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Conservative Extension in 
Structural Operational Semantics 

Luca Aceto• Wan Fokkinkt Chris Verhoefi 

1 Introduction 

Structural operational semantics (SOS) [44] provides a framework to give 
an operational semantics to programming and specification languages. In 
particular, because of its intuitive appeal and flexibility, SOS has found con­
siderable application in the study of the semantics of concurrent processes. 
SOS generates a labelled transition system, whose states are the closed terms 
over an algebraic signature, and whose transitions are supplied with labels. 
The transitions between states are obtained inductively from a transition 
system specification (TSS), which consists of so-called transition rules of 
the form c~::cl'!:n. A typical example of a transition rule is 

x~x' 

xllY ~x'lly 

stipulating that if t ~ t' holds for closed terms t and t', then so does t!lu ~ 
t'llu for each closed term u. In general, validity (or invalidity) of the positive 
(or negative) premises of a transition rule, under a certain substitution, 
implies validity of the conclusion of this rule under the same substitution. 

This column is an excerpt from (2], which gives an overview of recent 
results in the field of SOS, with an emphasis on existing formats for TSSs. 
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Each of these formats wmes equipped with a rich body of results that are 
guaranteed to hold for any process calculus whose TSS is within that format. 

Over and over again, process calculi such as CCS [40], CSP [47], and 
ACP [11] have been extended with new features, and the TSSs that provide 
the operational semantics for these process algebras were extended with 
transition rules to describe these features; see, e.g., (10] for i1 systematic 
approach. A question that arises naturally is whether or uot the original 
and the extended TSS induce the same transitions t ~ t' for closed terms t in 
the original domain. Usually it is desirable that an extension is operationally 
conservative, meaning that the provable transitions for an original term are 
the same both in the original and in the extended TSS. 

Groote and Vaandrager [34, Thm. 7.6] proposed syntactic restrictions on 
a TSS, which automatically yield that an extension of this TSS with transi­
tion rules that contain fresh function symbols in their sources is operationally 
conservative. Bol and Groote (18, 33] supplied this conservative extension 
format with negative premises. Verhoef [49] showed that, under certain con­
ditions, a transition rule in the extension can be allowed to have an original 
term as its source. D'Argenio and Verhoef [22, 23] formulated a general­
ization in the context of inequational specifications. Fokkink and VerhcH:f 
[25] relaxed the syntactic restrictions on the original TSS, and lifted the 
operational conservative extension result to higher-order languages. This 
column contains an exposition on existing conservative extension formats 
for SOS, and their applications with respect to term rewriting systems and 
completeness of axiomatizations. 

Predicates in SOS semantics ean be coded as binary relations [34]. More­
over, negative premises can often be expressed positively using predicates 
(9]. However, in the literature SOS definitions are often dt'corated with 
predicates and/or negative premises. For example, predicates are usPd to 
express matters like (un)successful termination, convergence. divergence [3]. 
enabledness [14], maximal delay, and side conditions [42]. Negative premises 
are used to describe, e.g., deadlock detection (38], sequencing [17], priorities 
[7, 21], probabilistic behaviour [39], urgency [19], and various real [37] and 
discrete time [6, 35] settings. Since predicates and negative premises are so 
pervasive, and often lead to cleaner semantic descriptions for many features 
and constructs of interest, we deal explicitly with these notions. 

The organization of this column is as follows. Sect. 2 gives an overview 
of the basics of SOS. Sect. 3 presents syntactic constraints to ensure that 
an extension of a TSS is operationally conservative. Sect. 4 and 5 contain 
applications of conservative extension in equational specification and term 
rewriting. Sect. 6 finishes with some conclusions. 
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2 Structural Operational Semantics 

In this section we present the basic notions from process theory that are 
needed in the remainder of this column. 

2.1 Labelled Transition Systems 

We begin by reviewing the model of labelled transition systems (36, 44], 
which are used to express the operational semantics of many process calculi. 

Definition 2.1 A labelled transition system {LTS) is a quadruple 

(Pree, Act, {~I a E Act}, Pred), 

where: 

• Proc is a set of states, ranged over bys; 

• Act is a set of actions, ranged over by a, b; 

• ~~ Pree x Pree for each a E Act. We use the more suggestive notation 
s ~ s' in lieu of (s, s') E~, and write s ~ ifs ~ s' for no state s'; 

• P ~ Proc for every P E Pred. We write sP {resp. s-.P) if state s 
satisfies (resp. does not satisfy) predicate P. 

Relations s ~ s' and predicates sP in an LTS are called transitions. 

In what follows, an LTS is often identified with its collection of transitions. 
We trust that the meaning will always be clear from the context. 

LTSs describe the operational behaviour of processes in great detail. In 
order to abstract away from irrelevant information on the way that processes 
compute, a wealth of notions of behavioural equivalence over the states of 
an LTS have been studied in the literature on process theory. A system­
atic investigation of these notions is presented in (28], where van Glabbeek 
presents the linear time/branching time spectrum. This lattice contains all 
the known behavioural equivalences over LTSs, ordered by inclusion. 

2.2 Term Algebras 

We start from a countably infinite set Var of variables, ranged over by x, y, z. 
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Definition 2.2 A signature E is a set of function symbols, disjoint from 
Var, together with an arity mapping that assigns a natural number ar(J) to 
each Junction symbol f. A function symbol of arity zero is called a constant, 
while function symbols of arity one and two are called unary and binary, 
respectively. 

The arity of a function symbol represents its number of arguments. 

Definition 2.3 The set lJ'(E) of (open) terms over a signature E, ranged 
over by t, u, is the least set such that: 

• ea.eh x E Var is a term; 

• f ( f1, ... , tar(!)) is a term, if f is a function symbol and t1, ... , tar(!) 

are terms. 

T(E) denotes the set of closed terms over E, i.e., terms that do not contain 
variables. 

For a constant a, the term a() is abbreviated to a. By convention, whenever 
we write a term-like phrase (e.g., f(t,u)), we intend it to be a term (i.e., f 
is binary). 

Definition 2.4 A substitution is a mapping a : Var-+ lJ'(E). A substitution 
is closed if it maps each variable to a closed term in T(E). A substitution 
extends to a mapping from terms to terms as usual; the term a(t) is obtained 
by replacing occurrences of variables x in t by a(x). 

2.3 Transition System Specifications 

We proceed to introduce the main objects of study in the field of SOS, 
viz. transition system specifications. 

Definition 2.5 Let E be a signature, and let t and t' range over ·lT(E). 
A transition rule p is of the form H/a, with H a collection of positive 
premises t 4 t' and tP, and of negative premises t ~ and bP. Moreover, 
the conclusion a is of the form t 4 t' or tP. The left-hand side of the 
conclusion is the source of p. A transition rule is closed if it does not 
contain variables. 

A transition system specification (TSS} is a collection of transition rules. 
A TSS is positive if its transition rules do not contain negative premises. 
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For the sake of clarity, we will often display transition rules in the form *· The first systematic study of TSSs may be found in [48], while the first 
study of TSSs with negative premises appeared in [16]. 

We proceed to define when a transition is provable from a TSS. The 
following notion of a proof from [31] generalizes the standard definition (see, 

e.g., [34]) by allowing for the derivation of closed transition rules. The 

derivation of a transition a corresponds to the derivation of the closed tran­

sition rule H/a with H = 0. The case H f. 0 corresponds to the derivation 

of a under the assumptions in H. 

Definition 2.6 Positive literals are transitions t ~ t' and tP, while neg­

ative literals are expressions t ~ and hP, where t and t' range over the 

collection of closed terms. A literal is a positive or negative literal. 

Definition 2. 7 Let T be a TSS. A proof of a closed transition rule H /a 
from T is a well-founded, upwardly branching tree whose nodes are labelled 

by literals, where the root is labelled by a, and if K is the set of labels of the 

nodes directly above a node with label /3, then 

1. either K = 0 and /3 EH, 

2. or K //3 is a closed substitution instance of a transition rule in T. 

If a proof of H /a. from T exists, then H /a is provable from T. 

2.4 Three-Valued Stable Models 

In the presence of negative premises, the meaning of a TSS is sometimes 

ambiguous. For example, one can express that a transition holds if it does 
not hold. In order to associate an LTS to each TSS, we use the notion 

of a (least) three-valued stable model, introduced by Przymusinski [46] in 

logic programming. A three-valued stable model partitions the collection of 

transitions into three disjoint sets: the set C of transitions that are certainly 

true, the set U of transitions for which it is unknown whether or not they 
are true, and the set F of remaining transitions that are false. 

Definition 2.8 A disjoint pair of sets of transitions (C, U/ constitutes a 
three-valued stable model for a TSS T if: 

a transition a is in G iff T proves a closed transition rule N /a where 

N contains only negative literals and CU U f= N; 

a transition a. is in C U U iff T proves a closed transition rule N /a 
where N contains only negative literals and C f= N. 
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Each TSS has one or more three-valued stable models. For example. the 
TSS 

a-.P2 a-.P1 

aP1 aP2 
has ({a.Pl},0), ({aP2},0), and (0,{aP1,aP2}) as its three-valued stable 
models. Each TSS T affords a unique (information-)least three-valued stable 
model ( C, U), in the sense that the set U is maximal. Przymusinski [46] 
showed that this least three-valued stable model coincides with the so-called 
well-founded model that was introduced by van Gelder, Ross, and Schlipf 
[27] in logic programming. It is advocated in, e.g., [18, 32] that a TSS is 
meaningful if and only if its least three-valued stable model does not contain 
unknown transitions. In particular, each TSS that does not contain negative 
premises in its transition rules satisfies this requirement. The reader is 
referred to [31, 32] for more information on three-valued stable models and 
related notions. 

3 Operational Conservative Extension 

Often one wants to add new operators and rules to a given TSS. Therefore. 
a natural operation on TSSs is to take their component.wise union. The 
following definition stems from [34]. 

Definition 3.1 Let To and T 1 be TSSs whose signatures ~o and '.E1 agree 
on the arity of the function symbols in their intersection. vVe write ~o $ L::i 
for the union of L;0 and "E 1 . The sum of To and Ti, notation To EB Ti, is thf' 
TSS over signature L; 0 EEl "E 1 containing the rules in To and Ti. 

An operational conservative extension requires that an original TSS and 
its extension prove exactly the same closed transition rules that have only 
negative premises and an original closed term as their source. (This notion 
of an operational conservative extension is related to an equivalence notion 
for TSSs in (24, 32]: two TSSs are equivalent if they prove exactly the same 
closed transition rules that have only negative premises.) 

Definition 3.2 A TSS To EB T1 is an operational conservative extension of 
TSS To if for each closed transition rule N /a such that: 

- N contains only negative literals; 

- the left-hand side of a is in T(~o); 

- N /a is provable from To EEl Ti ; 

we have that N /a 'is provable from To. 
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3.1 Guaranteeing Operational Conservative Extension 

We start by defining the notion of a source-dependent variable [25, 30], which 
will be an important ingredient of a rule format to ensure that an extension 
of a TSS is operationally conservative. In order to conclude that an extended 
TSS is operationally conservative over the original TSS, we need to know 
that the variables in the original transition rules are source-dependent. In 
the literature this criterion is sometimes neglected. For example, in [43] an 
extended TSS is considered in which each transition rule in the extension 
contains a fresh operator in its source, and from this fact alone it is concluded 
that the extension is operationally conservative. In general, however, this 
characteristic is not sufficient, as is shown in the next example. 

Example: Let a and b be constants. Consider the TSS over signature 
{a} that consists of the transition rule xP / aP. Extend this TSS with the 
TSS over signature { b} that consists of the transition rule 0 /bP, which 
contains the fresh constant b in its source. The transition aP can be proved 
in the extended TSS, but not in the original one, so this extension is not 
operationally conservative. 0 

Definition 3.3 The source-dependent variables in a transition rule p are 

defined inductively as follows: 

- all variables in the source of p are source-dependent; 

if t ~ t' is a premise of p and all variables in t are source-dependent, 
then all variables in t' are source-dependent. 

A transition rule is source-dependent if all its variables are. 

Note that the transition rule xP / aP from the example above is not source­
dependent, because its variable x is not. 

Thm. 3.4 below, which sterns from (25], formulates sufficient criteria for 
a TSS To EB T1 to be an operational conservative extension of TSS T0 . We 
say that a term in 1f(L:o Ell L:1) is fresh if it contains a function symbol from 
Z:1 \I;o. Similarly, an action or predicate symbol in T1 is fresh if it does not 
occur in T0 . 

Theorem 3.4 Let To and T1 be TSSs over signatures E0 and E 1 , respec­

tively. Under the following conditions, To EBT1 is an operational conservative 
extension of To. 

1. Each p E To is source-dependent. 
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2. For each p E T1, 

• either the source of p is fresh, 

• or p has a premise of the form t ~ t' or tP, where: 

t E "U"(~o); 

all variables in t occur in the source of p; 

t', a, or P is fresh. 

3.2 Applications to TSSs 

We apply Thm. 3.4 to some TSSs from the literature. 

Basic Process Algebra with Empty Process The signature of basic 
process algebra with empty process [50], denoted by BPA,(Act), consists of 
the following operators: 

- a set Act of constants, representing indivisible behaviour; 

- a constant E, called empty process, representing successful termination; 

- a binary operator +, called alternative composition, where a term 
t1 + t2 represents the process that executes either t1 or t2; 

- a binary operator ·, called sequential composition, where a term t1 · t2 

represents the process that executes first ti and then t2· 

So the BNF grammar [5] for BPA,(Act) is (with a E Act): 

t ::= a \ i: I ti + t2 I ti · t2 . 

The intuition for the operators in BPA,(Act) is formalized by the transition 
rules in Table 1 from [11], which constitute the TSS for BPA.(Act}. This 
TSS defines transitions t ~ t' to express that term t can evolve into term t' 
by the execution of action a E Act, and transitions t..j to express that term 
t can terminate successfully. The variables x, x', y, and y' in the transition 
rules range over the collection of closed terms, while the a ranges over Act. 

The transition rules for BPA,(Act) are source-dependent. For example, 
consider the third transition rule for sequential composition in Table 1: 

x~x' 
a I x·y-+x ·y 



a I x-+ x 

x+y ~x' 
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a I y-+ y 

a I x-+ x x,/ y..j 
X· y,/ a I x·y-+x ·y 

Table 1: Transition Rules for BPA,(Act). 

The variables x and y are source-dependent, because they occur in the 
source. Moreover, since x is source-dependent, the premise x ~ x' ensures 
that x' is source-dependent. Since the three variables x, x', and y in this 
transition rule are source-dependent, the transition rule is source-dependent. 

Extending the Set of Actions Suppose that Act is extended to a set 
Actext. The TSS for BPA,(Actext) is the TSS for BPA,(Act) in Table 1, with 
the proviso that a ranges over Actext. We make the following observations 
concerning the extra transition rules in the TSS for BPA,(Actext): 

• the source of the transition rule a ~ e for a E Actext\Act contains the 
fresh constant a; 

• each transition rule concerning an a-transition of an alternative or 
sequential composition with a E Actext\Act, such as 

x~x' 

x+y~x' 

contains a premise with the fresh relation symbol ~ and with as left­
hand side a variable from the source. 

So, since the transition rules for BPA,(Act) are source-dependent, it can be 
concluded from Thm. 3.4 that BPA,(Actext) is an operational conservative 
extension of BPA,(Act). 

-
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Priorities The language BPAE11(Act) is obtained by adding the priority 
operator (J from [7] to BPA,(Act). This function symbol assumes a partial 
order < on Act. Intuitively, the process 8(t) is obtained by eliminating all 

transitions s ~ s' from the process t for which there is a transition s ~ s" 
with a. < b. For example, if a < b then O(a + b) can execute the action 
b but not the action a. The TSS for BPA,8(Act) consists of the transition 
rules in Tables 1 and 2, where the transition rules in the latter table capture 
the operational semantics of the priority operator. This TSS has a unique 
least three-valued stable model, which does not contain unknown transitions. 
(This follows from the fact that the TSS is stratifia.ble [33, 45].) 

x ~ x' x -1 for a < b 

O(x) ~ B(x') 

Table 2: Transition Rules for the Priority Operator. 

The two transition rules for the priority operator in Table 2 contain the 
fresh function symbol fJ in their sources. So, since the transition rules for 
BPA,(Act) are source-dependent, Thm. 3.4 implies that BPA,o(Act) is an 
operational conservative extension of BPAe(Act). 

3.3 Implications for Three-Valued Stable Models 

In (25] it was noted that the operational conservative extension notion as 
formulated in Def. 3.2 implies a conservativity property for three-valued 
stable models. If an extended TSS is operationally conservative over the 
original TSS, in the sense of Def. 3.2, and if a three-valued stable model 
of the extended TSS is restricted to those transitions that have an original 
term as left-hand side, then the result is a three-valued stable model of the 
original TSS. 

Proposition 3.5 Let To EB T1 be an operational conservative extension of 
To. If ( C, U} is a three-valued stable model of To EB T1, then 

C' 
U' 

{a EC I the left-hand side of a is in T(Bo)} 
{a EU I the left-hand side of a is in T(Bo)} 

is a three-valued stable model of To. 



120 

The converse of Prop. 3.5 also holds, in the following sense. If an extended 
TSS is operationally conservative over the original TSS, then each three­
va:lued stable model of the original TSS can be obtained by restricting some 
three-valued stable model of the extended TSS to those transitions that have 
an original term as left-hand side. 

Proposition 3.6 Let To©T1 be an operational conservative extension of To. 
If (C, U) is a three-valued stable model of To, then there exists a three-valued 
stable model (C', U') of To E9 T1 such that 

C A {a E C' I the left-hand side of a is in T( Eo)} 

U A {a E U' I the left-hand side of a is in T(Eo)} 

Corollary 3. 7 Let T0 E!1 T1 be an operational conservative extension of To. 
If ( C, U) is the least three-valued stable model of To E!1 Ti, then 

C' .:!. 

U' 
{a EC I the left-hand side of a is in T(I:o)} 

{a E U I the left-hand side of a is in T(I:o)} 

is the least three-valued stable model of To. 

4 Applications to Axiomatizations 

This section discusses how operational conservative extension can be used to 
derive that an extension of an axiomatization is so-called axiomatically con­
servative, or that an axiomatization is complete or w-complete with respect 
to some behavioural equivalence. 

4.1 Axiomatic Conservative Extension 

Definition 4.1 A (conditional) axiomatization over a signature I: consists 
of a set of (conditional) equations, called axioms, of the form to = u0 {= 

t1 = u1, ... , tn =Un with t;, u; E 1f(I:) for i = 0, ... , n. 

An axiomatization gives rise to a binary equality relation = on 1f(E) thus: 

• if to = uo {= t1 = u1, ... , tn = Un is an axiom, and u a substitution 
such that u(t;) = u( u.;) for i = 1, ... , n, then a(to) = u(u0 ); 

• the relation = is closed under reflexivity, symmetry, and transitivity; 
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• if f is a function symbol and u = u', then 

Definition 4.2 Assume an axiomatization [,, together with an equivalence 
relation "" on T(I;). 

1. £ is sound modulo ~ iff t = u implies t "" u for all t, u E T(L:). 

2. £ is complete modulo ~ iff t "" u implies t = u for all t, u E T(L:). 

Note that the above definitions of soundness and completeness, albeit stan­
dard in the literature on process algebras, are weaker than the classic ones 
in logic and universal algebra, where they are required to apply to arbitrary 
open expressions. 

Definition 4.3 Let £0 and E1 be axiomatizations over signatures L:o and 
L:oEBL: 1 , respectively. The axiomatization EoUE1 is an axiomatic conservative 
extension of £0 if every equality t = u with t, u E T(L:0) that can be derived 
from £0 U E1 can also be derived from Ea. 

The next theorem from [49] can be used to derive that an extension of an 
axiomatization is axiomatically conservative. 

Theorem 4.4 Let "" be an equivalence relation on T(L:o EB 2:: 1). Assume 
axiomatizations £0 and E1 over I;o and L:o EB L:1, respectively, such that: 

1. Eo U E1 is sound over T(:So EB :Si) modulo rv; 

2. [,0 is complete over T(L:o) modulo ""· 

Then E0 U E1 is an axiomatic conservative extension of Eo. 

The idea behind Thm. 4.4 is as follows. Suppose that t = u can be derived 
from Eo U [,; for t, u E T(:B0). Soundness of Eo U E1 (requirement 1) yields 
t ~ u. Hence, completeness of Eo (requirement 2) yields that t = u can be 
derived from Ea. 

Thm. 4.4 is particularly helpful in the case of an operational conservative 
extension of a TSS. Assume TSSs To and T1 over signatures I:o and I:o ffiI;1, 
respectively, where To EB T1 is an operational conservative extension of To. 
Moreover, let "" be an equivalence relation on states in LTSs. Since the 
states in the LTSs associated with To and To EB T1 are closed terms, the 
equivalence relation"" carries over to T(L:o) and T(Eo EEl L:1), respectively. 
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Owing to operational conservativity, the equivalence relation "' on T( Ea) as 

induced hy To agrees with this equivalence relation on T(Eo) as induced by 

1(1 EB T 1• Applications of Thm. 4.4 in process algebra, in the presence of an 

operational conservative extension of a TSS, are abundant in the literature; 
we give a typical example. 

Example: Using Thm. 3.4 it is not hard to see that the process algebra 

ACPe [7] is an operational conservative extension of ACP. Baeten, Bergstra, 

and Klop introduced in op. cit. an axiomatization Ea that is complete over 

ACP modulo bisimulation equivalence, and an axiomatization Eo U £1 that 

is sound over ACP e modulo bisimulation equivalence. Hence, Thm. 4.4 says 

that Ea U£1 is an axiomatic conservative extension of Ea. (In [7], fifteen pages 
were needed to prove this fact for the more general case of open terms, by 

means of a term rewriting analysis.) D 

4.2 Completeness of Axiomatizations 

The next theorem from [49] can be used to derive that an axiomatization is 
complete. 

Theorem 4.5 Let "' be an equivalence relation on T(Bo EB B1). Assume 

axiomatizations Eo and £1 over L:o and Bo EB B1, respectively, such that: 

1. Eo U £1 is sound over T(Bo EB B1 ) modulo ~; 

2. Eo is complete over T(Bo) modulo ,..__,,. 

8. for each t E T(I:o EB I:1) there is at' E T(Bo) such that t = t' can be 
derived from Eo U £1. 

Then Eo U £1 is complete over T(l:o EB B1) modulG1 "'. 

The idea behind Thm. 4.5 is as follows. Let t, u E T(Bo EB I:i) with t "' 

'll. There exist terms t', u' E T(Bo) such that Ea U £1 proves t = t' and 
n = u' (requirement 3). Soundness of £0 u E1 (requirement 1) yields t rv t 1 

and u ~ u', which together with t rv u implies t' rv u'. Finally, owing to 
completeness of l'o over T(I:o) (requirement 2), we may derive t' = u', and 
thus t = t' = u' = 1~. 

Thm. 4.5 is particularly helpful in the case of an operational conservative 
extension of a TSS. Assume TSSs To and T 1 over signatures B0 and B0 E9 I: 1 , 

respectively, where To$ Ti is an operational conservative extension of T0 . 

MoreovPr, let "' be an equivalence relation on states in LTSs. Since the 
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>-tates in the LTSs associated with Tti and Tu e T1 an• closed terms, the 
relation ~ carries over to T(L:o) and T( l:o e ~ 1 ). respectively. 

conservativity, the equivaltmce relation ,._, on T(:i.::0 ) as 
To agrei>s with this equivalenci> relation on T(:i~0 ) a.s induced by 

Applications of Thm. 4.5 in process algdmt, in tlw' pn~sence of an 
1ual const•rvative extensitm of a TSS. are abundant in tht' literature: 

we giw a. typical exa.mpi1~. 

Example: Using Thm. 3.4 it is not hard to see that tlH~ process alge­
bra ACP [12] is an operational conservative extension of BPA0• Bergstra 
and Klop presented in op. cit. an axiomatization Eo that is rnmplete over 
BPA 0 modulo bisimulation equivalence. and an axiomatization Eo U £1 that 
is sound over ACP modulo bisimulation equivalence. and that satisfies re-

3 above. Hence. Thm. 4.5 says that [ 0 U E1 is complete over 
ACP mudnlo bisimulation equivalence. 0 

For tlw precise proof;; of Thm. 4.4 and Thm. 4.5. and for more detailed 
informal ion such a.s generalizations of these results to axiomatizations based 
on irwqnalities. the reader is referred to [22. 23. ·49]. 

4.3 ~·-Completeness of Axiomatizations 

Definition 4.6 A.n axiomatization [ over a signature l: 1:" WJ-cmnplete if an 
l''l.jWJ.tUm t = u with t. ll E u(l:) can be derived from [ wht:rWl't"r a(t) = 
nm be· derived t.: for all closed substitution8 a. 

Milner :'n] introduced a technique to derive ,._,-completeness of an axioma­
tization using SOS. The idea is to give a semantics to open (as opposed to 
dc>sPd) terms; in particular, variables need to be incorporat1'd in the transi­
tion rnles. See, e.g.. 2!J] for further applications of this tPchnique in the 
realm uf process algebra. 

T!w next thi>orem can he used t.o derive that an aximnatization is w­
complet<>. 

Theorem 4.7 Let~ be an equivalence relation on lJ(L). Suppose that for 
all t. E lJ(L:), t,.... u whenever a(t) ~ a(u) for all closed suli8titut·ions a_ If 
[ 1s 11r1 1uiomati::ation over L such that 

1- t 1s sound on:r T(L) modulo ~. and 

:J. { lS OVtT U(L) modulo ~, 

thn1 [ '" w-compiPte. 
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The idea behind Thm. 4.7 is as follows. Let t, u E "U"(E) and suppose that 
11(t) ""11(11) can be derived from£ for all closed substitutions a. Soundness 
of£ over T(E) modulo"' (requirement 1) yields a(t),..., a(n) for all closed 
substitutions a, so t ,..., u. Then completeness of£ over lT(E) modulo ....., 
(requirement 2) yields that t = u can be derived from£. 

Assume a TSS To over a signature E, and let To be extended with a 
TSS T1 that provides semantics to variables; thus, To $ T1 gives semantics 
to open terms in 11"(E). Suppose that To $Ti is an operational conservative 
extension of T0 . Moreover, let ,..., be an equivalence relation on states in 
LTSs. Since the states in the LTSs associated with To and To $ Ti are 
dosed and open terms, respectively, the equivalence relation ""' carries over 
to T(Eo) and 11"(E0). Owing to operational conservativity. the equivalence 
relation "' on T(Eo) as induced by To agrees with thi::; Pquirnlence relation 
on T(Eo) as induced by ToEBTi. Applications of Thro. 4.7 i11 process algebra 
are ahnndant in the literature; we give a typical example. 

Example: Extend the TSS for BPA,(Act) in Table 1 by letting the symbol 
a range not only over Act, but also over Var. In a sense this means that 
variables are considered to be constants. This extension is operationally 
conservative, which follows from Thro. 3.4 by the following facts: 

• the transition rules for BPA,(Act) are source-dependent; 

• thP sources of transition rules z 4 f for variables z are fresh; 

• ea.eh transition rule for alternative or sequential composition with z-
transitions, such as 

x4x' 

x+y 4 x' 

rnntains a premise with the fresh relation symbol 4 and as left-hand 
side a variable from the source. 

Furthermore, the following properties can be derived for the axiomatization 
E of BPA,(Act) in [50]: 

1. Eis sound over BPA,(Act) modulo bisimulation equivalence; 

2. upen terms t and u in BPA,(Act) are bisimilar whenever a(t) and a(u) 
art> bisimilar for all closed substitutions a; 

3. [is complete over the open terms in BPA,(Act) modulo bisimulation. 

So Thm. 4.7 implies that [is w-complete over BPA,(Act) modulo bisimula­
tion equivalence. D 
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5 Applications to Rewriting 

This St>ction discusses how operational conservative extension can be used to 
derive that an extension of a conditional term rewriting system is so-called 
rewritP conservative, or that a conditional term rewriting system is ground 
confluent. 

5.1 Rewrite Conservative Extension 

Definition 5.1 Assume a signature :E. A conditional term rewriting sys­
tem (GTRS) (4, 13} over E consists of a collection of rewrite rules 

with t,. u, E lJ(:E) for i = 0, ... , n. 

Intuitively. a rewrite rule is a directed axiom that can only be applied from 
left to right. A CTRS induces a binary rewrite relation-+* on terms, similar 
to the way that an a.xiomatization induces an equality relation on terms (the 
only difference is that the rewrite relation is not closed under symmetry), 
thus: 

• if to -+ I.Lo *=' i1 -+* ui, .. ., tn -+* Un is a rewrite rule, and er a 
substitution such that a(t;) -+* a(u;) for i = 1, ... ,n, then cr(to) -+* 
a(uo); 

• the relation -+* is closed under reflexivity and transitivity; 

• if f is a function symbol and u -+* u.', then 

f (t1, ... , t;-1, t.L, t,+1,. .. , t<>r(j)) -+ • f(t1,. .. , t;-i. u', tt+J,. .. , tar(/)). 

The definition of sum of TSSs (cf. Def. 3.1) applies equally well to CTRSs. 

Definition 5.2 Let Ro and R1 be CTRSs over signatures Eo and Eo $ E1. 
respectively. Ro Gl R 1 is a rewrite conservative extension of Ro if every 
rewrite relation t -+* u with t E T(Eo) that can be derived from Ro Gl R1 can 
also be derived from Ro. 

The conservative extension theorem for TSSs, Thm. 3.4, applies to CTRSs 
just as well; see [26] for more details. Note that the definition of source­
dependent variables in transition rules, Def. 3.3, also applies to rewrite rules 
(where, in a rewrite rule to -+ uo *" t1 -+ • u1, ... , tn -+ • u,,, the expression 
to-+ uo is the conclusion and the t; -+* u; for i = 1,. .. , n are the premises). 
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Theorem 5.3 Let Ro and R1 be CTRSs over signatures Ea and EoEBE1, re­
spectively. Under the following conditions, Ro EB R1 is a rewrite conservative 
extension of Ro. 

1. Each p E Ro is source-dependent. 

2. For each p E T1, 

• either the source of p is fresh, 

• or p has a premise of the form t -+ t' where: 

- t E "U"(Eo); 
- all variables in t occur in the source of p; 

- t 1 is fresh. 

5.2 Ground Confluence of CTRSs 

Definition 5.4 A CTRS is ground confluent if for all t, to, t1 E T(E) with 
t -+* to and t -+* t 1 there is a u E T(E) with to -+* u and t1 -+* u. 

Ground confluence is an important property, for instance, to prove that an 
axiomatization is complete modulo some behavioural equivalence relation. 

The next theorem from [49] can be used to derive that a CTRS is ground 
confluent. We say that a CTRS R is sound modulo an equivalence relation 
,...., on T{E) if t -+* u implies t ,..., u for all t, u E T(E). 

Theorem 5.5 Let,..., be an equivalence relation on T(Eo EB E1). Assume 
CTRSs Ro and R 1 over Eo and Eo EEl E1, respectively, such that: 

1. Ro EEl R1 is sound over T{Eo EB E1) modulo "'i 

2. ift,t' E T(Eo) with t,...., t', then there is au E T(Eo) such that t -+* u 
and t' -+* u can be derived from Ro; 

3. for each t E T(Eo EB Ei) there is at' E T(Eo) such that t -+* t' can be 
derived from Ro EEl R1. 

Then Ro EEl R1 is ground confluent over T(Eo EB E1). 

The idea behind Thm. 5.5 is as follows. Let t E T(Eo EB E1) such that t -+ • t0 

and t -+* t1 can be derived from Ro EB R1. There exist t0, t~ E T(Eo) such 
that to -+* t0 and t1 -+* t~ can be derived from Ro EB R 1 (requirement 3). 
Soundness of Ro EEl R1 (requirement 1) yields t ,...., to "' t0 and t "' t1 "' t~, 
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sot~"' t11• Then there exists au E T(Eo) such that t~ --.• u and t~ --.• u 
(requirement 2). Hence, to-+* u and t 1 -;• u. 

Thm. 5.5 is particularly helpful in the case of an operational conservative 
extension of a TSS. Assume TSSs To and T1 over signatures Eo and E0 EB E1, 

respectively, where To ffi Ti is an operational conservative extension of T0 . 

Moreover, let ,..., be an equivalence relation on states in LTSs. Since the 
states in the LTSs associated with To and Toe Ti are closed terms, the 
equiv-d.lence relation ,.., carries over to T(Eo) and T(Eo EB Ei ), respectively. 
Owing to operational conservativity, the equivalence relation ,.., on T(Eo) 
as induced by To agrees with this equivalence relation on T(Eo) as induced 
by To ffi T1• Applications of Thm. 5.5, in the presence of an operational 
conservative extension of a TSS, are abundant in the literature; we give a 
typical example. 

Example: Using Thm. 3.4 it is not hard to see that the process algebra ACP 
[12] is an operational conservative extension of BPA0 . Bergstra and Klop 
presented in op. cit. an (unconditional) CTRS RoEBR1 for the process algebra 
ACP. which reduces each closed term in ACP to a closed term in BPA0• 

Moreover, Ro EB R 1 is sound over ACP modulo bisimulation equivalence, and 
it is easily shown that Ro can reduce bisimilar closed terms in BPA0 to the 
same dosed term in BPA6 . Hence, Thro. 4.4 says that Ro EB R1 is ground 
confluent. (In [12, p. 122], an analysis of about 400 cases was needed to 
prove this fact for the more general case of open terms.) D 

6 Conclusion 

Operational conservativity of an extension of a TSS can in general be con­
cluded in a straightforward fashion from the syntactic form of the transition 
rules. Operational conservative extension seems such a natural notion that 
in the literature this property is often a hidden assumption: its formulation 
and proof are omitted without justification. For example, this happens in 
the design of process algebras, and in applications of the strategy to prove 
w-completeness mentioned in Sect. 4.3. 

Paying attention to operational conservative extension not only leads to 
more accurate contemplations on concurrency theory, but is also beneficial 
in other respects. Namely, operational conservative extension can be ap­
plied to derive useful results in the realm of equational rea.'iOning, which are 
much harder to obtain using more classical term rewriting approaches or 
customized techniques. 
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