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ABSTRACT 

An explicit algorithm is given for the computation of the basic reproduction ratio 
R0 (or the net reproduction ratio R in the case of a not wholly susceptible 
population) for a class of discrete-time epidemic models. These models allow for a 
finite number of different individual types, type changes at fixed type-dependent 
intervals, arbitrary contact intensity between individuals of the various types, and 
variable infectivity. The models reflect the situation where an infectious disease 
spreads in a population of animals that are reared in different stables on farms. 

In addition, it is shown analytically that the reproduction ratio depends, for any 
given type, on the product of the susceptibility and the total infectivity of that type 
and not on these factors separately. We call this product the transmission weight of 
the type. The maximum overall transmission weight gives an upper bound for the 
reproduction ratio, irrespective of the particular submodels for type change and 
contact structure. Reduction of all transmission weights below 1, by vaccination or 
some other control measure, will result in R < 1 and will hence lead to eradication of 
the disease. 

1. INTRODUCTION 

Imagine a viral infection in a heterogeneous population of animals 
that are reared in different stables on farms and are moved from one 
stable to another (and possibly also between farms) at regular intervals. 
Suppose one wants to study the possible spread of the viral infection in 
such a situation or evaluate possibilities for eradication of an already 
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established infection. It is common practice in handling problems of this 
kind to study the basic reproduction ratio R 0 (see, e.g., [2], [5]). R

0 
is 

the expected number of new infections caused by a typical infected 
individual during its entire infectious period in a virgin (i.e., completely 
susceptible) population that is in a stable demographic steady state at 
the moment the infection is introduced.* For any eradication strategy to 
be effective, it has to reduce the net reproduction ratio R of the 
infective agent in the non-virgin controlled population below 1. 

In this paper we present an algorithm to compute R 0 (or R as the 
case may be) as a function of relevant and measurable parameters that 
govern the spread of the virus from individual to individual and from 
stable to stable. We do this for a broad class of multigroup models 
where the type (group) of an individual can be dynamic, where we can 
specify an arbitrary contact structure between individuals of the various 
types, and where the infectivity is allowed to be a function of the time 
elapsed since infection took place. We are concerned with calculation of 
R0 for this class of models and the dependence of R 0 on the ingredients 
of the model. 

In [10] it was shown, in a general abstract setting, that R 0 for 
heterogeneous populations is defined as the dominant eigenvalue of the 
so-called next-generation operator. This operator, which in the case of a 
finite number of different individual types takes the form of a matrix, 
describes, on a generation basis, the expected number of new cases that 
a certain type of newly infected individual causes and how these new 
cases are distributed over all possible individual types at the moment 
infection takes place. 

In order to determine the elements of the next-generation matrix, 
one has to specify submodels for various processes, one of which is 
change of type. The "type" can be static or dynamic, and in the latter 
case one has to provide an adequate description of the dynamics. A 
popular assumption is that the per capita probability per unit of time 
that a type change will occur is a (type-dependent) constant. This 
Markovian point of view ("type" equals "state" at the individual level) 
has the technical advantage that it leads to ordinary differential equa
tions when describing the deterministic (law of large numbers) limit at 
the population level (see, e.g., [15]). It implies that the sojourn time 

*One can argue whether or not a new symbol should be introduced in the case of 
a population that is not wholly susceptible because some control measures have been 
applied. One could denote the corresponding net reproduction ratio by R . However, 
from a mathematical point of view, R0 and R are reproduction ratios calculated in 
precisely the same manner, the only difference being that the virgin and controlled 
populations differ in their steadv-state structure at the moment of invasion. 
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distributions for the various states are exponential. In the context of 
animal farms with transport among stables, the sojourn time is usually 
the same for all animals, and thus the distribution is far from exponen
tial. 

We can incorporate sojourn times with nonexponential distributions 
by adopting the semi-Markovian point of view that the per capita 
probability per unit of time that a type change will occur depends not 
only on the type but also on the type-age. In the present paper we 
restrict our attention to the relatively simple (and therefore parameter
scarce!) case where the sojourn time is determined by two independent 
mechanisms: death, with a constant probability per unit of time, and 
"transport" from one type to another after preset type-dependent time 
intervals. Furthermore, we take into account variable infectivity as a 
function of the time that has elapsed since infection took place (infec
tion-age). For models of this complexity, it is neither easy nor helpful to 
give the next-generation matrix explicitly. However, we can determine 
the entries of this matrix directly from our ingredients with an efficient 
algorithm. 

Section 2 is devoted to the basic ingredients of the model and 
describes the relation of these ingredients to measurable quantities. In 
Section 3 we given an annotated algorithm to compute the entries of 
the next-generation matrix, and we show analytically what the influence 
is on the next-generation matrix and R0 of some specific changes in the 
ingredients. In Section 4 we illustrate our approach with some examples 
based on the spread of Aujeszky's disease virus (ADV) of pigs on a 
farrow-to-finish farm. 

2. THE INGREDIENTS OF THE MODEL 

2.1. DEMOGRAPHY 

We distinguish individuals according to their type, in which we 
combine both physiological differences (e.g., age and being pregnant) 
and spatial differences (i.e., the spatial compartment where the individ
ual current1y resides). The current physiological state determines the 
susceptibility of an individual (probability that the individual becomes 
infected for a given level of infectious material in its direct surround
ings), and the physiological state at the moment of becoming infec~ed 
determines the production of infectious material (output) as a function 
of the time that has passed since the individual became infected. The 
spatial structure determines who "meets" whom. We represent both 
structures with a single label taking values in {1,2, ... , n}.. . 

We want to allow that both the physiological and spatial charactens
tics of a given individual change over time. Type alone does not suffice 
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to calculate the probability of being of a certain type at future times; we 
need in addition to consider the type-age of the separate individuals. We 
measure this type-age in discrete steps, and for an individual of type i it 
takes the values {1,2, ... , a). We will often loosely speak of "age" 
instead of "type-age" and refer to the combination (i, a) of type i and 
type-age a as the state of the individual. 

We assume that if an individual becomes of a given type i, it starts 
with age 1 and changes type at age a;, as long as it does not die along 
the way. We postulate an age-independent survival probability 11'; per 
time step for individuals of type i. Let 'TTikji denote the probability that 
an individual that is in age class Oi of type i will be in age class 1 of 
type j one time step later. So the matrix K = (k;j)I ~ i,j ~ n describes the 
redistribution of types. 

We allow for the immigration of wi individuals in age class 1 of type i 
at each time step. The stable type distribution with influx can then be 
calculated as follows. Suppose there are si individuals in age class 1 of 
type i at each time step; then S;1Tr; individuals leave type i alive at each 
time step. Hence, we have the consistency requirement 

s=w + KDs, 

where D = diag(1T;'7i) is the diagonal matrix with entries 7r{i. We obtain 

and we conclude that the stable demographic steady state, in the 
absence of infection, is given by S;'TT;° -

1 for types i E {l, 2, ... , n} and 
type-ages a E { 1, 2, ... , a). The total number of individuals of type i in 
the demographic equilibrium is therefore 

In the situation described so far, the matrix KD should have domi
nant eigenvalue less than 1, and a steady demographic state results from 
a continuous influx w of new individuals from the outside. The situation 
where a steady demographic state results from reproduction within the 
system, balanced by outflow (as incorporated in the matrix K), can be 
described as follows. Assume that reproduction necessarly coincides 
with a change of type (this can always be achieved by an appropriate 
definition of the types, see, e.g., Section 4). The vector Ds describes the 
(constant) outflow in a steady demographic state. Let the matrix B 
describe reproduction. More precisely, let bij denote the expected 
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number of individuals of type i produced by an individual that reaches 
the maximal age of type j. Then consistency requires that 

s = BDs + KDs 

or, in other words, that the matrix (B + K)D has dominant eigenvalue 1 
and that s is the corresponding eigenvector. In the concrete example of 
the management of a farm, we can consider B and D as given, to some 
extent, by nature, and then K has to be adjusted to satisfy the 
eigenvalue condition (again we refer to Section 4 for an example). 

In Section 2.2 we make special assumptions that guarantee that the si 
characterizing the demographic steady-state drop out of the expressions 
necessary to calculate R0 • 

2.2. THE INFECTION PROCESS 

When, during a certain time interval, an individual of type j with 
type-age a becomes infected, then we colloquially speak of (j, a) as the 
state at "birth" of the individual ("born" with respect to the infection). 
During the next time interval the infection-age of this individual is 1, 
and its state is either ( j, a + 1) (whenever a< a) or(/, 1) for some l with 
k lj > 0 whenever a= a j . We neglect the possibility that a newly infected 
individual dies during the same time interval in which it becomes 
infected. However, we do take removal during the change in type into 
account, so if E7 ... 1 klj < 1, then it is possible that an individual is born 
although it will not live to reach infection-age 1. 

If the individual is born with type j, then we can calculate the 
probability that its state at birth is (j, a). Since all individuals of type j 
are equally susceptible and experience the same force of infection, this 
probability is given by 

when 0 < 7Tj < 1, whereas the probability is 1/ ~ for 7Ti = l. 
We assume that the product h13~ is a measure fo!' the exp_ect~d 

amount of infectious material shed by an individual of birth type J with 
infection-age {3 given that the individual is not remove_d by .disease
unrelated causes. (Removal by disease-unrelated causes will be incorpo
rated in the quantities e1. to be defined below.) For hp we assume that 
its support is given by soin.e (discrete) interval [e_, 8+ J, and_ w~ no~~l
ize "" 8+_ h = 1. The factor f · reflects possible differences m mfect1v1ty 

'-' {3- 8 f3 J h" h . f . . that are -birth-type-related. So, note that the way in w ic m ectiv1ty 
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depends on infection-age is, by assumption, the same for all types; the 
influence of type is at most a scaling factor. 

Remember that differences in type include differences in the spatial 
compartment in which the individual resides. We assume that the type 
of an individual fully determines the contact intensity. More precisely, 
we postulate that a fraction cij of the infectious material shed by 
individuals of type j contributes to the force of infection acting on 
individuals of type i. 

In addition to differences in infectivity (/), we allow for differences 
in susceptibility. We define type i susceptibility gi as follows. The 
probability that an individual of type i becomes infected when exposed 
for a period of length lit to an intensity (a concentration) of infectious 
material { is declared to be 1- e-Cg;!ir. Provided that [!it is small, it is 
legitimate to replace 1- e-Cgit.r by its linearization {g; lit, and we will 
do so in all that follows. The limit this sets to the period At depends on 
the value of '. In this paper we concentrate on the early stages of an 
epidemic, when { is small and therefore lit is not severely restricted. In 
addition we adopt the point of view that if one unit of infectious 
material is released into a group of N animals, the probability that this 
unit will reach a particular individual within the time step 6.t is 1/ N. 
Moreover, when several types are present in the same compartment, the 
probability per time step that a unit of infectious material reaches a 
particular individual of type i is 

where the summation is over all the different types within the compart
ment and where Ni= s/1 + ·· · + 'rr/·1-

1
) is the population size of type i 

individuals in the demographic steady state. The first factor is just the 
fraction of type i individuals in the compartment, and we shall include 
this factor in the contact matrix C defined above. As a consequence of 
these assumptions, the probability that any member of the type i 
individuals wiU become infected when they as a group come in contact 
with one unit of infectivi ty is 

S. ( 1 + 7T. + . . . + 7T .°'1 - I ) • 
I I l 

In our model, the factors ~ and g i enter the next-generation matrix 
only as a product. Therefore, the calculations in Section 3 have straight
foiward generalizations to the case where these products are replaced 
by the more general factors. However, in most applications it seems 
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reasonable to assume that infectivity and susceptibility are separate 
multiplicative factors. 

3. AN ALGORITHM 

To calculate R 0 we consider a newly infected individual born with 
type j. Define numbers mii as the expected number of secondary cases 
that an individual born with type j will produce among the individuals 
with type i. The matrix M = (m,.

1
.)1 ~ .. ,.. is the next-generation matrix ....,. t,J.,,, n 

in the sense of [10], and R0 is the dominant eigenvalue of M. 
In the algorithm described below we concentrate on the computation 

of the matrix components miJ from the ingredients of the model, that is, 
the number of types n, the vector of maximal type-ages a-, the survival 
vector rr, the type redistribution matrix K, the "mixing" matrix C, the 
infectivity and susceptibiHty vectors f and g, and finally the normalized 
vector h describing the fraction of infectivity produced as a function of 
infection-age. One can then use standard numerical software to deter
mine the dominant eigenvalue of the matrix M. 

We consider an infected individual that was born with type j (we will 
refer to this individual as the index case for convenience). As time 
proceeds, the type of the index case will change, given that the individ
ual does not die. Define fJelJ , jE{l,2, ... ,n}, as the total amount of 
infectivity that the index case is expected to produce while it is of type /. 
Note that it is possible that r.,7= 1e1J < 1 because now we do not take 
removal by disease-unrelated causes into account. 

The component m;i of M, that is, the expected number of victims 
the index case makes among the susceptibles of type i, is then given by 
(remember the last expression from Section 2) 

The task remains to give an algorithm for the computation of the 
coefficients e1i . 

At first we ignore that the index case will contribute to eii before it 
changes its type for the first time after becoming infected. We consider 
the birth type of an infected individual as the root of a treelike graph 
and all possible types as vertices that may be passed through as time 
proceeds. From the root, a finite number of main branches will grow to 
new vertices, one branch for each type l with klJ > 0. These branches 
will, in turn, split into secondary branches, tertiary branches, etc. The 
idea of the algorithm is to systematically~ and economically, walk along 
all branches that emanate from the root, and every time we pass 
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through a vertex l E {1,2, ... , n}, "update" the relevant coefficient e1i. In 
the end, all coefficients e1j, l E{l,2, ... ,n} will have been computed 
simultaneously. We carry out this computation for all birth types j E 

{1, 2, ... , n}. 
The individual contributions to a given coefficient e1i will depend on 

the infection-age of the index case at the time it (re)enters type /, 
because the infectivity h is a function of infection-age. Define E(l, a) as 
the expected fraction of infectivity produced by an individual of infec
tion-age a and state (/, 1) during the entire connected period in which 
this individual is of type l . Our assumptions imply that 

min( a + u1 - 1, 8 + } 

E(l,o:)= L h{37Tp- a 
f3 = max{a,8_ } 

(here and in the following we use the convention that a sum equals zero 
whenever the upper index bound is less than the lower index bound). 

Consider an individual born with state (j, b ). The conditional proba
bility that the individual leaves type j alive (as far as non-infection
related causes of death are concerned; infection-related causes are 
incorporated in h), given that it is alive at the end of the time interval in 
which its type-age is b, is 7T{i / Tr/> = 1T'/'°i -b. The infection-age of this 
individual is aj - b in the last time interval in which it is of type j, and it 
is Oj - b + 1 in the first time interval in which the individual is, possibly, 
of another type. 

Now consider an individual born with type j. The probability that 
such an individual has type-age b at the moment of infection and leaves 
type j alive is 

which is independent of b ! So, if we consider all possibilities for the 
type-age at birth, we obtain a constant output in number, while the 
infection-age at type-age 1 of the next type varies from 1 (when b =a) 
to <Jj· (when b = 1). So, for example, if the next type is l, this yields a 
contribution 

<1"j 

7r/1"i </>j 2: E ( l, a ) 
a= 1 

to the fraction of infectivity shed while of type l. When we follow this 
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individual further, we get contributions 

T + <Tj 

7r{i<f>j L E(l, a) 
a= T+ 1 

105 

to the fraction of infectivity shed while of type /,where T is the sum of 
the type durations of all types the individual passed through after the 
initial j and preceding the present type l (given that it stays alive). Note 
that the factor </>j is the same all the time, so we can save some 
computational effort by delaying the multiplication by <P· until the end 
of our computations. The factor 1T{i will be incorporated

1 
in the variable 

p (see below). 
From our systematic tree walk, we use two procedures that will be 

called upon time and again in the main program: procedure S + (which 
takes a step to the right in our tour of the horizontal tree) and 
procedure s- (which starts by taking a step to the left). Let Q be an 
array of integers of variable length corresponding to the types that are 
visited by the index case after it becomes infected and the order in 
which they are visited (i.e., the route of the index case through the tree). 
Let the variable T denote the total duration of all type periods in Q 
except the first and the last, and let p denote the product of (1) the 
probability, given that the index case leaves its birth type alive, that the 
particular route through type space described by Q is actually followed 
and the individual stays alive, and (2) the factor 1Ti crj (this last factor is 
incorporated in order to have a unified description of s+ for the first 
and all subsequent steps). With Q := QEa {q,} we denote the addition of 
a new vertex type at the right-hand end to the existing array Q, and with 
Q := Qe {q,_ 1} we denote the removal of the last vertex type on the 
right side of Q. 

Suppose the current status of the route Q by our index case is 
Q = [q0 , q1, ... , q,_ 1, qr] for r ~ 1, qi E {1, 2, ... , n}. The root of the tree, 
that is, the birth type of the index case, is t/o· The procedure s+(x) 
adds the vertex qr+ 1 = x to the route, updates the variables p and T for 
"living through" the type x, and updates the coefficient e xqo. 

Procedure S + ( x) 
qr+ l := X 

p := kq,+ lq, 1Tq~q, p 
T + uqo 

e := e + p " E(q,+ 1 , a) q,+ 1% q,+ lqO i..J 
a= T + 1 

T :=T+ a: q,+ I 

Q := QEa {q,+ i} 

end procedure S +. 
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The addition of new vertex types at the right end of Q can stop for two 
reasons. First it may be that at some point a vertex i is added from 
which no new branches can emanate because kli = 0 for all l E 

{1,2, ... ,n}. Second, we stop adding new elements when the total time T 
of the route Q is greater than the maximum time () + during which 
infectivity can be emitted. From the point of view of the disease, we are 
not interested in the ramifications of the particular branch of the tree 
that may lie beyond a vertex where the infectious period elapses. In 
both of the "stop situations" we retrace our steps, removing vertex types 
from the right end of Q, simultaneously backdating the variables T and 
p appropriately., until an element of Q is reached from which progress 
into another branch of the tree is possible. This is the content of 
procedure s-. As an auxiliary tool we need the procedure Next. The 
procedure Next(r, s) determines the lowest possible type index that can 
follow type index r, subject to the constraint that the next type index 
must be greater than or equal to s. When there actually is no next type 
index possible satisfying the constraint, Next is put, somewhat arbitrar
ily, equal to n + 1. 

Procedure Next( r, s) 
if s = n + 1 then Next := n + 1 
else if k sr > 0 then Next := s 

else Next( r , s + 1) 

end procedure Next. 
The current status of the route is taken as Q = [q0 ,q1, ... , qr_ 1,q, ] for 

r ~ 1. 

Procedure s-

end procedure s-. 

T:=T - a q, 

P := p I k 7T O"q, _ I 
q,q, _ 1 q,_ 1 

x == Next( q,_ 1, q, + 1) 

Q := Qe {q,} 

If x < n + 1 then S + ( x) 

else 
if not Q = [ q 0 ] then s-

Finally, we are ready for the main algorithm, which is by now easy to 
formulate. We just walk through the trees we obtain by taking in turn 
each possible birth type as root. At each vertex we choose, using Next, 
the lowest type following the present type for which progress is possible. 
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We have to take care of two loose ends. We have to multiply all 
coefficients e1j with the survival factor <Pi' and the contribution that the 
index case with birth type j makes to the infectivity toward susceptibles 
of type j , before the first postinfection type change occurs, still has to 
be taken into account. 

Main Algorithm 
For j = 1 to n do 

Q == [qo] == j 
T==O 
p == 1 
for x = 1 to n do e xj = 0 
i := Next(j, 1) 
s + (i) 

while not(Q = [q0 ]) do y == Next(q,, 1) 
if y < n + 1 and T <Tm then s+ ( y) 
else s-

if 1Tj < 1 then 

'JT:- • ~ 1 1 
<f> ·= 

1 else </>· == -i . 1T . - 1T fTi J a . 
J J J 

for x = 1 to n do .e i == <f>.e 'i 
er; - I m inf o"j - a , ~ + ) a -- I 

1T· 

ejj == ejj + L ( L hf37T/3-1 ) L:a- ; h-1 
a = 1 /3 = e _ b

1
= 11Tj 

end for loop 

We end this section by deriving two analytic results about R 0 in the 
present framework. The idea that these results should hold was born 
after experimenting under various biological assumptions with a com
puter implementation of the algorithm. 

We note from Equation (1) that R 0 for a homogeneous population 
consisting of a single type i is equal to the product of the infectivity Ji 
and the susceptibility gi. To avoid confusion with the R0 for the 
heterogeneous population consisting of more than one type, we refer to 
the product f igi as the transmission weight of type i. One can now 
rightfully wonder whether different partitionings of the two factors 
within the product would influence R 0 • The following easy observation 
shows that this is not the case. 

LEMMA I 

Define f / = (1/ K)f; and g/ = Kig,. , for K; > 0 and i E {l,. .. , n}. Con
sider matrices M and M ' with the entries given by (1) with appropriate 
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placing of accents for M ' . Then the dominant eigenvalue of M is equal to 

the dominant eigenvalue of M . 

Proof The eigenvalue problems of M and M' are related in the 
following way: Mx = AX<=> M ' y = AY where Yi = Kix i, i E {l, ... , n}. 
Therefore, the eigenvalues of M and M ' are the same, and hence the 
dominant eigenvalues are the same. • 

Knowing that R0 depends on the products f igi, we now derive an 
estimate for R0 in terms of these transmission weights. 

THEOREM 1 

For the matrix M with entries given by (1), the dominant eigenvalue is 

less than or equal to max 1 ~; ~ n{f;gJ 

Proof We define g/ = 1 and f / = f; g; for i E {l, ... , n}. Let a matrix 
M' be defined by (1) with f/ and g/ as infectivity and susceptibility of 
type i, i E {1, ... , n}: m;j = f/''£7= 1cile/j . Then, by Lemma 1, the eigenval
ues of M' are equal to the eigenvalues of M. From the definitions of e ij 
and c;j we know that Ej=,eij ~ 1 for all j E {l, . . . ,n} and E7=1c;j = 1 for 
all j E{l, ... , n}. A well-known upper estimate for the dominant eigen
value Ad of a positive matrix (see, e.g., [14]) is, when applied to M ' , 

n 

Ad~ max L m;j . 
I ~j~ n i=l 

This leads to 

n n 

Ad~ m~ !/ L L cue11 
l~J~n i==l /= l 

n n 

= max f.' L e1. " c.1 • } } f...J I 

l~ J~n l = 1 i = I 

~ max f.' = max f.g .. 
I . 1 I. JJ 

:S;;J ~ n ~J:S;; n • 
4. AUJESZKY'S VIRUS DISEASE ON A PIG BREEDING FARM 

On a farrow-to-finish farm (see, e.g., [11]), sows are kept to produce 
piglets, and these piglets are reared to a certain weight and then sold. 
Some of the piglets are reared to serve as replacement for the sows in 
the production cycle. We consider four types of individuals (see Figure 
1): (1) pregnant sows, all in one stable, (2) sows that have farrowed in 
the nursery stable, (3) suckling piglets in the nursery stable, and ( 4) 
piglets in the rearing stage (finishing pigs) in a third stable. The 
pregnant sows have a gestation time of 17 weeks ( a 1 = 170 units) and a 
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nursing phase of 5 weeks ( u 2 = a 3 = 50 units). The rearing phase of the 
piglets lasts 30 weeks (u4 = 300 units). Each sow is assumed to have 10 
piglets, and therefore 91 % of the individuals in the nursery stable are 
piglets and 9% are sows (the sows mainly have contacts with their own 
piglets). Upon leaving the nursery unit, 70% of the sows are impreg
nated again and returned to the farrowing unit for a new cycle. All the 
gilts, after leaving the nursery unit, are reared in the finishing unit to let 
them mature. After maturation, a fraction of these pigs will enter the 
production cycle. 

The above assumptions lead to the following direct animal-to-animal 
contact matrix C, 

1 

C= 0 
0 
0 

0 0 0 
0 0.09 0 
1 0.91 0 
0 0 1 
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The demography of these farms is controlled by the farmer. He or she 
sells animals in such a way that the population size remains constant. 
The above description leads to the following animal transport matrix K, 

K= 

0 

1 
0 
0 

0.7 

0 
0 
0 

0 

0 
0 
1 

k14 

0 
0 
0 

The survival probability per time step is assumed to be 1 for all types 
except the piglets of type 3, for which mortality is assumed to be 10% 
over the total nursing period ( TTj = 0 for j E {l, 2, 4} and 1T 3 = 0.9979 per 
unit). New animals enter only through births (b 31 = 10 per unit, and 
b ij = 0 for i =I= 3,j * 1). 

For our example we assume that the fraction of matured gilts from 
the finishing unit that enter the production cycle (k 14 ) is the variable 
that is used by the farmer as a means to control the population size. It is 
easy to check that for 

the dominant eigenvalue of the matrix BD + KD (see Section 2.1) is 1. 
This leads to k 14 = 0.033 for the parameter values chosen above. 

The ingredients specified up to now determine the demography of 
the pig herd. Now consider infection with ADY in this herd. Informa
tion about ADY in pigs is available from experimental infection of 
individual pigs with and without vaccination [8, 9] and from transmission 
experiments with and without vaccination [ 6]. The duration of the 
infectious period is approximately 2 weeks (20 units). We assume a 
constant infectivity during each of these 20 units: h13 = 0.05 for f3 E 

{1, 2, ... ,20}. In the transmission experiments of De Jong and Kimman 
[6], R was estimated in homogeneous groups, both vaccinated and 
unvaccinated, of animals of a single type. The quantity so estimated is 
the transmission weight of the particular type used in the experiment. 
From the experiments it was estimated that for vaccinated pigs of type 4 
the transmission weight is 0.5, while for unvaccinated pigs of the same 
type it is 23. 

Accurate information about infectivity and susceptibility separately is 
not available. It is possible to measure virus excretion in pigs by 
determining the virus content of saliva samples. Unfortunately, this 
measure is highly variable [8], and in addition it is unclear how much 
virus reaches other individuals. One could measure susceptibility based 
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on the inverse of the dose needed to infect 50% of the individuals [9]. 
Again, accurate measures cannot be obtained easily; it would require 
the use of too many experimental animals. However, as we have seen in 
Lemma 1 in Section 3, it does not matter for R how precisely the 
transmission weights are proportioned into infectivity and susceptibility. 

Let us first assume that all types of individuals have transmission 
weight equal to the experimentally estimated weight for piglets in the 
rearing stage (type 4). One possible parameterization for a totally 
vaccinated population is Ji= 1, gi = 0.5 for i E{l,2,3,4}. The next-gen
eration matrix M, calculated by implementing the algorithm from 
Section 3 in TurboPascal, is 

0.47 
0.00 
0.03 
0.00 

0.07 
0.00 
0.40 
0.00 

0.00 
0.04 
0.36 
0.10 

0.00 
0.00 
0.00 
0.48 

Calculation of the dominant eigenvalue of M leads to R = 0.48. By 
Theorem 1 in Section 3, R cannot exceed the maximum of the transmis
sion weights. The reason R is smaller in the present case is that some 
infectious animals are removed from the population before they can 
emit their total infectivity. To illustrate the effect of a different parame
terization, we assume that nursing sows are much more infective (f2 = 

10.0, g 2 = 0.05) and suckling piglets are much more susceptible (g3 = 
20.0, / 3 = 0.025), keeping the transmission weights constant. The result
ing R is the same by Lemma 1, but the next-generation matrix M has 
changed considerably to 

0.47 
0.00 
1.24 
0.00 

0.74 
0.00 

158.0 
0.00 

0.00 
0.00 
0.35 
0.10 

0.00 
0.00 
0.00 
0.48 

We know from observations that it is possible that ADY does spread 
among vaccinated pigs on farrow-to-finish farms. In the light of Theo
rem 1, one explanation for this is that the transmission weight of some 
type is greater than 1. This could well be the case for the piglets (type 
3). These individuals are in practice not vaccinated but only have 
protection from maternal antibodies. Let us assume that these piglets 
are totally unprotected against virus transmission, although they can 
possibly be protected against the occurrence of clinical signs. Under this 
assumption, the transmission weight of these piglets is 23 (estimated 
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from the experiments mentioned before). The next-generation matrix is, 

by parameterizing as / 3 = 1 and g3 = 23, 

0.47 
0.00 
1.42 
0.00 

0.07 
0.00 
18.17 
0.00 

0.00 
0.00 

16.19 
0.10 

0.00 
0.00 
0.00 ' 
0.48 

and the resulting R = 16.23. . 
Transmission among the piglets is just one explanation for virus 

circulation in a vaccinated population; other explanations are possible. 
However, because of Theorem 1 there are restrictions: whenever trans
mission from one type of animal to another type of animal is the 
product of infectivity of one type and susceptibility of the other type, 
there must be some type of individual in the population for which the 
transmission weight is greater than 1. 

5. DISCUSSION 

When formulating multigroup models of epidemic spread, one has to 
specify the migration of individuals (or transport, depending on the 
context) from group to group as well as the intensity of contacts within 
groups and between groups. In addition, one has to specify the death, 
removal, and recruitment processes that collectively determine demo
graphic turnover. 

Given such a specification, the next-generation matrix and its domi
nant eigenvalue R0 are well defined. Yet it may be far from easy to 
compute the entries of the next-generation matrix from the ingredients 
of the model specification. In this paper we have presented an algo
rithm for such a computation for a fairly general class of model 
specifications, particularly relevant to viral diseases spreading on animal 
farms but possibly applicable in completely different contexts as well. 

How relevant is group structure for the analysis of the 
invasion/elimination problem? If contact intensity is highly variable 
among groups, a so-called core group can bring R 0 above 1 whereas it 
would be below I if all individuals had the average contact intensity (see 
[12], [13]). In a similar spirit we have shown in Section 4 that a high 
susceptibility of unvaccinated piglets can have a tremendous influence 
on R of the overall population. Thus it appears that averaging has to be 
done by means of the next-generation matrix and not by taking averages 
of individual properties with respect to population composition (see [1] 
for a general monotonicity result). Consider the final example from 
Section 4, where fi = 1, i E{l,2,3,4}, and gi = 0.5, i E{l,2,4}, but with a 
high susceptibility of piglets g3 = 23. Straightforward averaging of the 
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transmission weights as an approximation to R 0 , keeping account of the 
fact that type 2 and type 3 animals reside in the same stable, leads to 

t(0.5+ i\0.5+ i~23+0.5) = 5.5, 

whereas we know from Section 4 that the dominant eigenvalue of the 
next-generation matrix for this particular case is the (much) higher 16.2 
(which again illustrates Adler's result in [1]). 

When comparing different members of a family of models with each 
other, it is far from trivial how one should gauge them, and in fact 
normalization may be quite important for the results one obtains. In 
this paper, type i individuals are characterized by a susceptibility 
parameter gi and an infectivity parameter f i· In Lemma 1 we showed 
that R 0 depends on the products figi, which we baptised "transmission 
weights," and not on the factors separately, while in Theorem 1 we 
established that R0 is bounded from the above by the maximum of :hgi. 
This inequality depends heavily on our normalization, which guarantees 
that the number of contacts an individual is expected to have does not 
depend on its migratory path (as embodied in the matrices K and C), as 
long as it is not removed by death or otherwise. In the context of 
sexually transmitted diseases such a normalization is usual (see, e.g., 
[13]), but in other families of models, contacts outside one's own group 
are simply added to those within the group, and then of course R 0 for 
the overall population may well be substantially bigger than the maxi
mum of the within-group R0's (note that one can interpret figi as such, 
should one wish to do so). See [3] or [10] for this phenomenon. 

From a practical point of view, a simple upper bound for R is quite 
effective since it combines nicely with the inequality R < 1 that decides 
about the success of a control strategy. Here "simple" means that it is 
based on a few parameters, the transmission weights only. For Aujeszky's 
disease virus among pigs, the transmission weights are currently being 
estimated experimentally (cf. De Jong and Kimman [6]). The experimen
tal work also serves to check one of the basic assumptions of this paper, 
that the per capita number of contacts depends on population density 
but not on population size in terms of numbers (so if a farm is twice as 
large, both in the number of animals and in the size of the stables, then 
the per capita number of contacts remain the same; see De Jong et al. 
[7] and Bouma et al. [ 4 ]). 

We believ,e that a combination of observational work in the field, 
experimental work in the laboratory, and the development of theoretical 
and computational tools as in this paper will lead in the long run to a 
much better understanding and management of viral diseases spreading 
on animal farms. 
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