
Checking Verifications of Protocols
and Distributed Systems by Computer

Jan Friso Groote1•2 , Fran<;ois Monin2 , Jaco van de Pol2

1 CWI, P.O. Box 94079, 1090 GB Amsterdam The Netherlands
))

JanFriso.Grooteecwi.nl,
2 Department of Mathematics and Computing Science, Eindhoven University of

Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,
monin©win.tue.nl, jaco©win.tue.nl

Abstract. We provide a treatise about checking proofs of distributed
systems by computer using general purpose proof checkers. In particular,
we present two approaches to verifying and checking the verification of
the Sequential Line Interface Protocol (SLIP), one using rewriting tech
niques and one using the so-called cones and foci theorem. Finally, we
present an overview of literature containing checked proofs.

Note: The research of the second author is supported by Human Capital
Mobility (HCM).

1 Proof checkers

Anyone trying to use a proof checker, e.g. Isabelle [65, 66], HOL (31], Coq [22],
PVS [76], Boyer-Moore [12] or many others that exist today has experienced
the same frustration. It is very difficult to prove even the simplest theorem.
In the first place it is difficult to get acquainted to the logical language of the
system. Most systems employ higher order logics that are extremely versatile and
expressive. However, before we can use the system, we must learn the syntax
to express definitions and theorems and we must also learn the language to
construct proofs.

The second difficulty is to get used to strict logical rules that govern the
reasoning allowed by the proof checker. Most of us have been educated in a
mathematical style, which can be best described as intuitive reasoning with
steps that are chosen to be sufficiently small to be acceptable by others. We all
know examples of sound looking proofs of obviously wrong facts ('1 = -1', 'every
triangle is isosceles', 'in every group of people all members have the same age').
In fact it is quite common that mathematical proofs contain flaws. Especially,
the correctness of distributed programs and protocols is a delicate matter due
to their nondeterministic and discrete character. Proof checkers are intended to
ameliorate this situation.

One must get rid of the sloppiness of mathematical reasoning and get used
to a more logical way of inferring facts. That is to say, one should not eliminate
the mathematical intuition that helps guiding the proof, as the logical reasoning

630

steps are so detailed that one easily looses track. And if this happens, even
relatively short proofs, are impossible to find.

A typical exercise that was carried out using Coq during our first encounters
with theorem checkers, gives an impression of the time required to provide a
formal proof. We wanted to show that there does not exist a largest prime
number. A well known mathematical proof of this fact goes like this. Suppose
there exists a largest prime n. So, as now the product of all prime numbers
exists, let it be m. Now consider m + 1. Clearly, dividing m + 1 by any prime
number yields remainder 1, and therefore m + 1 is itself also a prime number,
contradicting that n is the largest prime.

The formal proof requires that first a definition of natural numbers, the in
duction principle, multiplication, dividability and primality are given. Most the
orem checkers contain nowadays libraries, where some of these notions, together
with elementary lemma's are predefined and pre-proven. As a second step it is
necessary to construct the product m of all prime numbers up to n (it is easier
to construct the product of all numbers up ton) and prove that m + 1 is not
dividable by any number larger than 1. When doing this, it will turn out that
the strict inductive proofs are not at all trivial, and need some thinking to find
the appropriate induction principles. It took more than a full month to provide
the formalized proof, and we believe this to be typical for somebody with little
experience in proof checking.

However, after having mastered a theorem checker, and after having proof
checked the first theorems, the benefits from proof checking will become very
obvious. In the first place one starts to appreciate the power of higher order logics
and learns to see the difference between a proof, which can be transformed to be
checked by a proof checker, and a 'proof' (or better 'intuitive story') for which
the relation with a logical counterpart cannot be seen. On a more concrete level,
one finds in almost any proof - and correctness proofs of distributed systems or
protocols are no exception - flaws that even may have impact on the correctness
of the protocol. A typical example is the equality between an implementation and
specification stated on page 118 in [59) that was seen to be incorrect when a fully
formalized proof was proof checked [47]. Using proof checkers can lead to a very
strong emotion, which borders to addiction. As proof checkers makes one aware
of ones own fallibility, which many people would not like to exhibit, the desire
grows quickly to check every theorem using a proof checker. Unfortunately, proof
checking is currently too time consuming to make this practical. However, the
quality of proof checkers is steadily increasing meaning that from a certain point
in the future proof checkers will be commonly used as they yield much more
reliable proofs, and will most likely be more efficient than proving theorems by
hand.

2 Proof checkers and concurrency

Concurrency and proof checkers are orthogonal fields. This means that proof
checkers are not particularly aimed at any particular concurrency theory. Be-

cause we are mo~t acquainted with proof
algebra, we provide a perspective::__ h'"'."'°"""·u1tR
. d "d i· uom t IB Ht'1l!l·~ili1!~

s10ns an gm e mes carry over directly ~ ,
There are actually three requi"re t :it ,.,,,,,, • .,.__.,,,,_

men s
checker to be usable to check proofs of . . ,,

correc,n~'!

l. The proof checker must be sufficie t'
. . h ll tV

curnng m t e concurrency theor "
and Isabelle satisfy these requiremy. t 'I::;

ics, such as Larch [37] and the en s. t·or

evident that they are suitable as m
d . , any concurrency

er concepts. For this reason the
extended with higher order concepts

2. The concurrency theory must a ,,,,.,w,,,·•um
reasoning in the theory must be in a sutticienth·
case, one must expect to invest a lot of time nrc»,it!!>n,.

An example ~om pro?ess algebra is found in page 35
RSP (Recursive Specification Principle) is r1'"'"",,,;1-.-r1

specification has at most one solution'. In
is given in Coq, which fills almost an entire page of val.riou:e ootnil;iul!l11'1 ..

3. Finally, to really get a proof checker to 1i'li'CJrk, the
effective. This means that either the fornuu c.oo,.ajc&s of a
number of steps, that can all be entered hand, or the
that large parts of the proof are constructed the ehed:er.
In one of our earliest encounters with a c~r

parallel operator into alternative and sequential cor1m()Sitioo
<lard axioms of ACP [5]. Given the large number of aOI)fa;11,b1'.lll!i

that were needed, we had to resort to expansion tboorem£
develop and prove for this purpose).
We have elaborated more to make proving process
able to be computer checked. This has boiled dovirn in
the correctness of a distributed summing :and the
new Remote Control standard [36] using different t"1::hnlN:!Ulllf

the next sections we illustrate both techniques on the SLIP n:n)t.Ol'OI

3 The SLIP protocol

The Serial Line Interface Protocol (SLIP) is one the mvv,,,,r:<,~I~

commonly being used to connect individual computers via a modem imd
line. It allows one stream of bidirectional information. This is ii
therefore the SLIP protocol is gradually being t:.M~ Pt'<lm t(!

Protocol (PPP) that allows multiple streams, such ~hat ~ver.al progr~'> mu'
side can connect to several programs at the other side via C•D:e une

Basically, the SLIP protocol works by sending blocks of d~ui. E&Ch bfod: a
sequence of bytes that ends with the special end Con.fusioo_ct\n oornr whm
the end byte is also part of the ordinary data sequence. In th1s C3&', th(~ end

632

byte is 'escaped', by placing an esc byte in front of the end byte. Simila.i.
distinguish an ordinary esc byte from the escape character esc, each esc iJ
data stream is replaced by two esc characters. In our modeling of the prot

r s
1 2

R s
c

Fig. 1. Architecture of the SLIP protocol

we ignore the block structure, but only look at the insertion and remova
esc characters in the data stream. We model the system by three component,
sender, inserting escape characters, a channel, modeling the medium along wb
data is transferred, and a receiver, removing the escape characters (see figure
We let the channel be a buffer of capacity one in this example.

We use four data types N, Bool, Byte and Queue to describe the SI
protocol and its external behaviour. The sort N contains the natural numbe
We use induction on N as well as some auxiliary functions. The function e,
N x N-+ Bool is true when its arguments represent the same number. The sc
Bool contains exactly two functions t (true) and f (false) and we assume tb
all required boolean connectives are defined.

The sort Byte contains the data elements to be transferred via the SLj
protocol. As the definition of a byte as a sequence of 8 bits is very detailed at

actually irrelevant we only assume about byte that it contains at least two ni

necessarily different constants esc and end, and a function eq:Byte x Byte -
Byte that is represents equality. Using the checker, we can find out that '\1

indeed did not need any other assumption on bytes.
Furthermore, to describe the external behaviour of the system, we introduc

a sort Queue which we describe in slightly more detail to avoid the typical cor
fusion that occurs with less standard data types. Queues are constructed usin
the empty queue 0 and the constructor in : Byte x Queue -+ Queue. This mean
that we can apply induction over queues using these functions. Furthermore, w
use the following auxiliary functions:

toe:Queue-+ Byte, untoe:Queue-+ Queue,
len:Queue-+ N, empty,jull:Queue-+ Bool

The function toe yields the element that was first inserted in the queue. ThE
function untoe removes this element from the queue. We leave these functions
undefined on the empty queue, as we do not require this information. The func
tion len yields the length of the queue, empty says when the queue is empty and
full yields a later to be explained criterion for what it means for a queue to be

633

full. These functions are characterised by the following equations where d and
d' range over Byte and q is a queue.

toe(in(d,0)) = d, toe(in(d,in(d',q))) = toe(in(d',q))
untoe(in(d, 0)) = 0, untoe(in(d, in(d', q))) = in(d, untoe(in(d',q)))
empty(0) = t, empty(in(d, q)) = f
len(0) = 0, len(in(d, q)) = S(len(q))
full(q) = eq(len(q), 3) V (eq(len(q), 2)/\

(eq(toe(untoe(q)), esc) V eq(toe(untoe(q)), end)))

We provide below the precise description of the SLIP protocol. For this we use
process algebra with data in the form of µCRL ([5, 34]). The processes are defined
by guarded recursive equations for the channel C, the sender Sand the receiver
R (cf. Figure 1). The equation for the channel G expresses that first a byte b
is read using a read via port 1, and subsequently this value is sent via port 2.
After this the channel is back in its initial state, ready to receive another byte.
The encircled numbers can be ignored for the moment. They serve to explicitly
indicate the state of these processes and are used later.

Using the r action the sender reads a byte from a protocol user, who wants
to use the service of the SLIP protocol to deliver this byte elsewhere. Using the
two armed condition p <1c1> q, which must be read as if c then p else q, it is
obvious that if b equals esc or end first an additional esc is sent to the channel
(via action s1) before b itself is sent. Otherwise, b is sent without prefix.

The receiver is equally straightforward. After receiving a byte b from the
channel (via ri) it checks whether it is an esc. If so, it removes it and delivers
the trailing end or esc. Otherwise, it just delivers b. Both the sender and the
receiver repeat themselves indefinitely, too.

In the fourth equation the SLIP protocol is defined by putting the sender,
channel and receiver in parallel. We let the actions r1 and s1 communicate
and the resulting action is called c1. Similarly, r2 and s2 communicate into c2 .

This is defined using the communication function r by letting -yCri, Si) = Ci
for i = 1, 2. The encapsulation operator O{r1 , 81 ,r2 , 82 } forbids the actions r1,

s1, r2 and s2 to occur on their own by renaming these actions to the J, which
represents the process that cannot do anything. In this way the actions are forced
to communicate. The hiding operation T{ci ,c2 } hides these communications by
renaming them to the internal action T. Using axioms x T = x and x + T x = -r x
in weak bisimulation [59], or x (T (y + z) + z) = x (y + z) in branching bisimulation
[5], the description of systems can be reduced, making obvious what the external
behaviour of such a system is. For the SLIP protocol the external actions are r
and s that respectively read bytes to be transferred and delivers these bytes.

S =@l::b:Byte r(b)©(s1 (esc)@81(b)@S <J eq(b, end) V eq(b,esc) 1>s1(b)@8)

C =@l::b:Byte r1(b)©s2(b) C

R = @l::b:Byte r2 (b)©(l::b:Byte r2(b)(%)S(b)@R <I eq(b, esc) I> s(b)@R))

634

Slip== '{c1 ,c2}8{r1 ,s1n,s2}(S II C II R)

We want to obtain a better understanding of the protocol, because although
rather simple, it is not straightforward to understand its external behaviour
completely. Data that is read at r is of course delivered in sequence at s without
loss or duplication of data. So, the protocol behaves like a kind of queue. The
reader should now, before reading further, take a few minutes to determine the
size of this queue1 . Actually, the protocol behaves almost as a queue of size three,
as long as there are no esc and end bytes being transferred. Simultaneously, one
byte can be stored in the receiver, one in the channel and one in the sender. If
an esc or end is in transfer, it matters whether, it occurs at the first or second
position in the queue. At the first position the esc or end is ultimately neatly
stored in the receiver, taking up one byte position, allowing two other bytes to be
simultaneously in transit. If this esc or end occurs at the second position, there
must be a leading esc in the channel C, and the esc or end itself must be in
the sender. Now, there is no place for a third byte. So, the conclusion is that the
queue behaves itself as a queue of size three, except when an esc or end occurs at
the second position in the queue, in which case the size is two. This explains the
full predicate defined above, and yields the description of the external behaviour
of the SLIP protocol below: If the queue is not full, an additional byte b can be
read. If the queue is not empty an element can be delivered.

Spee(q: Queue) ==
Lb:Byte r(b) Spec(in(b, q)) <l •full(q) 1> c5+
s(toe(q)) Spec(untoe(q)) <l •empty(q) 1> c5

The theorem that we are interested in proving and proof checking is:

Theorem 3.1.

Slip = Spec(0)

where '=' is interpreted as being branching or weakly bisirnilar.

~ Section 4 b~l?w we p~ove Theorem 3.1 directly using process algebraic ax
ioms and rewntmg techmques to make this approach tenable. In Section 5 we
apply t~e. con~s and foci theorem and check the set of rather straightforward
precondit10ns m PVS. The checked proofs can be obtained by contacting the
authors.

1 Wh · h th en provmg t e correctness of the SLIP protocol, we erroneously took the size of
e que_ue to be one. When proving equality between the SLIP protocol and such a

iueuhe, I~ became q~i~ly obvious that this was a stupid thought. So we took three
or t e size. But this is not correct, either. '

635

4 Using rewrite systems in Isabelle/HOL

The direct proof method in process algebra consists of three steps:

1. Unfold the implementation by repeatedly calculating its first step expansion.
This results in a set of guarded recursive equations.

2. Shrink this set of guarded recursive equations by using the laws of weak (or
branching) bisimulation.

3. Prove that the specification also obeys the smaller set of equations.

The RSP-principle then guarantees that the specification and implementation
are equal.

The bunch of work is in the first step expansion. Given a process r18H(S JI
c II R) this is of the form Ei aiTJOH(Si II ci II Ri), with ai the possible first steps
of the process. The process Si denotes the sender after performance of ai. The
first step expansion must be repeated for the derivatives TJ8H(Si II Ci II Ri)· To
avoid an infinite unfolding of the process, names can be introduced. The process
of expansion is continued until a closed set of guarded equations is reached.

The first step expansion is rather straightforwardly calculated using the ax
ioms of process algebra. However, due to the large number of applications of
axioms automation is desired. In Section 4.2 we will present a conditional higher
order rewrite system that given a parallel process computes its first-step expan
sion, without running into exceedingly large intermediary terms. But first we
provide the laws of process algebra and its implementation in Isabelle/HOL.
The method is applied to the SLIP protocol in Sections 4.3 and 4.4.

4.1 Formulation of Process Algebra in Isabelle

In Isabelle, terms have types, and the types are contained in classes. We introduce
new classes act and data, and a communication function "(, where act is the
class of alphabets on which ga1!lllla is well-defined, and data is the class of types
that may occur as data types in the processes. Given an alphabet 'a: : act, a
type constructor 'a proc is declared for the processes over the alphabet 'a.

After that, the process algebra operators are declared, and infix notation
is introduced. We use ++, **, 11 , ! ! , LL for alternative, sequential, parallel
composition, communication and left merge, respectively. Furthermore, delta,
tau, enc and hide are used for 8, r, encapsulation and hiding. a<e> denotes
atomic action a with data element e, and $ d: : D. (p d) denotes the process
Ed:D p(d). Finally, the implementation uses the iterative construct y ©© z (y* z
in traditional notation) instead of recursive definitions x = yx + z. Recursive
definitions would introduce new names, that must be manually folded and un
folded during proofs. As an example, the type of the summation operator is as
follows:

$: : ['d: :data=> 'a: :act proc] => 'a proc

Finally, the axioms of process algebra are turned into rules for Isabelle/HOL.
Below we give an exhaustive list of the axioms we used. Note that we work with
weak bisimulation which is slightly easier than branching bisimulation in the
direct proof method.

A1 "x ++ y
A2 "(x ++ y) ++ z
A3 "x ++ x
A4 "(x ++ y) ** z

A5 "(x ** y) ** z
A6 "x ++ delta
A7 "delta ** x

y ++ x"
x ++ (y

x"
x ** z
x ** y
x"
delta"

636

++ z) II

++ y ** z"
** z"

D1 "(- a mem H) --> enc H (a<d>) = a<d>"
Dld "enc H delta = delta"
D2 "a mem H --> enc H (a<d>) =
D3 "enc H (x ++ y) enc H x
D4 "enc H (x ** y) = enc H x

delta"
++ enc H y II

** enc H y II

CM1 "XI IY X LL Y ++ Y LL X
CM2 "a<d> LL X a<d> ** X"

CM2d "delta LL X delta"
CM3 "a<d> ** X LL Y = a<d> ** (X 11
CM4 "(X++Y) LL Z X LL Z ++ Y LL
CMS "a<d> ** x ! ! b<e> (a<d>
CM6 "a<d> ! ! b<e> ** x (a<d>
CM7 "a<d> ** x ! ! b<e> ** y (a<d>
CMS "ex ++ Y) ! ! z x ! !
CM9 "X ! ! (Y ++ Z) x ! !

CF1
CF2

"gamdef a b c --> a<d> ! ! b<d>
"gamundef a b --> a<d> ! ! b<e>

CF2' "d -= e --> a<d> !! b<e>

SC1 "(x LL y) LL z x LL y II z"
SC2 "x LL delta = x ** delta"
SC3 "x ! ! y
SC4 "(x !! y) ! ! z
SC5 "x ! !(y LL z)

y ! ! x"
x ! ! y ! ! z"
(x ! ! y) LL z"

SC6 "delta!! delta delta"
HS "x ! ! y ! ! z delta"

tau1 "x ** tau = x"
tau2 "x ++ tau ** x = tau ** x"

z
y

! ! b<e>)
! ! b<e>)
! ! b<e>)
++ y ! !
++ x !!

c<d>"
delta"
delta"

TI1 n- a mem H --> hide H (a<e>) = a<e>"
TI1d "hide H delta = delta"
TI2 "a mem H --> hide H (a<e>)=tau"
TI3 "hide H (x ++ y) hide H x ++ hide H y"
TI4 "hide H (x ** y) = hide H x ** hide H y"

S1 "$ d. x x"

Y) II

Z"

**
**
**
Z"
Z"

S3 "$ d. (p d) ($ d. (pd)) ++ (p d)"

++ x ! !

X"
X"
ex 11

S4 "$ d. (p d) ++ (q d)
S5 "($ d. (pd)) ** x

($ d. (pd)) ++ ($ d. (q d))"
$ d. (p d) ** x"

Y"

Y) II

637

S6 II($ d. (p d)) LL x = $ d. (p d) LL x"
S7 "($ d. (p d)) ! ! x = $ d. (p d) ! ! x"
SS "enc H ($ d. (p d)) = $ d. enc H (p d)"
S9 "hide H ($ d. (p d)) = $ d. hide H (pd)"

K1 "x ©© y = x ** (x ©© y) ++ y"

4.2 A rewrite system for the expansions

In order to find the first step expansion of a term, we have to apply the laws of
process algebra with care. Many of these laws (regarded as rewrite rules) make
copies of subterms leading to an unnecessary blow-up of intermediate terms
(cf. CMl). To control the application of the duplicating laws, we put them in
the context where they are allowed. In this way an effective set of rewrite-rules
is obtained.

The essence of our strategy is to avoid the generation of many subterms that
will be eventually encapsulated. We assume that the subterm to be expanded is
of the form enc H (O++p). Here D can be seen as the head and pas the tail of a
list of summands. A term enc H (x 11 y 11 z) first has to be transformed into
enc H (x I I y I I z ++ delta). The rewrite systems starts with the following
rule to get it into this form:

enc H (xl ly ++ p) =enc H (x LL y ++ x ! ! y ++ y LL x ++ p).

From now on the general form will be enc H (0 LL u ++ p), so we need a copy
of the previous rule:

enc H ((x 11 y) LL u ++ p)
=enc H (x LL (y I I u) ++ (x !! y) LL u ++ y LL (x II u) ++ p).

D is either a single component or the communication between two components.
These cases are dealt with by the following non-duplicating rules: CM2, CM3,
CM5, CM6, CM7, CFl, CF2 and CF2' (and possibly their symmetric counter
parts). Only the rules for alternative components (CM4, CMS and CM9) are
duplicating and have to be replaced by e.g.:

enc H ((x ++ y)LL u ++ p) =enc H (x LL u ++ y LL u ++ p).

Eventually, the first summand is so small that it either can be discarded by

a mem H ==> enc H (a<d> ** x ++ p) = enc H p,

or it contributes to the final result. In that case we apply

- a mem H==> enc H (a<d> ** x ++ p) = enc H p ++ a<d> ** enc H x,

in order to proceed with the next summand. To deal with communications where
a data choice is involved, we add rules like

($ d. (a<d> ! ! b<e>) ** (p d)) = (a<e>! !b<e>) ** p e.

The iteration construct is only unfolded in certain contexts, such as

638

enc H (((x @@ y) ! ! z) LL u ++ p)
enc H ((x ** (x O@ y) !! z) LL u ++ (y !! z) LL u ++ p).

Finally, conditionals are pulled to the top of the terms by rules of the form:

(if b then p else q) !! x =(if b then (p !! x) else (q !! x)).

These rules have been proven in Isabelle using a much simpler rewrite system
(basically the completion of the process algebra laws, cf. [1]). These rules are
gathered in a simplification set called expand..ss. Also tactics to automatically
prove side conditions like a E H have been put into this simplification set.

4.3 Representation of the SLIP protocol

First, we have to define the alphabet of the SLIP protocol. We also define the
communication-function gamma and state that Act, with gamma is of class act.
The latter yields some proof obligations that we now omit.

datatype Act = r I r1 I c1 I sl I r2 I c2 I s2 I s
rule gamma_def

"gamma == [(r1,s1,c1), (r2,s2,c2), (s1,r1,c1), (s2,r2,c2)]"
instance Act::act

Next we define the data types of the SLIP protocol. We deviate from the µCRL
specification, by using the lists from the Isabelle library, with hd, tl, @ (head,
tail and append) instead of queues with toe and untoe.

types D
arities D:: data
consts ESC, END :: D
constdefs

special :: "D=>bool"
"special(d) == d=ESC d=END"

empty:: "D list=>bool"
"empty (1) == l= []"

full :: "D list=>bool"
"full(l) == length(l)=3 I (length(l)=2 & (special (hd (tl l))))"

Now we can introduce the specification. First we declare Spee and then we assert
its recursive definition by an axiom

consts Spee :: "D list=> Act proc"
rules Spec_def "Spec(l) =

(if (empty 1) then delta else s<hd(l)> ** Spec(tl(l)))
++ (if (full 1) then delta else $ d. r<d> ** Spee (l @ [d]))"

We are now ready to define the protocol itself. Because we can now use iteration
we don't need axioms but only definitions. For brevity we omit the types.

constdefs
"HL == [r1 ,s1 ,r2 ,s2]"
"TL == [c1,c2]"

639

"S ($d. r<d> ** (if (special d) then (s1<ESC> ** s1<d>)
else s1<d>)) ©Cl delta"

"C ($d: :D. r1<d> ** s2<d>) ©© delta"
"R ($d. r2<d> ** (if (d=ESC) then ($d: :D. r2<d> ** s<d>)

else s<d>)) ©© delta"
"Slip == hide TL (enc HL (S 11 C 11 R)) 11

4.4 Verification of the SLIP protocol

With the machinery developed so far we can start the verification of the SLIP
protocol. To this end we first define a number of auxiliary process terms.

constdefs
"Slip1 d == hide TL (enc HL (

(if (special d) then (s1<ESC>os1<d>) else s1<d>)•*SI !Cl IR))"
"Slip2 d e == hide TL (enc HL (

(if (special e) then (s1<ESC>**s1<e>) else sl<e>)oSI ICI ls<d>*•R))"
"Slip3 d == hide TL (enc HL (S 11 C 11 s<d> ** R))"
"Slip4 d == hide TL (enc HL (s1<d> ** S 11 s2<ESC> ** C 11 R))"
"Slips d == hide TL (enc HL (S 11 s2<d> ** C 11 R))"
"Slip6 d e f == hide TL (enc HL (

(if (special f) then (sl<ESC> ** s1<f>) else s1<f>) ** S
I I s2<e> ** C 11 s<d> ** R))"

We follow the three steps of the classical correctness proof. First the SLIP pro
tocol is expanded.

Lemmala: Slip = $ d. r<d> ** Slip1 d
Lemmalb: special(d) --> Slip1 d = tau ** Slip4 d
Lemmalc: -special(d) --> Slipl d =tau** SlipS d
Lemmald: special(d) -->

Slip4 d = tau ** (tau ** Slip3 d ++ ($ e. r<e> ** Slip2 d e))
Lemmale: -special(d) -->

SlipS d = tau ** Slip3 d ++ ($ e. r<e> ** Slip2 d e)
Lemmalf: Slip3 d = s<d> ** Slip++ ($ e. r<e> ** Slip2 d e)
Lemmalg: special e -->

Slip2 d e = tau ** s<d> ** Slip4 e ++ s<d> ** Slip1 e
Lemmalh: -special e --> Slip2 d e
tau ** (s<d> ** Slip5 e ++ ($f. r<f> ** Slip6 de f)) ++

s<d> ** Slip1 e
Lemmali: -special e --> Slip6 de f = s<d> ** Slip2 e f

To give an impression of the proof of this lemma the complete proof script for
Lemmale is printed below

by (reYrite_goals_tac [Slip5_def, S_def, C_def, R_def]);
br impI 1;
choose 1; by (asm_simp_tac expand_ss 1);

640

choose 1; back(); by (asm_simp_tac expand_ss 1);
by (revrite_goals_tac [Slip2_def, Slip3_def, S_def, C_def, R_def]);
by (simp_tac tau_ss 1);
by (asm_full_simp_tac compare_ss 1);
qed "Lemma1e";

The first command unfolds the definitions in the left-hand side of the equation.
The next command places the condition as an assumption in the context. Then
one of the enc's is chosen and expanded using the expand..ss-system. This is
repeated for a second expansion. Note that the default choice of the system
was wrong so we had to backtrack. After that we unfold the definitions in the
right-hand side. Then we call the hiding rewrite system. Finally the left- and
right-hand side are compared. The latter step uses laws for commutativity of
the alternative (Al) and parallel composition. Isabelle will not loop on such
rules because it uses ordered rewriting.

By doing some subtle substitutions in the equations above and using the
tau-laws (tau!, tau2) and the derived law T(x + y) + x = T(x + y), we obtain
the following set of equations. These equations form a set of guarded recursive
equations, of which Slip is a solution.

Lemma2a: Slip = $ d. r<d> ** Slip! d
Lemma2b: Slip1 d =tau** (s<d> ** Slip ++ ($ e. r<e> ** Slip2 de))
Lemma2c: special(e) --> Slip2 d e = tau ** s<d> ** Slip1 e
Lemma2d: -special(e) --> Slip2 d e =

tau** (s<d> ** Slip1 e ++ ($f. r<f> ** s<d> ** Slip2 e f))

The next lemma indicates that Spee[] is another solution. For Slip! d we sub
stitute tau ** Spee[d] and for Slip2 de, tau ** Spec[d,e] is substituted.

Lemma3a: Spee[] = $ d. r<d> ** tau ** Spec[d]
Lemma3b: tau ** Spec[d] =

tau** (s<d> ** Spee[] ++ ($ e. r<e> ** tau ** Spec[d,e]))
Lemma3c: special(e) --> tau ** Spec[d,e] = tau•*s<d>*•tau••Spec[e]
Lemma3d: -special(e) --> tau ** Spec[d,e] =

tau**(s<d>••tau••Spec[e] ++ ($ f. r<f>••s<d>**tau••Spec[e,f]))

Finally by RSP, Slip = Spee[], but we didn't carry out this final step in Is
abelle, as it would require quite a lot of extra formalization.

5 Using cones and foci in PVS

If protocols become more complex, it is not enough to resort to automating basic
steps, but one must resort to effective meta theorems. As an example we present
here the cones and foci theorem or general equality theorem and explain the
formalisation of Theorem 3.1 and its proof in PVS (see [35, 33, 76]).

The basic observation underlying this method is that most verifications follow
basically the same structure. The cones and foci theorem circumvents those
verification steps that are similar and focuses on the parts that are different for
each verification.

641

However, in order to be able to formulate such a general theorem, the format
of processes as being used up till now is too general. Therefore, we introduce the
so called linear process equation format to which large classes of processes can
be automatically translated [10].

Definition 5.1. A linear process equation (LPE'J over data type D is an ex
pression of the form

X(d:D) = L L e;(fi(d,ei))X(gi(d,ei))<lbi(d,ei)1>6
iEl e;:E;

for some finite index set I, actions Ci, data types Ei, Di, and functions fi : D-+
Ei --* Di, Yi : D--* Ei--* D, bi: D--* Ei -+ Bool. Here D represents the state
space, ci are the action labels, fi represents the action parameters, 9i is the state
transformation and bi represent the condition determining whether an action is
enabled.

Some remarks about this format are in order. First one should distinguish be
tween the sum symbol with index i EI and the sum with index ei:E;. The first
one is a shorthand for a finite number of alternative composition operators. The
second one is a binder of the data variable ei.

In [9] an LPE is defined as having also summands that allow termination.
We have omitted these here, because they hardly occur in actual specifications
and obscure the presentation of the theory.

LPEs are defined here having a single data parameter. The LPEs that we will
consider generally have more than one parameter, but using cartesian products
and projection functions, it is easily seen that this is an inessential extension.

Finally, we note that sometimes (and we actually do it below) it is useful to

group summands per action such that EiEI can be replaced by EaEAct where Act
is the set of action labels. Such LPEs are called clustered, and by introducing
some auxiliary sorts and functions, any LPE can be transformed to a clustered
LPE (provided actions have a unique type).

We call an LPE convergent if there are no infinite T-sequences:

Definition 5.2. An LPE written as in Definition 5.1 is called convergent if
there is a well-founded ordering < on D such that for all i E I with C& = T and
for all ei : Ei, d: D we have that bi(d, e;) implies g;(d, e;) <d.

We assume that every convergent LPE has exactly one solution. In this way,
convergent LPEs define processes.

We describe the linear equation for Slip. We have numbered the different
summands for easy reference. Note that the specification is already linear.

Linlmpl(bs:Byte, Ss:N, bc:Byte, Sc:N, br:Byte, s,.:N) =
(a) Lb: Byte r(b) Linlmpl(b, 1, be, Sc, br, Sr)

<leq(s8 , 0) I> c5+
(b) T Linlmpl(b8 , 2, esc, 1, bn Sr)

<leq(sc, 0) A eq(s8 , 1) A (eq(b,, end) V eq(bs, esc)) I> c5+

642

(c) r Linlmpl(b8 , 0, b8 , l, bn Sr)
<leq(sc, 0) A (eq(s 8 , 2) V (eq(s 8 , 1) A •(eq(b8 , end) V eq(b8 , esc)))) 1> o+

(d) r Linlmpl(bs,Ss,bc,O,bc,l)
<leq(sri 0) A eq(sc, 1) I> c5+

(e) r Linlmpl(b8 , S8 , be, O, be, 2)
<leq(sr, 1) A eq(br, esc) A eq(sc, 1) I> c5+

(f) s(br) Linlmpl(b8 , S 8 , be, Sc, br, 0)
<leq(sr, 2) V (eq(sr, 1) A -.eq(bri esc)) I> O

We obtained this form, by identifying three explicit states in the sender and
receiver, and two in the channel. These have been indicated by encircled numbers
in the defining equations of these processes. The states of these processes are
indicated by the variables s8 , Sr and Sc respectively. Each of the three processes
also stores a byte in certain states. The bytes for each process are indicated by
b8 , brand be. The r in summand (b) comes from hiding c1(esc), in summand
(c) comes from c1 (b8), in (d) from c2(bc) and in (e) from c2(bc)·

As we can obtain a linear equation for the SLIP protocol algorithmically, we
do not think it useful to consider this aspect of the verification amenable for
proof checking. Therefore, we state the following without proof:

Lemma 5.3. For any b1,b2,b3:Byte it holds that

Linlmpl(O, bi, 0, b2, 0, b3) = Slip.

A very effective and commonly known notion is that of an invariant. Remarkably,
invariants are hardly used in process algebra up till now. We use invariants
without reference to an initial state.

Definition 5.4. An invariant of an LPE written as in Definition 5.1 is a function
I: D-+ Bool such that for all i E J, ei: E;, and d: D we have:

bi(d, e;) A I(d) -+ I(gi(d, ei)).

We list below a number of invariants of Linlmpl that are sufficient to prove the
results in the sequel. The proof of the invariants is straightforward, except that
we need invariant 2 to prove invariant 3.

Lemma 5.5. The following expressions are invariants for Linlmpl:

1. S 8 ::; 2 A Sc ::; 1 A Sr ::; 2;
2. eq(s8 , 2) -+ (eq(b8 , esc) V eq(bs, end));
3. •eq(s8 , 2) -+ ((eq(sc, 0) A...,(eq(Sri 1) A eq(br, esc)))V

(eq(sc, 1) A ((eq(sri 1) /\ eq(br, esc)) ++
(eq(bc, esc) V eq(bc, end)))))A

eq(s8 , 2)-+ ((eq(sc, 1) A eq(bc, esc) A •(eq(sr, 1) /\ eq(bri esc)))V
(eq(sc, 0) A eq(sri 1) A eq(br, esc))).

643

The next step is to relate the implementation and the specification. In order to do
this abstractly, we first introduce a clustered linear process equation representing
the implementation:

p(d:Dp) = L L a(fa(d, ea)) p(ga(d, ea)) <l ba(d, ea) C> 8
aEActe,,:E,.

and a clustered linear process equation representing a specification:

q(d:Dq) = L L a(f~(d, ea)) q(g~(d, ea)) <l b~(d,e0) C> O
aEAct\{r} ea:Ea

Note that the specification does not have internal r steps.
We relate the specification by means of a state mapping h:Dp -t Dq. The

mapping h maps states of the implementation to states of the specification. In
order to prove implementation and specification branching bisimilar, the state
mapping should satisfy certain properties, which we call matching criteria be
cause they serve to match states and transitions of implementation and specifi
cation. They are inspired by numerous case studies in protocol verification, and
reduce complex calculations to a few straightforward checks.

In order to understand the matching criteria we first introduce an important
concept, called a focus point. A focus point is a state in the implementation
without outgoing r-steps. Focus points are characterised by the focus condition
FC(d), which is true if dis a focus point, and false if not.

Definition 5.6. The focus condition FC(d) of the implementation is the for
mula -.3er:Er (br(d, er)).

The set of states from which a focus point can be reached via internal actions is
called the cone belonging to this focus point.

Now we formulate the criteria. We discuss each criterion directly after the
definition. Here and below we assume that-, binds stronger than/\ and V, which
in turn bind stronger than -t.

Definition 5.7. Let h:Dp -t Dq be a state mapping. The following criteria are
called the matching criteria. We refer to their conjunction by Cp,q,11.(d).

The LPE for p is convergent (1)

Ver:Er(br(d, er) -t h(d) = h(gr(d,er))) (2)

Va E Act\ {r}Ve0 :Ea (ba(d, ea) -t b~(h(d), ea)) (3)

Va E Act\ {r}Ve0 :Ea (FCs(d) /\ b~(h(d), ea) -t ba{d, ea)) (4)

Va E Act\ {r} Vea:Ea (ba(d,ea) -t fa(d,ea) = f~(h(d), ea)) (5)

Va E Act\ {r} Vea:Ea (ba(d,ea) -t h(ga(d, ea)) = g~(h(d), ea)) (6)

644

Criterion (1) says that the implementation must be convergent. In effect this
does not say anything else than that in a cone every internal action r constitutes
progress towards a focus point. In [35) also an extension of this method where
convergence of the implementation is not necessary is presented.

Criterion (2) says that if in a state din the implementation an internal step
can be done (i.e. br(d, er) is valid) then this internal step is not observable.
This is described by saying that both states relate to the same state in the
specification.

Criterion (3) says that when the implementation can perform an external
step, then the corresponding point in the specification must also be able to
perform this step. Note that in general, the converse need not hold. If the spec
ification can perform an a-action in a certain state e, then it is only necessary
that in every stated of the implementation such that h(d) = e an a-step can be
done after some internal actions.

This is guaranteed by criterion (4). It says that in a focus point of the imple
mentation, an action a in the implementation can be performed if it is enabled
in the specification.

Criteria (5) and (6) express that corresponding external actions carry the
same data parameter (modulo h) and lead to corresponding states.

Using the matching criteria, we would like to prove that, for all d:Dp, Cp,q,h(d)
implies p(d) = q(h(d)). This can be done using the following theorem.

Theorem 5.8 (General Equality Theorem). Let p and q be defined as above. If
I is an invariant of the defining LPE ofp and Vd:Dp (I(d) ---+ Cp,q,h(d)), then

Vd:Dp I(d)-+ r(d) <J FC(d) t> rr(d) = q(h(d)) <J FC(d) t> rq(h(d)).

For the SLIP protocol we define the state mapping using the auxiliary function
cadd. The expression cadd(c, b, q) yields a queue with byte b added to q if boolean
c equals true. If c is false, it yields q itself. Hence the conditional add is defined
by the equations cadd(f, b, q) = q and cadd(t, b, q) = in(b, q).

The state mapping is in this case:

h(bs,S8 ,bc,Sc,br,Sr) =
cadd(-ieq(ss, 0), bs,
cadd(eq(sc, 1) /\ (-ieq(bc, esc) V (eq(sr, 1) /\ eq(br, esc))), be,
cadd(eq(sr, 2) V (eq(sr, 1) /\ -ieq(br, esc), br, 0)))).

So, the state mapping constructs a queue out of the state of the implementation,
containing at most bs, be and br in that order. The byte bs from the sender is in
the queue if the sender is not about to read a new byte (•eq(s 8 ,0)). The byte
be from the channel is in the queue if the channel is actually transferring data
(eq(Sc, 1)) and if it does not contain an escape character indicating that the next
byte must be taken literally. Similarly, the byte br from the receiver must be in
the queue if it is not empty and br is not an escape character.

645

The focus condition of the SLIP implementation can easily be extracted and
is (slightly simplified using the invariant):

(eq(sc,O) -t eq(ss,0))1\
(eq(sc, 1) -t (-ieq(sri O) I\ (eq(sr, 1) -t -ieq(br,esc))))

Lemma 5.9. For all bi, b2, b3:Byte

Spec(0) = Linfmpl(b1, 0, b2, 0, b3, 0).

Proof. We apply Theorem 5.8 by taking Linlmpl for p, Spee for q and the state
mapping and invariant provided above. We simplify the conclusion by observing
that the invariant and the focus condition are true for s8 = 0, Sc = 0 and
Sr= 0. By moreover using that h(b1,0,b2,0,b3,0) = 0, the lemma is a direct
consequence of the generalized equation theorem. We are only left with checking
the matching criteria:

1. The measure 13 - s8 - 3sc - 4sr decreases with each 'T step.
2. (b) distinction on Sri use invariant. (c) distinguish different values of S 8 ; use

invariant. (d) trivial. (e) trivial.
3. (a) lengthy. (f) trivial.
4. (a) We must show that ifthe focus condition and -ifull(h(b8 , 8 8 , be, Sc, br, Sr))

hold, then eq(ss, 0). The proof proceeds by deriving a contradiction un
der the assumption -ieq(s8 ,0). If eq(s8 ,l) it follows from the invariant and
the focus condition that len(h(b8 ,s8 ,bc,Sc,br,sr)) = 3, contradicting that
-ifull(h(b8 , 88 , be, Sc, br, Sr)). If eq(Ss, 2), then len(h(bs, Bs, be, Sc, bri Sr)) = 2,
toe(untoe(h(b8 , s8 , be, Sc, br, sr))) = b8 and eq(bs,esc) V eq(b., end) in a sim
ilar way. This also contradicts -ifull(h(bs, Ss, be, Sc, br, Sr)).
(f) We must show that the focus condition together with eq(sr, 2)V(eq(sr, 1)1\
-ieq(br, esc)) implies -iempty(h(b8 , s8 , be, Sc, br, Sr)). In this case it follows di
rectly that h(b8 , S8 , be, Sc, br, Sr) has the form cadd(... , cadd(... , in(br, 0))),
which is easily shown not to be empty.

5. (a) trivial. (f) use toe(cadd(c1, bi, cadd(c2, b2, in(b3, 0)))) = b3.
6. (a) trivial using definitions (f) idem.

0

Using Lemmas 5.3 and 5.9 it is easy to see that Theorem 3.1 can be proven.
Only now we come to the actual checking of this protocol in PVS. We con

centrate on proving the invariant and the matching criteria. We must choose a
representation for all concepts used in the proof. As this would make the paper
too long, we only highlight some steps of the proof, giving a flavour of the input
language of PVS.

We start off defining the data types.

Byte:TYPE+
endb:Byte
esc :Byte

Queue:TYPE=list[Byte]
DX :TYPE=[Byte,upto(2),Byte,upto(1),Byte,upto(2)]
DY :TYPE=[Queue]

646

We use as much of the built-in data types of PVS as possible. The advantage
of this is that we can use all knowledge of PVS about these data types. A
disadvantage is that the semantics of the data types in PVS may differ from
the semantics of data types in the protocol, leading to mismatches between the
computerized proof and the intended proof.

The types N and Bool are built in types of PVS and need not be defined.
We declare Byte to be a nonempty type, with two elements esc and endb (end
is a predefined symbol and can therefore not be used). For queues we take the
built in type list and parameterize it with bytes. The type of the parameters
of the linear implementation and the specification are now given by DX and DY
respectively. The type upto (n) denotes a finite type with natural numbers up
to and including n.

A function such as untoe can now be defined in the following way:

untoe(q:Queue):RECURSIVE Queue=if null?(q) then null else
if null?(cdr(q)) then null else

(cons (car(q),untoe(cdr(q))))
endif endif

MEASURE(lambda(q:Queue) : length(q))

The function car, cdr and null are built in PVS. The MEASURE statement
is added to help PVS finding criteria for the well foundedness of the definition,
which is in this case obtained via the length of the queue.

Below we show how a linear process equation is modeled. In essence the
information contents of an LPE is the set D, the index set I, the sets Ei, the
actions ai and the function Ii, gi and bi.

We only provide the LPE representation for the linear implementation of the
SLIP protocol. The set Dis given as DX defined above. We group all r-actions,
which leaves us with three summands. We assume this a priori (and have even en
coded this bound in all theorems) as making it more generic would make the pre
sentation less clear. But with the knowledge that there are only three summands,
we can define the sets Ei very explicitly: E1:TYPE=Byte, E2:TYPE=upto(O) and
E3:TYPE=upto(3). Here, upto(O) is a set with exactly one element. Furthermore
E3 is taken to contain the numbers O, ... , 3 to refer to the different r actions in
the linear implementation.

The constituents of the different summands are given by the record fields u1,
u2 and u3. The notation (#u1 : = ... , u2 : = ... , ... #) stands for a record with
fields u1, etc. Each summand consists again of a record. The first field of this
record gives the name of an actions (ra for r, sa for s and taut for r). The
second field is irrelevant for our current purpose. The third, fourth and fifth
components are the functions fi, gi and bi.

L_Impl : LPE =
(#u1:= ...•

u2:=(#a:=sa,dact:=sas,
f:=(lambda (bs:Byte,ss:upto(2),bc:Byte,sc:upto(1),br:Byte,sr:upto(2)):

(lambda (u:upto(O)):br)),
g:=(lambda (bs:Byte,ss:upto(2),bc:Byte,sc:upto(1),br:Byte,sr:upto(2)):

#)

647

(lambda (u:upto(O)):(bs,ss,bc,sc,br,0))),
b:=(lambda (bs:Byte,ss:upto(2),bc:Byte,sc:upto(1),br:Byte,sr:upto(2)):

(lambda (u:upto(O)):((sr=2) or ((sr=1) and br/=esc))))#),
u3:= •..

Below we provide a PVS description of what it means to be an invariant for a
predicate I on a given LPE, and we formulate the general equation theorem.
Here Sol(lpox) yields the solution of an LPO lpox.

Invlpox(lpox: LPE[DX],I: [DX-> bool]) : bool =
(FORALL (e:E1,d:DX):(b(u1(lpox))(d)(e) and I(d))=>I(g(u1(lpox))(d)(e)))
AND
(FORALL (e:E2,d:DX):(b(u2(lpox))(d)(e) and I(d))=>I(g(u2(lpox))(d)(e)))
AND

(FORALL (e:E3,d:DX):(b(u3(lpox))(d)(e) and I(d))=>I(g(u3(lpox))(d)(e)))

GET : AXIOM FORALL (lpox: LPE[DX],lpoy: ALPE[DY),h: [DX-> DY],
I: [DX -> bool])

Invlpox(lpox,I) and
(FORALL (d: DX) : I(d) => Convx(lpox) and Crit2(lpox,d,h) and

Crit3(lpox,lpoy,d,h) and Crit4(1pox,lpoy,d,h) and
Crit5(lpox,lpoy,d,h) and Crit6(1pox,lpoy,d,h)) =>

FORALL (d: DX) : I(d) =>
condi(Sol(lpox)(d),FC(lpox,d),seq(tau,Sol(lpox)(d)))

=
condi(Sol(lpoy)(h(d)),FC(lpox,d),seq(tau,Sol(lpoy)(h(d))))

The state mapping stmapp can be formalized in PVS in a very straightforward
way (but we first define cadd):

cadd(x:bool,b:Byte,q:Queue):Queue=if x=false then q else cons(b,q) endif

stmapp(bs:Byte,ss:upto(2),bc:Byte,sc:upto(1),br:Byte,sr:upto(2)):Queue=
cadd(ss/=O,bs,cadd(sc=1 and (bc/=esc or (sr=1 and br=esc)),bc,

cadd(sr=2 or (sr=1 and br/=esc),br,null)))

Then, when applying the GET theorem one is confronted with a long list of
proof obligations. To get an impression of how they look like, we provide below
the third matching criterion (before expanding):

((ss=O) => not(full(stmapp(bs,ss,bc,sc,br,sr))))
AND

(((sr=2) or ((sr=1) and (br/=esc))) =>
not(null?(stmapp(bs,ss,bc,sc,br,sr))))

It has been stated as a separate lemma, and can be proven using the built in
grind tactic, without human intervention.

648

6 Which proof checker to use

This is an obvious question that is not easy to answer. We only have substantial
experience with Coq, Isabelle and PVS, and only tried some others. The conclu
sion is that none of the checkers is perfect and all are suited for the verification
of correctness proofs of protocols.

PVS has large built in libraries and has the largest amount of ad hoe knowl
edge and specialised decision procedures. This makes it an efficient theorem
checker and relatively easy to use for beginners. However, it is not always obvious
what the procedures do, hindering fundamental understanding of how the prover
achieves its results. Moreover, these built-in procedures operate unchecked, and
therefore may erroneously prove a lemma. There is no independent check in the
system. Regularly, problems or bugs are reported, which are dealt with ade
quately.

Coq has by far the nicest underlying theory, which is not very easy to under
stand, however. Coq uses a strict separation between constructing a proof and
checking it. Actually, using the Curry-Howard isomorphism, a term (=proof)
of a certain type (=theorem) is constructed using the vernacular of Coq. After
that the term and type are sent to a separate type checker, which double checks
whether the term is indeed of that type, or equivalently the proof is indeed a
proof of the theorem. In a few rare cases we indeed constructed proofs that were
incorrect, and very nicely intercepted in this way. This gives Coq by far the
highest reliability of the provers.

A disadvantage of Coq is that it is relatively hard to get going. This is due
to the fact that the theory is difficult, and there are relatively few and underde
veloped libraries. Furthermore, searching for proofs in Coq is less supported.

Isabelle is the most difficult theorem prover to learn. This is due to the
fact that the user must have knowledge of the object logic (HOL, but there
are others) and the metalogic (Higher order minimal logic). An advantage of
this two level approach is that proof search facilities have a nice underpinning
in the meta logic. These facilities include backtracking, higher order unification
and resolution. Although there are no proof objects that are separately checked
such as in Coq, Isabelle operates through a kernel, making it much more reliable
than PVS. Term rewriting is an exception, as it has been implemented outside
this kernel for efficiency reasons, but it is very powerful as ordered conditional
higher-order rewriting is implemented.

7 Overview of the literature

Nowadays numerous proofs of protocols and distributed systems have been com
puter checked. The techniques that have been used for proving were mainly
temporal logic and process algebra based. The examples of computer checked
verifications presented here do not cover the whole field, but give a good impres
sion of the state of the art.

In the context of process algebra [5] most such checks have been carried out
using the language µCRL [34]. It has been encoded in the Coq system and applied

649

to the verification of the alternating bit protocol (8, 7], Milner's scheduler [47], a
bounded retransmission protocol (36] and parallel queues [48] have been proven
and checked. µCRL has also been encoded in PVS and a distributed summing
protocol has been computer checked in [33] using the methodology presented in
[35].

Temporal logic has been mainly used for proving safety (invariance) proper
ties and liveness (eventuality) properties of concurrent systems. The temporal
logic of actions (TLA), developed by Lamport [50], allows systems and properties
to be described in the same language. The semantics of TLA has been formalized
in the HOL theorem checker [31] in [79] and a mutual exclusion property for an
increment example and the refinement of a specification were proven and the
proof was checked.

In (24], a translator was devised to directly translate TLA into the language of
Larch Prover [37]. Examples verified in this approach are an invariance property
of a spanning tree algorithm [24), correctness of an N-bit multiplier [23]. TLA
has also been applied for specifying and verifying an industrial retransmission
protocol RLPl (Radio Link Protocol) in [60] of which the proofs were checked
with the theorem prover Eves [30].

A subset of the temporal formalism of Manna and Pnueli (58] has been en
coded on the Boyer-Moore prover by Russinoff in (72] in order to mechanically
verify safety and liveness properties of concurrent programs. He applied this
system to check several concurrent algorithms of which the most difficult was
the Ben-Ari's incremental garbage collection algorithm [73). Furthermore, Gold
schlag encoded the Unity formalism on the Boyer-Moore prover in [28, 29]. Unity,
developed by Chandy and Misra [16], is a programming notation with a tempo
ral logic for reasoning about the computations of the concurrent programs. To
illustrate the suitability of the proof systems, Goldschlag respectively specified
and proved the correctness of a solution to mutual exclusion algorithm, the solu
tion of the dining philosopher's problem, a distributed algorithm computing the
minimum node value in a tree and an n-bit delay insensitive FIFO queue. We
can also mention that a distributed minimal spanning tree algorithm [25] was
verified (41] using the Boyer-Moore theorem checker.

The Unity community has also used the Larch Prover to study a communica
tion protocol over faulty channels (18). The informal proof of safety and liveness
properties of the protocols given in [16) have been computer checked revealing
some flaws. Unity has been implemented in other theorem checkers as in [19]
where an industrial protocol is being studied.

Various protocols have been studied based on Input/Output automata pro
posed by Lynch and Tuttle [57). A verification of a network transmission protocol
has been checked in (64] using a model of I/O automata formalized in (64, 62).
In (20), a verification of a leader election protocol extracted from a serial multi
media bus protocol has been partially checked with PVS. Also an audio control
protocol has been analysed in [14] in the context of the I/O automata. model
(56) of which some proofs were checked using the Coq system [39] and a. similar
protocol was studied with the Larch Prover in [32). Still using the Larch Prover,

650

a behaviour equivalence between to high-level specifications for a reliable com
munication protocol is proven in [77] and a proof of the bounded concurrent time
stamp algorithm [21] made in [26] has been completely checked in [70]. In [55],
the correctness of a simple timing-based counter and Fisher's mutual exclusion
protocol were respectively formally proven with the Larch Prover.

Timed automata [56] have been modeled in PVS and applied in [2] to formally
prove invariant properties of the generalized railroad crossing system based on
the proof of [40]. The same authors [3) verified the Steam Boiler Controller
problem leading to corrections of the manual proof in [51].

Other formal frameworks have been applied to the verification of previous
examples. We can mention [75] where the Fisher mutual exclusion protocol and
the railroad crossing controller were verified in PVS. In [78], the steam boiler
was checked by Vitt and Hooman using also PVS. The last author also verified
a processor-group membership protocol in [44] and a safety property, together
with a real-time progress property of the ACCESS bus protocol in [43]. Also the
biphase mark protocol, similar to the protocol in [14], was proved by Moore in
[61]. Further examples of verified protocols are [4, 6, 11, 13, 15, 17, 27,38,42,45,
49,52-54,63,67-69,71, 74,80]

References

1. G.J. Akkerman and J.C.M. Baeten. Term rewriting analysis in process algebra.
Technical report CS-R9130. CWI, Amsterdam, 1991.

2. M. Archer and C. Heitmeyer. Mechanical verification of timed automata: A
case study. In Proceedings 1996 IEEE Real-Time Technology and Applications
Symposium (RTAS'96). IEEE Computer Society Press, 1996.

3. M. Archer and C. Heitmeyer. Verifying hybrid systems modeled as timed au
tomata: a case study. In 0. Maler, editor, International Workshop, Hybrid and
Real-Time Systems, HART'97, volume 1201 of Lecture Notes in Computer Sci
ence, pages 171-185, Springer-Verlag, 1997.

4. M.M. Ayadi and D.D. Bolignagno. On the formal verification of delegation in
SESAME. IEEE COMPASS, pages 23-34, 1997.

5. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in The
oretical Computer Science 18, Cambridge University Press, 1990.

6. G. Bella and L.C. Paulson. Using Isabelle to prove properties of the Kerberos
authentication system. In H. Orman and C. Meadows, editors, Workshop on
Design and Formal Verification of Security Protocols. DIMACS, 1997.

7. M.A. Bezem, R. Boland J.F. Groote. Formalizing process algebraic verifications
in the calculus of constructions. Formal Aspects of Computing, 9(1):1-48, 1997.

8. M.A. Bezem and J.F. Groote. A formal verification of the alternating bit proto
col in the calculus of constructions. Technical Report 88, Logic Group Preprint
Series, Utrecht University, March 1993.

9. M.A. Bezem and J.F. Groote. Invariants in process algebra with data. In B. Jon
sson and J. Parrow, editors, Proceedings Concur'94, Uppsala, Sweden, Lecture
Notes in Computer Science no. 836, pages 401-416, Springer Verlag, 1994.

10. D. Bosscher and A. Ponse. Translating a process algebra with symbolic data
values to linear format. In U.H. Engberg, K.G. Larsen, and A. Skou, editors,

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

651

Proceedings of the Workshop on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), Aarhus 1995, BRICS Notes Series, pages
119-130. University of Aarhus, 1995.
R. Bharadwaj, A. Felty and F. Stomp. Formalizing inductive proofs of network
algorithms. In Proceedings of the 1 gg5 Asian Computing Science Conference,
1995.

R.S .. Boyer, J.S. Moore: A Computational Logic Handbook. Academic Press,
Boston etc., 1988.
D. Bolignagno and V. Menissier-Morain. Formal verification of cryptographic
protocols using Coq. Technical Report, INRIA-Rocquencourt, 1996.
D.J.B. Bosscher, I. Polak and F.W. Vaandrager. Verification of an audio control
protocol. In H. Langmaack, W.P. de Roever and J. Vytopil, editors, Proceedings
of the third School and Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 863 of Lecture Notes in Computer Science, pages
170-192, Springer-Verlag, 1994.
R. Cardell-Oliver. The specification and verification of a sliding window protocol.
Computer Laboratory Technical Report 183, University of Cambridge, 1989.
K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison
Wesley, Massachusetts, 1988. ISBN 0-201-05866-9.
B. Chetali. Formal verification of concurrent programs using the larch prover. In
U.H. Engberg, KG Larsen and A. Skou, editors, Proceedings of the Workshop
on Tools and Algorithms for the Constructions and Analysis of Systems, BRlCS
Notes, pages 174-186, Aarhus, Denmark, May 1995.
B. Chetali and P. Lescanne. Formal verification of a protocol for communica
tions over faulty channels. In G. v. Bachmann, R. Dssouli and 0. Rafiq, editors,
Proceedings of the IFIP TC6 Eighth International Conference on Formal De
scription Techniques, pages 91-108, 1995.
P. Cregut and B. Heyd. COQ-Unity. In Actes des joumees du GDR Program
mation.
M.C.A. Devillers, W.0.D. Griffioen, J.M.T. Romijn and F.W. Vaandrager. Ver
ification of a leader election protocol: formal methods applied to IEEE 1394.
Report CSI-R9728, Computing Science Institute, Nijmegen, 1997.
D. Dolev and N. Shavit. Bounded concurrent time-stamping. SIAM Journal on
Computing 26(2):418-455, 1997.
G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent, C. Paulin
Mohring, and B. Werner. The Coq Proof Assistant User's Guide, version 5.8,
INRIA-Rocquencourt and CNRS - ENS Lyon 1993.
U. Engberg. Reasoning in the temporal logic of actions. The design and im
plementation of an interactive computer system PhD thesis, Department of
Computer Science, University of Aarhus, September 1995.
U. Engberg, P. Gr11mning and L. Lamport. Mechanical verifi~tion of conc~rrent
systems with TLA. In G. v. Bachmann and D.K. Pro_bst, edit_ors, f!'roceedm/(s of
the Fourth International Conference on Computer Aided Verification (CA\ 92),
LNCS 663, pages 44-55, Springer-Verlag, 1992. . ..
R.G. Gallager, P.A. Humblet, P.M. Spira: A distributed algonthm for mtrumal
weight spanning trees. ACM Transactions on Programming languages 5(1):66-

77, 1983. . . · I
R. Gawlick, N.A. Lynch and N. Shavit. Concurrent tu:nestampmg made si:mp e.
Israel Symposium on Theory and Practice of Computing, 1992.

652

27. E. Gimenez. An application of co-inductive types in Coq: verification of the
alternating bit protocol. In Proceedings of the Workshop on '.lflpes for Proofs
and Programs, volume 1158 of Lecture Notes in Computer Science, pages 135-
152, Springer-Verlag, 1996.

28. D.M. Goldschlag. Mechanically verifying concurrent programs with the Boyer
Moore prover. IEEE '.lhmsactions on Software Engineering SE-16(9): 1005-1022,
September 1990.

29. D.M. Goldschlag. Verifying safety and liveness properties of a delay insensi
tive :fifo circuit on the Boyer-Moore prover. International Workshop on Formal
Methods in VSLI Design, 1991.

30. D. Gaigen, S. Kromodimoeljo, I. Meisels, W. Pase and M. Saaltink. EVES: An
overview. In S. Prehn and H. Toetenel editors, Proceedings of Formal Software
Development Methods, VDM'91, volume 552 of Lecture Notes in Computer Sci
ence, pages 389-405, Springer-Verlag, 1991.

31. M.J.C. Gordon and T.F. Melham. Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, Cambridge,
1993.

32. W.O.D. Griffioen. Proof-checking an audio control protocol with LP. Report
CS-R9570, CWI, Amsterdam, 1995.

33. J.F. Groote, F. Monin and J. Springintveld. A computer checked algebraic ver
ification of a distributed summing protocol. Computer Science Report 97-14,
Department of Mathematics and Computer Science, Eindhoven, 1997.

34. J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In A. Ponse,
C. Verhoef and S.F.M. van Vlijmen, eds, Algebra of Communicating Processes,
Workshops in Computing, pp. 26-62, 1994.

35. J.F. Groote and J. Springintveld. Focus points and convergent process operators.
A proof strategy for protocol verification. Technical Report 142, Logic Group
Preprint Series, Utrecht University, 1995. This report also appeared as Technical
Report CS-R9566, Centrum voor Wiskunde en Informatica, 1995

36. J.F. Groote and J.C. van de Pol. A bounded retransmission protocol for large
data packets. A case study in computer checked verification. In M. Wirsing and
M. Nivat, editors, Proceedings of AMAST'96, volume 1101 of Lecture Notes in
Computer Science, pages 536-550, Springer-Verlag, 1996.

37. J.V. Guttag, J.J. Horning (eds.) with S.J. Garland, K.D. Jones, A. Modet
and J.M. Wing. Larch: languages and tools for formal specifications. Texts and
Monographs in Computer Science, Springer, 1993.

38. K. Havelund and N. Shankar. Experiments in theorem proving and model check
ing for protocol verification. In M.C. Gaudel and J. Woodcock, editors, Third
International Symposium of Formal Methods Europe (FME'96), volume 1051 of
Lecture Notes in Computer Science, pages 662-681, 1996.

39. L. Helmink, M.P.A. Sellink and F.W. Vaandrager. Proof-checking a data link
protocol. In H. Barendregt and T. Nipkow, editors, Proceedings International
Workshop TYPES'93, volume 806 of Lecture Notes in Computer Science, pages
127-165, Springer-Verlag, 1994.

40. C. Heitmeyer and A.N. Lynch. The Generalized Railroad Crossing: A case study
in formal verification of real-time systems. In Proceedings of the 15th IEEE Real
Time Systems Symposium, pages 120-131, 1994.

41. W.H. Hesselink. The verified incremental design of a distributed spanning tree
algorithm. Computing Science Reports CS-R9602, Groningen 1996.

42. W.H. Hesselink. A mechanical proof of Segall's PIF algorithm. Formal Aspects
of Computing, 9(2):208-226, 1997.

653

43. J. Hooman. Verifying part of the ACCESS bus protocol using PVS. In P.S.
Thiagarajan, editor, 15th Conference on the Foundations of Software Technology
and Theoretical Computer Science, LNCS 1026, pages 96-110, Springer-Verlag,
1995.

44. J. Hooman. Verification of distributed real-time and fault-tolerant protocols. In
M. Johnson, editor, Sixth International Conference on Algebraic Methodology
and Software Technology, AMSAT'91, volume 1349 of Lecture Notes in Com
puter Science, pages 261-275, Springer-Verlag, 1997.

45. J. Hooman. Formal verification of the binary exponential backoff protocol. In
M. Johnson, editor, Proceedings ninth Nordic Workshop on Programming The
ory, 1998.

46. M. Kaufmann and J.S. Moore. ACL2: Industrial strength version of Nqthm.
Transactions on Software Engineering, 1997.

47. H.P. Korver and J. Springintveld. A computer-checked verification of Milner's
scheduler. In M. Hagiya and J.C. Mitchell, editors, Proceedings of the Inter
national Symposium on Theoretical Aspects of Computer Software {TACS'94},
LNCS 789, pages 161-178, Springer-Verlag, 1994.

48. H. Korver and A. Sellink. On automating process algebra proofs. Technical
Report 154, Logic Group Preprint Series, Utrecht University, 1996.

49. R.P. Kurshan and L. Lamport. Verification of multiplier: 64 bits and beyond.
In C. Courcoubetis, editor, Proceedings of the Fifth International Conference on
Computer Aided Verification (CAV'93), volume 697 of Lecture Notes in Com
puter Science, pages 166-179, Springer-Verlag, 1993.

50. L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872-923, 1994.

51. G. Leeb and N.A. Lynch. Proving safety properties of the Steam Boiler Con
troller: Formal methods for industrial applications: A case study. In J.-R. Abrial,
et al., editors, Formal Methods for Industrial Applications: Specifying and Pro
gramming the Steam Boiler Control LNCS 1165, Springer-Verlag, 1996.

52. D. Lesens and H. Saidi. Automatic verification of parameterized networks of
processes by abstraction. In Proceedings of the Second International Workshop
on the Verification of Infinite State Systems (INFINITY'97), 1997.

53. P. Lincoln and J. Rushby. The formal verification of an algorithm for interactive
consistency under a hybrid fault model. In C. Courcoubetis, editor, Fifth Inter
national Conference on Computer-Aided Verification (CAV'93), volume 697 of
Lecture Notes in Computer Science, pages 305-319, Springer-Verlag, 1993.

54. P. Loewenstein and D.L. Dill. Verification of a multiprocessor cache proto
col using simulation relations and higher-order logic. In E.M. Clarke and R.P.
Kurshan, editors, Second International Conference Computer-Aided Verification
(CAV'90), LNCS 531, Springer-Verlag, pages 303-311, 1990.

55. V. Lunchangco, E. Soylemez, S.J. Garland and N.A. Lynch. Verifying tim
ing properties of concurrent algorithms. In D. Hogrefe and S. Leue, editors,
Proceedings of the Seventh International Conference on Formal Description
Techniques for Distributed Systems (FORTE'94), pages 259-273, IFIP WG6.1,
Chapman&Hall, 1995.

56. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for
timing-based systems. In J.W. de Bakker, C. Huizing and G. Rozenberg, ed
itors. Proceedings of REX Workshop "Real-Time: Theory in Practice", volume
600 of Lecture N ates in Computer Science, pages 397-446. Springer-Verlag, 1992.

57. N.A. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI
Quarterly 2(3):219-246, 1989.

654

58. Z. Manna and A. Pnueli. Verification of concurrent programs: the temporal
framework. In R.S. Boyer and J.S. Moore, editors, The correctness Problem in
Computer Science, Academic Press, London, 1981.

59. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
60. A. Mokkedem, M.J. Ferguson and R.B. Johnston. A TLA solution to the spec

ification and verification of the RLPl retransmission protocol. In J. Fitzgerald,
C.B. Jones and P. Lucas, editors, Proceedings of the Fourth International Sym
posium of Formal Methods Europe (FME'97), volume 1313 of Lecture Notes in
Computer Science. Springer-Verlag, 1997.

61. J.S. Moore. A formal model of asynchronous communication and its use in
mechanically verifying a biphase mark protocol. Journal of Formal Aspects of
Computing Science 6(1):60-91, 1994.

62. 0. Muller and T. Nipkow. Traces of I/O automata in Isabelle/HOLCF. In M.
Bidoit and M. Dauchet, editors, Proceedings of the Seventh International Joint
on the Theory and Practice of Software Development (TAPSOFT'97), LNCS
1214, pages 580-595, Springer-Verlag, 1997.

63. M. Nagayama and C. Talcott. An NQTHM mechanization of an exercise in
the verification of multi-process programs. Technical Report STAN-CS-91-1970,
Stanford University, 1991.

64. T. Nipkow and K. Slind. I/O automata in Isabelle/HOL. In P. Dybjer, B. Nord
strom and J.Smith, editors, Proceedings of the International Workshop on Types
for Proofs and Programs, volume 996 of Lecture Notes in Computer Science,
pages 101-119, Springer-Verlag, 1994.

65. L.C. Paulson. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor,
Logic and Computer Science, pages 361-386. Academic Press, 1990.

66. L.C. Paulson. Isabelle: A Generic Theorem Prover. Springer-Verlag LNCS 828,
1994.

67. L.C. Paulson. On two formal analyses of the Yahalom protocol. Technical Report
492, Computer Laboratory, University of Cambridge, 1997.

68. L.C. Paulson. Inductive analysis of the internet protocol TLS. Technical Report
440, Computer Laboratory, University of Cambridge, 1997.

69. L.C. Paulson. The inductive approach to verifying cryptographic protocols.
Computer Security Journal, to appear 1998.

70. T.P. Petrov, A. Pogosyants, S.J. Garland, V. Lunchangco and N.A. Lynch.
Computer-assisted verification of an algorithm for concurrent timestamps. In
R. Gotzhein and J. Bredereke, editors, Formal Description Techniques IX: The
ory, Applications, and Tools, (FORTE/PTSV'96: Joint International Conference
on Formal Description Techniques for Distributed Systems and Communication
Protocols, and Protocol Specification, Testing, and Verification), pages 29-44,
Chapman&Hall, 1996.

71. J. Rushby and F. von Henke. Formal verification of a fault-tolerant clock syn
chronization algorithm. NASA Contractor Report 4239, 1989.

72. D.M. Russinoff. Verifying concurrent programs with the Boyer-Moore Prover.
Technical Report STP/ACT-218-90, MCC, Austin, Texas, 1990.

73. D.M. Russinoff. A Mechanically verified incremental garbage collector. Technical
Report STP/ACT-91, MCC, Austin, Texas, 1991.

74. N. Shankar. Mechanical verification of a generalized protocol for Byzantine fault
tolerant clock synchronization. In J. Vytopil, editor, Formal Techniques in Real
Time and Fault-Tolerant Systems, volume 571 of Lecture Notes in Computer
Science, pages 217-236, 1992.

655

75. N. Shankar. Verification of real-time systems using PVS. In C. Courcoubetis,

editor, Fifth Conference on Computer-Aided Verification, volume 697 of Lecture

Notes in Computer Science, pages 280-291, Springer-Verlag, 1993.
76. N. Shankar, S. Owre and J.M. Rushby. The PVS Proof Checker: A Reference

Manual. Computer Science Laboratory, SRl International, Menlo Park, CA,
February 1993.

77. J.F. S{llgaard-Andersen, S.J. Garland, J.V. Guttag, N.A. Lynch and

A. Pogosyants. Computer-assisted simulation proofs. In C, Courcoubetis, ed
itor, Fifth International on Computer-Aided Verification (CAV'93), volume 697
of Lecture Notes in Computer Science, pages 305-319, Springer-Verlag, 1993.

78. J. Vitt and J. Hooman. Assertional specification and verification using PVS of
the Steam Boiler Control system. In J.-R. Abrial, et al., editors, Formal Meth

ods for Industrial Applications: Specifying and Programming the Steam Boiler

Control volume 1165 of Lecture Notes in Computer Science, 1996.
79. J. von Wright and T. Langbacka. Using a theorem prover for reasoning a.bout

concurrent algorithms. In G. v. Bochmann and D.K. Probst, editors, Proceed

ings of the Fourth International Conference on Computer Aided Verification

(CAV'92), volume 663 of Lecture Notes in Computer Science, pages 56-68,
Springer-Verlag, 1992.

80. W.D. Young. Verifying the interactive convergence clock synchronization algo
rithm using the Boyer-Moore theorem prover. Contractor Report 189649, NASA,
1992.

