
110

Conservative Extension in
Structural Operational Semantics

Luca Aceto• Wan Fokkinkt Chris Verhoefi

1 Introduction

Structural operational semantics (SOS) [44] provides a framework to give
an operational semantics to programming and specification languages. In
particular, because of its intuitive appeal and flexibility, SOS has found con­
siderable application in the study of the semantics of concurrent processes.
SOS generates a labelled transition system, whose states are the closed terms
over an algebraic signature, and whose transitions are supplied with labels.
The transitions between states are obtained inductively from a transition
system specification (TSS), which consists of so-called transition rules of
the form c~::cl'!:n. A typical example of a transition rule is

x~x'

xllY ~x'lly

stipulating that if t ~ t' holds for closed terms t and t', then so does t!lu ~
t'llu for each closed term u. In general, validity (or invalidity) of the positive
(or negative) premises of a transition rule, under a certain substitution,
implies validity of the conclusion of this rule under the same substitution.

This column is an excerpt from (2], which gives an overview of recent
results in the field of SOS, with an emphasis on existing formats for TSSs.

"BRICS (Basic Research in Computer Science), Centre of the Danish National Re­
search Foundation, Department of Computer Science, Aalborg University, Fredrik Bajers
Vej 7-E, DK-9220 Aalborg 0, Denmark. Email: lucllClcs.lluc.dk. Partially supported by
a grant from the Italian CNR, Gruppo Na.zionale per l'Informatica Matematica (GNIM).

1CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands. Email: vanClcvi.nl.
Partially supported by a grant from the Nuffield Foundation.

1University of Amsterdam, Department of Computer Science, Programming Research
Group, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands. Email: xClwina.uVll.nl.

I •

' •

Ill

Each of these formats wmes equipped with a rich body of results that are
guaranteed to hold for any process calculus whose TSS is within that format.

Over and over again, process calculi such as CCS [40], CSP [47], and
ACP [11] have been extended with new features, and the TSSs that provide
the operational semantics for these process algebras were extended with
transition rules to describe these features; see, e.g., (10] for i1 systematic
approach. A question that arises naturally is whether or uot the original
and the extended TSS induce the same transitions t ~ t' for closed terms t in
the original domain. Usually it is desirable that an extension is operationally
conservative, meaning that the provable transitions for an original term are
the same both in the original and in the extended TSS.

Groote and Vaandrager [34, Thm. 7.6] proposed syntactic restrictions on
a TSS, which automatically yield that an extension of this TSS with transi­
tion rules that contain fresh function symbols in their sources is operationally
conservative. Bol and Groote (18, 33] supplied this conservative extension
format with negative premises. Verhoef [49] showed that, under certain con­
ditions, a transition rule in the extension can be allowed to have an original
term as its source. D'Argenio and Verhoef [22, 23] formulated a general­
ization in the context of inequational specifications. Fokkink and VerhcH:f
[25] relaxed the syntactic restrictions on the original TSS, and lifted the
operational conservative extension result to higher-order languages. This
column contains an exposition on existing conservative extension formats
for SOS, and their applications with respect to term rewriting systems and
completeness of axiomatizations.

Predicates in SOS semantics ean be coded as binary relations [34]. More­
over, negative premises can often be expressed positively using predicates
(9]. However, in the literature SOS definitions are often dt'corated with
predicates and/or negative premises. For example, predicates are usPd to
express matters like (un)successful termination, convergence. divergence [3].
enabledness [14], maximal delay, and side conditions [42]. Negative premises
are used to describe, e.g., deadlock detection (38], sequencing [17], priorities
[7, 21], probabilistic behaviour [39], urgency [19], and various real [37] and
discrete time [6, 35] settings. Since predicates and negative premises are so
pervasive, and often lead to cleaner semantic descriptions for many features
and constructs of interest, we deal explicitly with these notions.

The organization of this column is as follows. Sect. 2 gives an overview
of the basics of SOS. Sect. 3 presents syntactic constraints to ensure that
an extension of a TSS is operationally conservative. Sect. 4 and 5 contain
applications of conservative extension in equational specification and term
rewriting. Sect. 6 finishes with some conclusions.

ll2

2 Structural Operational Semantics

In this section we present the basic notions from process theory that are
needed in the remainder of this column.

2.1 Labelled Transition Systems

We begin by reviewing the model of labelled transition systems (36, 44],
which are used to express the operational semantics of many process calculi.

Definition 2.1 A labelled transition system {LTS) is a quadruple

(Pree, Act, {~I a E Act}, Pred),

where:

• Proc is a set of states, ranged over bys;

• Act is a set of actions, ranged over by a, b;

• ~~ Pree x Pree for each a E Act. We use the more suggestive notation
s ~ s' in lieu of (s, s') E~, and write s ~ ifs ~ s' for no state s';

• P ~ Proc for every P E Pred. We write sP {resp. s-.P) if state s
satisfies (resp. does not satisfy) predicate P.

Relations s ~ s' and predicates sP in an LTS are called transitions.

In what follows, an LTS is often identified with its collection of transitions.
We trust that the meaning will always be clear from the context.

LTSs describe the operational behaviour of processes in great detail. In
order to abstract away from irrelevant information on the way that processes
compute, a wealth of notions of behavioural equivalence over the states of
an LTS have been studied in the literature on process theory. A system­
atic investigation of these notions is presented in (28], where van Glabbeek
presents the linear time/branching time spectrum. This lattice contains all
the known behavioural equivalences over LTSs, ordered by inclusion.

2.2 Term Algebras

We start from a countably infinite set Var of variables, ranged over by x, y, z.

113

Definition 2.2 A signature E is a set of function symbols, disjoint from
Var, together with an arity mapping that assigns a natural number ar(J) to
each Junction symbol f. A function symbol of arity zero is called a constant,
while function symbols of arity one and two are called unary and binary,
respectively.

The arity of a function symbol represents its number of arguments.

Definition 2.3 The set lJ'(E) of (open) terms over a signature E, ranged
over by t, u, is the least set such that:

• ea.eh x E Var is a term;

• f (f1, ... , tar(!)) is a term, if f is a function symbol and t1, ... , tar(!)

are terms.

T(E) denotes the set of closed terms over E, i.e., terms that do not contain
variables.

For a constant a, the term a() is abbreviated to a. By convention, whenever
we write a term-like phrase (e.g., f(t,u)), we intend it to be a term (i.e., f
is binary).

Definition 2.4 A substitution is a mapping a : Var-+ lJ'(E). A substitution
is closed if it maps each variable to a closed term in T(E). A substitution
extends to a mapping from terms to terms as usual; the term a(t) is obtained
by replacing occurrences of variables x in t by a(x).

2.3 Transition System Specifications

We proceed to introduce the main objects of study in the field of SOS,
viz. transition system specifications.

Definition 2.5 Let E be a signature, and let t and t' range over ·lT(E).
A transition rule p is of the form H/a, with H a collection of positive
premises t 4 t' and tP, and of negative premises t ~ and bP. Moreover,
the conclusion a is of the form t 4 t' or tP. The left-hand side of the
conclusion is the source of p. A transition rule is closed if it does not
contain variables.

A transition system specification (TSS} is a collection of transition rules.
A TSS is positive if its transition rules do not contain negative premises.

114

For the sake of clarity, we will often display transition rules in the form *· The first systematic study of TSSs may be found in [48], while the first
study of TSSs with negative premises appeared in [16].

We proceed to define when a transition is provable from a TSS. The
following notion of a proof from [31] generalizes the standard definition (see,

e.g., [34]) by allowing for the derivation of closed transition rules. The

derivation of a transition a corresponds to the derivation of the closed tran­

sition rule H/a with H = 0. The case H f. 0 corresponds to the derivation

of a under the assumptions in H.

Definition 2.6 Positive literals are transitions t ~ t' and tP, while neg­

ative literals are expressions t ~ and hP, where t and t' range over the

collection of closed terms. A literal is a positive or negative literal.

Definition 2. 7 Let T be a TSS. A proof of a closed transition rule H /a
from T is a well-founded, upwardly branching tree whose nodes are labelled

by literals, where the root is labelled by a, and if K is the set of labels of the

nodes directly above a node with label /3, then

1. either K = 0 and /3 EH,

2. or K //3 is a closed substitution instance of a transition rule in T.

If a proof of H /a. from T exists, then H /a is provable from T.

2.4 Three-Valued Stable Models

In the presence of negative premises, the meaning of a TSS is sometimes

ambiguous. For example, one can express that a transition holds if it does
not hold. In order to associate an LTS to each TSS, we use the notion

of a (least) three-valued stable model, introduced by Przymusinski [46] in

logic programming. A three-valued stable model partitions the collection of

transitions into three disjoint sets: the set C of transitions that are certainly

true, the set U of transitions for which it is unknown whether or not they
are true, and the set F of remaining transitions that are false.

Definition 2.8 A disjoint pair of sets of transitions (C, U/ constitutes a
three-valued stable model for a TSS T if:

a transition a is in G iff T proves a closed transition rule N /a where

N contains only negative literals and CU U f= N;

a transition a. is in C U U iff T proves a closed transition rule N /a
where N contains only negative literals and C f= N.

115

Each TSS has one or more three-valued stable models. For example. the
TSS

a-.P2 a-.P1

aP1 aP2
has ({a.Pl},0), ({aP2},0), and (0,{aP1,aP2}) as its three-valued stable
models. Each TSS T affords a unique (information-)least three-valued stable
model (C, U), in the sense that the set U is maximal. Przymusinski [46]
showed that this least three-valued stable model coincides with the so-called
well-founded model that was introduced by van Gelder, Ross, and Schlipf
[27] in logic programming. It is advocated in, e.g., [18, 32] that a TSS is
meaningful if and only if its least three-valued stable model does not contain
unknown transitions. In particular, each TSS that does not contain negative
premises in its transition rules satisfies this requirement. The reader is
referred to [31, 32] for more information on three-valued stable models and
related notions.

3 Operational Conservative Extension

Often one wants to add new operators and rules to a given TSS. Therefore.
a natural operation on TSSs is to take their component.wise union. The
following definition stems from [34].

Definition 3.1 Let To and T 1 be TSSs whose signatures ~o and '.E1 agree
on the arity of the function symbols in their intersection. vVe write ~o $ L::i
for the union of L;0 and "E 1 . The sum of To and Ti, notation To EB Ti, is thf'
TSS over signature L; 0 EEl "E 1 containing the rules in To and Ti.

An operational conservative extension requires that an original TSS and
its extension prove exactly the same closed transition rules that have only
negative premises and an original closed term as their source. (This notion
of an operational conservative extension is related to an equivalence notion
for TSSs in (24, 32]: two TSSs are equivalent if they prove exactly the same
closed transition rules that have only negative premises.)

Definition 3.2 A TSS To EB T1 is an operational conservative extension of
TSS To if for each closed transition rule N /a such that:

- N contains only negative literals;

- the left-hand side of a is in T(~o);

- N /a is provable from To EEl Ti ;

we have that N /a 'is provable from To.

116

3.1 Guaranteeing Operational Conservative Extension

We start by defining the notion of a source-dependent variable [25, 30], which
will be an important ingredient of a rule format to ensure that an extension
of a TSS is operationally conservative. In order to conclude that an extended
TSS is operationally conservative over the original TSS, we need to know
that the variables in the original transition rules are source-dependent. In
the literature this criterion is sometimes neglected. For example, in [43] an
extended TSS is considered in which each transition rule in the extension
contains a fresh operator in its source, and from this fact alone it is concluded
that the extension is operationally conservative. In general, however, this
characteristic is not sufficient, as is shown in the next example.

Example: Let a and b be constants. Consider the TSS over signature
{a} that consists of the transition rule xP / aP. Extend this TSS with the
TSS over signature { b} that consists of the transition rule 0 /bP, which
contains the fresh constant b in its source. The transition aP can be proved
in the extended TSS, but not in the original one, so this extension is not
operationally conservative. 0

Definition 3.3 The source-dependent variables in a transition rule p are

defined inductively as follows:

- all variables in the source of p are source-dependent;

if t ~ t' is a premise of p and all variables in t are source-dependent,
then all variables in t' are source-dependent.

A transition rule is source-dependent if all its variables are.

Note that the transition rule xP / aP from the example above is not source­
dependent, because its variable x is not.

Thm. 3.4 below, which sterns from (25], formulates sufficient criteria for
a TSS To EB T1 to be an operational conservative extension of TSS T0 . We
say that a term in 1f(L:o Ell L:1) is fresh if it contains a function symbol from
Z:1 \I;o. Similarly, an action or predicate symbol in T1 is fresh if it does not
occur in T0 .

Theorem 3.4 Let To and T1 be TSSs over signatures E0 and E 1 , respec­

tively. Under the following conditions, To EBT1 is an operational conservative
extension of To.

1. Each p E To is source-dependent.

117

2. For each p E T1,

• either the source of p is fresh,

• or p has a premise of the form t ~ t' or tP, where:

t E "U"(~o);

all variables in t occur in the source of p;

t', a, or P is fresh.

3.2 Applications to TSSs

We apply Thm. 3.4 to some TSSs from the literature.

Basic Process Algebra with Empty Process The signature of basic
process algebra with empty process [50], denoted by BPA,(Act), consists of
the following operators:

- a set Act of constants, representing indivisible behaviour;

- a constant E, called empty process, representing successful termination;

- a binary operator +, called alternative composition, where a term
t1 + t2 represents the process that executes either t1 or t2;

- a binary operator ·, called sequential composition, where a term t1 · t2

represents the process that executes first ti and then t2·

So the BNF grammar [5] for BPA,(Act) is (with a E Act):

t ::= a \ i: I ti + t2 I ti · t2 .

The intuition for the operators in BPA,(Act) is formalized by the transition
rules in Table 1 from [11], which constitute the TSS for BPA.(Act}. This
TSS defines transitions t ~ t' to express that term t can evolve into term t'
by the execution of action a E Act, and transitions t..j to express that term
t can terminate successfully. The variables x, x', y, and y' in the transition
rules range over the collection of closed terms, while the a ranges over Act.

The transition rules for BPA,(Act) are source-dependent. For example,
consider the third transition rule for sequential composition in Table 1:

x~x'
a I x·y-+x ·y

a I x-+ x

x+y ~x'

118

a I y-+ y

a I x-+ x x,/ y..j
X· y,/ a I x·y-+x ·y

Table 1: Transition Rules for BPA,(Act).

The variables x and y are source-dependent, because they occur in the
source. Moreover, since x is source-dependent, the premise x ~ x' ensures
that x' is source-dependent. Since the three variables x, x', and y in this
transition rule are source-dependent, the transition rule is source-dependent.

Extending the Set of Actions Suppose that Act is extended to a set
Actext. The TSS for BPA,(Actext) is the TSS for BPA,(Act) in Table 1, with
the proviso that a ranges over Actext. We make the following observations
concerning the extra transition rules in the TSS for BPA,(Actext):

• the source of the transition rule a ~ e for a E Actext\Act contains the
fresh constant a;

• each transition rule concerning an a-transition of an alternative or
sequential composition with a E Actext\Act, such as

x~x'

x+y~x'

contains a premise with the fresh relation symbol ~ and with as left­
hand side a variable from the source.

So, since the transition rules for BPA,(Act) are source-dependent, it can be
concluded from Thm. 3.4 that BPA,(Actext) is an operational conservative
extension of BPA,(Act).

-

119

Priorities The language BPAE11(Act) is obtained by adding the priority
operator (J from [7] to BPA,(Act). This function symbol assumes a partial
order < on Act. Intuitively, the process 8(t) is obtained by eliminating all

transitions s ~ s' from the process t for which there is a transition s ~ s"
with a. < b. For example, if a < b then O(a + b) can execute the action
b but not the action a. The TSS for BPA,8(Act) consists of the transition
rules in Tables 1 and 2, where the transition rules in the latter table capture
the operational semantics of the priority operator. This TSS has a unique
least three-valued stable model, which does not contain unknown transitions.
(This follows from the fact that the TSS is stratifia.ble [33, 45].)

x ~ x' x -1 for a < b

O(x) ~ B(x')

Table 2: Transition Rules for the Priority Operator.

The two transition rules for the priority operator in Table 2 contain the
fresh function symbol fJ in their sources. So, since the transition rules for
BPA,(Act) are source-dependent, Thm. 3.4 implies that BPA,o(Act) is an
operational conservative extension of BPAe(Act).

3.3 Implications for Three-Valued Stable Models

In (25] it was noted that the operational conservative extension notion as
formulated in Def. 3.2 implies a conservativity property for three-valued
stable models. If an extended TSS is operationally conservative over the
original TSS, in the sense of Def. 3.2, and if a three-valued stable model
of the extended TSS is restricted to those transitions that have an original
term as left-hand side, then the result is a three-valued stable model of the
original TSS.

Proposition 3.5 Let To EB T1 be an operational conservative extension of
To. If (C, U} is a three-valued stable model of To EB T1, then

C'
U'

{a EC I the left-hand side of a is in T(Bo)}
{a EU I the left-hand side of a is in T(Bo)}

is a three-valued stable model of To.

120

The converse of Prop. 3.5 also holds, in the following sense. If an extended
TSS is operationally conservative over the original TSS, then each three­
va:lued stable model of the original TSS can be obtained by restricting some
three-valued stable model of the extended TSS to those transitions that have
an original term as left-hand side.

Proposition 3.6 Let To©T1 be an operational conservative extension of To.
If (C, U) is a three-valued stable model of To, then there exists a three-valued
stable model (C', U') of To E9 T1 such that

C A {a E C' I the left-hand side of a is in T(Eo)}

U A {a E U' I the left-hand side of a is in T(Eo)}

Corollary 3. 7 Let T0 E!1 T1 be an operational conservative extension of To.
If (C, U) is the least three-valued stable model of To E!1 Ti, then

C' .:!.

U'
{a EC I the left-hand side of a is in T(I:o)}

{a E U I the left-hand side of a is in T(I:o)}

is the least three-valued stable model of To.

4 Applications to Axiomatizations

This section discusses how operational conservative extension can be used to
derive that an extension of an axiomatization is so-called axiomatically con­
servative, or that an axiomatization is complete or w-complete with respect
to some behavioural equivalence.

4.1 Axiomatic Conservative Extension

Definition 4.1 A (conditional) axiomatization over a signature I: consists
of a set of (conditional) equations, called axioms, of the form to = u0 {=

t1 = u1, ... , tn =Un with t;, u; E 1f(I:) for i = 0, ... , n.

An axiomatization gives rise to a binary equality relation = on 1f(E) thus:

• if to = uo {= t1 = u1, ... , tn = Un is an axiom, and u a substitution
such that u(t;) = u(u.;) for i = 1, ... , n, then a(to) = u(u0);

• the relation = is closed under reflexivity, symmetry, and transitivity;

121

• if f is a function symbol and u = u', then

Definition 4.2 Assume an axiomatization [,, together with an equivalence
relation "" on T(I;).

1. £ is sound modulo ~ iff t = u implies t "" u for all t, u E T(L:).

2. £ is complete modulo ~ iff t "" u implies t = u for all t, u E T(L:).

Note that the above definitions of soundness and completeness, albeit stan­
dard in the literature on process algebras, are weaker than the classic ones
in logic and universal algebra, where they are required to apply to arbitrary
open expressions.

Definition 4.3 Let £0 and E1 be axiomatizations over signatures L:o and
L:oEBL: 1 , respectively. The axiomatization EoUE1 is an axiomatic conservative
extension of £0 if every equality t = u with t, u E T(L:0) that can be derived
from £0 U E1 can also be derived from Ea.

The next theorem from [49] can be used to derive that an extension of an
axiomatization is axiomatically conservative.

Theorem 4.4 Let "" be an equivalence relation on T(L:o EB 2:: 1). Assume
axiomatizations £0 and E1 over I;o and L:o EB L:1, respectively, such that:

1. Eo U E1 is sound over T(:So EB :Si) modulo rv;

2. [,0 is complete over T(L:o) modulo ""·

Then E0 U E1 is an axiomatic conservative extension of Eo.

The idea behind Thm. 4.4 is as follows. Suppose that t = u can be derived
from Eo U [,; for t, u E T(:B0). Soundness of Eo U E1 (requirement 1) yields
t ~ u. Hence, completeness of Eo (requirement 2) yields that t = u can be
derived from Ea.

Thm. 4.4 is particularly helpful in the case of an operational conservative
extension of a TSS. Assume TSSs To and T1 over signatures I:o and I:o ffiI;1,
respectively, where To EB T1 is an operational conservative extension of To.
Moreover, let "" be an equivalence relation on states in LTSs. Since the
states in the LTSs associated with To and To EB T1 are closed terms, the
equivalence relation"" carries over to T(L:o) and T(Eo EEl L:1), respectively.

122

Owing to operational conservativity, the equivalence relation "' on T(Ea) as

induced hy To agrees with this equivalence relation on T(Eo) as induced by

1(1 EB T 1• Applications of Thm. 4.4 in process algebra, in the presence of an

operational conservative extension of a TSS, are abundant in the literature;
we give a typical example.

Example: Using Thm. 3.4 it is not hard to see that the process algebra

ACPe [7] is an operational conservative extension of ACP. Baeten, Bergstra,

and Klop introduced in op. cit. an axiomatization Ea that is complete over

ACP modulo bisimulation equivalence, and an axiomatization Eo U £1 that

is sound over ACP e modulo bisimulation equivalence. Hence, Thm. 4.4 says

that Ea U£1 is an axiomatic conservative extension of Ea. (In [7], fifteen pages
were needed to prove this fact for the more general case of open terms, by

means of a term rewriting analysis.) D

4.2 Completeness of Axiomatizations

The next theorem from [49] can be used to derive that an axiomatization is
complete.

Theorem 4.5 Let "' be an equivalence relation on T(Bo EB B1). Assume

axiomatizations Eo and £1 over L:o and Bo EB B1, respectively, such that:

1. Eo U £1 is sound over T(Bo EB B1) modulo ~;

2. Eo is complete over T(Bo) modulo ,..__,,.

8. for each t E T(I:o EB I:1) there is at' E T(Bo) such that t = t' can be
derived from Eo U £1.

Then Eo U £1 is complete over T(l:o EB B1) modulG1 "'.

The idea behind Thm. 4.5 is as follows. Let t, u E T(Bo EB I:i) with t "'

'll. There exist terms t', u' E T(Bo) such that Ea U £1 proves t = t' and
n = u' (requirement 3). Soundness of £0 u E1 (requirement 1) yields t rv t 1

and u ~ u', which together with t rv u implies t' rv u'. Finally, owing to
completeness of l'o over T(I:o) (requirement 2), we may derive t' = u', and
thus t = t' = u' = 1~.

Thm. 4.5 is particularly helpful in the case of an operational conservative
extension of a TSS. Assume TSSs To and T 1 over signatures B0 and B0 E9 I: 1 ,

respectively, where To$ Ti is an operational conservative extension of T0 .

MoreovPr, let "' be an equivalence relation on states in LTSs. Since the

123

>-tates in the LTSs associated with Tti and Tu e T1 an• closed terms, the
relation ~ carries over to T(L:o) and T(l:o e ~ 1). respectively.

conservativity, the equivaltmce relation ,._, on T(:i.::0) as
To agrei>s with this equivalenci> relation on T(:i~0) a.s induced by

Applications of Thm. 4.5 in process algdmt, in tlw' pn~sence of an
1ual const•rvative extensitm of a TSS. are abundant in tht' literature:

we giw a. typical exa.mpi1~.

Example: Using Thm. 3.4 it is not hard to see that tlH~ process alge­
bra ACP [12] is an operational conservative extension of BPA0• Bergstra
and Klop presented in op. cit. an axiomatization Eo that is rnmplete over
BPA 0 modulo bisimulation equivalence. and an axiomatization Eo U £1 that
is sound over ACP modulo bisimulation equivalence. and that satisfies re-

3 above. Hence. Thm. 4.5 says that [0 U E1 is complete over
ACP mudnlo bisimulation equivalence. 0

For tlw precise proof;; of Thm. 4.4 and Thm. 4.5. and for more detailed
informal ion such a.s generalizations of these results to axiomatizations based
on irwqnalities. the reader is referred to [22. 23. ·49].

4.3 ~·-Completeness of Axiomatizations

Definition 4.6 A.n axiomatization [over a signature l: 1:" WJ-cmnplete if an
l''l.jWJ.tUm t = u with t. ll E u(l:) can be derived from [wht:rWl't"r a(t) =
nm be· derived t.: for all closed substitution8 a.

Milner :'n] introduced a technique to derive ,._,-completeness of an axioma­
tization using SOS. The idea is to give a semantics to open (as opposed to
dc>sPd) terms; in particular, variables need to be incorporat1'd in the transi­
tion rnles. See, e.g.. 2!J] for further applications of this tPchnique in the
realm uf process algebra.

T!w next thi>orem can he used t.o derive that an aximnatization is w­
complet<>.

Theorem 4.7 Let~ be an equivalence relation on lJ(L). Suppose that for
all t. E lJ(L:), t,.... u whenever a(t) ~ a(u) for all closed suli8titut·ions a_ If
[1s 11r1 1uiomati::ation over L such that

1- t 1s sound on:r T(L) modulo ~. and

:J. { lS OVtT U(L) modulo ~,

thn1 ['" w-compiPte.

124

The idea behind Thm. 4.7 is as follows. Let t, u E "U"(E) and suppose that
11(t) ""11(11) can be derived from£ for all closed substitutions a. Soundness
of£ over T(E) modulo"' (requirement 1) yields a(t),..., a(n) for all closed
substitutions a, so t ,..., u. Then completeness of£ over lT(E) modulo,
(requirement 2) yields that t = u can be derived from£.

Assume a TSS To over a signature E, and let To be extended with a
TSS T1 that provides semantics to variables; thus, To $ T1 gives semantics
to open terms in 11"(E). Suppose that To $Ti is an operational conservative
extension of T0 . Moreover, let ,..., be an equivalence relation on states in
LTSs. Since the states in the LTSs associated with To and To $ Ti are
dosed and open terms, respectively, the equivalence relation ""' carries over
to T(Eo) and 11"(E0). Owing to operational conservativity. the equivalence
relation "' on T(Eo) as induced by To agrees with thi::; Pquirnlence relation
on T(Eo) as induced by ToEBTi. Applications of Thro. 4.7 i11 process algebra
are ahnndant in the literature; we give a typical example.

Example: Extend the TSS for BPA,(Act) in Table 1 by letting the symbol
a range not only over Act, but also over Var. In a sense this means that
variables are considered to be constants. This extension is operationally
conservative, which follows from Thro. 3.4 by the following facts:

• the transition rules for BPA,(Act) are source-dependent;

• thP sources of transition rules z 4 f for variables z are fresh;

• ea.eh transition rule for alternative or sequential composition with z-
transitions, such as

x4x'

x+y 4 x'

rnntains a premise with the fresh relation symbol 4 and as left-hand
side a variable from the source.

Furthermore, the following properties can be derived for the axiomatization
E of BPA,(Act) in [50]:

1. Eis sound over BPA,(Act) modulo bisimulation equivalence;

2. upen terms t and u in BPA,(Act) are bisimilar whenever a(t) and a(u)
art> bisimilar for all closed substitutions a;

3. [is complete over the open terms in BPA,(Act) modulo bisimulation.

So Thm. 4.7 implies that [is w-complete over BPA,(Act) modulo bisimula­
tion equivalence. D

125

5 Applications to Rewriting

This St>ction discusses how operational conservative extension can be used to
derive that an extension of a conditional term rewriting system is so-called
rewritP conservative, or that a conditional term rewriting system is ground
confluent.

5.1 Rewrite Conservative Extension

Definition 5.1 Assume a signature :E. A conditional term rewriting sys­
tem (GTRS) (4, 13} over E consists of a collection of rewrite rules

with t,. u, E lJ(:E) for i = 0, ... , n.

Intuitively. a rewrite rule is a directed axiom that can only be applied from
left to right. A CTRS induces a binary rewrite relation-+* on terms, similar
to the way that an a.xiomatization induces an equality relation on terms (the
only difference is that the rewrite relation is not closed under symmetry),
thus:

• if to -+ I.Lo *=' i1 -+* ui, .. ., tn -+* Un is a rewrite rule, and er a
substitution such that a(t;) -+* a(u;) for i = 1, ... ,n, then cr(to) -+*
a(uo);

• the relation -+* is closed under reflexivity and transitivity;

• if f is a function symbol and u -+* u.', then

f (t1, ... , t;-1, t.L, t,+1,. .. , t<>r(j)) -+ • f(t1,. .. , t;-i. u', tt+J,. .. , tar(/)).

The definition of sum of TSSs (cf. Def. 3.1) applies equally well to CTRSs.

Definition 5.2 Let Ro and R1 be CTRSs over signatures Eo and Eo $ E1.
respectively. Ro Gl R 1 is a rewrite conservative extension of Ro if every
rewrite relation t -+* u with t E T(Eo) that can be derived from Ro Gl R1 can
also be derived from Ro.

The conservative extension theorem for TSSs, Thm. 3.4, applies to CTRSs
just as well; see [26] for more details. Note that the definition of source­
dependent variables in transition rules, Def. 3.3, also applies to rewrite rules
(where, in a rewrite rule to -+ uo *" t1 -+ • u1, ... , tn -+ • u,,, the expression
to-+ uo is the conclusion and the t; -+* u; for i = 1,. .. , n are the premises).

126

Theorem 5.3 Let Ro and R1 be CTRSs over signatures Ea and EoEBE1, re­
spectively. Under the following conditions, Ro EB R1 is a rewrite conservative
extension of Ro.

1. Each p E Ro is source-dependent.

2. For each p E T1,

• either the source of p is fresh,

• or p has a premise of the form t -+ t' where:

- t E "U"(Eo);
- all variables in t occur in the source of p;

- t 1 is fresh.

5.2 Ground Confluence of CTRSs

Definition 5.4 A CTRS is ground confluent if for all t, to, t1 E T(E) with
t -+* to and t -+* t 1 there is a u E T(E) with to -+* u and t1 -+* u.

Ground confluence is an important property, for instance, to prove that an
axiomatization is complete modulo some behavioural equivalence relation.

The next theorem from [49] can be used to derive that a CTRS is ground
confluent. We say that a CTRS R is sound modulo an equivalence relation
,...., on T{E) if t -+* u implies t ,..., u for all t, u E T(E).

Theorem 5.5 Let,..., be an equivalence relation on T(Eo EB E1). Assume
CTRSs Ro and R 1 over Eo and Eo EEl E1, respectively, such that:

1. Ro EEl R1 is sound over T{Eo EB E1) modulo "'i

2. ift,t' E T(Eo) with t,...., t', then there is au E T(Eo) such that t -+* u
and t' -+* u can be derived from Ro;

3. for each t E T(Eo EB Ei) there is at' E T(Eo) such that t -+* t' can be
derived from Ro EEl R1.

Then Ro EEl R1 is ground confluent over T(Eo EB E1).

The idea behind Thm. 5.5 is as follows. Let t E T(Eo EB E1) such that t -+ • t0

and t -+* t1 can be derived from Ro EB R1. There exist t0, t~ E T(Eo) such
that to -+* t0 and t1 -+* t~ can be derived from Ro EB R 1 (requirement 3).
Soundness of Ro EEl R1 (requirement 1) yields t ,...., to "' t0 and t "' t1 "' t~,

127

sot~"' t11• Then there exists au E T(Eo) such that t~ --.• u and t~ --.• u
(requirement 2). Hence, to-+* u and t 1 -;• u.

Thm. 5.5 is particularly helpful in the case of an operational conservative
extension of a TSS. Assume TSSs To and T1 over signatures Eo and E0 EB E1,

respectively, where To ffi Ti is an operational conservative extension of T0 .

Moreover, let ,..., be an equivalence relation on states in LTSs. Since the
states in the LTSs associated with To and Toe Ti are closed terms, the
equiv-d.lence relation ,.., carries over to T(Eo) and T(Eo EB Ei), respectively.
Owing to operational conservativity, the equivalence relation ,.., on T(Eo)
as induced by To agrees with this equivalence relation on T(Eo) as induced
by To ffi T1• Applications of Thm. 5.5, in the presence of an operational
conservative extension of a TSS, are abundant in the literature; we give a
typical example.

Example: Using Thm. 3.4 it is not hard to see that the process algebra ACP
[12] is an operational conservative extension of BPA0 . Bergstra and Klop
presented in op. cit. an (unconditional) CTRS RoEBR1 for the process algebra
ACP. which reduces each closed term in ACP to a closed term in BPA0•

Moreover, Ro EB R 1 is sound over ACP modulo bisimulation equivalence, and
it is easily shown that Ro can reduce bisimilar closed terms in BPA0 to the
same dosed term in BPA6 . Hence, Thro. 4.4 says that Ro EB R1 is ground
confluent. (In [12, p. 122], an analysis of about 400 cases was needed to
prove this fact for the more general case of open terms.) D

6 Conclusion

Operational conservativity of an extension of a TSS can in general be con­
cluded in a straightforward fashion from the syntactic form of the transition
rules. Operational conservative extension seems such a natural notion that
in the literature this property is often a hidden assumption: its formulation
and proof are omitted without justification. For example, this happens in
the design of process algebras, and in applications of the strategy to prove
w-completeness mentioned in Sect. 4.3.

Paying attention to operational conservative extension not only leads to
more accurate contemplations on concurrency theory, but is also beneficial
in other respects. Namely, operational conservative extension can be ap­
plied to derive useful results in the realm of equational rea.'iOning, which are
much harder to obtain using more classical term rewriting approaches or
customized techniques.

128

References

[l] L. ACETO, W. FOKKINK, R. VAN GLABBEEK, AND

A. INGOLFSDOTTIR, Axiomatizing prefix iteration with silent steps,

Information and Computation, 127 (1996), pp. 26-40.

[2) L. ACETO, W. FOKKINK, AND C. VERHOEF, Strnctural operational

snnantics, in Handbook of Process Algebra, J. Bergstra, A. Ponse, and
S. Smolka, eds., Elsevier, 1999. To appear.

[3] L. ACETO AND M. HENNESSY, Termination, deadlock and divergence,

J. Assoc. Comput. Mach., 39 (1992), pp. 147-187.

[4] F. BAADER AND T. NIPKOW, Term Rewriting and All That, Cam­

bridge University Press, 1998.

[5] J. BACKUS, The syntax and semantics of the proposed international al­

gebraic language of the Zurich ACM-GAMM conference, in Proceedings
ICIP, Unesco, 1960, pp. 125-131.

[6] .J. BAETEN AND J. BERGSTRA, Discrete time process algebra, in Cleave­
land [20], pp. 401-420.

[7] .J. BAETEN, J. BERGSTRA, AND .J. w. KLOP, Syntax and defining

equations for an interrupt mechanism in process algebra, Fundamenta
lnformaticae, IX (1986), pp. 127-168.

[8] .J. BAETEN AND .J. W. KLOP, eds., Proceedings lst Conference on

Concurrency Theory, Amsterdam, The Netherlands, vol. 458 of Lecture
Notes in Computer Science, Springer-Verlag, 1990.

[9] J. BAETEN AND C. VERHOEF, A congruence theorem for structured
operational semantics with predicates, in Best [15], pp. 4 77-492.

[10] --, Concrete process algebra, in Handbook of Logic in Computer Sci­
P.nce, S. Abramsky, D. Gabbay, and T. Maibaum, eds., vol. IV, Oxford
University Press, 1995, pp. 149-268.

[11 J .J. BAETEN AND P. WEIJLAND, Process Algebra, Cambridge Tracts in

Theoretical Computer Science 18, Cambridge University Press, 1990.

[12] .J. BERGSTRA AND .J. W. KLOP, Process algebra for synchronous com­
rnunication, Information and Control, 60 (1984), pp. 109-137.

129

[13] --, Conditional rewrite rules: Confluence and termination, J. Com­
put. System Sci., 32 (1986), pp. 323-362.

(14] J. BERGSTRA, A. PONSE, AND J. VAN WAMEL, Process algebra with
backtracking, in Proceedings REX School/Symposium on A Decade
of Concurrency: Reflections and Perspectives, Noordwijkerhout, The
Netlwrlands, J. de Bakker, W. d. Roever, and G. Rozenberg, eds.,
vol. 80:3 of Lecture Notes in Computer Science, Springer-Verlag, 1994,
pp. 46-91.

[15] E. BEST, ed., Proceedings 4th Conference on Concurrency Theory,
Hildesheim, Germany, vol. 715 of Lecture Notes in Computer Science,
Springer-Verlag, 1993.

[16] B. BLOOM, S. lSTRAIL, AND A. MEYER, Bisimulation can't be traced:
preliminary report, in Conference Record 15th ACM Symposium on
Principles of Programming Languages, San Diego, California, 1988,
pp. 229-239. Preliminary version of [17].

[17] --, Bisimulation can't be traced, J. Assoc. Comput. Mach., 42 (1995),
pp. 232-268.

[18] R. BoL AND J. F. GROOTE, The meaning of negative premises in
transition system specifications, J. Assoc. Comput. Mach., 43 (1996),
pp. 863-914.

[19] T. BOLOGNESI AND F. LUCIDI, Timed process algebras with urgent
interactions and a unique powerful binary operator, in Proceedings REX
Workshop on Real-Time: Theory in Practice, Mook, The Netherlands,
June 1991, J. de Bakker, C. Huizing, W. d. Roever, and G. Rozenberg,
eds., vol. 600 of Lecture Notes in Computer Science, Springer-Verlag,
1992, pp. 124-148.

[20] R. CLEAVELAND, ed., Proceedings 3rd Conference on Concurrency The­
ory, Stony Brook, NY, vol. 630 of Lecture Notes in Computer Science,
Springer-Verlag, 1992.

[21] R. CLEAVELAND AND M. HENNESSY, Priorities in process algebras,
Information and Computation, 87 (1990), pp. 58-77.

[22] P. D' ARGENIO, A general conservative extension theorem in process
algebras with inequalities, in Proceedings 2nd Workshop on the Algebra
of Communicating Processes, Eindhoven, The Netherlands, A. Ponse,

130

C. Verhoef, and B. van Vlijmen, eds., Report CS-95-14, Eindhoven
University of Technology, 1995, pp. 67-79.

[23] P. o·ARGENIO AND C. VERHOEF, A general conservative extension

theorem in process algebras with inequalities, Theoretical Comput. Sci.,
177 (1997), pp. 351·380.

[24] \';'. FOKKINK AND R. VAN GLABBEEK, Ntyft/ntyxt rules reduce to ntree

n1.lf:s, Information and Computation, 126 (1996), pp. 1 10.

[25] \V. FOKKINK AND C. VERHOEF, A conservative look at operational

8emantics with variable binding, Information and Computation, 146
(1998), pp. 24-54.

[26] --, Conservative extension in positive/rn·gatii'I' r:onditional term

r·rwriting with applications to software renovaf.w11 f1u:tories, in Proceed­
ings 2nd Conference on Fundamental Approaches to Software Engi­
neering, Amsterdam, The Netherlands, J.-P. Finance, ed., vol. 1577 of
Lecture Notes in Computer Science, Springer-Verlag, 1999, pp. 98·-113.

[27] A. VAN GELDER, K. Ross, AND J. SCHLIPF, The well-founded seman­

tics for general logic programs, J. Assoc. Comput. Mach., 38 (1991),
pp. 620-650.

[28] R. VAN GLABBEEK, The linear time - branching time spectrum, m

Baeten and Klop [8], pp. 278-297.

[29] --, A complete axiomatization for branching bisimulation congru­

nu:e of finite-state behaviours, in Proceedings 18th Symposium on
Mathematical Foundations of Computer Science 1993, Gdansk, Poland,
A. Borzyszkowski and S. Sokolowski, eds., vol. 711 of Lecture Notes in
Computer Science, Springer-Verlag, 1993, pp. 4 73 484.

[30] --, Full abstraction in structural operational semantics (extended ab­

stract), in Proceedings 3rd Conference on Algebraic Methodology and
Software Technology, Enschede, The Netherlands, M. Ni vat, C. Rattray,
T. Rus, and G. Scollo, eds., Workshops in Computing, Springer-Verlag,
199:~, pp. 77-84.

[31] --, The meaning of negative premises in transition system speci­

fimtions II, in Automata, Languages and Programming, 23rd Collo­
quium, F. Meyer auf der Heide and B. Monien, eds., vol. 1099 of Lec­
ture Notes in Computer Science, Paderborn, Germany, 1996, Springer­
VPrlag, pp. 502 513.

131

[32] --, The meaning of negative premises in transition system specifica­

tions II, Report STAN-CS-TN-95-16, Department of Computer Science,
Stanford University, 1996.

[33] .J. F. GROOTE, Transition system specifications with negative premises,

Theoretical Comput. Sci., 118 (1993), pp. 263-299.

[34] J. F. GROOTE AND F. VAANDRAGER, Structured operational semantics

and bisimulation as a congruence, Information and Computation, 100
(1992), pp. 202-260.

[35] M. HENNESSY AND T. REGAN; A process algebra for timed systems,

Information and Computation, 117 (1995), pp. 221-239.

[36] R. KELLER, Formal verificatfon of parallel programs, Comm. ACM, 19
(1976), pp. 371-384.

[37] S. KLUSENER, Completeness in real time process algebra, in Proceed­
ings 2nd Conference on Concurrency Theory, Amsterdam, The Nether­
lands, J. Baeten and J. F. Groote, eds., vol. 527 of Lecture Notes in
Computer Science, Springer-Verlag, 1991, pp. 376--392.

[:38] K. G. LARSEN, Modal specifications, Tech. Rep. R 89-09, Institute for
Electronic Systems, University of Aalborg, 1989.

[39] K. G. LARSEN AND A. SKOU, Compositional verification of probabilis­
tic processes, in Cleaveland [20], pp. 456-471.

[40] R. MILNER, Communication and Concurrency, Prentice-Hall Interna­
tional, Englewood Cliffs, 1989.

[41] --, A complete axiomatisation for observational congrnence of finite­
state behaviors, Information and Computation, 81 (1989), pp. 227-247.

[42] F. MOLLER AND C. TOFTS, A temporal calculus of communicating

systems, in Baeten and Klop [8], pp. 401-415.

[43) X. NI COLLIN AND J. SIFAKIS, The algebra of timed processes, ATP:
theory and application, Information and Computation, 114 (1994),
pp. 131-178.

[44] G. PLOTKIN, A structural approach to operational semantics, Re­
port DAIMI FN-19, Computer Science Department, Aarhus University,
1981.

132

[45] T. PRZYMUS!NSK!, On the declarative semantics of dednctive databases
and logic programs, in Foundations of Deductive Databases and Logic
Prugramming. J. Minker, ed., Morgan Kaufmann Publishers, Inc., Los
Altos. California, 1988, pp. 193 216.

---, The well-founded semantics coincides with the three-valued stable
M'111m1tics, Fundamenta Informaticae, 13 (1990), pp. 445-463.

[47] A. ROSCOE, ThP. Theory and Practice of Concurrency, Prentice-Hall
lut<>rnational, 1998.

;.is] R. DE SIMONE, Calculabilite et Expressivite dans l'Algehm rfp Processus
Pnralleles l'v!EIJE, these de 3e cycle, Univ. Paris 7, 19:-: I.

[49) C. VERHOEF. A general conservative extension theorem 111. process al­
yPhm, in Proceedings IFIP Working Conference on Programming Con­
n~pts. Methods and Calculi, San Miniato, Italy, E.-R. Olderog, ed.,
!FIP Transactions A-56, Elsevier, 1994, pp. 149-168.

[5U] .l. VRANCKEN, The algebra of communicating processes with. empty pro-
1·,...ss, Theoretical Comput. Sci., 177 (1997), pp. 287 328.

