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Abstract. In declarative programming languages based on the constraint programming 
paradigm, computations can be viewed as deductions enhanced with the use of constraint 
solvers. However, admissible constraints are restricted to formulae handled by solvers and 
thus, declarativity may be jeopardized. We propose a domain-independent scheme to extend 
constraint solvers so that they can handle alien constraints, i.e., constraint involving new 
function symbols. This mechanism, called SoleX, consists of a set of symbolic rule-based 
transformations: they add and deduce syntactical as well as semantic information related 
to alien constraints, complete the computation domain, and purify constraints in order to 
allow solvers to cope with alien constraints. These transformations can be seen as elementary 
solvers, and thus, SoleX is a collaboration of these several solvers with the initial solver. 
Some extensions of computation domains have already been studied to demonstrate the 
broad scope of SoleX potential applications. 
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1. Introduction 

Since the mid-eighties, constraint programming (CP) [12, 7, 25] has emerged as an interesting 
style of programming. The framework of this new paradigm is based on the separation between 
a programming language to generate requirements (the constraints) on objects (the computation 
domain), and a mechanism for computing solutions of these constraints (the solver). CP has to 
face the dilemma "declarativity vs. efficiency" : "efficient" solvers are generally specialized and 
restricted to some classes of constraints, while "declarative" solvers can handle wider classes 
of problems but are generally inefficient. Thus, a compromise solution consists in considering 
solvers that cannot always handle all the constraints the user manipulate in the programming 
languages. A solver is said to be complete if it is able to solve any constraint defined by the 
language. However, for declarativity reasons, solvers of CP systems are not always complete: 
for example CLP('R.) [14, 11, 13] allows one to specify but not to solve non-linear constraints, 
i.e., they are suspended till they eventually become linear. Although this kind of technique is 
sufficient for some applications, it is not satisfactory in the general case. 

Designing a solver that handles (and preferably efficiently) all the constraints provided in 
the programming language is a hard, tedious, and lengthy task. Possibly, there may be no solver 
for this computation domain. Thus, in order to increase the declarativity of a constraint pro­
gramming system without jeopardizing its efficiency, we are concerned with a general framework 
and mechanisms for extending (and eventually completing) efficient solvers so they can handle 
new function symbols. In [9], a decision procedure on R is extended to a decision algorithm on 
R+ M 1. In this paper, we extend the method of [9] with other syntactical manipulations and se­
mantic transformations as well. Moreover, our framework is independent from the computation 
'omain and the programming language. 

The aim of this paper is to present SoleX, a generic (i.e., independent from the domain 
omputation and from the extra function symbols) scheme for extending constraint solvers 
; generalizes and formalizes some of the previous works. SoleX enables one increasing the 

declarativity of CP systems without jeopardizing the completeness of the solvers, and without 
designing new solvers from scratch. The aim of SoleX is to enrich solvers with symbolic com­
putation so they can treat new function symbols called alien symbols. SoleX consists of a set 
of solver extensions (i.e., meta transformation rules) together with a scheduler to control their 
application and the execution of the solver to be extended (called the initial solver). The solver 
extensions aim at processing alien terms and constraints using alien terms such that these terms 
and constraints can be handled by the initial solver (syntactical solver extensions), or such that 
information carried by these terms and constraints becomes understandable by the initial solver 
(semantic solver extensions). The solver extensions are either derived from some standard fea­
tures/properties of the domain of computation, or fed with transformation rules specified by the 
user for a given domain, solver, and alien function symbols. 

The paper is organized as follows. Section 3 formalizes our framework. Section 4 describes 

1CLP('R. + M) is obtained by extending the domain of CLP('R.) with some special nonarithmetic function 
symbols. 
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Figure 1. 

cos(<5i) * cos(ch) - cos(<,D) * cos(B) * cos('tf;) + sin(<,D) * sin(1fi) = O 
sin(Ji) * cos(o2) - sin(<,D) * cos(B) * cos('tf;) - cos(<,D) * sin(1fi) = O 
sin(J2) + sin(B) * cos('tf;) = 0 

- cos(o1) * sin(J2) - cos(<,D) * cos(B) * sin(1/!) + sin(<,D) * cos("l/J) = O 
- sin( <51) * sin(o2) + sin( <P) * cos(B) *sin( 't/J) - cos( cjJ) *cos( 1fi) = O 
cos(o2) - sin(B) * sin('tf;) = 0 
sin(oi) - cos(4>) * sin(B) = 0 
- cos(o1) - sin(<,&)* sin(B) = 0 

cos(B) = 0 

l2 * cos(oi) * cos(o2) - Px = 0 
l2 * sin(J1) * cos(J2) - Py= 0 
h * sin(o2) + l1 - Pz = 0 

Robot-arm with two degrees of freedom 

the (rule-based) elementary solvers: semantic solvers (Section 4.2) and syntactical solvers (Sec­

tion 4.1). The related transformation rules are formally given in Section 4.3. We then examine 

(Section 5) the control of solvers. Section 6 describes some applications of SoleX over different 

domains. Finally, comparisons, conclusions and future works are discussed in Section 7. 

2. Motivations 

The general problematics is the following: we have a solver available (the initial solver) that 

is able to handle a definite language of constraints. For some reasons (such as declarativity of 

the programming language), we want to use some extra function symbols (the alien symbols). 

Thus, we need a solver that can manipulate a larger language of constraints. However, we do 

not want to implement a new solver from scratch, but we want to extend the solver we have at 

disposal without modifying it (we consider it as a black-box). 

The inverse robot kinematics problem [4] illustrates our motivations. We want to deter­

mine, for a given robot, a position and an orientation of the end-effector, the distances at the 

prismatic joints and the angles at the revolute joints (see Figure 1). The problem for a robot 

having two degrees of freedom can be described by a system of equations (see Figure 1) that 

also involves trigonometric functions 2 • The solution we look for is a symbolic expression de­

scribing the relation between parameters and variables. However, neither trigonometric solvers 

nor trigonometric simplifications automatically return the solution we expect. Thus, we would 

like to extend a solver for non-linear polynomial constraints (such as Grabner bases computa­

tion) with the trigonometric functions sine and cosine. We could solve "by hand" this example 

in the following way. First, for each angle a, we replace (abstract) cos(()() and sin(a) by two 

new variables Ca and Sa respectively. Then, for each Ca and Sa, we add a new constraint 

c& + S~ = 1. We apply Grabner bases computation on this new set of constraints. Finally, we 

2The parameters and variables are described in Section 6. 
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remove all the constraints we have added, and we replace Co. and So. with cos(a) and sin(a) 
respectively. Hence, we obtain the expected solution. Since the problem is rather small and the 
transformations are quite simple, we can imagine doing it by hand, and SoleX is just a way to 
automate the mechanism. However, when dealing with bigger problems, and numerous more 
complex transformations, and when solving the problem requires reaching a fixed point of such 
mechanisms, it is no more conceivable that the solver extension can be realized by hand, and 
this justify an automated process. 

Let us give a second example. One may have to consider unification problems together with 
constraints on depths of ground terms, i.e., constraints such as 

depth(X) = 4 - depth(g(Z)) /\ g(g(Z)) = g(g(g(b))) /\ g(Y) = g(g(X)). 

We have here two disjoint sorts: terms (solved by unification) and integers. Since no solver over 
the integers can handle the function depth, we want to extend a Diophantine solver (or a finite 
domain like solver) with the depth function. Let us forget that solving this problem by hand 
requires numerous transformations. We can determine what kinds of transformations can be 
used (such as the depth of a constant is 1, or the depth(g(X)) is 1 + depth(X)), but we do not 
know if they are sufficient, and in which order to apply them. Thus, we are not sure to reach a 
fixed-point, neither to get a convenient solution. That introduces two other requirements: the 
framework for solver extensions must ease the integration and the classification of several kinds 
of transformations, and must provide some tools to ensure termination of the extension process. 

Nowadays, some methods may be investigated for extending solvers. Solver combination 
methods [1, 16, 22, 23] aim at designing a general solver for a union of theories (that corresponds 
to a new mixed domain which is a conservative extension of the original ones) based on the 
cooperation of elementary solvers, each one already defined for one of the theories. Since we want 
to stay on the same interpretation domain, such frameworks are not well suited. Independently 
of these theoretical results, more practical issues have been explored for the cooperation of 
several solvers on a single domain [21, 5, 2, 8, 17], or on several domains [18, 20, 19]. However, 
in such systems, extra function symbols cannot be directly handled. 

The problem of integrating deduction techniques into computer algebra has attracted consid­
erable interest [24, 10, 3], and standard computer algebra systems (such as Mathematica [26]) 
already provides some equation simplification tools. Although they are powerful, no meth­
ods/techniques are available for designing a solver extension or to ensure its soundness. Similar 
comments can be done about CHRs [6] and ELAN [15] 3 . Some works were also conducted in 
the area of constraint transformation [18], but these techniques act only as a pre-processing. 

To overcome the problems of solver extension, we designed SoleX, a framework together 
with a mechanism for extending and completing constraint solvers. SoleX facilitates the design 
and the classification of symbolic transformations and also automates their application, in order 
to enrich solvers so they can treat alien symbols. The semantics of the alien symbols that 

3However, these systems are really well suited for implementing our framework. 
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can be introduced using SoieX can be of different kinds. First, they can be syntactic sugar 

(or parameterization) to replace the extensional definition of a function (e.g., 3.x2 + 2.x + 1 

may be named p(x). Then, 3.y2 +2.y+1 will be denoted p(y).). Second, they can be standard 

functions not handled by the solver. For example, usual solvers for arithmetic constraints cannot 

manipulate the functions sine and cosine. Unlike to the previous two cases, the last class of 

alien symbols corresponds to functions with no defined meaning on the domain. For example, 

a function can be characterized by experimental measures that can be expressed as constraints. 

The solved form may define the extensional definition of the function (or of a class of functions). 

SoleX is the ordered application of four phases (collections of solver extensions fed with 

transformation rules designed by the user) to process the alien function symbols and deduce 

related information. The Reduction phase reduces the search space by adding semantic and 

syntactical information carried by the alien functions. The Expansion phase completes the 

constraints with always valid ( w.r. t. the extended domain) constraint, i.e., characteristics of 

the functions (e.g., an absolute value is always greater than or equal to zero). Then, before the 

Solving phase (application of the initial solver), the constraint store is purified by abstracting 

remaining alien function symbols. After application of the initial solver, the Contraction phase 

replaces abstraction variables with their related alien terms (this is the "opposite" of abstraction) 

and removes "redundancies" added by the expansion phase. Several applications of SoleX may 

be necessary to reach a fixed point and to solve the constraints. 

3. Basic Concepts 

Let us first introduce some standard notations about terms and substitutions of variables by 

terms. Given a first-order signature :E and a denumerable set V of variables, T(:E, V) denotes 

the set of FL;-terms with variables in V. Terms (resp. variables) are denoted by ti, ... , tn (resp. 

x 1 , ... , Xn)· A ground term is a term without variables. The terms tlw• t[s]w and t[w ~ s] denote 

respectively the subterm oft at the position w, the term t with the subterm s at the position w 

and the replacement in t of tiw by s. The symbol oft occurring at the position w (resp. the top 

symbol oft) are written t(w) (resp. t(E)). The term t[s] denotes a term t with some subterm 

s. The term t[s +-' u] denotes the term where s is replaced by u in all occurrences of s in t. 

V(t) denotes the set of variables occurring in the term t. A substitution {x1 i-+ ti, ... , Xn H tn} 
is an assignment from V to T(:E, V). We use letters er,µ, -y, c/>, ... to denote substitutions. The 

application of a substitution er to a term t is written in postfix notation ta. 

We now define the objects handled by SoleX: solvers, and constraint systems. 

Definition 3.1. (Constraint system) A constraint system is a 4-uple (E, V, V, .C) where: 

• :E is a first-order signature given by a set of function symbols FE, and a set of predicate 

symbols PE, 
• V is a :E-structure (its domain is denoted by IVI), 

• V is an infinite denumerable set of variables, 
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• £ is a set of constraints: it is a non-empty set of (L:, V)-atomic formulas closed under 
conjunction and disjunction. The unsatisfiable constraint is denoted by ..L. and the truth 
constraint is denoted by T. An assignment is a mapping a : V --i IVI. The set of all 
assignments is denoted by ASS~. An assignment a extends uniquely to a homomorphism 
Q : T(:E, V) --i 1J. The set of solutions of a constraint c E £ is the set Solv(c) of 
assignments a E ASS1 such that Q(c) holds. A constraint c is valid in 1J (denoted by 
1J f= c) if Solv(c) =ASS~. 

The enrichment of a constraint system CS consists of some additional functions defined on 
the original domain. The interpretation of symbols previously defined in CS is unchanged. 

Definition 3.2. (Constraint system enrichment) Let Cs+ = (L:+, 1J+, v+, c+) and CS = 
(:E, D, V, £) be two constraint systems. Then, cs+ is an enrichment of CS if: 

• :Fy;, <;;; :Fy;,+ and P"E, = Py;,+ 
• IDI = 1v+1 and Vr E :E, rv+ = rv, where rv (resp. rv+) represents the interpretation of 

r on the :E-structure D (resp. v+). 
• v = v+, c i:;;; c+ 

The notations t[g], t[g t..o u] defined on terms can be extended on constraints as follows: 
C[g] means that g is a term occurring in C and C[g t..o u] is the constraint obtained from 
C by replacing g by u. In the same way, constraints can be viewed as terms built on atomic 
constraints and binary connectives /\, V. This leads to the notion of positions and subconstraints. 
The constraint C[[c]]w denotes a constraint with a subconstraint c occurring at the position w, 

and C[[w f-> c']] is the constraint obtained by replacing the subconstraint occurring in C at the 
position w by c' . The connectives /\, V satisfy the following equational axioms: 

C1 /\ C2 = C2 /\ C1 
C1 /\ (C2 /\ C3) = (C1 /\ C2) /\ C3 

ACD= C1 VC2 = C2 VC1 
C1V(C2VC3) = (C1VC2)VC3 
C1 /\ (C2 V C3) = (C1 /\ C2) V (C1 /\ C3) 

A set of constraints { c1, ... , en} where Ci E £+ for i = 1, ... , n (a constraint store) is represented 
by a conjunction of constraints c1 /\ · · · /\ Cn, where ci's are not necessarily atomic constraints. 
This conjunction can be split into an impure component in [,+ and a pure component in £. This 
explains why we represent any constraint in£+ by a pair (C, P) where C E [,+ and PE£, and 
( C, P) means the conjunction C /\ P. If C is in £, then ( C, P) is said pure. 

Definition 3.3. (Aliens, pure and impure constraints) A pure constraint (resp. term) is 
a constraint (resp. term) in £. An alien subterm in a term t is a term with a top-symbol in 
:E+\:E such that its super-terms (whenever they exist) have top-symbols in :E. The set of aliens 
in C denoted by Alien( C) is the set of alien subterms of terms occurring as arguments of atomic 
constraints in C. A constraint C is impure if Alien(C) is non-empty. 
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Intuitively, a component solver is an algorithm wh· h t £ · · 
t . t C' " . l " h ic rans orms a constramt C mto a new 

cons ram s1mp er t an C b t · 1 c · 
. ' u eqmva ent to m the structure 1> (a solver preserves the 

solutions). Moreover, the repeated application of a sol l h fix · · · 
. . ver a ways reac es a ed-pomt which is 

a constramt m solved form. 

Definition 3.4. (Component Solve ) A l ( · 
. r component so ver or solver m short) for a constraint 

system (:E, 1>, V, £) is a computable function S: .C-+ £ s.t.: 

1. VG E .C, Solv(S(C)) ~ Solv(C) (correctness) 

2. VG E £, Solv(C) ~ Solv(S(C)) (completeness) 

3. VG E £, :Jn EN, sn+1 (C) = sn(C) 

A constraint C is in solved form w.r.t. S if S(C) =C. A partial solver is a computable function 

S satisfying only conditions (1) and (3). A non-deterministic solver is S = (Sik=i, ... ,m such that 

Si is a partial solver for i = 1, ... , m and 

m 

VG E £, Solv(C) = LJ Solv(Si(C)). 
i=l 

A constraint C is in solved form w.r.t. S = (Si)i=l, .. .,m if Si(C) = C for i = 1, ... , m. We 

denote by s+, the n-th iteration sn of S for some (unspecified) n 2:: 0. Similarly S* denotes the 

repeated application of S till reaching the solved form. If S = (Sik .. ,m then sn = (Sf }i=l, ... ,m 

and S* = (Si)i=l, ... ,m· 

In the following, we represent a solver by a rule of the form: 
Rule C 

C' if Cond 

The different possibilities of Rule application induce a relation -+Rule on £ x £. Whenever 

there is no infinite chain C -+Rule ... -+Rule .. ., it is very natural to define a solver S from the 

relation -+Rule, where a constraint C usually relates to finitely many constraints C1, ... , Cm such 

that C -+Rule C1, ... , C -+Rule Cm. Similarly to the definition of solvers, two kind of constraint 

selections can be distinguished. If S olv ( C) = S olv ( Ci) for any C E .C and i = 1, ... , m, then the 

don't care application of Rule chooses an arbitrary Ck fork E [1, m], and S(C) :=Ck. Otherwise, 

if Solv(C) = LJ~ 1 Solv(Ci) for any C E .Candi= 1, ... ,m, then the don't know application 

of Rule corresponds to a non-deterministic solver S = (Si)i=I, ... ,m such that Si(C) = Ci for 

i = 1, ... , m. In both cases, if there is no constraint C' such that C -+Rule C', then S(C) :=C. 

For sake of simplicity, we do not consider in the following non-deterministic solvers, but one 

should be aware that the same approach could be investigated with such solvers but at the cost 

of more complicated notations. It is also important to note that the non-determinism of solvers 

is usually implemented via a backtracking mechanism. 

Assumption 3.1. S is a solver for CS. 
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We are interested in the design of a rule-based solver for an enrichment Cs+ of CS which 
extends the solver S known for CS. This rule-based solver is given by a set of rules transforming 
a constraint in .c+, seen as a pair (C,P) made of an impure constraint C and a pure one P. 

Example 3.1. The following rule defines a solver for cs+ if Sis a solver for CS. 
Solve (C,P) 

(C,S(P)) 

In the case of a non-deterministic solver S = (Si)i:::l, ... ,m for CS, we need the following rule 
to be applied with a don't know strategy: 
SolveNonDet (C,P) . 

(C, Si(P)) i = l, ... 'm 

We will develop a rule-based solver for cs+ using the rule Solve. In addition to Solve, some 
other solvers (solver extensions, see Section 4) will be applied on C. 

4. Solver Extensions 

The solver extensions have been grouped together w.r.t. the kind of action they have on the 
constraint store. On one hand, semantic rules (Section 4.2) make use of the properties of 
the domain or of the properties of the alien functions. On the other hand syntactical rules 
(Section 4.1) are based on syntactical transformations which are always valid in any constraint 
system. A formal description of transformation rules is given in Section 4.3. 

4.1. Syntactical Solver Extensions 

The following transformation rules mainly deal with either equations occurring in the constraint 
store, or equations introduced in the constraint store. There are also rules to maintain the 
partition of pure and impure constraints. 

Variable Abstraction The rule Abstraction transforms impure constraints into pure ones 
by adding new variables to name aliens. These variables Xu replace alien subterms u and the 
related equations Xu = u are added to the constraint store. Then, equations Xu = u are no more 
transformed and remain in the constraint store. To replace alien subterms, we use a bijective 
mapping which associates to each non-variable term u a unique variable Xu. According to this 
convention, two occurrences of the same term are automatically replaced by the same variable. 

Example 4.1. Consider the constraint C = (sin2 (x + y) + cos2 (x + y)) = 1 - sin3 (2x) * (sin(x + 
y) + cos(x + y)). Abstraction* transforms C into C' = (X2 + Y2 = 1 - Z 3 * (X + Y)) /\ ((X = 
sin(x + y)) /\ (Y = cos(x + y)) /\ (Z = sin(2x))). 
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Alien Replacement We have seen above how to purify the constraint store with Abstraction. 

Thus, we get a pure constraint together with a conjunction of equations Xu = u involving new 

variables called abstraction variables. Then, Solve (see Example 3.1) can obviously be used to 

simplify this pure constraint. After that, the idea is to re-built an impure constraint without 

abstraction variables in order to be able to apply another kind of solver extensions (described 

later on). To this end, AlienRep consists in replacing abstraction variables by their related alien 

subterms. Obviously, this rule is the converse of Abstraction and so (AlienRep* o Abstraction*) is 

the identity solver, where o represents the usual composition of functions. 

Inter-Reduction The idea of this transformation rule lnterRed is to perform the replacement 

of a term by another one, provided there is an equation between these two terms in the constraint 

store. Thus, we use an ordering -< on heterogeneous terms in T(I:+ U v+) to orient equations 

as rewrite rules. This ordering satisfy some requirements: an impure (resp. non-ground) term 

cannot be less than a pure (resp. ground) term with respect to -<. These requirements can be 

easily understood by the fact that we want to be able to purify constraints and to compute the 

truth value of constraints. 

Example 4.2. Consider the constraint C = (y :::;: sin2x + sinz) /\ (sinz = 1) /\ (sin2x = 0). 

lnterRed transforms C into (y:::;: 0 + 1) /\ (sinz = 1) /\ (sin2x = 0) provided that sinz >- 1 and 

sin2x >- 0. 

Moving constraints As said before, a constraint store is represented by a couple (C, P). 

When a constraint c in C becomes pure (e.g., after Abstraction), it can be carried to P, the purE 

part of the store. This is realized with the rule ToPure. In a similar way, constraints in P that 

become impure (e.g., after AlienRep) are moved to C with the rule FromPure. 

4.2. Semantic Solver Extensions 

Rewriting is an ubiquitous concept for reducing expressions by simpler but equivalent ones. In 

this section, some meta-transformation rules (mainly based on rewriting) are proposed. These 

transformations must be regarded as solvers and aim to integrate properties relevant to functions 

and predicates in Cs+. Our aim is to apply rewriting techniques for transforming both terms and 

constraints occurring in the constraint store. Hence, we need to consider a database of rewrite 

rules for the terms reduction (TGR) and another one for the constraints reduction (CGR). 

In the following, we define how to apply such rules coming from a database of properties. In 

our framework, a rule is guarded by a constraint, which means that the rule is applied only 

if the related constraint is entailed by the current constraint store. Hence, we have chosen 

here to use a form of contextual rewriting, where the rewriting context is processed by the 

deduction mechanism available in the constraint system enrichment. At this point, another 

question should be addressed: how to match a term with the left-hand side of a rule? For sake 

of expressiveness, this matching cannot be simply syntactic and we improve it in two directions. 
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First, for the constraints matching, we assume that logical connectives satisfy some equational 
properties. Second, for the terms matching, our idea is to normalize terms to be rewritten before 
applying rules and thus before the matching process. Since a solver S is usually provided with 
a normalization process on terms in CS (which is more or less its internal representation), we 
must also study the problem of extending this normalization to terms in Cs+. 

Term Dependent Guarded Reduction The term rewrite system TG R is a finite set of 
guarded rules (l-+ rllg) where g is a constraint in cs+ and l, rare terms such that v+ I= g => 
l = r. An instance of the term l, say la, occurring in the constraint store C can be replaced by 
ra when ga is entailed by C. This transformation rule is called TerrnRed. 

Example 4.3. Consider the guarded rules (!xl -+ xllx ~ 0) and (Ix! -t -xllx < 0). The 
constraint C = (jy- 2j = x + jxj + 1) /\ (y 2: 3) /\ (x * y < 0) can be reduced toy= 3 /\x < 0 
thanks to TermRed and Solve (see Example 3.1). 

Constraint Dependent Guarded Reduction The constraint rewrite system CGR consists 
of a finite set of guarded rules (L-+ RllG) where G is a constraint in cs+ and L, Rare conjunc­
tions of atomic constraints in cs+ such that v+ I= G => (L {::} R). A rewrite relation is defined 
as previously, except that matching is now performed modulo the associativity-commutativity 
of /\,V and the distributivity of/\ with respect to V. The corresponding transformation rule is 
called ConsRed. 

Example 4.4. Consider the guarded rule ( Jx = y -+ x = y2 llx ~ 0). The constraint (x > 
'I/\ ((x - 1) * (y - 3) > 0) /\ (yfy=2 = y - 4) can be reduced to (x > 2) /\ ((x -1) * (y- 3) > 

/\ (y - 2) = (y - 4)2 since y - 2 ;::: 0. Finally, we get solutions for y using the initial solver. 

temark 4.1. Formally, checking the implication (entailment) requires a validity checker for 
the enriched constraint system. If such a decision algorithm is not provided, then the semantic 
entailment can be approximated by a syntactic constraint inclusion test. 

Domain Dependent Completion/Deletion In order to Complete/Delete the information 
encoded in the constraint store, we consider a database of valid facts, i.e. a finite set DDR of 
valid conjunctions of constraints in Cs+. This leads to a pair of quite opposite transformation 
rules, namely DomComp and Dom Del. Dom Comp completes the constraint store C by an instance 
of a constraint C' E DDR provided this instance is not yet entailed by C. Conversely DomDel 
deletes an instance of C' E DDR occurring in the constraint store. For trigonometric functions, 
examples of valid constraints in DDR are: -1~sinx~1, -1~cosx~1, cos2 (x)+sin2 (x) = 1. 

Example 4.5. Consider the constraint C = (1 - sin 2x = y) and the valid constraint (-1 :::; 
sinX ~ 1) E DDR. Applying DomComp on C yields C /\ (-1 ~ sin2x ~ 1) thanks to 
the instantiation of X by 2x. DomComp does not apply on C' = (0 ~ y ~ 1) /\ C since 
(0 $ y $ 1) /\ (1 - V = y) already implies (-1~V~1), where V stands for sin2x. 
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Normalization We assume that the solver S is equipped with a normalizing mapping N F, 

that is an idempotent computable mapping N F : T(E, V) --+ T(E, V) such that Vt E T(E, V), 'D I= 
t = NF(t). Moreover, the computation of NF(t) does not depend on the names of variables 

in V(t) but depends on the ordering of variables given by -<. Formally, this assumption can 

be stated as follows: for any term t E T(E, V) and any variable renaming e : V(t) --+ V, 

('<lx,y E V(t), xe-< ye{:::? x-< y) implies NF(te) = NF(t)e. 

Let us now define the extension Np+ of the normalizing mapping N F. 

Definition 4.1. The mapping NF+: T(E+, v+)--+ T(E+, v+) is defined by: 

• N F+(J(t1, ... , tm)) = J(N F+(t1), ... , N F+(tm)) if j E E+\E. 
• If t is pure, then N F+(t) = N F(t) 

• If t is an impure term with a top symbol in E, then N F+(t) is recursively obtained: 

1. Compute bi:= NF+(ai) for every alien ai E Alien(t). 

2. Compute the term tn obtained by replacing in t aliens a 1 , ... an by new variables 

x1, ... , Xn such that Xk -< x1 {:::? bk -< b1 and Xk = xz {:::? bk = b1 for 1 :::; k, l :::; n. 

3. NF+(t) is NF(tn){xk i--+ bk}k=1, ... ,n· 

The transformation rule Normalize consists in the replacement of any term t by its normal 

form Np+ ( t) following an innermost strategy. 

Example 4.6. Let us consider the function symbols+,*,-, the predicate symbol:::; in E (inter­

preted as usual over reals), the new function symbol J in E+, and the normalizing mapping N F 

such that: NF(x-x) = 0, NF(x+O) = x and NF(hx) = x. Then NF+(J(1*x)-f(x+O)) = 0 

and applying Normalize on the constraint C = (J(l * x) - f(x + 0) :::; x - y) leads to 0:::; x -y. 

The initial solver can now treat this constraint and so we get the solution y:::; x. 

4.3. Solver Extensions as Solvers 

The transformation rules (Figure 2) formalize the solver extensions described in the previous 

sections, as well as the constraints (pure and/or impure constraints) they handle. These rules 

make precise the behavior /application of the solver extensions, and could be directly prototyped 

in programming languages like ELAN [15] and CHRS [6]. It is a routine examination to prove 

that each rule transforms a constraint into an equivalent one, and so it is correct and complete. 

However, in order to state that rules correspond to solvers, we still have to take care about the 

termination of their repeated applications. 

Proposition 4.1. Solve, lnterRed, Abstraction, AlienRep, Normalize, DomComp, DomDel, ToP­

ure, FromPure are solvers. 

Proof: 
• Abstraction strictly decreases the number of aliens u in C without any occurrence of the 

corresponding abstraction variable Xu. 
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• AlienRep strictly decreases the number of abstraction variables Xu in C. 
• lnterRed replaces all occurrences but one of a term by a smaller term also occurring in 

( C, P). Such kind of replacements cannot be performed infinitely many times. 

• ToPure strictly decreases the number of conjuncts in the first component C. 

• FromPure strictly decreases the number of conjuncts in the second component P. 

• DomComp strictly decreases the number of constraints in DDR which have no instance in 
the constraint C. 

• Dom Del strictly decreases the number of instances of DDR constraints in C. 
• Applying repeatedly Normalize always terminates since N F is idempotent and so is Np+. 
• In the same way, the repeated application of Solve terminates since Sis a solver. 

0 

Since TermRed and ConsRed are parameterized by arbitrary rewrite rules, we cannot in 
general ensure their termination. 

Assumption 4.1. We assume that the rule system TGR (resp. CGR) is defined in such a way 
that the repeated application of Term Red (resp. ConsRed) terminates. Moreover left-hand sides 
of rules in TGR (resp. CGR) are impure terms (resp. impure constraints) and valid constraints 
in DDR are impure and have only one conjunct (this can be assumed without loss of generality). 

Under these assumptions on TGR, CGR and DDR, we get the following facts: 

Fact 4.1. According to Assumption 4.1, TermRed and ConsRed are solvers. 

Fact 4.2. According to Assumption 4.1, lnterRed, Normalize, TermRed and ConsRed do not 
apply on pure constraints. 

>. SoleX: the Solver Collaboration 

The solver for Cs+ is described as a set of transformation rules (presented in the previous sec­
tion) together with control. The basic operation we used for combining solvers is the composition 
(of functions). The extended solving process SoleX is (Contraction o Solve o Expansion o Reduction) 
where the four phases are as follows: 

• Reduction phase (Reduction = (ConsRed+ o TermRed+ o lnterRed+ o Normalize+)): the con­
straint store is transformed thanks to semantic and syntactical solver extensions introduced 
in the two previous sections. 

• Expansion phase (Expansion = (ToPure* o Abstraction* o DomComp*)) : the constraint store 
is completed by valid constraints which may be helpful in the next phase and may be 
purified thanks to Abstraction. 

• Solve phase (Solve): the initial solver is applied on the pure part of the constraint store. 
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Solve 

lnterRed 

Abstraction 

Alien Rep 

Normalize 

Term Red 

(C,P) 
(0, S(P)) 

(C[g] /\ g = d, P) 
( C[g P d] /\ g = d, P) 

(C[u],P) 
(C[u P Xu]/\ Xu = u, P) 

if g is impure, d ~ g 

·r { u E Alien(C), 
1 Xu is a new variable. 

( C /\ Xu = u, P) 
if X is an abstraction variable 

(C{Xu t-+ u}, P) 

(C[g], P) 
(C[g +-> NF+(g)],P) if C is impure,g -:j; NF+(g) 

(C[la]w, P) . ( I + I= 
(C[w P rcr], P) if l-+ rl g) E TGR, 'D (C /\ P) => gu 

ConsRed ( C, P) 
if (L-+ RllG) E CGR,C =AcD C'[[La]]w, v+ I= (C /\P} =>Ga 

(C'[[w P Ra]], P) 

Dom Comp 

Dom Del 

ToPure 

From Pure 

( 0, P} 'f C' DDR d . { Alien( C')cr ~ Alien( C) 
(c C ) i E an a . 1 • • 

/\ 1 er, P C er is not a conJunct of C 

(C /\O'er, P) if O' E DDR: Alien(C')u ~ Alien(C) 
(C,P) 

(C,P /\ c) 
(C /\ c, P) 

(0 /\ c,P) 
(C,P/\c) 

if c is pure 

if c contains some abstraction variable 

Figure 2. Solver Extensions 

• Contraction phase (Contraction= (DomDel*oAlienRep*oFromPure*)): the impure equations 
introduced in the second phase are merged with the new pure part of the constraint store. 
The persistent valid constraints added in the same phase are removed. 

It is important to notice that a transformation rule is not necessarily a solver since its 
repeated application may not terminate. For the same termination problem, a composition of 
two solvers yields a new function which is not necessarily a solver (Definition 3.4). For proving 
the termination of a composition of solvers, we may need to embed all orderings related to 
elementary solvers into a Noetherian ordering <. As solver extensions are parameterized by 
NF, ~,rewrite rules in TGR and CGR, or by valid constraints in DDR, we have to give more 
precise sufficient conditions in order to ensure the termination of the SoleX process. 
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Theorem 5.1. Let 2 be a quasi-ordering on .c+\.c such that> is Noetherian. SoleX is a solver 
for Cs+ if the following conditions are satisfied: 

1. TermRed and ConsRed are solvers, 
2. For any EE {Normalize, lnterRed, TermRed, ConsRed}, we have 

E(C, P) = (C', P) and C' E £+\.c => C ~ C' 

3. ExtSolve = Contraction o Solve o Expansion is a solver such that 

ExtSolve(C,P) = (C',P') => C > C' 

The proof is quite obvious since SoleX is ExtSolve o Reduction and we assume a complexity 
measure that does not increase by Reduction but strictly decreases by ExtSolve. 

Remark 5.1. SoleX is just a partial solver if S is partial. Moreover, if S = (Si)i=l, ... ,m is a 
non-deterministic solver, then SoleX becomes a non-deterministic solver if Solve is replaced by 
SolveNonDet which is applied with a don't know mechanism. 

Remark 5.2. SoleX becomes a solver when DDR, TGR, CGR,-< are empty, and NF is the 
identity mapping. 

It remains to show how ExtSolve can be turned into a solver. In the case of an empty set D DR, 
ExtSolve simply corresponds to Solve and so it is obviously a solver. In general, introducing 
a valid constraint to the constraint store could also introduce some disturbance in the future 
solver application and we must take care of this situation. On the contrary, our aim is to 
express the idea that the Expansion phase may help significantly in the simplification step already 
~rformed by the solver. In order to formalize the intuitive notion of further simplification, let 
1 introduce yet another ordering t>. This ordering t> is now defined on pure constraints and 
is complementary to the ordering > already introduced for impure constraints. The first 

.equirement consists in choosing t> in such a way that S does not compute a more complex 
constraint w.r.t. t>. 

Proposition 5.1. ExtSolve =Contraction o Solve o Expansion is a solver if there exists a quasi­
ordering ~ on .C such that t> is Noetherian and 

1. P ~ S ( P) and P /\ P" ~ P 
2. (a} S(P) t> S(P /\ P") 

(b} or else S(P /\ P") = S(P) /\ P" 

where P" is a pure constraint derived from the abstraction of a constraint in DDR, that is 
formally :JC' E DDR :Ja, AlienRep*(P") = C'a. 

Item 2. makes sure that a pure constraint P" coming from a DDR constraint permits to strictly 
simplify the second component P of the store or is not used by the solver S (the corresponding 
DDR constraint will then be removed by DomDel). The ordering t> is defined on constraints in 
.C and may be chosen for instance according to the number of "unsolved" variables. 
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Proof: 
ExtSolve is the composition of several solvers. Hence, ExtSolve obviously preserves the solutions 

(items 1and2 of Definition 3.4). 

Let n(C,P) (resp. t(C,P)) be the pure (resp. impure) component of (C,P) defined in the 

following way: 

n(C, P) = P' (resp. t(C, P) = C') where (C', P') = ToPure* o Abstraction*(C, P) 

Let E be a solver from {To Pure, Abstraction, Alien Rep, From Pure}. Then, by definition, E 
does not modify the result of 7f i.e., rr( C, P) = 7r(E( C, P) ). 

Let >s be the Noetherian ordering defined by: P >s P' if P' = S(P) and P'-=/= P. For sake of 

simplicity, we consider in the following that DDR is a singleton but the same kind of proof can 

be done by induction on the size of DDR at the cost of more complicated notations. Let C' be 

the constraint added to C by DomComp. This constraint is abstracted to P" and added to P 
thanks to Abstraction followed by ToPure: 

Solve o Expansion( C, P) = Solve o ToPure* o Abstraction* o Dom Comp*( C, P) 

= Solve o ToPure* o Abstraction*(C /\ C', P) 
= Solve(i(C,P),rr(C,P) /\ P") (1) 

Then, two cases corresponding to the restrictions of Proposition 5.1 can happen. 

1. Restriction 2.a of Proposition 5.1: S(n(C, P)) t> S(7r(C, P) f\ P"). From Item 1 of Propo­

sition 5.1, we have: 7r(C,P) ~ S(7r(C,P)) (2). From Equality (1) and the definitions of 

the Solve rule and the 7f function, we obtain: 

7r(Solveo Expansion(C,P)) = S(n(C,P) /\P11 ) (3) 

Using restriction 2.a and (3), we get: S(rr(C,P)) [> 7r(Solve o Expansion(C,P)) (4). By 

transitivity on (2) and (4), we get: rr(C,P) [> 7r(Solve o Expansion(C,P)) (5). Since 

Contraction may remove some constraints, we also have: 

7r(Solveo Expansion(C,P)) ~ 7r(ExtSolve(C,P)) (6) 

Again by transitivity ((5) and (6)), we get: rr(C, P) [> 7r(ExtSolve(C, P)) (I) 

2. Restriction 2.b of Proposition 5.1: S(7r(C, P) /\ P") = S(7r(C, P)) /\ P". 

First, we develop ExtSolve(C, P) (when DomComp adds a single constraint C') using Equal­

ity (1): 

ExtSolve( C, P) = Dom Del* o Alien Rep* o FromPure*(i( C, P), S(n(C, P)) /\ P") 

= DomDel* o AlienRep* o FromPure*(i(C,P) /\ C', S(7r(C,P))) 

= AlienRep* o FrornPure*(i(C,P), S(7r(C,P))) (7) 
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Usingthedefinitionof1T, and Equality (7), we obtain: 1T(ExtSolve(C,P)) = S(7r(C,P)) (8). 
Using (8) and the definition of >s, we get: 

if7r(C,P) -:f. S(7r(C,P)) then 7r(C,P) >s 7r(ExtSolve(C,P)) (II) 
otherwise ExtSolve( C, P) = ( C, P) (I I I) 

Finally, consider the relation » on L defined by: P » P' if Pr> P' or ( P 'I::?. P' and P > s P'). It 
is a Noetherian ordering since r> and > s are Noetherian, and > s is included in 'I::?. (by definition). 

Since 7r(C, P) » 1T(ExtSolve(C, P)) ((I) and (II)) or ExtSolve(C, P) = (C, P) ((III)), we can 
conclude that the repeated application of ExtSolve always terminates and so ExtSolve is a solver. 

D 

6. Applications 

Inverse Robot Kinematics We can now solve the problem [4] briefly described in Section 2. 
This problem for a robot (see Figure 1) having two revolute joints (degrees of freedom) can be 
described by the system of equations presented in Figure 1 where li, l2,Px,Pz are parameters and 
Py, 51 , 52 , if;, 8, 'ljJ are variables. l1, l2 are the lengths of the robot arms, (px, Py,Pz) is the position 
of the end-effector, If;, 8, 'ljJ are the Euler angles of the orientation of the end-effector, and 51, 52 
are the rotation angles of the revolute joints. The expected solution is a symbolic expression 
describing the dependence of the joint variables on the geometrical and position parameters. For 
this application, neither trigonometric solvers nor trigonometric simplifications automatically 

•urn a symbolic solution expressing the relation between parameters and variables. Thus, we 
nd a solver working on the domain of non-linear polynomial constraints (namely Grabner 
~s which simplify polynomial equations and return relations between the variables) with 

gonometric functions (sine and cosine). Hence, let DDR be {sin2 (X) + cos2(X) - 1 = O}. 
l'he Dom(omp solver completes the system by adding for each angle (51, 52 , </>, 8, 'ljJ) the property 
of sine and cosine (sin2 (X) + cos2(X) = 1). The Abstraction solver replaces every remaining sine 
and cosine with new variables. Finally after Solve and AlienRep, SoleX reaches a fixed-point 
which is the desired solution: 

sin(1fi) + k1 * cos(q'J) * sin(81 ) * cos(i51 ) = 0 
/\ sin( 8) + k2 * cos(</>) * sin( 81 ) = 0 
/\ sin(q'J) + k3 * cos(q'J) * sin(81 ) * cos(61 ) = 0 
/\ cos( 1/i) + k4 * cos( iP) * sin( 81) = 0 
/\ cos(B) = 0 
/\ cos2 ( iP) + ks = 0 

/\ Py+ k5 * sin(<5i) * cos(<5i) 
/\ sin(82) + k1 
/\ sin2 (6i) + k8 

/\ cos(82) +kg* cos(81) 
/\ cos2(61) + k10 

Nhere k1, ... , k10 are constants, depending on the parameters l1, l2,Px,Pz· 

- 0 
- 0 
- 0 
- 0 
- 0 

Constraint solving over integers and terms This example illustrates how to extend a 
constraint solver working on conjunctions of two-sorted constraints: the integers and the terms. 
Constraints over integers are equations and inequations between linear polynomials with integer 
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coefficients. Constraints over terms are equations between terms. Formally, the signature is as 
follows: 

E = { :S: Z x Z; +, - : Z x Z -+ Z; 0, 1 : Z 
f : 'JI' x 'JI' -+ 'll'; g : 'JI' -+ 'll'; a : 'JI' 

'JI' (resp. Z) denotes ground terms (resp. integers) and the function symbols and the predicate 
symbol :S are interpreted as usual. We consider two new function symbols depth : '[' -+ Z and 
max : Z x Z -+ Z, interpreted respectively as the depth of a term and the maximum of two 
integers. Since we want to extend the constraint solvers associated to integers and terms, we 
choose the sets of Term-dependent (Constraint-dependent) Guarded Reduction and DDR as 
follows: 

(1) depth(J(X, Y)) -+ 1 + max(depth(X), depth(Y)) 
(2) depth(g(X)) -+ 1 + depth(X) 

TGR = (3) depth(a) -+ 1 
(4) (max(x, y) -+ yjjx :Sy) 
(5) (max(x, y) -+ xllY :S x) 

GGR = {(1) depth(X) = 1-+ X =a, (2) depth(X) < 1-+ ..L.},DDR = {1 :S depth(X)} where 
a rule l -+ r is an abbreviation for (l -+ rl!T). Consider the repeated application of SoleX to 

(I) z' -z = depth(g(Y)) - depth(Y) 
(JI) max(z', z) - z = u 
(III) 0 < l-v+u 
(IV) depth(g(X)) < 'lJ 

(V) J(W, W') = J(g(W'), J(X, X)) 

First, Term Red applies rule (2) of TGR on equation (I). After Normalize, (I) becomes z' = z + 1. 
Term Red applies rule ( 4) of TGR on (II), and after Normalize (II) becomes u = 1. Then, after 
ToPure, Solve applies the solver for integers and (III) is transformed into v s 2. TermRed can 
now apply rule (2) of TGR on (IV): then application of Normalize, DomComp and ConsRed (rule 
(1)) leads to X =a. Finally, after Normalize and ToPure, Solve (solver for terms, i.e., unification) 
transforms (V) into W = g(J(a, a))/\ W' = f(a, a). The solved form is: 
z' = z + 1 /\ u = 1 /\ v :S 2 /\ X =a/\ W = g(J(a, a))/\ W' = f(a, a) 
Here, the complexity measure for proving the termination of SoleX is based on a combination 
of elementary measures corresponding to the number of depth and max occurrences and to the 
multiset of sizes of depth arguments. 

Extending Syntactic Matching with the Commutativity The matching process is a 
crucial mechanism in the implementation of functional programming, as well as unification is 
at the heart of logic programming. Given a non-ground term s and a ground term t, the aim 
of matching is to instantiate variables occurring in s in such a way that the instantiation of 
s becomes equal to t. Thus, a matching problem may be viewed as a specific non-symmetric 
unification problem, and so, it is still constraint solving over terms. For example, the matching 
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problem cons(x, y) = cons( a, cons(b, cons(c, nil))) admits x = a/\ Y = cons(b, cons(c, nil)) a 
unique solution. Here, cons may be interpreted as the list constructor, and nil as the empt: 
list. The operators cons and nil do no satisfy equational properties, they are free and we tall 
about syntactic matching. Due to its relevance for applying rules, syntactic matching must h 
implemented very efficiently in rule-based programming languages like ELAN [15]. In this con 
text, it is also very important to handle more complicated terms such as a list of "equations1 

cons(eq(x,a),cons(eq(x,y),nil)), where eq should be now declared as a commutative operato 
since the equality relation is clearly symmetric. But then, syntactic matching is no more suffi 
cient to handle such kind of terms. Usually, this combination problem is solved by combining i 
syntactic matching algorithm with a commutative matching algorithm. Thanks to the SoleX ap 
proach, extending a syntactic matching solver with the commutativity is also possible, providec 
that CCR consists of the following rewrite rules: 

eq(x1,x2) = eq(y1,Y2) -t x1 = Y1 /\ x2 = Y2 
eq(x1,x2) = eq(y1,Y2) -t X1 = Y2 (\ X2 =YI 
eq(x1,x2) = f(Y11··· ,ym)-+ J_ for any f EE 

Let us describe how SoleX would proceed on a very simple matching problem: 

cons( eq(J (x, y ), a), z) =cons( eq(a, f (b, c) ), cons(eq(b, c), cons( eq(b, d), nil))) 

where f, a, b, c, d are free operators, eq is commutative and x, y, z are variables. First, Ab­
~raction applies, and we get the pure constraint cons(X,z) = cons(A,cons(B,cons(C,nil))) . 

.is pure constraint is solved with Solve, and yields X = A/\ z = cons(B, cons(C, nil)). Af· 
AlienRep, we obtain again a new impure constraint: eq(J(x, y), a) = eq(a, f(b, c)) /\ z = 

_(ms(eq(b,c),cons(eq(b,d),nil)). Then, ConsRed can be applied on the first equation as a non­
deterministic solver generating two branches. The first branch contains the constraint f (x, y) =a 
which leads to a failure by Solve. In the second branch, we have a = a/\ J(x,y) = j(b,c) 
which is transformed into x = b /\ y = c by Solve. So, we get the expected solution, that i~ 

r = b /\ y = c /\ z = cons(eq(b, c), cons(eq(b, d), nil)). 

7. Conclusion 

SoleX enables one extending constraint solvers in order to handle alien function symbols, i.e., an 
initial solver (seen as a black-box solver) is completed with a glass-box mechanism. The extension 
is composed of several solvers split into: (1) syntactical solvers that process the constraints 
independently from the computation domain and (2) semantic solvers that enrich constraints 
with information on the domain or on the function interpretation. 

In [9], Heintze & al. propose an extension of the solver of CLP(R.) for constraints over n+M. 
This extension is based on two methods: (1) simplifications that are similar to our notion of 
normal form extension, and (2) substitutions that can be seen as our rule lnterRed. However, 
our framework for extension is more complete since we also propose some other syntactic rules, 
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as well as semantic rules. Moreover, we can extend every kind of domains whereas in [9] novel 
constraint solvers, simplification algorithms or computation domains are always related to R. 
On the other hand, Heintze & al. not only extend the solver, but also the programming language. 
Thus, their work also enables applications such as debuggers or prototyping of novel CP systems. 

A first implementation of SoleX has been realized into CoSAc [21] where two solvers (one 
based upon a Grabner bases algorithm for simplifying polynomial equations and the other one 
based on Gaussian elimination) are extended with new function symbols (such as sin, cos and 
.J respectively corresponding to the usual trigonometric sine and cosine, and square root of 
polynomials). Hence, significant problems like the Inverse Robot Kinematics problem [4] (which 
is originally expressed with trigonometric functions) and the Robot in a Corridor problem [21] 
(which makes use of square roots of polynomials) can be solved automatically. 

In this paper, SoleX has been presented as a set of transformation rules plus an initial solver. 
Therefore, we could imagine to prototype this rule-based extended solver with a rule-based pro­
gramming language. In this context, ELAN [15] is a very good candidate for prototyping issues 
since it provides facilities to express strategies for applying rules and to call external solvers. 
However, we believe that a more efficient implementation should be based on a collaboration 
of several component solvers running concurrently. This explains why a more complete imple­
mentation is currently under way with BALI [18, 20, 19] which provides a logical framework for 
managing constraints (realized with ECLiPSe and the CHRs [6]) and a language for designing 
and executing solver collaborations. In fact BALI and SoleX have similarities that have to be 
studied in order to completely merge the two concepts for realizing a framework including either 
solver collaboration and solver extension. Furthermore the extension of solvers with new sorts 
and new predicates (i.e. constraints) will enable to design solvers on totally different domains. 
Thus, extending a well-known solver on a "simple" domain could lead to realize solvers on 
complex domains thanks to solver extension of SoleX and solver collaboration of BALI. 
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