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A Fed Back Level-Set Method for 
Moving Material-Void Interfaces 

Barry Koren and Arthur Venis 

Abstract. This paper is a feasibility study of a level-set method for the com­
putation of moving material-void interfaces in an Eulerian formulation. The 
paper briefly introduces level-set methods and focuses on the development of 
such a method, that does not just accurately resolve the geometry of the inter­
face, but also the physical quantities at and near the interface. Results are pre­
sented for illustrative model problems. A8 concerns its ability to improve the 
geometrical resolution of free boundaries, as expected, the level-set method 
performs excellently. Concerning the improvement of physical (all other than 
merely geometrical) free-boundary properties, the method performs very well 
for downstream-facing fronts and is promising for upstream-facing ones. 

1. Introduction 

For the computation of free-boundary flows on a fixed grid (Eulerian approaches), 
since many years, some well-proven techniques exist. Known examples of these arc 
the marker-and-cell (MAC) method [l] and the volume-of-fluid (VOF) met.hod [2]. 
An interesting method arben last decade i8 the level-set method. A text book on 
level-set methods is [6], a classical journal paper is [4]. 

The accurate capturing of moving fronts on fixed grids is not trivial because 
of the non-smoothness of the fronts. No advantage can be taken of nice numerical 
accuracy properties, valid for smooth solutions only. A8 a natural fix to this, in the 
level-set method, to the system of physical unknowns, an additional, non-physical 
unknown is added: the level-set function, say qi, which is smooth at the front. 
Furthermore, an additional, non-physical equation is added: a convection equation 
for qi. The level-set function has a pre-defined, unique and constant value at the 
interface. To accurately resolve the material interface, one can best keep track 
of this pre-defined interface value for qi, say cp f" The easy possibility for creating 
smoothness at the interface (through an artificial, passive scalar function) is a first 
interesting property of the level-set method. Related to this, a second interesting 
property is that the interface's location is neatly defined (viz., as the location where 
<jJ = qi f )- With a physical jump at the interface (e.g., a density jump) from c = 1 to 
c = 0, in case of a diffused grid-representation of this jump, it is not immediately 
clear how to precisely define the interface location. (Should one define it as there 
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where c = ~ or c = h, with h the mesh size, or as whatever?) A third interesting 
property of the level-set technique is that the level-set equation requires no new, 
specifically tailored discretization method; the discretization method that one has 
in mind for the physical system, can be easily and consistently extended with the 
equation for </;. As opposed to fluid markers or volume-of-fluid fractions, the level­
set function can be directly embedded in the already existing, discrete system of 
physical equations. Related to this, a fourth advantage of the level-set method is 
that there is no difficulty in extending it from 2-D to 3-D. 

When one is not only interested in an accurate geometrical resolution of 
the interface, but also in an improved resolution of physical quantities at and 
near the interface, the level-set approach still offers a possibility that seems to be 
new. A physically sound feedback of the level-set function may be incorporated 
into the real (physical) equations. In the level-set literature known to us, if there 
is a feedback of the level-set function <P into physics, it is restricted to material 
properties such as the ratio of specific heats ( 'Y = 1( <P)) and the kinematic viscosity 
(1.1 = v(<P)). In the present level-set method, the level-set function will he explicitly 
fed back into the computation of the physical flux function f = f(c). I.e., in the 
discrete case, we extend this to f = f ( c, <P). 

2. Test cases and reference results 

In the model problems to be considered, the convection of circular and square 
interfaces is the issue. The problems are described by the convection equation 

ac ac ac 
at + U ax + v ay = 0, ( x, y) E [ -1, l] x [- 1, l], ( 1) 

with as initial conditions: the "circle" 

c(x, y, t = 0) = { 1, (x, y) E (x - Xc) 2 + (y - Yc) 2 ::; UJ2, Xc =Ye=-~, (2a) 
0, elsewhere, 

and the "square" 

{ 
1, 

c(x, y, t = 0) = 
0, 

(2b) 

For the velocity field, defined for positive c only (i.e., in the material only), we 
simply take 

'U = v = 1, 

and for the inlet boundary conditions 

c(x = -1,y,t) = c(x,y = -1,t) = 0. 

(3) 

(4) 

Requested for both the circle and the square: c(x, y, t = 1). The exact solutions 
are identical to the initial solutions, (2a) and (2b ), but now with Xc =Ye = ~. 
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FIGURE 1. Initial and final numerical solutions for convection 
circle (up) and square (down) with staudard numerical scheme 
(limited r; = k), for from left to right: h = -fa, 210 , 410 . 
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As grids, we apply finite-volume grids with successively 20 x 20, 40 x 40 and 

80 x 80 cells. Applying for the space discretization a cell-centered, limited r;, = k 
scheme [3] (which is formally third-order accurate in monotonous solution parts 

as well as at smooth extrema), and for the time integration an explicit four-stage 

Runge-Kutta scheme, we ohtain the mmHs given in Figure l. In the lower left 

corners of all six graphs, the corresponding discrete initial solutions have been 

depicted. (I;;o-lines are given at c = O.ln, n = 1, ... , 9.) 

3. Simple level-set method: no feedback with physics 

3.1. Principle 

To explain the level-;;et method firHt without feedback consider the 1-D con­

vection equation 

De oc 
-8 +n--;:;- = 0, 

t u:I: 
u = constant > 0. (5) 
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FIGURE 2. Initial solutions. 

With the level-set function </>, the extended equation reads 

aq aq ( c ) + u - 0 q - u =constant> 0. at ax - ' - </> ' (6) 

Suppose that the initial solution c(x, t = 0) looks as in the sketch in Figure 2a, so 
with interfaces at x = ±x1 and with jumps from c = 1 to c = 0 over there. Then, 
for the corresponding initial distribution of the level-set function, </>(:r, t = 0), we 
propose the probability curve 

</>(x, t = 0) = e - ~ex! r (7) 

A sketch of (7) is given in Figure 2b. Note that (7) is infinitely many times dif­
ferentiable at all points (including x = 0, a linear level-set function would not 
be differentiable there). Higher-order accurate convection schemes can take full 
advantage of this. Further note that the function has been chosen such that its 
inflection points (its maximum slopes) coincide with the interfaces. (This gives the 
best posedness of the interface-detection problem.) We still remark that the choice 
(7) for the level-set function is rather arbitrary. Other functions, with equally 
good differentiation properties, and interface values <f>t different from ft' could 
have been chosen. For a multi-D problem, e.g., the 2-D problem of which the initial 
material-void interface is sketched in Figure 3, the choice of the initial level-set 
function may be done in the following way. Take some point in the material and 
define that as the origin of a local r, 8-coordinate system (Figure 3). Next take as 
the initial level-set function 

</>(r,8,t = 0) = e ~(;;yf, (8) 

where r f = r f ( 8) is the radial distance from the point chosen to the material 
interface, for a given angle 8, 8 E [O, 27r]. Doing so, we have </Jf = ft all over the 
interface. For many shapes, this initialization works, also in 3-D, where it carries 
over in a spherical coordinate system. 
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FIGURE 3. 2-D material-void interface. 

3.2. Velocity field 

A subtle property of the convection of material-void interfaces is that the velocity 
field is only defined in the material. Hence, for the convection of the level-set 
function in the void region, an artificial velocity field still has to be defined. The 
opportunity to make this choice, without being inhibited by physics, is a good 
chance in fact to improve the free boundary's resolution. E.g., in the void region an 
artificial velocity can be chosen which counteracts the effects of numerical diffusion 
of the physical quantity c. For the 1-D convection equation (5), in the void region 
a velocity may be defined which looks as sketched in Figures 4a and 4b. So, for a 
downstream-facing front, ·u ~~ < 0, at the void side of the interface, a velocity may 
be chosen which is smaller than the velocity at the material side of the interface 
(Figure 4a). This artificial anti-convection implies converging characteristics and 
may thus lead to re-steepening of a diffused front. To realize the steepening in case 
of an upstream-facing front, u ~~ > 0, the void velocity has to be taken greater 
than the material velocity (Figure 4b). 

Of course, a difficulty here is to not affect too seriously the physically correct 
propagation speed of the front. Therefore, in this paper we do not apply anti­
convection. Our present suggestion for the choice of the artificial velocity field 
in the void region is to take that a;:; the smoothest possible extrapolation of the 
velocity field at the material interface. 

3.3. Results 

For the two test cases defined in Section 2, we can already present practically 
relevant level-set results now, viz. for the convection of the shape. 

For comparison, we consider the corresponding, exact discrete solutions and 
the standard numerical (limited/"\, = ~) reomlts. For both the exact discrete solution 
and the solution obtained by the standard approach, the material interface is 
defined as the iso-line c1 = h (h being the mesh width). In the standard approach, 
as mentioned in Section 1, just a proper definition of the material interface is not 
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a. Downstream-facing interface. b. Upstream-facing interface. 

FIGURE 4. Anti-convection for moving material-void interfaces. 

trivial already. In the level-set approach, this definition already exists: the iso­
line <fJ 1 ::= Je. For the 80 x 80-grid, in Figure 5, we present the discrete shapes 

at t = 1, from left to right: (i) according to the exact discrete solution c, (ii) 
according to the limited numerical solution c and (iii) according to the (non­
limited) numerical solution if;. (The iso-lines in the two middle graphs belong to 
the same solutions already depicted in the two most right graphs in Figure l.) 
For the circle, the difference in quality between the standard numerical results 
and the level-set results is striking. Seen from the graph, the shape preservation of 
the level-set method is very good; numerical errors are very small. The depicted 
level-set circle is even more accurate than the plotted, exact discrete circle. The 
quality of the latter suffers from the interface-definition problem. For the square, 
the level-set solution is less accurate than for the circle (because of the loss of one 
order of accuracy at the corners). Nevertheless, here as well, the level-set result is 
still much better than the standard numerical result. 

4. Extended level-set method: feedback with physics 

As mentioned, the useful knowledge to be extracted from the mrnierical solution 
of the level-set function does not need to be restricted to geometrical improvement 
of the free boundary only. Knowledge obtained from the level-set solution can also 
be fed back into the discretization of the physical equations. This coupling of the 
level-set function to physics is application-dependent and much effort may be put 
into it. We proceed by briefly presenting one such coupling (more couplings are 
given in [3]). The model equation to be considered still is 

aq + ·u aq + V aq = 0 q = ( ~ ) , H = V = 1. at ax ay ' 'I' 
(9) 

An obvious physical argument is that in the downstream void region, the physical 
fluxes (i.e., the c-fiuxes) must be zero. Besides a front itself, its upstream and 
downstream sides can also be distinguished by means of the level-set function. 
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FIGURE 5. Final shapes for circle (up) and square (down), for 
h = :fcJ and for, from left to right: exact discrete solution c (iso­
line c = Cf = h), limited;;,= ~ solution c (iso-line c =CJ = h) 
and non-limited;;,=~ solution <P (iso-line c/> = </;f = jc). 

E.g., in 2-D, the downstream void region is there where 

(1i, v) · \l<f; < 0 and <P < </Jf, 

and the upstream void region is there where 

(u,v)·\l</;>0 and <P<c/>f-
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(lOa) 

(10b) 

The required cell-face gradient \l <P can be evaluated in a standard second-order 
accurate way. Then, the algorithm read::; as follows. In the downstream void region, 
all fluxes arc put to zero. In the upstream void region, this closing of cell faces 
does not work [:3]. There, we apply an appropriate compressive limiter (superbee, 
[5]) for counteracting diffusion of the material interface. In the material itself we 
apply the limited "'~ = ~ discretization. 

In Figure 6, numerical results are presented for this level-set approach with 
coupling, for both the convection of the circle and the square. Particularly good 
results appear to be obtained at the downstream-facing parts of the interfaces. 
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FIGURE 6. Numerical solutions c for convection circle (up) and 
square (down) with fed back level-set scheme, for from left to 
"hth 111 ng : = Tii' 20 ' 40 · 

We illustrate this once more by means of the following simplifications of the two 
model problems. The equation and velocity to be considered are 8till the same, but 
the initial solutions differ. Instead of (2a), first we consider a downstream-facing 
curvilinear front only, viz. 

2 
c(x,y,t=O)={ 1, (x,y)E(X-Xc) 2 +(y-yc)2 ::;(~), Xc=Y"=-l, (lla) 

0, elsewhere, 

and likewise, instead of (2b), the downstream-facing rectilinear front 

c(x t = O) = { 1, (x,y) E [xc,Yc] X [xc +~,Ye+~], Xc =Ye= -1. 
'y, 0, elsewhere. (llb) 

The appropriate boundary conditions are given in [3]. 
In Figure 7, the numerical solutions cat t = 1 are given, as obtained with the 

standard (limited "'= ~) scheme. In Figure 8, the corresponding results obtained 
with the fed-back level-set approach are shown. Close observation learns that the 
effect of closure of cell faces in the void region does not only lead to a thinning of 
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FIGURE 8. Curvilinear (left) and rectilinear (right) numerical so­
lutions c for convection downstream-facing interfaces, obtained 
through fed back level-set scheme ( h = } 0 ). 
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the interface part diffused into the void region, but also to a thinning of the part 
diffused into the material. 

5. Conclusions 

A challenging possibility of level-set methods, presented in this paper, is to convect 
the level-c;et function as an active (irrntead of as a passive) scalar. (For shape­
tracking purposes only, as expected, the level-set approach without feedback yields 
excellent results.) When feeding information about the level-set function back into 
the discretization of the physical equations, for downstream-facing material-void 
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interfaces strongly improved physical results can be obtained. For upstream-facing 
fronts, the fed back level-set method is still open for further improvement. 

References 

[1] F.H. Harlow and J.E. Welch, Numerical calculation of time-dependent vLscous in­
compressible flow of fluid with free surfaces, Phys. Fluids, 8 (1965) 2182 2189. 

[2] C.W. Hirt and B.D. Nicholls, Volume of fluid (VOF) method for dynamics of free 
boundaries, J. Comput. Phys., 39 (1981) 201-225. 

[3] B. Koren and A.C.J. Venis, A level-set method for moving material-void interfaces, 
Report MAS-R9731 (1997) CWI, Amsterdam. 
Also: http:/ /www.cwi.nl/static/publications/reports/MAS- l 997.html 

[4] S. Osher and J.A. Sethian, Fronts propagating with c11rvatnre-depcndcnt speed: algo­
rithms based on Hamilton-Jacob·i formnlations, J. Comput. Phys., 79 (1988) 12-49. 

[5] P.L. Roe, Some contributions to the modelling of d·iscont'i'nuous flows, Large-Scale 
Computations in Fluid Mechanics, Lectures in Applied Mathematics, 22, Part 2, 
163-193 (1985) American Mathematical Society, Providence, Rhode Island. 

[6] J.A. Sethian, Level Set Methods: Evolving Interfaces in Geornetry, Fluid Mechan­
ics, Comp·uter Vision, and Materials Science (1996) Cambridge Uniw~rsity Press, 
Cambridge, U.K. 

CWI, 
P.O. Box 94079, 
1090 GB Amsterdam, The Netherlands 
E-mail address: Barry. Koren©cwi . nl 

MacNeal-Schwendler (E.D.C.) B.V., 
Groningenweg 6, 
2803 PV Gouda, The Netherlands 
E-mail address: Arthur. Venis©master. macs eh. corn 


