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In this paper we study the infiltration of DNAPL in a porous medium containing a single 
low-permeable lens. Our aim is to determine whether or not DNAPL infiltrates into the 
lens. A key role is played by the capillary pressure: DNAPL cannot infiltrate into the lens 
unless the capillary pressure exceeds the entry pressure of the lens. In the model this is 
reflected by an interface condition, the extended capillary pressure condition. To derive 
analytical approximations we first consider a steady-state DNAPL plume in a homogeneous 
medium. This results in an estimate of the DNAPL plume width as a function of depth, and 
an asymptotic solution for small saturations. Assuming that the extent of the lens is much 
larger than the width of the unperturbed DNAPL plume in the homogeneous medium, we 
derive an explicit criterion for DNAPL infiltration into the lens in terms of a critical inflow 
rate. A numerical algorithm is presented in which the extended capillary pressure condition 
is incorporated. The numerical and analytical results show good qualitative agreement. 

Keywords: two-phase flow, DNAPL, low-permeable lens, capillary pressure, entry pressure, 
critical flow rate 

AMS subject classification: 35R05, 65M06, 76T05 

1. Introduction 

191 

The infiltration of Dense Non-Aqueous Phase Liquid (DNAPL) into aquifers 
forms a serious environmental problem. DNAPLs are organic compounds with a 
higher density than water; examples are chlorinated solvents used in industry. Since 
DNAPLs are heavier than water they easily invade the saturated zone of the subsurface, 
posing a threat to the ground water quality. Even small concentrations of compounds 
derived from typical DNAPLs can be toxicologically significant. 

Several remediation techniques exist to remove DNAPL from the subsurface. 
The effectivity of hydraulic remediation techniques (pumping of contaminated ground 
water) is limited if the DNAPL has entered less-permeable regions like lenses of very 
fine sand. The reason is that the low-permeability zones are hardly reached, because 
the preferred flow path of water is in the high-permeability zones. This applies equally 
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well to other remediation techniques like in situ biodegradation and surfactant enhanced 
dissolution, since both techniques use water for transport of the remediating substances. 
Excavation is often not feasible because of the great infiltration depth. So lenses of 
low permeability infiltrated by DNAPL may form persistent sources of ground water 
contamination. Therefore it is important to know under what circumstances DNAPL 
penetrates low-permeability lenses. 

In this paper we consider a porous medium containing a single low-permeable 
lens. DNAPL is released through an opening in the impermeable top boundary, and 
migrates down towards the lens. The objective of this paper is to show under what 
conditions DNAPL infiltrates into the lens. We give an explicit criterion for infiltration 
into the lens in terms of a critical DNAPL inflow rate. It will be obtained using simple 
analytical approximations that govern the qualitative flow behavior well. 

Capillary forces play a main role in this problem, in particular the entry pressure 
of the lens and the corresponding threshold saturation. The entry pressure is the 
minimum capillary pressure that is needed for a nonwetting fluid (DNAPL) to enter a 
medium that is saturated by a wetting phase (water). A high entry pressure corresponds 
to a low-permeable medium. DNAPL arriving at the lens cannot immediately penetrate, 
because the capillary pressure is still smaller than the entry pressure of the lens. Hence 
DNAPL accumulates on top of the lens and spreads in response to lateral pressure 
gradients. It may happen that so much DNAPL accumulates on the lens that the 
capillary pressure exceeds the entry pressure: DNAPL then infiltrates into the lens. 

We study the infiltration problem for lenses that are of greater extent than the 
width of the steady-state DNAPL plume in absence of the lens. Large lenses obstruct 
the flow such that distinct accumulation of DNAPL occurs on their top boundary. 
For small lenses we expect that the effect of accumulation is less, since DNAPL can 
relatively easily flow around. We consider only media with positive entry pressures. 

The effect of capillary forces and heterogeneity is analyzed mathematically and 
numerically by Van Duijn et al. [6]. By a regularization procedure they derive the 
interface conditions needed at discontinuities in the permeability. Several authors study 
the problem of DNAPL infiltration numerically. Kueper and Frind [12,13] develop a 
finite difference model for two-phase flow in heterogeneous media and apply it to 
DNAPL infiltration problems. They perform sensitivity analyses for a geometry with 
a single lens, as well as for random permeability fields. However, they focus on the 
spreading of DNAPL caused by a low-permeable lens and consider only cases in which 
DNAPL penetrates the lens. Helmig [10] develops a numerical model based on the 
finite element method, and simulates the laboratory experiments by Kueper et al. [11]. 

This paper is organized as follows. In section 2 we state the model equations 
and the interface conditions used at the boundary of the lens, where the permeability 
is discontinuous. In section 3 we analyze the steady-state flow problem. Two config­
urations are studied: one without lens (homogeneous case), and one with a single lens 
(heterogeneous case). In the homogeneous case we derive an estimate for the width of 
the DNAPL plume as a function of depth. Further, we give an analytical solution for 
low DNAPL saturations. In the heterogeneous case we derive an explicit criterion that 
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determines whether DNAPL infiltrates into the lens or not. In the analysis it is assumed 
that the DNAPL is in vertical equilibrium (VE) when it spreads laterally on top of the 
lens. We show that DNAPL infiltrates into the lens if a critical DNAPL discharge in 
the opening is exceeded. In the final section we present a numerical algorithm for the 
heterogeneous problem that incorporates the interface conditions. With this numerical 
scheme several simulations are carried out for a test problem. These computational 
results are in good agreement with the analytical results obtained in section 3. 

2. Model equations 

We consider the standard model for flow of two immiscible and incompressible 
fluids in a homogeneous porous medium. Let Sw denote the saturation of the wetting 
fluid and Sn the saturation of the nonwetting fluid, 

Sw +Sn= l. (1) 

Both phases satisfy the fluid-balance equations, 

"'asQ ct· o 
'f' Ot + IV qQ = , Q' = n, W, (2) 

where </> is the porosity of the porous medium and qQ the specific discharge of phase a. 
These specific discharges are given by Darcy's law, 

(3) 

where Am pQ and pQ are the mobility, pressure and density of phase a, g the accel­
eration of gravity, and eg the unit-vector in the direction of gravity. The mobility of 
phase a is given by 

>..Q(SQ) = k kmCSQ), a=n,w, (4) 
µQ 

where k is the absolute permeability of the porous medium, and km and µQ the relative 
permeability and the viscosity of phase a. The total flow q1 of both phases is given 
by 

(5) 

Due to interfacial tension there is a pressure difference between the nonwetting and 
the wetting phase, which is called the capillary pressure Pc. 

Pn - Pw = Pc(Sw). (6) 

For a given rock type the capillary pressure Pc is a known function of the saturation. 
In equations (1)-(6) we have four unknowns, SQ and PQ· Two of them are 

eliminated easily by using (1) and (6). Because we are interested in DNAPL flow, it 



194 M.J. de Neef, J. Molenaar I Analysis of DNAPL infiltration 

is convenient to take the reduced DNAPL saturation s as one of the two dependent 
variables, 

S=----­
l - Swr - Snr' 

(7) 

where Sar denotes the residual saturation of phase a. For the other dependent variable 
we take the wetting phase pressure Pw· This choice appears to be advantageous in the 
case of heterogeneities. If no confusion can arise, we drop the subscript w of Pw· 

After some rearrangements the model equations are written as 

where 

and 

fJs 
</> "'' + div Gn = 0, ut 

div Gt = 0, 

(8) 

(9) 

Gn = fnGt - Awfn(gradpc - !:ipgeg), (10) 

Gt = -An(gradpc - !:ipgeg) - (Aw+ An)(gradpw - Pwgeg), (11) 

An 
fn = An+ Aw and D..p = Pn - Pw· 

The function f n is called the fractional flow function of the nonwetting phase. In view 
of (4) it is a function of s only. 

In this paper we restrict ourselves to capillary pressure curves with a nonzero 
capillary entry pressure Pe and an infinite capillary pressure at the residual water 
saturation, 

Pc(s) = PeJ(s), (12) 

with 

J(O) = 1 and J(l) = oo, (13) 

where J is the rescaled J-Leverett function. For example, the Brooks and Corey 
model [2] features a nonzero entry pressure, whereas the Van Genuchten model [9] 
does not. According to the Leverett scaling [14] we have 

Pe ex: aft, (14) 

where a denotes the interfacial tension between the two fluids. We note that a lower 
permeability yields a higher entry pressure. 

A nonzero entry pressure has interesting consequences if there are subdomains 
with different entry pressures. In each subdomain equations (8)-(11) apply. To connect 
the solutions in the different subdomains we use interface conditions. 
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Figure 1. Capillary pressure Pc on both sides of an interface. If the entry pressures Pe are unequal, 
Pc cannot always be continuous. 

The intetface condition regarding the fluxes is immediate. Conservation of mass 
at the intetface implies that the normal components of the fluxes q0 and qt must be 
continuous across an intetface. 

The next intetface condition involves the capillary pressure Pc· The boundedness 
of qn and q1 in equations (10)-(11) implies that Pc and Pw should be continuous across 
an intetface if both phases are mobile (Aw > 0 and An > 0). However, if the entry 
pressures are different on each side of the intetface, a continuous capillary pressure 
is not always possible. This is illustrated by figure 1. Figure 1 shows two capillary 
pressure curves for different entry pressures p~ and Pt, where Pt > p~. Let s­
denote the saturation on the side with lowest entry pressure, and s+ the saturation on 
the other side. The capillary pressure cannot be continuous at the intetface if 8- is 
below the threshold saturation s*, 

+ 
J(3*) = P:_. 

Pe 
(15) 

This problem has been analyzed by Van Duijn et al. [6] for a one-dimensional flow 
without gravity. A similar analysis for a line normal to the intetface gives the following 
extended capillary pressure condition. If 8- ~ s* the capillary pressure must be 
continuous. However, if s- < s* the capillary pressure is discontinuous, and s+ must 
be zero. A consequence of this condition is that DNAPL can enter a region with higher 
entry pressure only if its saturation exceeds the threshold saturation s*. 

The last interface condition concerns the water pressure Pw· Because the capillary 
pressure can be discontinuous, we have in view of (6) that Pw and Pn (or both) may 
be discontinuous. It follows from the extended capillary pressure condition that the 
capillary pressure is only discontinuous if s- < s* and 3+ = 0. However, the 
boundedness of qw in (3) implies that Pw can only be discontinuous if s- = 1 or 



"+ I .. Therefore mus! tit: ::ommuous. t>wn if p, I'> discontmurn.is. Hence is 
discontinuous "vhenever is distoritnmous 

wt• han.· 1he imerf,ice condnnons the situa11on shown 
in 

• n · IJn and ri · are continuous. where denott~s the unit \e1.:tor normal to the 

• the extended 

• is continuous. 

(8 ), if ,.,~ ;'' s•. 
if .~ < ,,•. 

3. Analysis of steady-state DNAPL flow 

In this section we consider two-dimensional steady-state flow of DNAPL for 
two Ii l a porous medium. and a host 
medium a horizontal lens with a entry pressure. ln both cases the 
flow takes place in a semi-infinite as depicted in figure 2. The DNAPL sinks 
through an opening in the impermeable top boundary into the domain. Gravity is 
directed vertically downward. In the heterogeneous case the lens is located symmetri­
cally beneath the 

For the problem we aim at finding an estimate of the DNAPL 
plume width as a function of depth. The for the heterogeneous problem is 
to find a criterion that can be used to determine whether DNAPL infiltrates into the 
lens or not. In the analysis of the latter problem we assume that the length of the lens 
is much greater than the width of the steady-state DNAPL plume for the configuration 
without a lens. in that case we expect that DNAPL is forced to flow laterally on the 
lens. The condition on the length of the lens can be checked with the estimate for the 
plume width. 

To arrive at problems which can be treated analytically. we make a few approxi­
mations. For both the homogeneous and heterogeneous case we assume that the total 

2d -
H 

2l. 

Figure :::. Genmetry ,;f 
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flow is small with respect to the other terms in (10), so that it can be disregarded. 
The system of two coupled equations (8)-(9) then reduces to a single equation for the 
DNAPL saturation. Within this approximation, the flow is counter-current: the specific 
discharge of water is directed oppositely to the specific discharge of DNAPL in every 
point of the domain. In section 3.3 we show that this approximation is reasonable if 
the DNAPL saturation is sufficiently low. 

In the homogeneous case we assume moreover that the flow in the vertical di­
rection due to capillary pressure gradients can be disregarded compared with the flow 
caused by density differences. In the heterogeneous case we assume that the later­
ally spreading DNAPL on top of the lens is in vertical equilibrium (VE), and that it 
drops off of the lens so quickly that the saturation at both ends is approximately zero. 
VE means that the buoyancy force (caused by density differences) is balanced by the 
capillary force, so that the DNAPL flow in the vertical direction can be disregarded. 

For the analysis in this section we need the properties of the functions kra and J. 
It is assumed that krw and km are continuously differentiable on [0, l], that J is 
continuously differentiable on [0, 1) with derivative J', and that they satisfy: 

• krn(s) is strictly increasing with km(O) = 0, 

• krw(s) is strictly decreasing with krw(l) = 0, 

• J'(s) > 0 on (0, 1), J(O) = 1 and J(l) = oo, 

• J'(s)krw(s)krn(s) is continuous on [0, 1]. 

For example, the functions of the Brooks-Corey model satisfy the above hypotheses. 

3.1. Steady-state infiltration in a homogeneous medium 

In this section we consider the steady-state infiltration of DNAPL in a semi­
infinite domain, Q = ~ x (0, oo). The coordinate in the vertical downward direction 
is denoted by z. Both the entry pressure and the absolute permeability of the porous 
medium are constant in Q. 

Using the approximation Qr = 0 we obtain from equations (8)-(11) for a steady­
state flow 

divqll = 0, (17) 

The DNAPL enters the domain through an opening of width 2d in the impermeable 
top boundary at z = 0, 

• > - -qll, { 
i 

n · qll(x,0) - O, 
if lxl ( d, 
if lxl > d, 

(18) 

where n is the outwards directed normal of the top boundary. We seek a solution 
s = s(:r, z) of the above problem which vanishes as llxll -+ oo. 
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To simplify the above problem, we use the assumption that the force induced by 
the density difference is dominant compared with the capillary force in the vertical 
direction, 

1 'OPc I . D.pg oz «: 1 m Q. (19) 

This is often a reasonable approximation for media with high permeability. Disregard­
ing the capillary gradient term in the vertical direction in (17)-( 18) yields 

o o ( opc) 
D.pg oz Cfn>.w) = ox fn>.w ax , 

with the boundary condition at z = 0: 

D.pgfnAw = { q~, 
0, 

if lxl ~ d, 
if lxl >d. 

(20) 

(21) 

We note that condition (21) only makes sense if q~ is smaller than the maximum value 
of Apgj0 (s)>.w(s). Equations (20)-(21) serve as a starting point for the analysis of the 
homogeneous configuration. 

To write the equations in dimensionless form, we redefine x and z according to 

x 
x := d' 

z 
z:= d' 

and define the dimensionless numbers 

N. Pe 
cg = D.pgd' 

i 
N _ qnµn 

q - k!:J.pg' (22) 

The number Neg represents the ratio of capillary force and buoyancy force, Nq the 
rescaled inflow, and M the mobility ratio. From (20) and (12) we obtain 

a - a ( as) oz >.(s) =Neg ox D(s) ax ' 
where 

X(s) = krw(s)km(s) and D(s) = J'(s)X(s). 
krw(s) + km(s)/M 

The boundary condition at z = 0 is written as 

X(s(x, 0)) = vo(x) = { ON,q, if Ix! ~ I, 
if Jxl > 1. 

(23) 

(24) 

(25) 

As mentioned earlier, it is necessary that Nq is less than the maximum value of X(s) 
on [0, 1]. Note that this is a consequence of approximation (19). Let s denote the 
maximum value such that X' > 0 on (0, s), as shown in figure 3. For most models 
found in the literature (e.g., the Brooks-Corey model) s coincides with the value at 
which X attains its maximum on [0, l]. We only consider the case that Nq < X(s). 
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X(s) 

s 

Figure 3. Choice of s: ).(s) is invertible on (0, s]. 

3.1.1. Estimate of the DNAPL plume width 
We rewrite equation (23) so that it can be recognized as an equation of diffusion 

type. To that end we define v = v(x, z) as 

v = ).(s). (26) 

Since ).(s) is strictly increasing on [0, s], it is invertible. Let ).-l denote its inverse, 
defined on [0, v] with v = 5.(s). Then we obtain from equations (23)-(25) the following 
problem for v: 

where 

(I) { ~~ = Ncg:x ( D(v)~~). -oo < x < oo, z > 0, 

v(x, 0) = vo(x), -oo < x < oo, 

--1 
D(v) = D().. (v)) for 0 < v < v. 

)..'()..-l(v)) 
(27) 

To keep the presentation clear and simple, we confine ourselves to functions D that 
are continuous on [0, ii). This is the case, for example, when 5.1 behaves as a power 
function nears= 0. 

Problem (I) can be recognized as a nonlinear diffusion problem when z_is viewed 
as the time coordinate. The problem is called degenerate parabolic if D(O) = 0. 
A feature of degenerate parabolic problems is that free boundaries may occur. In the 
(x, z)-plane they correspond to the boundaries separating the region where DNAPL is 
present (v > 0) from the region containing only water 0; = 0). They constitute the 
boundary of the infiltrating DNAPL plume. For general D we cannot obtain a closed­
form solution for this problem. Fortunately, with the use of a comparison principle we 
can estimate the width of the DNAPL plume. 
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The comparison principle for problem (I) is as follows (see, e.g., [16, 19]). Let 
v6(x) and v5Cx) denote two functions in the boundary condition at z = 0 satisfying 
vc\(x) ::::;; v5(x) on R The corresponding solutions then satisfy v\x, z) ::::;; v2 (:r, z) in Q. 

Since v = N9 is a solution of the differential equation of problem (I) corresponding 
to the conditions vo = Nq, it immediately follows from the comparison principle that 
the solution of problem (I) satisfies v :::;; N 9 . By taking Nq < v we establish that 
v(x, z) < fJ in Q. Equally, one can show v(x, z) ? 0 in Q. 

To estimate the width of the DNAPL plume, we compare the solution of prob­
lem (I) with the self-similar solution V(x, z) corresponding to the following boundary 
condition at z = 0: 

V(x,O) = { N9 , ~f x::::;; 1, 
0, if x > 1, 

(28) 

so that vo(x) ::::;; V(x, 0) (see (25)). Hence by the comparison principle it follows that 
v(x, z) ::::;; V(x, z) in Q. The similarity solution V is obtained by using the similarity 
transformation 

Then g satisfies 

V(:r, z) = g(ry), 
.1: - 1 

where ·17 = Vz . 

{ h.9' + Ncg(D(g)g')' = 0, -oo < 'f/ < oo, 

g(-oo) = N 9 and g(oo) = 0, 

where primes denote differentiation with respect to 'f/. Van Duijn and Peletier [7] show 
that this 2roblem has a unique solution. 

If D(O) = 0 there may exist a number an such that g vanishes identically for 
TJ ? an, and that g is positive on (0, an). In the (x, z)-plane this situation corresponds 
to a free boundary x = 1 + a0 .Ji, which separates the region V > 0 from V = 0. In 
[7] a condition is given for the existence of this finite number an: it exists if and only 
if 

j •Nq D(g) 
--dg < 00. 

0 g 
(29) 

This condition is satisfied because 

lo·Nq D(g) 1·5..-1(Nq) D(s) . - 1 
Ii= -dg = ~ds = J(>,- (Nq)) -1 < oo. 

0 g 0 A(S) 
(30) 

Thus a free bo~dary exists separating the region V = 0 from V > 0. From (30) we 

also have that D(O) = 0. 
Since the solution v of problem (I) has to be nonnegative, it follows from the 

comparison principle that v is identical to zero for x ? 1 + an vz. By symmetry we 
have that v vanishes for [x[ ? 1 +an.Ji· In [l] it is shown that the number an is 
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bounded by a = 2-jN;Jl. Let f (z) denote the half of the width of the DNAPL plume 
as a function of depth, then we have 

f(z)~l+ay'Z, wherea=2VNcg[J(5.-1(Nq))-1]. (31) 

This estimate is not sharp: it overestimates the width in general. For small saturations, 
however, we can also obtain an asymptotic expression for the plume width. 

3.1.2. Asymptotic solution for small saturations 
H~re we consider a special case for which an explicit solution is known, namely 

when D( v) is a po~er function. In general it is not, but for small values of v we can 
often approximate D( v) by 

D(v) rv CvP as v 1 0, (32) 

where C > 0 and p > 0. When we substitute this in problem (I) we obtain 

OV = c 7\T ~ ( p OV) ,-,. oz J.Vcg ox v ox in u. (33) 

This nonlinear diffusion equation is known in the mathematical literature as the porous 
media equation. For an overview of the mathematical results concerning equation (33) 
we refer the reader to [18,20]. The point-source solution of equation (33), the Baren­
blatt-Pattle solution, has the form 

A ( x2 ) l/p 
v(x, z) = f (z) 1 - f(z)2 + ' (34) 

where 

f(z) = ( 1+ 2(p: 2) APCNcg z Y/(p+2>. (35) 

and O+ = max(O, -). We choose the parameter A such that the total discharge through 
the opening is equal to 2Nq (see (25)), 

l: v(x,O)dx = l: A(l - x2)~P dx = 2Nq. (36) 

We mention that a similar approach to obtain an asymptotic solution is found in [5] 
for the case of an air sparging problem. 

An explicit expression for the curves representing constant saturation levels is 
easily obtained from (26) and (34). The boundary of the Barenblatt-Pattle solution is 
given by lxl = j(z). We observe that the corresponding DNAPL plume is narrower 
for smaller values of A, i.e., for smaller discharges through the opening. 

We remark that (34) is the asymptotic solution of equation (33) subject to the 
original boundary condition (25), for large values of z (see [8]). From (35) we observe 
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that f (z) = 0(z1/<P+2)) for large values of z. This is in agreement with the estimate 
(31) for the width of the plume, because p > 0. 

3.2. DNAPL infiltration into a lens with high entry pressure 

In this section we consider the steady-state flow of DNAPL and water in a domain 
containing a single horizontal lens. The entry pressure of the lens p~ is greater than the 
entry pressure of the host medium~· We want to determine the conditions for which 
a steady-state solution is possible such that DNAPL does not infiltrate into the lens. 
The DNAPL saturation on the lens boundary must then be smaller than the threshold 
saturation s*. 

The configuration is depicted in figure 2. The upper boundary of the lens is 
located at a depth H with respect to the top boundary of the domain and the length of 
the lens is 2L. The normal component of the DNAPL discharge on the top boundary is 
prescribed by (18). The configuration is symmetrical with respect to x = 0; therefore 
we only consider the right half of the domain. 

To obtain a problem that can be treated analytically we have to make some simpli­
fications. The validity of the simplifications will be verified by numerical experiments. 

As for the homogeneous case we assume that the total flow qt is so small that 
it can be disregarded; this is reasonable for small DNAPL saturations. Furthermore, 
we assume that the DNAPL flow on top of the lens is mainly horizontal towards the 
sides. We expect that this is the case when the lens is much longer than the steady­
state DNAPL plume width at z = H corresponding to a homogeneous configuration 
without lens. The plume width can be estimated with the use of (31) or (35). 

In this section we restrict the analysis to the horizontal flow on top of the lens. 
The situation is shown schematically in figure 4. The discharge of DNAPL transported 

Figure 4. How of DNAPL over lens. 
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over the lens to the right end is equal to half the discharge of supplied DNAPL in 
the opening of the top boundary of the domain. We assume that the flow on top of 
the lens is in vertical equilibrium. It means that the flow in vertical direction can be 
disregarded compared with the flow in horizontal direction, which yields 

opc - = l::!.pg if 0 < s < 1. oz (37) 

Moreover, we assume that the DNAPL drops off at the end of the lens so quickly 
that the saturation there is approximately zero, i.e., s(x, H) is positive for x < L and 
s(x, H) -t 0 as x -+ L. 

After integration of the horizontal component of qn as given in (17) with respect 
to the height, we obtain 

Qi {H , + opc s: O L 2 = - Jo AwJn ox dz ior ~ x ~ , (38) 

where Qi = 2dq~. To put equations (37) and (38) in dimensionless form we redefine 
xandzas 

x z 
x := L and z := H' 

and define the dimensionless numbers 

p~ 
and Neg = l::!.pgH. (39) 

The number Ne is the capillary number, which represents the ratio of capillary and 
viscous forces in the horizontal direction. Note that the top boundary of the lens is 
located at z = 1. Writing (37) and (38) in dimensionless form we obtain 

and 

0 ~ x ~ 1, 

a 
Ncg-J(s) = 1 if 0 < s < 1. oz 

(40) 

(41) 

We seek a solution s(x, z) of equations (40)-(41) that satisfies 0 < s(x, 1) ~ s* for 
x < 1 and s(l, 1) = 0. 

Let sb(x) denote the DNAPL saturation on the lens boundary z = 1. From (41) 
we then obtain 

1-z 
J(s(x,z)) = J(sb(x)) - -n-· 

cg 
(42) 

Hence, if we would know the saturation Sb(x) on the lens boundary then the saturation 
distribution s(x, z) above the lens is given by (42). To find Sb we substitute (42) into 
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(40) and rewrite (40) as an ordinary differential equation for sb. Differentiating (42) 
with respect to x gives 

(43) 

The integrand in (40) vanishes when s = 0, because A(O) = 0. From (42) we find that 
no DNAPL is present for values of z satisfying 

z < 1 - Ncg(J(sb(x)) - 1) := zo(x). 

Using (42)-(44) we obtain from (40) the following problem for sb: 

(ID {-Nc(D)(sb) ~ = 1 for 0 ~ x < 1, 
Sb(l) = 0, 

(44) 

where (D), which can be interpreted as an effective vertically averaged diffusion 
function (cf. (24)), is given by 

11 r~ 
(D)(sb) = J'(sb) zo A(s(x, z)) dz = Ncgl'(sb) lo D(s)ds, (45) 

where s(x, z) is given by (42), zo by (44), and D(s) = J'(s)X(s). We note that 
(D)(O) = 0 and (D)(sb) > 0 for Sb > 0. Hence it follows from the differential 
equation that sb(x) is strictly decreasing if sb > 0. Integration of the differential 
equation for sb yields the implicit solution 

rsb(X) 

Ne lo (D)(u)du = 1 - x, O~x~I. (46) 

Using (45) we can simplify this expression to 

NcNcgI(sb(x)) = 1 - x, 0 ~ x ~ 1, (47) 

where 

J(sb) =lash (J'(u) lu D(s)ds) du= fosb [J(sb)- J(s)]D(s)ds. (48) 

Note that I is a strictly increasing function of sb with J(O) = 0. A closed-form 
expression for the curves corresponding to constant saturation levels is given by (42), 
(47) and (48). 

If Sb(x) ~ s*, DNAPL does not flow into the lens. Since sb(x) is strictly 
decreasing, we need Sb(O) ~ s*, or equivalently NcNcgl(s*) ::;::: 1. Substituting the 
expressions for the dimensionless numbers (39) into the latter inequality, we find that 
Sb ~ s* provided that 

(49) 



M.J. de Neef, J. Molenaar I Analysis of DNAPL infiltration 205 

where Qi is the critical discharge. Thus if Qi > Qi, there is no steady-state solution 
for which s is smaller than s* on the entire lens boundary, and consequently DNAPL 
infiltrates into the lens. We remark that this criterion does not depend explicitly on the 
depth H of the lens. 

Clearly, the critical discharge derived here is not exact, but should be considered 
as an estimate of its magnitude. The quality of this estimate and the corresponding 
criterion (49) will be checked in section 4.2, where we consider the time-dependent 
solution for drainage of initially water-saturated media. If the total flow is zero, and 
the steady-state solution does not penetrate the lens, then the time-dependent solution 
is bounded for all times by the steady-state solution. This implies that also for the 
time-dependent problem DNAPL does not infiltrate into the lens if Qi ~ Qi. 

3.3. Motivation of the approximation qt = 0 

In both the homogeneous and heterogeneous case we have assumed that the total 
flow q1 is so small that it can be disregarded. Here we show that with certain natural 
boundary conditions at infinity this is a reasonable approximation for the homogeneous 
case if 

.6..p / 0 (s) « I. (50) 
Pw 

Observe that (50) is satisfied for sufficiently low DNAPL saturations. 
The exact steady-state flow problem is governed by equations (8)-(11) with 

8s/8t = 0. At the top boundary of the domain let n · q0 be given by (18) and 
n · qt = 0. The amount of DNAPL entering is equal to the amount of water leaving 
through the opening. Let 'lf;w = Pw - Pw9Z denote the water potential. At infinity, the 
DNAPL saturation vanishes and the water pressure becomes hydrostatic. Therefore 
we prescribe the following conditions at infinity: 

s --+ 0, 'l/Jw --+ 0 as llxll --+ oo. (51) 

To prevent flow at infinity we seek solutions of (8) and (9) for which llmll = O(Jlxll-1) 

as llxll --+ oo. To show the structure of q1 we rewrite expression (11) as 

qt= -At(s)gradP + (i + ~~ /0 (s)) At(s)gradpwgz, 

where At = Aw + An, and P the global pressure (see, e.g., [3]) defined by 

P = fos fn(u)p~(u) du+ Pw· (52) 

Then, using (50) we find for qt 

qt~ -A1(s) grad 'lf;1. where 'lf;1 = P - Pwgz. (53) 

From (51) and (52) it follows that 'l/J1--+ 0 as llxll --+ oo. 
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Let us define 

QR = { (x, z) E Q: x 2 + z2 < R2 }. 

The boundary of QR is denoted by ()QR. When we multiply (9) by 'l/Jt and integrate 
over QR, we find 

(54) 

where n denotes the outwards directed normal at the boundary ()QR. The right-hand 
side of (54) vanishes for R -+ oo in view of the boundary condition at z = 0 and 
the behavior of qt and 'l/Jr at infinity. Then letting R -+ oo in (54) we obtain after 
substitution of (53) 

L .A1ll grad'lf;1ll2 = 0. 

Since At is bounded away from zero, it follows that llgrad 'l/Jrll = 0 in Q. Hence for 
the approximated total flow rate (53) we obtain qt = 0 in Q. Note that approximation 
(53) and the corresponding result qt = 0 is exact if D.p = 0. 

The result that qt = 0 in Q can also be obtained for a different boundary condition 
at the top boundary z = 0, which may seem more realistic. If we prescribe in the 
opening s > 0 and n · qt = 0, and along the remaining part s = 0 and Pw = 0, then 
we have along the top boundary either n · qt = 0 or 'lj;t = 0. The contribution of the 
integral along the top boundary in (54) vanishes in that case as well, yielding the same 
result. 

The argument given here cannot be applied directly to the heterogeneous config­
uration, because 'lj;t is in general not continuous across the lens boundary. However, 
if we assume that n · qt = 0 on the lens boundary it can be concluded that qt = 0 in 
the entire domain. 

4. Numerical approach 

4.1. Discretization 

In this section we present a numerical algorithm, in which the interface conditions 
as discussed in section 2 are explicitly incorporated. Because the capillary pressure may 
be discontinuous across an interface, a careful discretization near the lens boundary 
is needed. In [6] we have developed a similar discretization for one-dimensional 
problems. Here we present the two-dimensional extension of this algorithm. 

For the discretization of equations (1)-(6) we use the standard fully-implicit 
scheme (see, e.g., [17]) on a Cartesian grid, with the reduced DNAPL saturations and 
the water pressure p as the independent variables. For ease of notation we consider a 
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constant mesh size h. We assume that the lens is resolved by the grid. Integration of 
the conservation laws (2) over the cell (i,j) yields 

_:/!_ (sm+l _ s7!1-.) + _!_ ( m+l _ m+l + m+I _ m+l ) _ 0 
t.i i,j i,J h qw;i+l/2,j qw;i-1/2,j qw;i,j+l/2 qw;i,j-1/2 - ' (55) 

+ </> ( m+l m) + l ( m+l m+I + m+I m+l ) _ 0 (56) t..t si,j - 8 i,j h qn;i+I/2,j - qn;i-1/2,j qn;i,j+l/2 - qn;i,j-1/2 - ' 

where the subscript (i,j) denotes the discretization cell, the superscript m the time, 
and q:-:;_112,j the approximation of the flux qa at the edge between the cells (i, j) and 
(i + l,j). The use of the backward Euler scheme in equations (55)-(56) guarantees 
the stability of the time integration scheme. The flux qa;i+l/2.j is approximated in the 
usual way, 

q0t;i+I/2./si,j•Pi,j; SHI.j•Pi+1) = ->.0t;i+I/2,/l>a;i+l/2,j• Q = n, w, (57) 

where 

1 
<l>w;i+l/2,j = h,(pi+l,j - Pi) - Pw9eg,I, 

1 
<l>n;i+I/2,j = h,(pi+I,j + Pc;i+I.j - Pi,j - Pc;i,j) - Pn9eg,I. 

eg,I the component of eg in the first coordinate direction, and >.a;i+I/2,j the upwind 
weighted phase mobility, 

{ 
kkra(si,3.)/ µa, if <I> ··+i/2 · ~ 0, A . 1 2 . = a,i ,J 

a;i+ / ,J kkra(si+ 1)/µa, if <l>a;i+l/2,j > 0. 
(58) 

We are now ready to define the discretization of qa;i+I/2,j at the lens boundary. 

Because the saturation s is discontinuous, we introduce dummy variables s1 and sr 
that can be considered as approximations of the left and right limit values of s at the 
interface (see also [4]). Further we introduce the dummy variable pm which is an 
approximation of the continuous water pressure pat the interface. Using equation (57) 
and the dummy variables s1, sr, pm we define approximations q~ and q~ to the flux 
q ··+i/2 . inside the cells (i,j) and (i+ l,j). Next, the dummy variables are eliminated a,i .J 
by using continuity of flux, 

q~ ( si,j•Pi,j; s1,pm) = q~ ( sr,pm; Si+l,j•Pi+I,j), a= n, w, (59) 

and the extended capillary pressure condition (16) for s1 and sr. This system of three 
nonlinear equations is solved by Newton's method. Thus we obtain s1, sr, pm, and the 
desired approximation to the flux: 

(60) 
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The time step tJ.tn is chosen adaptively, such that the changes in the saturation 
are of order !J.s, 

!J.tn+ I = !J.s !J.tn. 
I n n-11 

maxi,j si.j - si,j 
(61) 

The ratio !J.tn+I / !J.tn is bounded between 0.5 and 2.0, and in our actual computations 
we take !:is = 0.05. 

In every time step we have to solve the system of nonlinear equations (55)-(56), 
which is done by Newton's method. In the linearization we need the derivatives of 
qa;i+I/2,j with respect to the independent variables in the adjacent cells. At hetero­
geneities the calculation of these derivatives is not trivial. However, a simple but 
tedious calculation shows that the dummy variables s1, sr and pm can be eliminated 
from these derivatives. Therefore the linear system to be solved retains its usual spar­
sity pattern. The linear system is solved efficiently by means of a multigrid method 
(see [15]). 

4.2. Computational results 

We now use this algorithm to compare the numerical solution with the approxi­
mations derived in section 3. We consider both the spreading of a DNAPL plume in 
a homogeneous medium, and the infiltration of DNAPL in a laboratory set-up with a 
single lens. The relative permeabilities and capillary pressure functions are given by 
the Brooks-Corey model: 

J(s) = (1 - sr1/>-. (62) 

and 

(63) 

The value for .A is given in table 1 together with other relevant parameter values. These 
data are essentially taken from a study by Kueper et al. [13] and have been slightly 
modified for our purposes. 

4.2.1. Steady-state DNAPLfiow in a homogeneous medium 
In section 3.1 we considered the steady-state infiltration of DNAPL in a homoge­

neous porous medium. An approximation of the saturation profile was derived under 
the assumption that the DNAPL saturation is small. For the Brooks-Corey model we 
have the small saturation approximation (32) withp = 1/3 and C = (p/.A)[A/(2+.A)]P. 
Figure 5 shows the quality of the small saturation approximation for .A = 2.48. 

Let us now compare the explicit solution (34) of the porous media equation with 
the numerical solution for the data given in table 1. DNAPL infiltrates through the 
opening of width 2d with a rate q~ = 1.35 x 10-7 ms-1. This is the largest flow rate 
that we consider in the next section, thus the case with the largest spreading of the 
DNAPL plume (cf. section 3.1). 
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Parameter 

<P 
kit 
k1 
p~ 
p~ 
2d 
2£ 
H 
.A 
µw 
µn 
Pw 
Pn 

Table l 
Data set of parameters used in numerical simulation. 

Value 

0.34 
7.0 x 10-12 m2 

5.3 x 10-12 m2 

2218Pa 
2550Pa 
0.04m 
l.12m 
O.lOm 
2.48 
1.00 x 10-3 Pas 
0.57 x 10-3 Pas 
1.00 x 10+3 kgm-3 

1.46 x 10+3 kg m-3 

0.025 

0 

b(X(s)) 

c>:(st 

Meaning 

porosity 
permeability host medium 
permeability lens 
entry pressure host medium 
entry pressure lens 
width of opening 
length of lens 
depth of lens 
parameter Brooks-Corey model 
viscosity water 
viscosity DNAPL 
density water 
density DNAPL 

0.2 
s 

Figure 5. Small saturation approximation for Brooks-Corey function with >. = 2.48. 

209 

For the numerical calculation we use a finite computational domain n = (0, 0.2) x 
(0, 0.4). Here we have taken advantage of the symmetry of the problem. At the 
boundaries of this computational domain we impose n · qt = 0, except at x = 0.2, and 

{ 
n · qn = 0, i z = 0, x > d, 
n · qn = -qn, z = 0, X ~ d, (64) 
n · grad s = 0, z = 0.4, 
8 = 0, p = Pw9Z, X = 0.2. 

These boundary conditions imply a hydrostatic pressure distribution at the side bound­
aries, and negligible capillary diffusion at the bottom of the computational domain. 

The problem is discretized on a grid with a mesh size of 0.0025 m in both 
coordinate directions. The steady-state solution is obtained by putting the porosity 
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0.4 .__ .................. ~__. _ _.__,_.........._........._.___. 0 .4 ......... ._._ ........... _.__._ __ ..__ ........ _._._,__. 
-0.2 0.2 -0.2 0.2 

Figure 6. Barenblatt-Pattle solution (left) and numerical solution (right). Contour levels are at equidistant 
intervals of 0.01, the outermost contour representing a nonwetting phase saturation of 0.01. 

</> equal to 0 in equations (55)-(56). The fine grid solution is obtained by a nested 
iteration procedure. First the solution is calculated on a coarse grid, and this solution 
is then interpolated to a next finer grid. On all grids we use the multigrid procedure 
to solve the discrete equations. 

In figure 6 contour plots of the DNAPL saturation are shown for the explicit 
solution (34) and the numerical solution. We observe that the solutions differ slightly 
directly underneath the opening. This is expected, because the explicit solution is ob­
tained for a different boundary condition in the opening. However, the approximation 
of the plume width as well as the qualitative agreement between the two solutions is 
very good. 

Note that ignoring the capillary forces in the vertical direction leads, in view 
of (17), to an over- or underprediction of the density induced flux, or equivalently 
of the DNAPL saturation, depending on the sign of the capillary pressure gradient 
in downward direction for the unapproximated problem. This is consistent with the 
observation that at points where the saturation gradient for the numerical solution 
in figure 6 is negative in the downward direction, the saturation for the analytical 
approximation is slightly overpredicted, whereas at points where it is positive, the 
saturation is slightly underpredicted. 

We remark that the full unapproximated steady-state flow problem is completely 
determined by the dimensionless numbers Neg, Nq, M, given in (22), and the ratio 
llp/ Pw· Higher values of the absolute permeability while keeping other parameters 
unchanged yield smaller Neg and Nq in view of (14) and (22). From (19), (36) and 
figure 5 we observe that the quality of the approximations improves for smaller values 
of Neg or Nq. Thus higher values of the permeability lead to an improvement of the 
quality of the explicit solution shown here. This conclusion is still valid when the 
specific discharge in the opening is chosen proportionally higher, so that Nq remains 
unchanged and only Neg is smaller. 
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4.2.2. DNAPL infiltration into low-permeable lens 
Let us now verify criterion (49) for DNAPL infiltration into a lens with higher 

entry pressure than the surrounding host medium. For the data given in table 1 we 
have the critical saturation s* :;::j 0.29, and the critical DNAPL discharge Qi :;::j 2.64 x 
10-9 m2s-1 for steady infiltration. We consider transient DNAPL infiltration for 
Qi = 1.24 x 10-9 m2s-1 and Qi = 5.40 x 10-9 m2s-1, so approximately half and 
twice the critical discharge Qi, respectively. 

Before we proceed to the computational results, we first check whether the 
DNAPL plume in the case without lens has small width compared with the lens. 
Using the Barenblatt-Pattle solution, it follows from equation (35) that the full width 
of the DNAPL plume is given by 2d(l + 331.7z)0·43 , so for H = 0.1 m the ratio 
of the unperturbed DNAPL plume width and the length of the lens is 0.16. For the 
simulations we use as computational domain Q = (0, 0.8) x (0, 0.28). The boundary 
conditions are, apart from the location of bottom and side boundaries, equal to (64). 
The mesh width in our computations is 0.005 m, which implies a 160 x 56 grid. 

First we consider the case of slow infiltration (Qi = 1.24 x 10-9 m2s-1 ). Contour 
plots of the numerical solution are shown in the left hand column of figure 7. The 
solution is shown after approximately 125, 375 and 750 hours. When the DNAPL 
plume reaches the lens, the DNAPL saturation is too low to overcome the entry 
pressure (s* :;::j 0.29). It spreads laterally in response to capillary pressure gradients, 
and reaching the end of the lens, it drops off. DNAPL does not penetrate the lens 
in accordance with criterion (49) for steady DNAPL infiltration. We remark that the 
assumption s :;::j 0 at the end of the lens is indeed borne out in practice. 

Next we consider the case of fast DNAPL infiltration (Qi= 5.40 x 10-9 m2s- 1). 

In the right hand column of figure 7 contour plots of the solution are shown after 
approximately 25, 125 and 250 hours. As in the previous case, the DNAPL plume 
first spreads laterally after reaching the lens. However, in this case the lateral transport 
of DNAPL due to capillary forces is too slow compared to the supply of DNAPL. 
Right underneath the opening the DNAPL saturation is largest. There it exceeds the 
critical saturation s* and DNAPL starts to infiltrate into the lens. After 250 hours a 
substantial part of the lens has been penetrated by DNAPL. 

We observe that the agreement between the analytical and numerical results with 
regard to the qualitative flow behavior is very good. The Barenblatt-Pattle solution 
provides a useful estimation of the width of the downward migrating DNAPL plume. 
Note that this plume is narrower for the slow infiltration case. Moreover, criterion (49) 
derived for steady-state infiltration appears to hold for the practically relevant case of 
transient infiltration. 

As in the homogeneous case, the quality of the approximations will improve 
for higher values of the permeability. The approximation of the downward migrating 
plume will be better as well as the quality of the Vertical Equilibrium assumption above 
the lens due to improved vertical communication. Note that the critical discharge Qi 
defined in (49) is invariant for different values of the host permeability in view of (14) 
provided that the entry pressure ratio (and thus s*) is not changed. 
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:····-········--··-··--·--·--·-·-·-·····----· 

I 1 

Figure 7. Numerical results for the problem with a single lens. Contour levels are at equidistant intervals 
of 0.025, the outermost contour representing a nonwetting phase saturation of 0.025. Left: slow infiltration 
(Qi= 1.24 x 10-9 m2s- 1) at T = 125, 375 and 750 hr. Right: fast infiltration (Q; = 5.40x10-9 m2s- 1) 

at 25, 125 and 250 hr. 

We remark that in the numerical example we have chosen a relatively small 
difference between the entry pressures. The threshold saturation s* is then sufficiently 
low, so that also in the case of penetration of the lens the total flow can be disregarded 
in view of (50). Recall that the criterion for DNAPL penetration (49) has been derived 
under the assumption of zero total flow. The value of Qi may therefore not be correct 
for greater entry pressure ratios and correspondingly higher threshold saturations s*. 
However, for sufficiently smalls satisfying (50), we have from (47) that the saturation 
on the lens boundary must be less than s if Qi ~ Qi, where Qi follows from ( 49) with 



M.J. de Neef, J. Molenaar I Analysis of DNAPL in.filtration 213 

s* replaced by s. Thus we may conclude that also for higher entry pressure contrasts 
DNAPL does not penetrate the lens if the discharge in the opening is sufficiently low. 

5. Conclusion 

We have studied the problem of DNAPL infiltration. For the homogeneous case 
we derived an upper bound of the DNAPL plume width as well as an explicit solution 
governing the DNAPL plume for small saturations. For the problem with a single 
lens we derived an explicit expression for the critical DNAPL inflow. If this critical 
discharge is exceeded DNAPL infiltrates into the lens. 

Several numerical simulations were carried out. The simulations show a good 
agreement between the analytical and numerical results with regard to the qualitative 
flow behavior. In the homogeneous case, the explicit solution indeed gives a good 
estimate of the DNAPL plume width. Moreover, the criterion for the critical DNAPL 
discharge appears to be valid for the practically relevant case of transient infiltration. 
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