soon as it is impossible to encounter any i's, i.e., by removing -y's 
and negated 8's, the tableau construction is a finite process. Depending 
on the complexity of the root formula Fa, it halts in a fixed number of 
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steps. When it is finished we simply check whether the resulting tableaux 

is closed or open. In the first case O' is valid, in the second case it is invalid. 

Observe that finite tableaux use only finitely many constants, so the 

model given by Hintikka's lemma will be finite. As a consequence, it can 

be proved that the logic Lq, which is like Lwq but now with Q varying 

over real quantifiers, is decidable too. This result of Anapolitanos and 

Vaananen" (1981) is obtained by showing that each weak finite model can 

be transformed into a finite model for Lq. The proof uses the following 

lemma: 

Lemma 13 Let X, Y ~ {O, ... ,n} = n + 1. We have: 

I:nEX2n = I:mEY2m {::} X = Y 

PROOF. The sums at the left-hand side are essentially codes of the subsets 

of n + 1 using binary numerals. To see this, let X ~ n + 1 and let f x 

be the characteristic function of X. So, f x ( m) = 1 if m E X, otherwise 

f x (m) = 0. Now consider the binary digit f x(n) ... fx(O) (which may have 

some superfluous zero's to the left). The value of this digit is: fx(n)2n + 
· · · + fx(O), i.e., I:nEX 2n. So if I:nEX 2n = I:mEY 2m the corresponding 

binary digits are the same. Therefore the characteristic functions of the 

sets determined by these digits are identical, i.e.: X = Y. D 

Theorem 14 If 'P has a finite Lwq_model, it has a finite Lq-model. 

PROOF. Let A= (A,[-]A,Q) be a weak model with A= {a1 , .. . ,an}­
Choose sets A; with /Ai/ = 2i, and A; n Ai = 0 if i =f. j. Set B = Un A;. 

Let k : B --+ A be the surjection with k(b) = a;, for all b E A;. So 

k- 1(a;) = {b E B: k(b) =a;}= A;. Define B = (B, [-] 8 , q•) by: 

[R]8 := {(b1, .. .,bn): [R]A(k(b1), .. .,k(bn))} 
Q* := {Y <;;; B: 3X E Q[/Y/ = /k- 1 (X)/]} 

with k- 1 (X) = {b E B: k(b) EX}. We claim that: 

BF 'P(b1, · · ·, bn) {::}A F 'P(k(b1), ... , k(bn)) 

(~e~all that Q denotes b. In fact we write Q. for b1 , ... , bn, below, and 

sumlarly for k(b).) The atomic and the Boolean cases are straigthforward. 

We concentrate on quantified sentences. By induction hypothesis we have: 

x.['P(x,!J.)] 8 = k- 1(x.[c.p(x, k(b))]A) 
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Using this, the proof from right to left is simple: 

A I= Qx.cp(x, k(b)) 
x.[cp(x, k(b))]AE Q 

x.[cp(x, k(b))]A E Q 
& lx.[cp(x,Q)]BI = lk- 1 (x.[cp(x, k(b))]A)I 

B ~-x. [ cp ( x, Q)] E Q* 
BI= Qx.rp(x,Q.) 

From left to right we reason as follows: 

B I= Qx.rp(x, Q.) 
~ x.[cp(x,Q.)] 8 E Q* 
~ 3X E Q: lx.[rp(x,Q.)]8 1 = lk-1(X)I 
~i.h. 3X E Q: lk-1(x.[ip(x, k(b))]A)I = lk-1 (X)I 

~ 3X E Q: Ea;E x.[cp(x,k(b))]A 2i =Ea; EX 2i 

~ 3X E Q: x.[cp(x, k(b))]"A= X 
~ A I= Qx.cp(x, k(b)-) -

The fifth step uses lemma 13. D 

It would be interesting to know which quantifier properties are preserved 
under the above construction. 

4.5 Extensions of Weak Quantifier Logic 

It is natural to ask whether the results for EL wq can be generalized to 
quantifiers with more properties than just extensionality. Here we shall 
briefly mention two such extensions. The first concerns universal proper­
ties of quantifiers, the second quantifiers which are closed under some but 
perhaps not all permutations. 

4.5.1 Universal Properties 

A universal property of a quantifier is one which can be stated as a universal 
sentence in the second-order extension of EL wq. In this extension we may 
quantify over subsets of the domain. A universal sentence is of the form: 

(48) 'v'X1 ... Xn.W(X1 ... Xn) 

where W is a sentence in first-order EL wq with X 1 ... X n second-order 
variables acting as predicates. The sentence (48) is true in a model M iff 

(M, A1 ... An) I= w(Q, X1 ... Xn) 



40 I JAAP VAN DER DOES AND JAN VAN EIJCK 

for all subsets A1 ..• An of M. Examples of universal properties are: 

(49) MoNt VXY[(QEX /\ X ~ Y) =? QEY] 
MON.). VXY[(QEY /\ X i;;;; Y) =? QEX) 
MEET VXY[(QEX /\ QEY) =? QEX n Y) 
SPLITTING VXY[QEX UY=? (QEX V QEY)) 
CONSISTENCY VXY[QEX =? (-iQEX)j 
COMPLETENESS V'XY[(-iQEX) =? QEX) 

Following up on Westerstahl 1989, appendix B, Doets 1991 shows that 
in general the logic ELwq(P), P a universal quantifier property, is still 
complete, compact, and has LST theorems. Here we concentrate on the 
special case of the splitting quantifiers to get a feel for the issues involved. 

In order to show that ELwq(SPLITTING) is complete, we may use Hin­
tikka sets S which contain all signed sentences of the form: 

(50) T[Qx(<p V 1/i) -t Qxr.p V Qx,P] 

In a model of such a Hintikka set, Q will be splitting on the definable sets. 

Definition 10 A set X C E is definable in a model M on E with names 
for each of its elements iffthere is a formula cp(x) such that X = x.[cp(x)]M. 
We use DEF M for the set of all definable sets in M. 

It is not enough to ensure that Q is splitting on the definable sets; it needs 
to be splitting on all sets. Fortunately, if Q is splitting on the definable 
sets then it is always possible to find a Q* which is splitting on all sets and 
identical to Q on the definable ones. Using this, we can prove Hintikka's 
lemma. 

Proposition 15 If [Q]M is splitting on DEF M then [Q*]M defined by: 

[Q*]M := { x ~ E : ...,oEF Mx v QEX} 

is equal to [Q)M on DEF M and is splitting on all sets. 

PROOF. It is clear that [Q*]M and [Q]M are identical on the definable 
sets (for if X is definable so is X). It remains to show that [Q"]M is 
splitting on all sets. So assume that [Q"]M(X UY). We distinguish two 
cases. (i) ...,DEF(X UY). Since DEF M is closed under Boolean operations, 
it follows that -iDEF(X) or -iDEF(Y). Therefore by definition [Q*]M(X) or 
[Q*]M(Y). (ii) DEF(X UY). Combined with the fact that [Q*]M(XUY), 
we now have: [Q]M(X UY). But QM is splitting on the definable sets. 
So [Q]M(X) or [Q]M(Y), and therefore [Q"]M(X) or [Q*]M(Y). O 

In order to prove completeness from Hintikka's lemma it remains to alter 
the notion of a systematic tableau so as to make sure that each of its open 
branches includes all instances of (50). If for simplicity we assume there 
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are countably many of such sentences this is simple. Just treat them as 
premisses, which we already know how to handle. 

As we said earlier, Doets 1991 has a general argument-using an Ehren­
feucht-Fra'lsse game-showing that for each EL wq(P) the set of valid sen­
tences is recursively enumerable, where Pisa universal quantifier property. 
We refer to his paper for details. 

4.5.2 Generalized Interpretations for ELq 
It is clear that not all quantifier properties can be cast in a universal mould. 
Here are two examples from Doets 1991: 

(51) a. QxQy.cp tt QyQx.cp 
b. Qx3y.cp /\ VxQy.cp ~ Qy3xcp 

The property (51a) states that Q is self-commuting; it is the 'Fubini' prop­
erty of almost all on its measure theoretic interpretation. And (51b) is an 
axiom for there are at most countable many, which states that the union of 
countably many sets is itself countable. Cf. Van Lambalgen, this volume, 
and Westerstahl 1994b. 

Another property which falls outside the scope of Doets' result is closure 
under definable permutations. This property is introduced by Thomason 
and Johnson, jr. 1969, and given by the axiom in (52). 

(52) (Vx3!ycp /\ Vy3!xcp /\ Vy{?ji ++ 3x(cp /\ x)]) ~ (Qy?ji ++ Qxx) 

Here 3!z reads as 'exactly one z'. Note that (52) is a strengthening of 
axiom (33b), which is the special case with cp = x = y. 

In the antecedent of (52) Vx3!ycp /\ Vy3!xcp forces the two place relation 
xy.cp to be a bijection, call it f. And Vy[?ji tt 3x(cp /\ x)] states that the 
set y.?ji is the image of the set Y·X under f: y.1/J = f(x.x). In other words, 
if (52) is true for all cp, ?ji, and x, then on the definable sets Q is invariant 
for definable permutations. 

Section 4.3.2 has taught us that we cannot hope for completeness by 
finding a suitable variant of Q which extends this property to all sets and 
all permutations; ELq is incomplete. Still, the axiom scheme (52) can 
be used to obtain the nice extension ELdP of ELwq, which is complete, 
compact and has LST theorems. This logic uses generalized models, along 
the lines of Henkin's models for higher-order logic (cf. van Benthem and 
Doets 1983). The generalized models are of the form: 

(E, [-], Q, P) 

with P a subset of the set of all permutations on E, and Q a set of subsets 
of E which satisfies: 

QX ~ Q7r(X) 
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for all X C E and all ?r E P. In order to make (52) valid, we have to 
require th~ in a generalized M, P contains all definable permutations. 

(53) M I= 'Xfj.t.p is a bijection' =? xy.[ip]M E P 

Given this much, it is not too difficult to prove ELdp to be complete. 
Again, we refer to the original paper for details. 
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