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Abstract. In this paper we discuss different possibilities of using partially ordered 
sets of grids in multigrid algorithms. Because, for a classical sequence of regular 
grids the number of degrees of freedom grows much faster with the refinement 
level for 3D than for 2D, it is more difficult to find sufficiently effective relaxation 
procedures. Therefore, we study the possibility of using different families of (regular 
rectangular) grids. 

Semi-coarsening is one technique in which a partially ordered set of grids is 
used. In this case still a unique discrete fine-grid problem is solved. On the other 
hand, sparse grid techniques arc more efficient, if we compare the accuracy obtained 
with the number of degrees of frce<lom use<l. However, in the latter case it is not 
always straightforward to identify an appropriate discrete equation that should be 
solved. The different approaches are compared. 

The relation between the different approaches is described by looking at hier­
archical bases and by considering full approximation (FAS). We show that, by lack 
of a semi-orthogonality property, the 3D situation is essentially more difficult than 
the 2D case. We also describe different multigrid strategies. Numerical results are 
given for a transonic Euler-flow over the ONERA M6-wing. 
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1 Introduction 

Classical multigrid algorithms for the solution of PDEs are based on a se­
quence of grids, and a sequence of finite dimensional function spaces is associ­
ated with it. There is a natural ordering. On the finest grid a discretisation is 
given and on the coarser grids less accurate discretisations of the same prob­
lem accelerate the solution process for the finest problem. This approach is 
quite general and in practice it is used both for two and for three dimensions 
(d = 2, 3). For illustrative purposes it can also be used in one dimension 
(d = 1). 

In the most common approach the sequence of approximating function 
spaces is nested. Often the coarsest grid consists of a small number of coarse 
rectangular blocks. A next finer level is obtained by dividing each block in 
equal parts in each of the coordinate directions, so that for all blocks 2d 
new blocks are created. For higher dimensional problems, the disadvantage 
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Here <,OkJ is the usual piecewise d-linear basis function with supp(<pkJ) = 
[(ji-l)2-k1, (ii +1)2-k1] x ... x [(jd-1)2-kd, (jd+1)2-kd] of tensor product 
type. The standard finite element basis Bk is defined as 

Bk = { 'PkJ I 0 $ j $ 2k}' 

and the corresponding space of piecewise d-linear functions is, 

The intersection of the support of two functions 'PkJ E Bk and 'Pnl E Bn is 
defined by 

Int(cPk.Ji'Pnt) = supp(<,OkJ) nsupp(cpn1). 

The spaces {Vk} form a partially ordered set [9], for which we can define the 
hierarchical space 

({ 
ii odd, 0 ~Ji ~ 2A:1 , if ki > 0 }) 

Wk = Span tPkJ = 'PkJ ii = 0, 1 if ~i-= 0 . 
i -1, ... ,d 

Here tPkJ is a hierarchical basis function, i.e. the same function as the usual 
standard basis function, but only defined for j, for which ni!j does not appear 
in any of the coarser grids. In the following we will denote these hierarchical 
points with "j odd", although strictly spoken this is not true for the grids with 
lkl = O. The hierarchical basis ftmctions, specific for grid nk, are defined by 

The hierarchical basis for Vk, which can be decomposed as Vk = Ei'o<n<kWn, 
reads - -

Using this basis we are able to approximate a function u on n by 

where fin.1 are the hierarchical coefficients. Note that Span( Dk) = Span(Bk) = 
Vk. It has been shown [9) that, for any m, o $ m $ e = (1, 1, 1), the 
hierarchical coefficients for piecewise linear functions can be estimated by 

liikJh $ ID(e+m)ub Mhkprd/23-lml/2 hk -(e-m). 

We see that this bound depends essentially on the volume Whk m of the grid 
cells. Therefore it seems reasonable to select approximating function spaces 
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wk, and therefore the grids nk such that those with the smallest volume 
lhkl are omitted. (In an adaptive procedure, of course, the threshold for 
neglecting depends on u's derivatives.) In this way we obtain the sparse grid 
[19]. The hierarchical basis for this sparse grid on level l is denoted by 

- u -/[ Bt = B"' 
051nl$l 

and the corresponding function space by Vi= Span(Bt). 

2.2 The problem 

We consider the following linear elliptic problem 

-\7 · (a\7u) = f 
a(a\7u) · n +/Ju= 'Y 

on 
on 

n, 
r. (1) 

Here the data and the coefficients are functions on {}. For the FEM discretisa­
tion we consider its variational form: find u E H 1(D), such that a(u, v) = f(v) 
for all v E H 1({}), with 

a(u,v) = l ('\lv)Ta\lu d{} + l/Juv/a dI' (2) 

and 

f(v) = l fv d{} + l v1/a dI'. (3) 

A standard FEM on grid .nk is obtained by selecting trial and test functions 
in Span(Bk)· This yields the discrete equations EJ a(ipkJ, \Ok1)ukJ = f(<pkJ), 
which system is also denoted in matrix-form by AkkUk = fk. 

2.3 Discretisation of the hierarchical system 

To discretise equation (1) on the sparse grid, we use Bt as the basis for test 
and trial functions: 

Ut = L L Unjtpnj. 
o$lnl$l j odd 

Substitution in (2) and (3) yields the equations 

L L:a(c,On.1,<Pk1)un.J = (J,c,Ok1). 
0$lnl$l J 

This system is called the hierarchical system and is denoted by 

Aeii.t =it. 

(4) 

(5) 
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The matrix At consists of blocks (Ank)O$lnl,lkl$t where Ank consists of co­
efficients (a(r,?n.1 1 $k1)). The blocks .A.kk on the diagonal of At are diagonal 
blocks, because Int(cpkJ, tPkl) = 0 except for i = j. In general, the functions 
<Pn.1 and <fik1 can live on completely independent grids nn and nk and there 
is no obvious and efficient technique to calculate these matrix entries as is 
the case for standard finite elements. Especially, if we consider equations 
with variable coefficient a, the efficient computation of these integrals is not 
straightforward. To avoid the problem of explicit calculation of a(!,On.1 1 tPki) we 
want to derive the discrete equations from the usual FEM stiffness matrices 
Akk· 

Fork~ m let Rkm: Vm-+ Vk be the restriction defined by interpolation 
at nodal points nti, then every function 'Pkl E i:J{f is represented on grid nm 
by 

'Pkl = L Rkm,lp<pmp• 
'l'mpEVm 

Now, the left-hand side in (5) reads, with m = max(k, n), 

L L a(<Pki. c.On.1)un.1 
O$lnl:St J 

= L L a(L Rkm,lp\Omp 1 L RnmJq'Pmq)UnJ 
0$lnl:Sl j P q 

= L L Rkrn,ipRnmJqArnm,pqUnj 
n j,p,q 

= L (RkmAmmR~m)un 
O$lnl$l 

= AkkUk + L + L (RkmAmm~m)un. (6) 

n:>k,\rnl$l n:>k,\ml>l 

The firrst term of (6) is the result of the sum over n < k, i.e., for n < k, we 
have 

L (RkmAmmR~rn)Un = L RkkAkkR~kUn = Akk L R~kUn = AkkUk · 
n<k n<k n<k 

Thus we express the residual computation for the equations (5) in terms 
of the usual FEM stiffness matrices Akk· The efficient calculation of (6) is 
our immediate concern. Below we restrict ourselves to the constant coefficient 
case. 

2.4 Semi-orthogonality 

lffor the Poisson equation a(c,OnJ, <Pk1) vanishes, the functions <PnJ and <Pk1 are 
called semi-orthogonal [16]. For the efficient computation of the hierarchical 
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system this is a useful property, because each semi-orthogonality relation 
contributes with a zero entry in the hierarchical stiffness matrix. In [2] it is 
shown that this semi-orthogonality property holds for many functions <PnJ E 

fJ!{ and 'Pk1 E fJ{!. Below we will discuss this property for the two- and three­
dimensional case separately, because there is a significant difference between 
both cases. 

Two-dimensional case. For the Poisson equation, in the two-dimensional case 
[2] we have, a(<PnJ, <Pkt) = 0 if n-:/:- k, because, considering a single derivative 
from a(<PnJ,<Pk1), 

l ( 8/x~ ::1) dn-:/:- 0::} (np = kp) A (jp2np = ip2A:P). 

Hence functions on grids nn and nk with n -:/:- k are semi-orthogonal. 
For the functions <PnJ and <Pkl with k ~ n we introduce m = max(k, n), 

them, because d = 2, either m =norm= k. Therefore, the bilinear form can 
be calculated by (G) an<l, because !ml ~ l is always ensured, this means that 
the third term in equation (6) can be dropped. Notice that the case m = k is 
already caught in the first term of (6), and the second term could be dropped 
too. On the other hand, if m = n, this is not the case. (We sum over n.) 
Below, we will see that in the three-dimensional case, we cannot drop the 
third term in (6). 

What remains is the efficient matrix vector multiplication. With precalcu­
lated values of Akk, lkl ~ l, we use (6) for a residual computation of (5). One 
can readily verify that for the constant coefficient case the total number of 
operations for the matrix vector multiplication (5) is proportional to O(l2 2t} 
for O(l2t) standard basis points. Therefore the method is suboptimal. 

Three-dimensional case. Also in the 3D case we have semi-orthogonality for 
functions <PnJ and lPkl with n =/: k. The nonzero contributions in the stiffness 
matrix originate only from functions <PnJ and <Pki with n ~ k. This corre­
sponds with grids Dn and nk in the same coordinate plane in the grid of 
grids (see Figure 2). For rPkl (k fixed) a non-semi-orthogonal function <PnJ 
can live on any grid nn in one of the indicated planes. 

In (6) we showed how we can calculate the contributions of a(rpnJ, <7'k1) 
via the maximum grid. In the 3D case one can verify that, different from 2D, 
with lnl ~ l, lkl :::; l, the relations a(c,011J, <7'k1) -:/:- 0 and m = rnn.x(k, n) do not 
imply lml ~ l. Hence, the maximum grid nm is not always part of the family 
{nm I lml < l}, which we call the sparse family of grids at level l. In fact, 
we see that in the 3D case we have lml ~ 2l. This implies that application 
of (6) requires the evaluation of FEM stiffness matrices on level 2l. We call 
the approach of using the grids up to level 2l the semi-sparse technique. Here 
we need the evaluation of 0(£2 ) stiffness matrices of order 0(22l). This is 
well between the sparse grid technique with O(e2 ) stiffness matrices of order 
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Fig. 2. Planes with 110n-semi-orthogonal functions 

Pla11es, in the space of grids, for which k ~ n, for fixed n = (n, n, n). The diagonal 
plane corresponds with the grids lkl = n. 

0(2l) and the full grid technique with one 0(23l) stiffness matrix. In Section 
3 we will see that a similar combination of grids can be useful for the solution 
of more complex non-linear systems. 

At first sight it seems an alternative not to compute the residual of equa­
tion (6) exactly, but to introduce an approximation of the matrix At by 
taking the expression (6) in which the terms with lml > i are omitted. One 
can verify that all discarded entries from the matrix At are of relatively small 
size. In this way we obtain an approximated stiffness matrix, denoted as At. 
One might expect that this At could still be some sufficiently accurate ap­
proximation of the discrete Laplacian. However, it can be shown that this 
approximate stiffness matrix At is not useful for further computations be­
cause it is not positive definite. In Table 1 we show the extreme eigenvalues 
of At and At for various i. The smallest eigenvalue of At becomes negative, 
which ruins one of the essential properties of At. 

t=4 l=5 l=6 
At Amax 2.2843 3.3898 4.7756 
At Amin 0.6323 0.1803 0.0582 
At Amax 2.1498 3.1085 4.3162 
At Amin 0.5168 -0.0251 -0.1283 

-Table 1. Extreme eigenvalues for At and At. 
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Following the semi-sparse-grid approach, one can verify that in the constant 
coefficient case we can perform a residual computation with order 0(4t) op­
erations for 0(£2 2t) sparse grid points. Of course the additional work and 
also t.ho cxt.ra st.orngc is a <lisadvant.ngc of this met.hod. As a compromise 
between the sparse and the semi-sparse-grid approach one might consider 
discretisations which are obtained by not using all grids up to level 2£, but 
only a limited number of extra levels. Again we obtain an approximate stiff­
ness matrix At, with a lower accuracy than At, but the operation count will 
be smaller. However one should be very careful with this approach, since 
the possibility exists that At becomes indefinite if an insufficient number of 
additional levels is taken into account. 

3 The Euler equations for 3D CFD 

In this section we consider the multigrid solution of the steady, 3D Euler equa­
tiom1 of gas dynamics. The equations are discrctised in their integral form. 
The co11111utational <lomain n is <livi<lcd, in a regular manner, in ccll-ccntcrc<l 
finite volumes. These finite volumes are of hexahedral type. Following the 
Godunov approach, along each cell face the flux vector is assumed to be con­
stant and determined by a uniformly constant left and right state. To solve 
the resulting ID Riemann problem over the cell face for a non-isenthalpic 
perfect-gas flow, we apply the 3D extension of the 2D P-variant [7] of Os­
her's approximate Riemann solver. For the left and right cell-face states, 
we take the first-order accurate approximations. At a later stage, these ap­
proximations will be replaced by higher-order accurate ones, in which case 
also limiters are introduced. We emphasize that the major challenge is to 
know how to solve first-order accurate discrete, steady 3D Euler equations 
at efficient, grid-independent convergence rates. Once this is known, solving 
higher-order accurate discrete, steady 3D Euler equations can be done by 
a standard procedure, e.g. by a defect correction method as outer and the 
efficient multigrid method as inner iteration [10]. 

3.1 Standard multigrid 

The method First we briefly describe the standard 3D multigrid algorithm 
on which our method is built. We use the 3D generalization of the optimal 2D 
mult.igrid approach, that was described in [7,6]. As the smoothing technique 
for the first-order discrete Euler equations, we apply collective symmetric 
point Gauss-Seidel relaxation. The four different symmetric relaxation sweeps 
that are possible on a regular 3D grid, are performed alternatingly. At each 
volume visited during a relaxation sweep, the system of five nonlinear equa­
tions is solved by Newton iteration. 

As the standard multigrid method we apply the nonlinear version (FAS, 
(I]), preceded by nested iteration (FMG, [I]). For this we construct a nested 
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a. At upper side half-wing. 

b. At far-field boundary. 

Geometry of the mesh around the ONERA-M16 half-wing. 
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c. At symmetry boundary. 

d. At upper part downstream boundary. 

Fig. 3. Views at 128 x 32 x 32 C-0-type grid ONERA-M6 half-wing. 
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set of grids such that each finite volume on a coarse grid is the union of 
2 x 2 x 2 volumes on the next finer grid. Let flo, fl1, ... , fltmax be the sequence 
of such nested grids 1, with flo the coarsest and fltma.x the finest grid. Then, 
nest.eel iteration is applied t.o obtain a good initial solution on flt .... , whereas 
nonlinear multigrid is applied to converge to the solution on the finest grid, 
qtmax. The first iterate for the noulinear multigrid cycling is the solution 
obtained by nested iteration. We proceed discussing both stages in more 
detail. 

Nested iteration. The nested iteration starts with a user-defined initial esti­
mate for q0 , the solution on the coarsest grid. To obtain an initial solution 
on a finer grid flt+l i first the solution on the coarser grid flt is improved by 
a single nonlinear multigrid cycle. Hereafter, this solution is interpolated to 
the finer grid flt+l · These steps arc repeated until the highest level (finest 
grid fltmaJ has been reached. 

Nonlinear multigrid iteration. Let Nt(Qt) = 0 denote the nonlinear system 
of first-order accurate discretised equations on nt, then a single nonlinear 
multigrid cycle is recursively defined by the following steps: 

l. Improve on flt the latest obtained solution qt by application of Tipre re­
laxation sweeps. 

2. Compute on the next coarser grid flt-l the right-hand side rt-l = 
Nt-1 (qt-1)-Rt-1,tNt(qt), where Rt-1,t is a restriction operator for right­
hand sides. 

3. Approximate the solution of Nt-l (qt-d = rt-1 by the application of 
nFAS nonlinear multigrid cycles. Denote the approximation obtained by 
iit-1• 

4. Correct the current solution by: Qt = qt+ Pt,t-1 (iit-1 - qt_i), where 
Pt,l-l is a prolongation operator for solutions. 

5. Improve qe by application of npost relaxations. 

Steps (2),(3) and (4) form the coarse-grid correction. The restriction Re-1,t 
and the prolongation Pt,t-1 are the usual operators that are consistent with 
the piecewise constant approximation (for more details see (12]}. 

Notice that {}t in the classical sequence is denoted as rite in the con­
text of partially ordered grids. The approximating function spaces for the 
discrete Euler equations are piecewise constant functions on flte· Approxi­
mating properties for these functions have been studied in (9]. Since the MG 
method applies the prolongations and restrictions that are consistent with the 
approximation used, the corresponding function spaces Vk form a partially 
ordered set of tensor product type as treated in (9]. 

1 Using the more complex notation of Section 2, the sequence is denoted as 
no, n., ... '[Jtma><•• with e = (1, 1, 1). 
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Numerical results In this section we present convergence results obtained 
when solving discrete, steady perfect-gas Euler equations for a standard 3D 
transonic test case, the ONERA M6 half-wing at M 00 = 0.84, a= 3.06°. A 
C-0-type grid is used, for which we give some views on the 128 x 32 x 32 
version in the Figures 3a - 3d. 
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Fig. 4. Convergence behaviors of two solution methods, ONERA-M6 half-wing at 
Moo = 0.84, a = 3.06°, {llmo.x = (8 x 2 x 2) x 2lmax_grid, lmax = 1, 2, 3. 
The slower convergence is for finer meshes. 

In Figure 4 convergence results are given for single grid relaxation and for 
the standard multigrid method described above. In both graphs, the residual 
ratio is defined as llRillLi /llR111Li, where Riis the mass defect of the discrete 
Euler equations and where i refers to the status after the i-th iteration. 
For the standard multigrid convergence results shown in Figure 4b, we took 
npre = 0, npost = 1, i.e. we applied sawtooth-cycles. Though -of course­
to a lesser extent than the single-grid convergence results (Figure 4a), the 
standard multigrid method's convergence results (Figure 4b) appear to be 
rather grid-dependent. We see that the convergence behaviour of the.standard 
3D algorithm is disappointing when compared to the same multigrid method's 
convergence rates for a 2D transonic test case [7]. An improvement to this 
might be found in deriving a more powerful smoother, keeping the other 
components of the numerical method the same. For reasons explained above, 
a more natural cure is not to apply standard full coarsening, but to use a 
multiple semi-coarsening or a sparse-grid algorithm instead. 
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3.2 Multiple semi-coarsened multigrid 

The method In this method, to solve the discrete problem on nlmaxe• we 
use the full family of grids {nk} with o $ k $ lmaxe. For each nk, k > o, 
three semi-coarsened grids are available. Figures la and lb show 3D standard 
coarsening and multiple semi-coarsening, respectively. Though multigrid with 
multiple semi-coarsening is expected to be most fruitful for 3D problems, as 
far as we know, applications have only been published for 20. Pioneering work 
has been done by Mulder [14], who has introduced multiple semi-coarsening 
to overcome the poor convergence results observed in computing nearly grid­
aligned flows governed by the steady, 2D Euler equations. In [17], Radespiel 
and Swanson continue research on Mulder's approach for the steady, 2D Euler 
equations. In the present paper we apply semi-coarsened multigrid to the 
steady, 3D Euler equations, and we pay particular attention to the different 
prolongation operators that can be used. 

Also in the case of the semi-coarsened multigrid method we use FAS as 
the basic rnultigrid algorithm, and on each grid we apply collective symmet­
ric point Gauss-Seidel relaxation as the smoothing technique. In the semi­
coarsened multigrid method, however, we replace the sequentially ordered 
set of grids {f1te}, l = 0, ... ,lmaxi by a partially ordered set of grids {f1n}, 
o $ n $ lmax, with no the coarsest and f11max the finest grid. Now lnl is the 
level of grid nn. The nesting and the semi-coarsening relation between these 
grids is described in [9]. The implementation is described in detail in [8,12]. 

Nested iteration. Also in the semi-coarsening algorithm nested iteration (FMG) 
is applied to obtain a good initial solution on the finest grid. We proceed 
discussing the present nested iteration and nonlinear multigrid iteration pro­
cedures in more detail. The nested iteration starts with a user-defined initial 
estimate on the coarsest grid, n0 , which is improved by relaxation. Next, the 
following two options can be used to continue the nested iteration: 

- Grid-wise nested iteration. The approximate solution q0 is interpolated to 
all grids nk with o $ k $ e, with the 3D prolongation according to for­
mula (29) in [5]. (See [12] for the implementation in the present 3D Euler 
context.) Next, the solution qe is improved by a single nonlinear multi­
grid cycle and prolongated to all grids nk with k :$ 2e. Then, the above 
process can be repeated up to k :$ lmaxe, i.e., level dlmax· Notice that 
approximate solutions are only computed at the grids no, ne, f12e, .... 

- Level-by-level nested iteration. The approximate solution q0 is interpo­
lated to the three grids fl1,o,o, Do,1,0 and D0,0,1 on the next level, with 
the same 30 prolongation mentioned above. Next, the three approximate 
solutions Qk, lkl = 1 are first improved by a single nonlinear multigrid 
cycle and then interpolated to all six grids nk, lkl = 2, on the next level. 
This process is repeated up to and including level dfmax (of course, re­
stricted to the grids nk with k ::::; lmaxe). Here, in contrast with to the 
previous strategy, solution improvements are made on all grids, level-by­
level. 
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Nonlinear multigrid iteration. A single nonlinear multigrid cycle on level i is 
recursively defined by the following steps: 

1. For all grids {}k at the next coarser level jkj = f.-1, that satisfy k S lmaxe, 
compute the same right-hand sides as in standard multigrid, but use as 
restriction operator the one described in [12). 

2. Improve the approximate solutions on the coarser level e - 1 by the ap­
plication of a single nonlinear multigrid cycle. 

3. Correct the current solutions on level i by one of two possible correction 
prolongations. The first prolongation (defect dependent weights) is an ex­
tension to 30 and to systems of equations, of the prolongation introduced 
by Naik and Van Rosendale [15]. It uses prolongation weights that are 
proportional to the absolute values of the restricted defect components. 
The second correction prolongation (fixed weights) is the one proposed in 
[5, eq.(36)], it has a-priori known prolongation weights +1 or -1. 

4. Improve the solutions on level l by the application of npost relaxation 
sweeps. 

Numerical results for different prolongations. As a test problem we 
consider again the ONERA-M6 half-wing at the transonic conditions M 00 = 
0.84, a = 3.06°. We first compare the two prolongations mentioned above: the 
one with defect-dependent weights and the one with fixed weights. Conver­
gence results obtained are given in Figure 5. In the two graphs, the residual 
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Fig. 5. Convergence behaviors of two semi-coarsened multigrid methods, ONERA­
M6 half-wing at Moo = 0.84, a = 3.06°, D1max.mme.x.nmax = (8 x 21m•x) x (2 x 
2mma•) x (2 x 2nmax)-grid, lmax = mrnax = nrna.x = 1, 2, 3. 
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ratio is defined as llRiFAs II Li /llR1 II Li, where RiFAs is the first component (i.e. 
the mass component) of the residual Ntm•xe(qt:~e), and where iFAS refers 
to the status after the i-th FAS-cycle. Similar as for the standard multigrid 
convergence results (Figure 4b), here we also used sawtooth cycles (npre = 0, 
npost = 1). The improvement of both semi-coarsened multigrid methods with 
respect to the standard multigrid method is significant. Of both methods, the 
one with the fixed prolongation weights (Figure 5b) shows a better multigrid 
performance than the one with defect-dependent prolongation weights (Fig­
ure 5a). 

The convergence results may still be further improved. In Figure 6 we 
present results for the same solution strategy as that of Figure Sb, but now 
with V-cycles (npre = npost = 1) and with the level-by-level nested iteration 
described in Section 3.2. 

0 2 4 6 8 10 

FAS-cycles 

Fig. 6. Convergence behaviour of semi-coarsened multigrid method with fixed pro­
longation weights, V-cycles and level-by-level nested iteration, for ONERA-M6 half­
wing at Moo = 0.84, a= 3.06°, ll1m.x,mmax,nm.x = (8 x 21m•x) x (2 x 2mm.x) x (2 x 
2nmox )-grid, lmax = ffimax = nmax = 1, 2, 3. 

3.3 Sparse- and semi-sparse-grid multigrid 

The methods The above multiple semi-coarsening methods for the Euler 
equations are methods for the solution for one system of discrete equations, 
defined in the 'finest' grid nlmox (we call it a full grid-of-grids semi-coarsening 
method), where all grids nk, 0 ~ k ~ lmax contribute to the solution process. 
A disadvantage of a full grid-of-grids semi-coarsening is that many grid cells 
are needed in total. With N 3 the total number of cells on the finest grid, in 
3D, asymptotically standard multigrid uses ~N3 grid cells versus 8N3 points 
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a. Full. b. Sparse. c. Semi-sparse. 

Fig. 7. Grids of grids. 

for the full-grid-of-grids approach. An efficiency improvement can be achieved 
by thinning out the grid-of-grids. Then, if no 'finest grid' is available, accurate 
approximations can be constructed either by an extrapolation-type approach 
(e.g. by Zenger's combination technique) or by the use of hierarchical bases. 
Most ambitious in this respect is the sparse grid-of-grids approach, where 
only grids nk, !kl :::; Emax, contribute (see [5,4] and the further references 
there in). With the full grid-of-grids represented as a cube in Figure 7a, the 
sparse grid-of-grids is the subset given in Figure 7b. 

The reduction in the numbers of grid-cells is enormous. The computa­
tional complexity of the sparse grid-of-grids approach is O(Nlog2 N). The­
oretically, the sparse grid-of-grids approach has the best ratio of discrete 
accuracy over number of grid points used [4]. In the ideal case the full grid­
of-grids should be completely replaced by a sparse grid-of-grids. In practice, 
although very fast, the accuracy of the sparse grid approximations is slightly 
disappointing, and it appears that better accurate approximations are ob­
tained not by only increasing the number of levels, but also by dropping the 
cells with extreme aspect ratios. 

A compromise is the use of a semi-sparse grid-of-grids. This uses the 
family of grids !?k, !kl $ 2fmax, max; lk;j :::; lmax, (see Figure 7c), which 
(a.c;ymptotically) still has a computational complexity which is much smaller 
than that of the full-grid-of-grids approach, viz. O(N21og2 N). Hence, though 
to a lesser extent than the genuine sparse-grid approach, it still is a cure to 
the 'curse of 3D'. 

Numerical results for sparse and semi-sparse multigrid. The nu­
merical ingredients of both approaches are identical to those in the multiple 
semi-coarsened multigrid method applied for obtaining Figure 6. Exactly the 
same level-by-level method is applied, with as the only difference that in 
the sparse-grid case the multi-level semi-coarsening solver stops its work at 
level Emax· From there the solution is extrapolated, by the combination tech­
nique as described e.g. in [18], to the very finest grid, fltm.,.e, at level 3£max· 
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Fig. 8. Mach number distribution on upper half-wing surface for different types of 
grid combinations. 
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In the semi-sparse-grid approach the semi-coarsened multi-level algorithm is 
stopped at level 2lmax and from there, by the same combination technique, 
the finest-grid solution at 3lmax is computed. A particular advantage of the 
semi-sparse-grid approach as compared to the sparse-grid approach, is that 
the 3D extrapolation rule as proposed in [18] can be applied for all remaining 
grids, including the grids along the boundaries of the grid-of-grids. In the 
sparse-grid approach this is not possible. There, for all boundary grids, i.e. 
f1n for which lllnm = ni ·n2 ·n3 = 0, one has to introduce an additional extrap­
olation rule, e.g. by applying a lD or a 2D combination extrapolation, which 
will inevitably result in some additional loss of accuracy. In the Figures 8a-c 
we give an impression of the accuracy of the numerical solutions obtained by 
the different approaches for the ONERA wing problem. A reference solution 
is the fully converged O(h) finest grid solution Figure Sc. This solution is the 
target for both solutions presented in Figures 8a-b. Of course, the semi-sparse 

sparse 
semi-sparse 
full 

O(Nlog2 N) 
O(N2 1og2 N) 
O(N3 ) 

1 CPU time unit 
35 CPU time units 

150 CPU time units 

Table 2. Computing times for the solutions of the ONERA half-wing. 

grid solution (Figure 8b) comes closer to the reference solution. The sparse­
grid solution (Figure 8a) is far off, but it. has been obtained at extremely 
low computational cost as compared to both the semi-sparse-grid approach 
and the full grid-of-grids approach. In Table 2 we give an impression of the 
relative computing times used. 

The differences in computing time between the sparse and the semi-sparse 
grid approaches on the one hand, and the full family-of-grids approach on 
the other hand, become even larger in case of parallel computing (see (ll] 
for some parallel computing results obtained for the same methods and test 
cases considered here). 
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