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Abstract. We provide a treatise about checking proofs of distributed 
systems by computer using general purpose proof checkers. In particular, 
we present two approaches to verifying and checking the verification of 
the Sequential Line Interface Protocol (SLIP), one using rewriting tech
niques and one using the so-called cones and foci theorem. Finally, we 
present an overview of literature containing checked proofs. 
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1 Proof checkers 

Anyone trying to use a proof checker, e.g. Isabelle [65, 66], HOL (31], Coq [22], 
PVS [76], Boyer-Moore [12] or many others that exist today has experienced 
the same frustration. It is very difficult to prove even the simplest theorem. 
In the first place it is difficult to get acquainted to the logical language of the 
system. Most systems employ higher order logics that are extremely versatile and 
expressive. However, before we can use the system, we must learn the syntax 
to express definitions and theorems and we must also learn the language to 
construct proofs. 

The second difficulty is to get used to strict logical rules that govern the 
reasoning allowed by the proof checker. Most of us have been educated in a 
mathematical style, which can be best described as intuitive reasoning with 
steps that are chosen to be sufficiently small to be acceptable by others. We all 
know examples of sound looking proofs of obviously wrong facts ('1 = -1', 'every 
triangle is isosceles', 'in every group of people all members have the same age'). 
In fact it is quite common that mathematical proofs contain flaws. Especially, 
the correctness of distributed programs and protocols is a delicate matter due 
to their nondeterministic and discrete character. Proof checkers are intended to 
ameliorate this situation. 

One must get rid of the sloppiness of mathematical reasoning and get used 
to a more logical way of inferring facts. That is to say, one should not eliminate 
the mathematical intuition that helps guiding the proof, as the logical reasoning 
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steps are so detailed that one easily looses track. And if this happens, even 
relatively short proofs, are impossible to find. 

A typical exercise that was carried out using Coq during our first encounters 
with theorem checkers, gives an impression of the time required to provide a 
formal proof. We wanted to show that there does not exist a largest prime 
number. A well known mathematical proof of this fact goes like this. Suppose 
there exists a largest prime n. So, as now the product of all prime numbers 
exists, let it be m. Now consider m + 1. Clearly, dividing m + 1 by any prime 
number yields remainder 1, and therefore m + 1 is itself also a prime number, 
contradicting that n is the largest prime. 

The formal proof requires that first a definition of natural numbers, the in
duction principle, multiplication, dividability and primality are given. Most the
orem checkers contain nowadays libraries, where some of these notions, together 
with elementary lemma's are predefined and pre-proven. As a second step it is 
necessary to construct the product m of all prime numbers up to n (it is easier 
to construct the product of all numbers up ton) and prove that m + 1 is not 
dividable by any number larger than 1. When doing this, it will turn out that 
the strict inductive proofs are not at all trivial, and need some thinking to find 
the appropriate induction principles. It took more than a full month to provide 
the formalized proof, and we believe this to be typical for somebody with little 
experience in proof checking. 

However, after having mastered a theorem checker, and after having proof 
checked the first theorems, the benefits from proof checking will become very 
obvious. In the first place one starts to appreciate the power of higher order logics 
and learns to see the difference between a proof, which can be transformed to be 
checked by a proof checker, and a 'proof' (or better 'intuitive story') for which 
the relation with a logical counterpart cannot be seen. On a more concrete level, 
one finds in almost any proof - and correctness proofs of distributed systems or 
protocols are no exception - flaws that even may have impact on the correctness 
of the protocol. A typical example is the equality between an implementation and 
specification stated on page 118 in [59) that was seen to be incorrect when a fully 
formalized proof was proof checked [47]. Using proof checkers can lead to a very 
strong emotion, which borders to addiction. As proof checkers makes one aware 
of ones own fallibility, which many people would not like to exhibit, the desire 
grows quickly to check every theorem using a proof checker. Unfortunately, proof 
checking is currently too time consuming to make this practical. However, the 
quality of proof checkers is steadily increasing meaning that from a certain point 
in the future proof checkers will be commonly used as they yield much more 
reliable proofs, and will most likely be more efficient than proving theorems by 
hand. 

2 Proof checkers and concurrency 

Concurrency and proof checkers are orthogonal fields. This means that proof 
checkers are not particularly aimed at any particular concurrency theory. Be-



cause we are mo~t acquainted with proof 
algebra, we provide a perspective::__ h'"'."'°"""·u1tR 
. d "d i· uom t IB Ht'1l!l·~ili1!~ 

s10ns an gm e mes carry over directly ~ , 
There are actually three requi"re t :it ,.,,,,,, • .,.__.,,,,_ 

men s 
checker to be usable to check proofs of . . ,, 

correc,n~'! 

l. The proof checker must be sufficie t' 
. . h ll tV 

curnng m t e concurrency theor " 
and Isabelle satisfy these requiremy. t 'I::; 

ics, such as Larch [37] and the en s. t·or 

evident that they are suitable as m 
d . , any concurrency 

er concepts. For this reason the 
extended with higher order concepts 

2. The concurrency theory must a ,,,,.,w,,,·•um 
reasoning in the theory must be in a sutticienth· 
case, one must expect to invest a lot of time nrc»,it!!>n,. 

An example ~om pro?ess algebra is found in page 35 
RSP (Recursive Specification Principle) is r1'"'"",,,;1-.-r1 

specification has at most one solution'. In 
is given in Coq, which fills almost an entire page of val.riou:e ootnil;iul!l11'1 .. 

3. Finally, to really get a proof checker to 1i'li'CJrk, the 
effective. This means that either the fornuu c.oo,.ajc&s of a 
number of steps, that can all be entered hand, or the 
that large parts of the proof are constructed the ehed:er. 
In one of our earliest encounters with a c~r 

parallel operator into alternative and sequential cor1m()Sitioo 
<lard axioms of ACP [5]. Given the large number of aOI)fa;11,b1'.lll!i 

that were needed, we had to resort to expansion tboorem£ 
develop and prove for this purpose). 
We have elaborated more to make proving process 
able to be computer checked. This has boiled dovirn in 
the correctness of a distributed summing :and the 
new Remote Control standard [36] using different t"1::hnlN:!Ulllf 

the next sections we illustrate both techniques on the SLIP n:n)t.Ol'OI 

3 The SLIP protocol 

The Serial Line Interface Protocol (SLIP) is one the mvv,,,,r:<,~I~ 

commonly being used to connect individual computers via a modem imd 
line. It allows one stream of bidirectional information. This is ii 
therefore the SLIP protocol is gradually being t:.M~ Pt'<lm t(! 

Protocol (PPP) that allows multiple streams, such ~hat ~ver.al progr~'> mu' 
side can connect to several programs at the other side via C•D:e une 

Basically, the SLIP protocol works by sending blocks of d~ui. E&Ch bfod: a 
sequence of bytes that ends with the special end Con.fusioo_ct\n oornr whm 
the end byte is also part of the ordinary data sequence. In th1s C3&', th(~ end 



632 

byte is 'escaped', by placing an esc byte in front of the end byte. Simila.i. 
distinguish an ordinary esc byte from the escape character esc, each esc iJ 
data stream is replaced by two esc characters. In our modeling of the prot 

r s 
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R s 
c 

Fig. 1. Architecture of the SLIP protocol 

we ignore the block structure, but only look at the insertion and remova 
esc characters in the data stream. We model the system by three component, 
sender, inserting escape characters, a channel, modeling the medium along wb 
data is transferred, and a receiver, removing the escape characters (see figure 
We let the channel be a buffer of capacity one in this example. 

We use four data types N, Bool, Byte and Queue to describe the SI 
protocol and its external behaviour. The sort N contains the natural numbe 
We use induction on N as well as some auxiliary functions. The function e, 
N x N-+ Bool is true when its arguments represent the same number. The sc 
Bool contains exactly two functions t (true) and f (false) and we assume tb 
all required boolean connectives are defined. 

The sort Byte contains the data elements to be transferred via the SLj 
protocol. As the definition of a byte as a sequence of 8 bits is very detailed at 

actually irrelevant we only assume about byte that it contains at least two ni 

necessarily different constants esc and end, and a function eq:Byte x Byte -
Byte that is represents equality. Using the checker, we can find out that '\1 

indeed did not need any other assumption on bytes. 
Furthermore, to describe the external behaviour of the system, we introduc 

a sort Queue which we describe in slightly more detail to avoid the typical cor 
fusion that occurs with less standard data types. Queues are constructed usin 
the empty queue 0 and the constructor in : Byte x Queue -+ Queue. This mean 
that we can apply induction over queues using these functions. Furthermore, w 
use the following auxiliary functions: 

toe:Queue-+ Byte, untoe:Queue-+ Queue, 
len:Queue-+ N, empty,jull:Queue-+ Bool 

The function toe yields the element that was first inserted in the queue. ThE 
function untoe removes this element from the queue. We leave these functions 
undefined on the empty queue, as we do not require this information. The func
tion len yields the length of the queue, empty says when the queue is empty and 
full yields a later to be explained criterion for what it means for a queue to be 
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full. These functions are characterised by the following equations where d and 
d' range over Byte and q is a queue. 

toe(in(d,0)) = d, toe(in(d,in(d',q))) = toe(in(d',q)) 
untoe(in(d, 0)) = 0, untoe(in(d, in(d', q))) = in(d, untoe(in(d',q))) 
empty(0) = t, empty(in(d, q)) = f 
len(0) = 0, len(in(d, q)) = S(len(q)) 
full(q) = eq(len(q), 3) V (eq(len(q), 2)/\ 

(eq(toe(untoe(q)), esc) V eq(toe(untoe(q)), end))) 

We provide below the precise description of the SLIP protocol. For this we use 
process algebra with data in the form of µCRL ([5, 34]). The processes are defined 
by guarded recursive equations for the channel C, the sender Sand the receiver 
R ( cf. Figure 1). The equation for the channel G expresses that first a byte b 
is read using a read via port 1, and subsequently this value is sent via port 2. 
After this the channel is back in its initial state, ready to receive another byte. 
The encircled numbers can be ignored for the moment. They serve to explicitly 
indicate the state of these processes and are used later. 

Using the r action the sender reads a byte from a protocol user, who wants 
to use the service of the SLIP protocol to deliver this byte elsewhere. Using the 
two armed condition p <1c1> q, which must be read as if c then p else q, it is 
obvious that if b equals esc or end first an additional esc is sent to the channel 
(via action s1 ) before b itself is sent. Otherwise, b is sent without prefix. 

The receiver is equally straightforward. After receiving a byte b from the 
channel (via ri) it checks whether it is an esc. If so, it removes it and delivers 
the trailing end or esc. Otherwise, it just delivers b. Both the sender and the 
receiver repeat themselves indefinitely, too. 

In the fourth equation the SLIP protocol is defined by putting the sender, 
channel and receiver in parallel. We let the actions r1 and s1 communicate 
and the resulting action is called c1. Similarly, r2 and s2 communicate into c2 . 

This is defined using the communication function r by letting -yCri, Si) = Ci 
for i = 1, 2. The encapsulation operator O{r1 , 81 ,r2 , 82 } forbids the actions r1, 

s1, r2 and s2 to occur on their own by renaming these actions to the J, which 
represents the process that cannot do anything. In this way the actions are forced 
to communicate. The hiding operation T{ci ,c2 } hides these communications by 
renaming them to the internal action T. Using axioms x T = x and x + T x = -r x 
in weak bisimulation [ 59], or x ( T (y + z) + z) = x (y + z) in branching bisimulation 
[5], the description of systems can be reduced, making obvious what the external 
behaviour of such a system is. For the SLIP protocol the external actions are r 
and s that respectively read bytes to be transferred and delivers these bytes. 

S =@l::b:Byte r(b)©(s1 (esc)@81(b)@S <J eq(b, end) V eq(b,esc) 1>s1(b)@8) 

C =@l::b:Byte r1(b)©s2(b) C 

R = @l::b:Byte r2 (b )©(l::b:Byte r2(b)(%)S(b )@R <I eq(b, esc) I> s(b )@R)) 
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Slip== '{c1 ,c2}8{r1 ,s1n,s2}(S II C II R) 

We want to obtain a better understanding of the protocol, because although 
rather simple, it is not straightforward to understand its external behaviour 
completely. Data that is read at r is of course delivered in sequence at s without 
loss or duplication of data. So, the protocol behaves like a kind of queue. The 
reader should now, before reading further, take a few minutes to determine the 
size of this queue1 . Actually, the protocol behaves almost as a queue of size three, 
as long as there are no esc and end bytes being transferred. Simultaneously, one 
byte can be stored in the receiver, one in the channel and one in the sender. If 
an esc or end is in transfer, it matters whether, it occurs at the first or second 
position in the queue. At the first position the esc or end is ultimately neatly 
stored in the receiver, taking up one byte position, allowing two other bytes to be 
simultaneously in transit. If this esc or end occurs at the second position, there 
must be a leading esc in the channel C, and the esc or end itself must be in 
the sender. Now, there is no place for a third byte. So, the conclusion is that the 
queue behaves itself as a queue of size three, except when an esc or end occurs at 
the second position in the queue, in which case the size is two. This explains the 
full predicate defined above, and yields the description of the external behaviour 
of the SLIP protocol below: If the queue is not full, an additional byte b can be 
read. If the queue is not empty an element can be delivered. 

Spee( q: Queue) == 
Lb:Byte r(b) Spec(in(b, q)) <l •full(q) 1> c5+ 
s(toe(q)) Spec(untoe(q)) <l •empty(q) 1> c5 

The theorem that we are interested in proving and proof checking is: 

Theorem 3.1. 

Slip = Spec(0) 

where '=' is interpreted as being branching or weakly bisirnilar. 

~ Section 4 b~l?w we p~ove Theorem 3.1 directly using process algebraic ax
ioms and rewntmg techmques to make this approach tenable. In Section 5 we 
apply t~e. con~s and foci theorem and check the set of rather straightforward 
precondit10ns m PVS. The checked proofs can be obtained by contacting the 
authors. 

1 Wh · h th en provmg t e correctness of the SLIP protocol, we erroneously took the size of 
e que_ue to be one. When proving equality between the SLIP protocol and such a 

iueuhe, I~ became q~i~ly obvious that this was a stupid thought. So we took three 
or t e size. But this is not correct, either. ' 
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4 Using rewrite systems in Isabelle/HOL 

The direct proof method in process algebra consists of three steps: 

1. Unfold the implementation by repeatedly calculating its first step expansion. 
This results in a set of guarded recursive equations. 

2. Shrink this set of guarded recursive equations by using the laws of weak (or 
branching) bisimulation. 

3. Prove that the specification also obeys the smaller set of equations. 

The RSP-principle then guarantees that the specification and implementation 
are equal. 

The bunch of work is in the first step expansion. Given a process r18H(S JI 
c II R) this is of the form Ei aiTJOH(Si II ci II Ri), with ai the possible first steps 
of the process. The process Si denotes the sender after performance of ai. The 
first step expansion must be repeated for the derivatives TJ8H(Si II Ci II Ri)· To 
avoid an infinite unfolding of the process, names can be introduced. The process 
of expansion is continued until a closed set of guarded equations is reached. 

The first step expansion is rather straightforwardly calculated using the ax
ioms of process algebra. However, due to the large number of applications of 
axioms automation is desired. In Section 4.2 we will present a conditional higher
order rewrite system that given a parallel process computes its first-step expan
sion, without running into exceedingly large intermediary terms. But first we 
provide the laws of process algebra and its implementation in Isabelle/HOL. 
The method is applied to the SLIP protocol in Sections 4.3 and 4.4. 

4.1 Formulation of Process Algebra in Isabelle 

In Isabelle, terms have types, and the types are contained in classes. We introduce 
new classes act and data, and a communication function "(, where act is the 
class of alphabets on which ga1!lllla is well-defined, and data is the class of types 
that may occur as data types in the processes. Given an alphabet 'a: : act, a 
type constructor 'a proc is declared for the processes over the alphabet 'a. 

After that, the process algebra operators are declared, and infix notation 
is introduced. We use ++, **, 11 , ! ! , LL for alternative, sequential, parallel 
composition, communication and left merge, respectively. Furthermore, delta, 
tau, enc and hide are used for 8, r, encapsulation and hiding. a<e> denotes 
atomic action a with data element e, and $ d: : D. (p d) denotes the process 
Ed:D p( d). Finally, the implementation uses the iterative construct y ©© z (y* z 
in traditional notation) instead of recursive definitions x = yx + z. Recursive 
definitions would introduce new names, that must be manually folded and un
folded during proofs. As an example, the type of the summation operator is as 
follows: 

$ : : ['d: :data=> 'a: :act proc] => 'a proc 

Finally, the axioms of process algebra are turned into rules for Isabelle/HOL. 
Below we give an exhaustive list of the axioms we used. Note that we work with 
weak bisimulation which is slightly easier than branching bisimulation in the 
direct proof method. 



A1 "x ++ y 
A2 "(x ++ y) ++ z 
A3 "x ++ x 
A4 "(x ++ y) ** z 

A5 "(x ** y) ** z 
A6 "x ++ delta 
A7 "delta ** x 

y ++ x" 
x ++ (y 

x" 
x ** z 
x ** y 
x" 
delta" 
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++ z) II 

++ y ** z" 
** z" 

D1 "(- a mem H) --> enc H (a<d>) = a<d>" 
Dld "enc H delta = delta" 
D2 "a mem H --> enc H (a<d>) = 
D3 "enc H (x ++ y) enc H x 
D4 "enc H (x ** y) = enc H x 

delta" 
++ enc H y II 

** enc H y II 

CM1 "XI IY X LL Y ++ Y LL X 
CM2 "a<d> LL X a<d> ** X" 

CM2d "delta LL X delta" 
CM3 "a<d> ** X LL Y = a<d> ** (X 11 
CM4 "(X++Y) LL Z X LL Z ++ Y LL 
CMS "a<d> ** x ! ! b<e> (a<d> 
CM6 "a<d> ! ! b<e> ** x (a<d> 
CM7 "a<d> ** x ! ! b<e> ** y (a<d> 
CMS "ex ++ Y) ! ! z x ! ! 
CM9 "X ! ! (Y ++ Z) x ! ! 

CF1 
CF2 

"gamdef a b c --> a<d> ! ! b<d> 
"gamundef a b --> a<d> ! ! b<e> 

CF2' "d -= e --> a<d> !! b<e> 

SC1 "(x LL y) LL z x LL y II z" 
SC2 "x LL delta = x ** delta" 
SC3 "x ! ! y 
SC4 "(x !! y) ! ! z 
SC5 "x ! !(y LL z) 

y ! ! x" 
x ! ! y ! ! z" 
(x ! ! y) LL z" 

SC6 "delta!! delta delta" 
HS "x ! ! y ! ! z delta" 

tau1 "x ** tau = x" 
tau2 "x ++ tau ** x = tau ** x" 

z 
y 

! ! b<e>) 
! ! b<e>) 
! ! b<e>) 
++ y ! ! 
++ x !! 

c<d>" 
delta" 
delta" 

TI1 n- a mem H --> hide H (a<e>) = a<e>" 
TI1d "hide H delta = delta" 
TI2 "a mem H --> hide H (a<e>)=tau" 
TI3 "hide H (x ++ y) hide H x ++ hide H y" 
TI4 "hide H (x ** y) = hide H x ** hide H y" 

S1 "$ d. x x" 

Y) II 

Z" 

** 
** 
** 
Z" 
Z" 

S3 "$ d. (p d) ($ d. (pd)) ++ (p d)" 

++ x ! ! 

X" 
X" 
ex 11 

S4 "$ d. (p d) ++ (q d) 
S5 "($ d. (pd)) ** x 

($ d. (pd)) ++ ($ d. (q d))" 
$ d. (p d) ** x" 

Y" 

Y) II 
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S6 II($ d. (p d)) LL x = $ d. (p d) LL x" 
S7 "($ d. (p d)) ! ! x = $ d. (p d) ! ! x" 
SS "enc H ($ d. (p d)) = $ d. enc H (p d)" 
S9 "hide H ($ d. (p d)) = $ d. hide H (pd)" 

K1 "x ©© y = x ** (x ©© y) ++ y" 

4.2 A rewrite system for the expansions 

In order to find the first step expansion of a term, we have to apply the laws of 
process algebra with care. Many of these laws (regarded as rewrite rules) make 
copies of subterms leading to an unnecessary blow-up of intermediate terms 
(cf. CMl). To control the application of the duplicating laws, we put them in 
the context where they are allowed. In this way an effective set of rewrite-rules 
is obtained. 

The essence of our strategy is to avoid the generation of many subterms that 
will be eventually encapsulated. We assume that the subterm to be expanded is 
of the form enc H (O++p). Here D can be seen as the head and pas the tail of a 
list of summands. A term enc H (x 11 y 11 z) first has to be transformed into 
enc H (x I I y I I z ++ delta). The rewrite systems starts with the following 
rule to get it into this form: 

enc H (xl ly ++ p) =enc H (x LL y ++ x ! ! y ++ y LL x ++ p). 

From now on the general form will be enc H (0 LL u ++ p), so we need a copy 
of the previous rule: 

enc H ((x 11 y) LL u ++ p) 
=enc H (x LL (y I I u) ++ (x !! y) LL u ++ y LL (x II u) ++ p). 

D is either a single component or the communication between two components. 
These cases are dealt with by the following non-duplicating rules: CM2, CM3, 
CM5, CM6, CM7, CFl, CF2 and CF2' (and possibly their symmetric counter
parts). Only the rules for alternative components (CM4, CMS and CM9) are 
duplicating and have to be replaced by e.g.: 

enc H ((x ++ y)LL u ++ p) =enc H (x LL u ++ y LL u ++ p). 

Eventually, the first summand is so small that it either can be discarded by 

a mem H ==> enc H (a<d> ** x ++ p) = enc H p, 

or it contributes to the final result. In that case we apply 

- a mem H==> enc H (a<d> ** x ++ p) = enc H p ++ a<d> ** enc H x, 

in order to proceed with the next summand. To deal with communications where 
a data choice is involved, we add rules like 

($ d. (a<d> ! ! b<e>) ** (p d)) = (a<e>! !b<e>) ** p e. 

The iteration construct is only unfolded in certain contexts, such as 
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enc H (((x @@ y) ! ! z) LL u ++ p) 
enc H ((x ** (x O@ y) !! z) LL u ++ (y !! z) LL u ++ p). 

Finally, conditionals are pulled to the top of the terms by rules of the form: 

(if b then p else q) !! x =(if b then (p !! x) else (q !! x)). 

These rules have been proven in Isabelle using a much simpler rewrite system 
(basically the completion of the process algebra laws, cf. [1]). These rules are 
gathered in a simplification set called expand..ss. Also tactics to automatically 
prove side conditions like a E H have been put into this simplification set. 

4.3 Representation of the SLIP protocol 

First, we have to define the alphabet of the SLIP protocol. We also define the 
communication-function gamma and state that Act, with gamma is of class act. 
The latter yields some proof obligations that we now omit. 

datatype Act = r I r1 I c1 I sl I r2 I c2 I s2 I s 
rule gamma_def 

"gamma == [(r1,s1,c1), (r2,s2,c2), (s1,r1,c1), (s2,r2,c2)]" 
instance Act::act 

Next we define the data types of the SLIP protocol. We deviate from the µCRL
specification, by using the lists from the Isabelle library, with hd, tl, @ (head, 
tail and append) instead of queues with toe and untoe. 

types D 
arities D:: data 
consts ESC, END :: D 
constdefs 

special :: "D=>bool" 
"special(d) == d=ESC d=END" 

empty:: "D list=>bool" 
"empty (1) == l= []" 

full :: "D list=>bool" 
"full(l) == length(l)=3 I (length(l)=2 & (special (hd (tl l))))" 

Now we can introduce the specification. First we declare Spee and then we assert 
its recursive definition by an axiom 

consts Spee :: "D list=> Act proc" 
rules Spec_def "Spec(l) = 

(if (empty 1) then delta else s<hd(l)> ** Spec(tl(l))) 
++ (if (full 1) then delta else $ d. r<d> ** Spee (l @ [d]))" 

We are now ready to define the protocol itself. Because we can now use iteration 
we don't need axioms but only definitions. For brevity we omit the types. 



constdefs 
"HL == [r1 ,s1 ,r2 ,s2]" 
"TL == [c1,c2]" 
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"S ($d. r<d> ** (if (special d) then (s1<ESC> ** s1<d>) 
else s1<d>)) ©Cl delta" 

"C ($d: :D. r1<d> ** s2<d>) ©© delta" 
"R ($d. r2<d> ** (if (d=ESC) then ($d: :D. r2<d> ** s<d>) 

else s<d>)) ©© delta" 
"Slip == hide TL (enc HL (S 11 C 11 R)) 11 

4.4 Verification of the SLIP protocol 

With the machinery developed so far we can start the verification of the SLIP 
protocol. To this end we first define a number of auxiliary process terms. 

constdefs 
"Slip1 d == hide TL (enc HL ( 

(if (special d) then (s1<ESC>os1<d>) else s1<d>)•*SI !Cl IR))" 
"Slip2 d e == hide TL (enc HL ( 

(if (special e) then (s1<ESC>**s1<e>) else sl<e>)oSI ICI ls<d>*•R))" 
"Slip3 d == hide TL (enc HL ( S 11 C 11 s<d> ** R))" 
"Slip4 d == hide TL (enc HL (s1<d> ** S 11 s2<ESC> ** C 11 R))" 
"Slips d == hide TL (enc HL (S 11 s2<d> ** C 11 R))" 
"Slip6 d e f == hide TL (enc HL ( 

(if (special f) then (sl<ESC> ** s1<f>) else s1<f>) ** S 
I I s2<e> ** C 11 s<d> ** R))" 

We follow the three steps of the classical correctness proof. First the SLIP pro
tocol is expanded. 

Lemmala: Slip = $ d. r<d> ** Slip1 d 
Lemmalb: special(d) --> Slip1 d = tau ** Slip4 d 
Lemmalc: -special(d) --> Slipl d =tau** SlipS d 
Lemmald: special(d) --> 

Slip4 d = tau ** (tau ** Slip3 d ++ ($ e. r<e> ** Slip2 d e)) 
Lemmale: -special(d) --> 

SlipS d = tau ** Slip3 d ++ ($ e. r<e> ** Slip2 d e) 
Lemmalf: Slip3 d = s<d> ** Slip++ ($ e. r<e> ** Slip2 d e) 
Lemmalg: special e --> 

Slip2 d e = tau ** s<d> ** Slip4 e ++ s<d> ** Slip1 e 
Lemmalh: -special e --> Slip2 d e 
tau ** (s<d> ** Slip5 e ++ ($f. r<f> ** Slip6 de f)) ++ 

s<d> ** Slip1 e 
Lemmali: -special e --> Slip6 de f = s<d> ** Slip2 e f 

To give an impression of the proof of this lemma the complete proof script for 
Lemmale is printed below 

by (reYrite_goals_tac [Slip5_def, S_def, C_def, R_def]); 
br impI 1; 
choose 1; by (asm_simp_tac expand_ss 1); 
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choose 1; back(); by (asm_simp_tac expand_ss 1); 
by (revrite_goals_tac [Slip2_def, Slip3_def, S_def, C_def, R_def]); 
by (simp_tac tau_ss 1); 
by (asm_full_simp_tac compare_ss 1); 
qed "Lemma1e"; 

The first command unfolds the definitions in the left-hand side of the equation. 
The next command places the condition as an assumption in the context. Then 
one of the enc's is chosen and expanded using the expand..ss-system. This is 
repeated for a second expansion. Note that the default choice of the system 
was wrong so we had to backtrack. After that we unfold the definitions in the 
right-hand side. Then we call the hiding rewrite system. Finally the left- and 
right-hand side are compared. The latter step uses laws for commutativity of 
the alternative (Al) and parallel composition. Isabelle will not loop on such 
rules because it uses ordered rewriting. 

By doing some subtle substitutions in the equations above and using the 
tau-laws (tau!, tau2) and the derived law T(x + y) + x = T(x + y), we obtain 
the following set of equations. These equations form a set of guarded recursive 
equations, of which Slip is a solution. 

Lemma2a: Slip = $ d. r<d> ** Slip! d 
Lemma2b: Slip1 d =tau** (s<d> ** Slip ++ ($ e. r<e> ** Slip2 de)) 
Lemma2c: special(e) --> Slip2 d e = tau ** s<d> ** Slip1 e 
Lemma2d: -special(e) --> Slip2 d e = 

tau** (s<d> ** Slip1 e ++ ($f. r<f> ** s<d> ** Slip2 e f)) 

The next lemma indicates that Spee[] is another solution. For Slip! d we sub
stitute tau ** Spee[d] and for Slip2 de, tau ** Spec[d,e] is substituted. 

Lemma3a: Spee[] = $ d. r<d> ** tau ** Spec[d] 
Lemma3b: tau ** Spec[d] = 

tau** (s<d> ** Spee[] ++ ($ e. r<e> ** tau ** Spec[d,e])) 
Lemma3c: special(e) --> tau ** Spec[d,e] = tau•*s<d>*•tau••Spec[e] 
Lemma3d: -special(e) --> tau ** Spec[d,e] = 

tau**(s<d>••tau••Spec[e] ++ ($ f. r<f>••s<d>**tau••Spec[e,f])) 

Finally by RSP, Slip = Spee[], but we didn't carry out this final step in Is
abelle, as it would require quite a lot of extra formalization. 

5 Using cones and foci in PVS 

If protocols become more complex, it is not enough to resort to automating basic 
steps, but one must resort to effective meta theorems. As an example we present 
here the cones and foci theorem or general equality theorem and explain the 
formalisation of Theorem 3.1 and its proof in PVS (see [35, 33, 76]). 

The basic observation underlying this method is that most verifications follow 
basically the same structure. The cones and foci theorem circumvents those 
verification steps that are similar and focuses on the parts that are different for 
each verification. 
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However, in order to be able to formulate such a general theorem, the format 
of processes as being used up till now is too general. Therefore, we introduce the 
so called linear process equation format to which large classes of processes can 
be automatically translated [10]. 

Definition 5.1. A linear process equation (LPE'J over data type D is an ex
pression of the form 

X(d:D) = L L e;(fi(d,ei))X(gi(d,ei))<lbi(d,ei)1>6 
iEl e;:E; 

for some finite index set I, actions Ci, data types Ei, Di, and functions fi : D-+ 
Ei --* Di, Yi : D--* Ei--* D, bi: D--* Ei -+ Bool. Here D represents the state 
space, ci are the action labels, fi represents the action parameters, 9i is the state 
transformation and bi represent the condition determining whether an action is 
enabled. 

Some remarks about this format are in order. First one should distinguish be
tween the sum symbol with index i EI and the sum with index ei:E;. The first 
one is a shorthand for a finite number of alternative composition operators. The 
second one is a binder of the data variable ei. 

In [9] an LPE is defined as having also summands that allow termination. 
We have omitted these here, because they hardly occur in actual specifications 
and obscure the presentation of the theory. 

LPEs are defined here having a single data parameter. The LPEs that we will 
consider generally have more than one parameter, but using cartesian products 
and projection functions, it is easily seen that this is an inessential extension. 

Finally, we note that sometimes (and we actually do it below) it is useful to 

group summands per action such that EiEI can be replaced by EaEAct where Act 
is the set of action labels. Such LPEs are called clustered, and by introducing 
some auxiliary sorts and functions, any LPE can be transformed to a clustered 
LPE (provided actions have a unique type). 

We call an LPE convergent if there are no infinite T-sequences: 

Definition 5.2. An LPE written as in Definition 5.1 is called convergent if 
there is a well-founded ordering < on D such that for all i E I with C& = T and 
for all ei : Ei, d: D we have that bi(d, e;) implies g;(d, e;) <d. 

We assume that every convergent LPE has exactly one solution. In this way, 
convergent LPEs define processes. 

We describe the linear equation for Slip. We have numbered the different 
summands for easy reference. Note that the specification is already linear. 

Linlmpl(bs:Byte, Ss:N, bc:Byte, Sc:N, br:Byte, s,.:N) = 
(a) Lb: Byte r(b) Linlmpl(b, 1, be, Sc, br, Sr) 

<leq(s8 , 0) I> c5+ 
(b) T Linlmpl(b8 , 2, esc, 1, bn Sr) 

<leq(sc, 0) A eq(s8 , 1) A (eq(b,, end) V eq(bs, esc)) I> c5+ 
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(c) r Linlmpl(b8 , 0, b8 , l, bn Sr) 
<leq(sc, 0) A (eq(s 8 , 2) V (eq(s 8 , 1) A •(eq(b8 , end) V eq(b8 , esc)))) 1> o+ 

(d) r Linlmpl(bs,Ss,bc,O,bc,l) 
<leq(sri 0) A eq(sc, 1) I> c5+ 

(e) r Linlmpl(b8 , S8 , be, O, be, 2) 
<leq(sr, 1) A eq(br, esc) A eq(sc, 1) I> c5+ 

(f) s(br) Linlmpl(b8 , S 8 , be, Sc, br, 0) 
<leq(sr, 2) V (eq(sr, 1) A -.eq(bri esc)) I> O 

We obtained this form, by identifying three explicit states in the sender and 
receiver, and two in the channel. These have been indicated by encircled numbers 
in the defining equations of these processes. The states of these processes are 
indicated by the variables s8 , Sr and Sc respectively. Each of the three processes 
also stores a byte in certain states. The bytes for each process are indicated by 
b8 , brand be. The r in summand (b) comes from hiding c1(esc), in summand 
(c) comes from c1 (b8 ), in (d) from c2(bc) and in (e) from c2(bc)· 

As we can obtain a linear equation for the SLIP protocol algorithmically, we 
do not think it useful to consider this aspect of the verification amenable for 
proof checking. Therefore, we state the following without proof: 

Lemma 5.3. For any b1,b2,b3:Byte it holds that 

Linlmpl(O, bi, 0, b2, 0, b3) = Slip. 

A very effective and commonly known notion is that of an invariant. Remarkably, 
invariants are hardly used in process algebra up till now. We use invariants 
without reference to an initial state. 

Definition 5.4. An invariant of an LPE written as in Definition 5.1 is a function 
I: D-+ Bool such that for all i E J, ei: E;, and d: D we have: 

bi(d, e;) A I(d) -+ I(gi(d, ei)). 

We list below a number of invariants of Linlmpl that are sufficient to prove the 
results in the sequel. The proof of the invariants is straightforward, except that 
we need invariant 2 to prove invariant 3. 

Lemma 5.5. The following expressions are invariants for Linlmpl: 

1. S 8 ::; 2 A Sc ::; 1 A Sr ::; 2; 
2. eq(s8 , 2) -+ (eq(b8 , esc) V eq(bs, end)); 
3. •eq(s8 , 2) -+ ( (eq(sc, 0) A...,( eq( Sri 1) A eq(br, esc) ))V 

(eq(sc, 1) A ((eq(sri 1) /\ eq(br, esc)) ++ 
(eq(bc, esc) V eq(bc, end)))) )A 

eq(s8 , 2)-+ ((eq(sc, 1) A eq(bc, esc) A •(eq(sr, 1) /\ eq(bri esc)))V 
(eq(sc, 0) A eq(sri 1) A eq(br, esc))). 
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The next step is to relate the implementation and the specification. In order to do 
this abstractly, we first introduce a clustered linear process equation representing 
the implementation: 

p(d:Dp) = L L a(fa(d, ea)) p(ga(d, ea)) <l ba(d, ea) C> 8 
aEActe,,:E,. 

and a clustered linear process equation representing a specification: 

q(d:Dq) = L L a(f~(d, ea)) q(g~(d, ea)) <l b~(d,e0) C> O 
aEAct\{r} ea:Ea 

Note that the specification does not have internal r steps. 
We relate the specification by means of a state mapping h:Dp -t Dq. The 

mapping h maps states of the implementation to states of the specification. In 
order to prove implementation and specification branching bisimilar, the state 
mapping should satisfy certain properties, which we call matching criteria be
cause they serve to match states and transitions of implementation and specifi
cation. They are inspired by numerous case studies in protocol verification, and 
reduce complex calculations to a few straightforward checks. 

In order to understand the matching criteria we first introduce an important 
concept, called a focus point. A focus point is a state in the implementation 
without outgoing r-steps. Focus points are characterised by the focus condition 
FC(d), which is true if dis a focus point, and false if not. 

Definition 5.6. The focus condition FC(d) of the implementation is the for
mula -.3er:Er (br(d, er)). 

The set of states from which a focus point can be reached via internal actions is 
called the cone belonging to this focus point. 

Now we formulate the criteria. We discuss each criterion directly after the 
definition. Here and below we assume that-, binds stronger than/\ and V, which 
in turn bind stronger than -t. 

Definition 5.7. Let h:Dp -t Dq be a state mapping. The following criteria are 
called the matching criteria. We refer to their conjunction by Cp,q,11.(d). 

The LPE for p is convergent (1) 

Ver:Er(br(d, er) -t h(d) = h(gr(d,er))) (2) 

Va E Act\ {r}Ve0 :Ea (ba(d, ea) -t b~(h(d), ea)) (3) 

Va E Act\ {r}Ve0 :Ea (FCs(d) /\ b~(h(d), ea) -t ba{d, ea)) (4) 

Va E Act\ {r} Vea:Ea (ba(d,ea) -t fa(d,ea) = f~(h(d), ea)) (5) 

Va E Act\ {r} Vea:Ea (ba(d,ea) -t h(ga(d, ea)) = g~(h(d), ea)) (6) 
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Criterion (1) says that the implementation must be convergent. In effect this 
does not say anything else than that in a cone every internal action r constitutes 
progress towards a focus point. In [35) also an extension of this method where 
convergence of the implementation is not necessary is presented. 

Criterion (2) says that if in a state din the implementation an internal step 
can be done (i.e. br(d, er) is valid) then this internal step is not observable. 
This is described by saying that both states relate to the same state in the 
specification. 

Criterion (3) says that when the implementation can perform an external 
step, then the corresponding point in the specification must also be able to 
perform this step. Note that in general, the converse need not hold. If the spec
ification can perform an a-action in a certain state e, then it is only necessary 
that in every stated of the implementation such that h(d) = e an a-step can be 
done after some internal actions. 

This is guaranteed by criterion ( 4). It says that in a focus point of the imple
mentation, an action a in the implementation can be performed if it is enabled 
in the specification. 

Criteria (5) and (6) express that corresponding external actions carry the 
same data parameter (modulo h) and lead to corresponding states. 

Using the matching criteria, we would like to prove that, for all d:Dp, Cp,q,h(d) 
implies p(d) = q(h(d)). This can be done using the following theorem. 

Theorem 5.8 (General Equality Theorem). Let p and q be defined as above. If 
I is an invariant of the defining LPE ofp and Vd:Dp (I(d) ---+ Cp,q,h(d)), then 

Vd:Dp I(d)-+ r(d) <J FC(d) t> rr(d) = q(h(d)) <J FC(d) t> rq(h(d)). 

For the SLIP protocol we define the state mapping using the auxiliary function 
cadd. The expression cadd(c, b, q) yields a queue with byte b added to q if boolean 
c equals true. If c is false, it yields q itself. Hence the conditional add is defined 
by the equations cadd(f, b, q) = q and cadd(t, b, q) = in(b, q). 

The state mapping is in this case: 

h(bs,S8 ,bc,Sc,br,Sr) = 
cadd(-ieq(ss, 0), bs, 
cadd(eq(sc, 1) /\ (-ieq(bc, esc) V (eq(sr, 1) /\ eq(br, esc))), be, 
cadd(eq(sr, 2) V (eq(sr, 1) /\ -ieq(br, esc), br, 0)))). 

So, the state mapping constructs a queue out of the state of the implementation, 
containing at most bs, be and br in that order. The byte bs from the sender is in 
the queue if the sender is not about to read a new byte (•eq(s 8 ,0)). The byte 
be from the channel is in the queue if the channel is actually transferring data 
( eq( Sc, 1)) and if it does not contain an escape character indicating that the next 
byte must be taken literally. Similarly, the byte br from the receiver must be in 
the queue if it is not empty and br is not an escape character. 
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The focus condition of the SLIP implementation can easily be extracted and 
is (slightly simplified using the invariant): 

(eq(sc,O) -t eq(ss,0))1\ 
(eq(sc, 1) -t (-ieq(sri O) I\ (eq(sr, 1) -t -ieq(br,esc)))) 

Lemma 5.9. For all bi, b2, b3:Byte 

Spec(0) = Linfmpl(b1, 0, b2, 0, b3, 0). 

Proof. We apply Theorem 5.8 by taking Linlmpl for p, Spee for q and the state 
mapping and invariant provided above. We simplify the conclusion by observing 
that the invariant and the focus condition are true for s8 = 0, Sc = 0 and 
Sr= 0. By moreover using that h(b1,0,b2,0,b3,0) = 0, the lemma is a direct 
consequence of the generalized equation theorem. We are only left with checking 
the matching criteria: 

1. The measure 13 - s8 - 3sc - 4sr decreases with each 'T step. 
2. (b) distinction on Sri use invariant. (c) distinguish different values of S 8 ; use 

invariant. ( d) trivial. ( e) trivial. 
3. (a) lengthy. (f) trivial. 
4. (a) We must show that ifthe focus condition and -ifull(h(b8 , 8 8 , be, Sc, br, Sr)) 

hold, then eq(ss, 0). The proof proceeds by deriving a contradiction un
der the assumption -ieq(s8 ,0). If eq(s8 ,l) it follows from the invariant and 
the focus condition that len(h(b8 ,s8 ,bc,Sc,br,sr)) = 3, contradicting that 
-ifull(h(b8 , 88 , be, Sc, br, Sr)). If eq(Ss, 2), then len(h(bs, Bs, be, Sc, bri Sr)) = 2, 
toe(untoe(h(b8 , s8 , be, Sc, br, sr))) = b8 and eq(bs,esc) V eq(b., end) in a sim
ilar way. This also contradicts -ifull(h(bs, Ss, be, Sc, br, Sr)). 
(f) We must show that the focus condition together with eq(sr, 2)V(eq(sr, 1)1\ 
-ieq(br, esc)) implies -iempty(h(b8 , s8 , be, Sc, br, Sr)). In this case it follows di
rectly that h(b8 , S8 , be, Sc, br, Sr) has the form cadd( ... , cadd( ... , in(br, 0))), 
which is easily shown not to be empty. 

5. (a) trivial. (f) use toe( cadd(c1, bi, cadd(c2, b2, in(b3, 0)) )) = b3. 
6. (a) trivial using definitions (f) idem. 

0 

Using Lemmas 5.3 and 5.9 it is easy to see that Theorem 3.1 can be proven. 
Only now we come to the actual checking of this protocol in PVS. We con

centrate on proving the invariant and the matching criteria. We must choose a 
representation for all concepts used in the proof. As this would make the paper 
too long, we only highlight some steps of the proof, giving a flavour of the input 
language of PVS. 

We start off defining the data types. 

Byte:TYPE+ 
endb:Byte 
esc :Byte 

Queue:TYPE=list[Byte] 
DX :TYPE=[Byte,upto(2),Byte,upto(1),Byte,upto(2)] 
DY :TYPE=[Queue] 



646 

We use as much of the built-in data types of PVS as possible. The advantage 
of this is that we can use all knowledge of PVS about these data types. A 
disadvantage is that the semantics of the data types in PVS may differ from 
the semantics of data types in the protocol, leading to mismatches between the 
computerized proof and the intended proof. 

The types N and Bool are built in types of PVS and need not be defined. 
We declare Byte to be a nonempty type, with two elements esc and endb (end 
is a predefined symbol and can therefore not be used). For queues we take the 
built in type list and parameterize it with bytes. The type of the parameters 
of the linear implementation and the specification are now given by DX and DY 
respectively. The type upto ( n) denotes a finite type with natural numbers up 
to and including n. 

A function such as untoe can now be defined in the following way: 

untoe(q:Queue):RECURSIVE Queue=if null?(q) then null else 
if null?(cdr(q)) then null else 

(cons (car(q),untoe(cdr(q)))) 
endif endif 

MEASURE(lambda(q:Queue) : length(q)) 

The function car, cdr and null are built in PVS. The MEASURE statement 
is added to help PVS finding criteria for the well foundedness of the definition, 
which is in this case obtained via the length of the queue. 

Below we show how a linear process equation is modeled. In essence the 
information contents of an LPE is the set D, the index set I, the sets Ei, the 
actions ai and the function Ii, gi and bi. 

We only provide the LPE representation for the linear implementation of the 
SLIP protocol. The set Dis given as DX defined above. We group all r-actions, 
which leaves us with three summands. We assume this a priori (and have even en
coded this bound in all theorems) as making it more generic would make the pre
sentation less clear. But with the knowledge that there are only three summands, 
we can define the sets Ei very explicitly: E1:TYPE=Byte, E2:TYPE=upto(O) and 
E3:TYPE=upto(3). Here, upto(O) is a set with exactly one element. Furthermore 
E3 is taken to contain the numbers O, ... , 3 to refer to the different r actions in 
the linear implementation. 

The constituents of the different summands are given by the record fields u1, 
u2 and u3. The notation ( #u1 : = ... , u2 : = ... , ... #) stands for a record with 
fields u1, etc. Each summand consists again of a record. The first field of this 
record gives the name of an actions (ra for r, sa for s and taut for r). The 
second field is irrelevant for our current purpose. The third, fourth and fifth 
components are the functions fi, gi and bi. 

L_Impl : LPE = 
(#u1:= ...• 

u2:=(#a:=sa,dact:=sas, 
f:=(lambda (bs:Byte,ss:upto(2),bc:Byte,sc:upto(1),br:Byte,sr:upto(2)): 

(lambda (u:upto(O)):br)), 
g:=(lambda (bs:Byte,ss:upto(2),bc:Byte,sc:upto(1),br:Byte,sr:upto(2)): 
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(lambda (u:upto(O)):(bs,ss,bc,sc,br,0))), 
b:=(lambda (bs:Byte,ss:upto(2),bc:Byte,sc:upto(1),br:Byte,sr:upto(2)): 

(lambda (u:upto(O)):((sr=2) or ((sr=1) and br/=esc))))#), 
u3:= •.. 

Below we provide a PVS description of what it means to be an invariant for a 
predicate I on a given LPE, and we formulate the general equation theorem. 
Here Sol(lpox) yields the solution of an LPO lpox. 

Invlpox(lpox: LPE[DX],I: [DX-> bool]) : bool = 
(FORALL (e:E1,d:DX):(b(u1(lpox))(d)(e) and I(d))=>I(g(u1(lpox))(d)(e))) 
AND 
(FORALL (e:E2,d:DX):(b(u2(lpox))(d)(e) and I(d))=>I(g(u2(lpox))(d)(e))) 
AND 

(FORALL (e:E3,d:DX):(b(u3(lpox))(d)(e) and I(d))=>I(g(u3(lpox))(d)(e))) 

GET : AXIOM FORALL (lpox: LPE[DX],lpoy: ALPE[DY),h: [DX-> DY], 
I: [DX -> bool]) 

Invlpox(lpox,I) and 
(FORALL (d: DX) : I(d) => Convx(lpox) and Crit2(lpox,d,h) and 

Crit3(lpox,lpoy,d,h) and Crit4(1pox,lpoy,d,h) and 
Crit5(lpox,lpoy,d,h) and Crit6(1pox,lpoy,d,h)) => 

FORALL (d: DX) : I(d) => 
condi(Sol(lpox)(d),FC(lpox,d),seq(tau,Sol(lpox)(d))) 

= 
condi(Sol(lpoy)(h(d)),FC(lpox,d),seq(tau,Sol(lpoy)(h(d)))) 

The state mapping stmapp can be formalized in PVS in a very straightforward 
way (but we first define cadd): 

cadd(x:bool,b:Byte,q:Queue):Queue=if x=false then q else cons(b,q) endif 

stmapp(bs:Byte,ss:upto(2),bc:Byte,sc:upto(1),br:Byte,sr:upto(2)):Queue= 
cadd(ss/=O,bs,cadd(sc=1 and (bc/=esc or (sr=1 and br=esc)),bc, 

cadd(sr=2 or (sr=1 and br/=esc),br,null))) 

Then, when applying the GET theorem one is confronted with a long list of 
proof obligations. To get an impression of how they look like, we provide below 
the third matching criterion (before expanding): 

((ss=O) => not(full(stmapp(bs,ss,bc,sc,br,sr)))) 
AND 

(((sr=2) or ((sr=1) and (br/=esc))) => 
not(null?(stmapp(bs,ss,bc,sc,br,sr)))) 

It has been stated as a separate lemma, and can be proven using the built in 
grind tactic, without human intervention. 
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6 Which proof checker to use 

This is an obvious question that is not easy to answer. We only have substantial 
experience with Coq, Isabelle and PVS, and only tried some others. The conclu
sion is that none of the checkers is perfect and all are suited for the verification 
of correctness proofs of protocols. 

PVS has large built in libraries and has the largest amount of ad hoe knowl
edge and specialised decision procedures. This makes it an efficient theorem 
checker and relatively easy to use for beginners. However, it is not always obvious 
what the procedures do, hindering fundamental understanding of how the prover 
achieves its results. Moreover, these built-in procedures operate unchecked, and 
therefore may erroneously prove a lemma. There is no independent check in the 
system. Regularly, problems or bugs are reported, which are dealt with ade
quately. 

Coq has by far the nicest underlying theory, which is not very easy to under
stand, however. Coq uses a strict separation between constructing a proof and 
checking it. Actually, using the Curry-Howard isomorphism, a term (=proof) 
of a certain type (=theorem) is constructed using the vernacular of Coq. After 
that the term and type are sent to a separate type checker, which double checks 
whether the term is indeed of that type, or equivalently the proof is indeed a 
proof of the theorem. In a few rare cases we indeed constructed proofs that were 
incorrect, and very nicely intercepted in this way. This gives Coq by far the 
highest reliability of the provers. 

A disadvantage of Coq is that it is relatively hard to get going. This is due 
to the fact that the theory is difficult, and there are relatively few and underde
veloped libraries. Furthermore, searching for proofs in Coq is less supported. 

Isabelle is the most difficult theorem prover to learn. This is due to the 
fact that the user must have knowledge of the object logic (HOL, but there 
are others) and the metalogic (Higher order minimal logic). An advantage of 
this two level approach is that proof search facilities have a nice underpinning 
in the meta logic. These facilities include backtracking, higher order unification 
and resolution. Although there are no proof objects that are separately checked 
such as in Coq, Isabelle operates through a kernel, making it much more reliable 
than PVS. Term rewriting is an exception, as it has been implemented outside 
this kernel for efficiency reasons, but it is very powerful as ordered conditional 
higher-order rewriting is implemented. 

7 Overview of the literature 

Nowadays numerous proofs of protocols and distributed systems have been com
puter checked. The techniques that have been used for proving were mainly 
temporal logic and process algebra based. The examples of computer checked 
verifications presented here do not cover the whole field, but give a good impres
sion of the state of the art. 

In the context of process algebra [5] most such checks have been carried out 
using the language µCRL [34]. It has been encoded in the Coq system and applied 
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to the verification of the alternating bit protocol (8, 7], Milner's scheduler [47], a 
bounded retransmission protocol (36] and parallel queues [48] have been proven 
and checked. µCRL has also been encoded in PVS and a distributed summing 
protocol has been computer checked in [33] using the methodology presented in 
[35]. 

Temporal logic has been mainly used for proving safety (invariance) proper
ties and liveness (eventuality) properties of concurrent systems. The temporal 
logic of actions (TLA), developed by Lamport [50], allows systems and properties 
to be described in the same language. The semantics of TLA has been formalized 
in the HOL theorem checker [31] in [79] and a mutual exclusion property for an 
increment example and the refinement of a specification were proven and the 
proof was checked. 

In (24], a translator was devised to directly translate TLA into the language of 
Larch Prover [37]. Examples verified in this approach are an invariance property 
of a spanning tree algorithm [24), correctness of an N-bit multiplier [23]. TLA 
has also been applied for specifying and verifying an industrial retransmission 
protocol RLPl (Radio Link Protocol) in [60] of which the proofs were checked 
with the theorem prover Eves [30]. 

A subset of the temporal formalism of Manna and Pnueli (58] has been en
coded on the Boyer-Moore prover by Russinoff in (72] in order to mechanically 
verify safety and liveness properties of concurrent programs. He applied this 
system to check several concurrent algorithms of which the most difficult was 
the Ben-Ari's incremental garbage collection algorithm [73). Furthermore, Gold
schlag encoded the Unity formalism on the Boyer-Moore prover in [28, 29]. Unity, 
developed by Chandy and Misra [16], is a programming notation with a tempo
ral logic for reasoning about the computations of the concurrent programs. To 
illustrate the suitability of the proof systems, Goldschlag respectively specified 
and proved the correctness of a solution to mutual exclusion algorithm, the solu
tion of the dining philosopher's problem, a distributed algorithm computing the 
minimum node value in a tree and an n-bit delay insensitive FIFO queue. We 
can also mention that a distributed minimal spanning tree algorithm [25] was 
verified (41] using the Boyer-Moore theorem checker. 

The Unity community has also used the Larch Prover to study a communica
tion protocol over faulty channels (18). The informal proof of safety and liveness 
properties of the protocols given in [16) have been computer checked revealing 
some flaws. Unity has been implemented in other theorem checkers as in [19] 
where an industrial protocol is being studied. 

Various protocols have been studied based on Input/Output automata pro
posed by Lynch and Tuttle [57). A verification of a network transmission protocol 
has been checked in (64] using a model of I/O automata formalized in (64, 62). 
In (20), a verification of a leader election protocol extracted from a serial multi
media bus protocol has been partially checked with PVS. Also an audio control 
protocol has been analysed in [14] in the context of the I/O automata. model 
(56) of which some proofs were checked using the Coq system [39] and a. similar 
protocol was studied with the Larch Prover in [32). Still using the Larch Prover, 
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a behaviour equivalence between to high-level specifications for a reliable com
munication protocol is proven in [77] and a proof of the bounded concurrent time 
stamp algorithm [21] made in [26] has been completely checked in [70]. In [55], 
the correctness of a simple timing-based counter and Fisher's mutual exclusion 
protocol were respectively formally proven with the Larch Prover. 

Timed automata [56] have been modeled in PVS and applied in [2] to formally 
prove invariant properties of the generalized railroad crossing system based on 
the proof of [40]. The same authors [3) verified the Steam Boiler Controller 
problem leading to corrections of the manual proof in [51]. 

Other formal frameworks have been applied to the verification of previous 
examples. We can mention [75] where the Fisher mutual exclusion protocol and 
the railroad crossing controller were verified in PVS. In [78], the steam boiler 
was checked by Vitt and Hooman using also PVS. The last author also verified 
a processor-group membership protocol in [44] and a safety property, together 
with a real-time progress property of the ACCESS bus protocol in [43]. Also the 
biphase mark protocol, similar to the protocol in [14], was proved by Moore in 
[61]. Further examples of verified protocols are [4, 6, 11, 13, 15, 17, 27,38,42,45, 
49,52-54,63,67-69,71, 74,80] 
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