
Fundamenta lnformaticae 39 {1999) 167-187

IOS Press

An Open Automated Framework

for Constraint Solver Extension: the SoleX Approach

Eric Monfroy*
CWI, P. 0. Box 94019

NL-1090 GB, Amsterdam, the Netherlands.

e-mail: Eric. Monfroy@cwi. n 7,

Christophe Ringeissen t
LORIA - INRIA, 615 rue du Jardin Botanique, BP 101

54602 Villers-les-Nancy Cedex, France.

e-mail: Christophe. Ringeissen@loria.fr

Abstract. In declarative programming languages based on the constraint programming
paradigm, computations can be viewed as deductions enhanced with the use of constraint
solvers. However, admissible constraints are restricted to formulae handled by solvers and
thus, declarativity may be jeopardized. We propose a domain-independent scheme to extend
constraint solvers so that they can handle alien constraints, i.e., constraint involving new
function symbols. This mechanism, called SoleX, consists of a set of symbolic rule-based
transformations: they add and deduce syntactical as well as semantic information related
to alien constraints, complete the computation domain, and purify constraints in order to
allow solvers to cope with alien constraints. These transformations can be seen as elementary
solvers, and thus, SoleX is a collaboration of these several solvers with the initial solver.
Some extensions of computation domains have already been studied to demonstrate the
broad scope of SoleX potential applications.

Keywords: Solver Extension, Constraint Solver Design, Constraint Solving, Program
ming with Constraints.

•Address for correspondence: CWI, P.O. Box 94079, NL-1090 GB, Amsterdam, the Netherlands

167

t Address for correspondence: LORIA - INRIA, 615 rue du Jardin Botanique, BP 101, 54602 Villers-les-Nancy
Cedex, France

168 E. Monfroy and Ch. Ringeissen/ An Open Automated Framework for Constraint Solver Extension

1. Introduction

Since the mid-eighties, constraint programming (CP) [12, 7, 25] has emerged as an interesting
style of programming. The framework of this new paradigm is based on the separation between
a programming language to generate requirements (the constraints) on objects (the computation
domain), and a mechanism for computing solutions of these constraints (the solver). CP has to
face the dilemma "declarativity vs. efficiency" : "efficient" solvers are generally specialized and
restricted to some classes of constraints, while "declarative" solvers can handle wider classes
of problems but are generally inefficient. Thus, a compromise solution consists in considering
solvers that cannot always handle all the constraints the user manipulate in the programming
languages. A solver is said to be complete if it is able to solve any constraint defined by the
language. However, for declarativity reasons, solvers of CP systems are not always complete:
for example CLP('R.) [14, 11, 13] allows one to specify but not to solve non-linear constraints,
i.e., they are suspended till they eventually become linear. Although this kind of technique is
sufficient for some applications, it is not satisfactory in the general case.

Designing a solver that handles (and preferably efficiently) all the constraints provided in
the programming language is a hard, tedious, and lengthy task. Possibly, there may be no solver
for this computation domain. Thus, in order to increase the declarativity of a constraint pro
gramming system without jeopardizing its efficiency, we are concerned with a general framework
and mechanisms for extending (and eventually completing) efficient solvers so they can handle
new function symbols. In [9], a decision procedure on R is extended to a decision algorithm on
R+ M 1. In this paper, we extend the method of [9] with other syntactical manipulations and se
mantic transformations as well. Moreover, our framework is independent from the computation
'omain and the programming language.

The aim of this paper is to present SoleX, a generic (i.e., independent from the domain
omputation and from the extra function symbols) scheme for extending constraint solvers
; generalizes and formalizes some of the previous works. SoleX enables one increasing the

declarativity of CP systems without jeopardizing the completeness of the solvers, and without
designing new solvers from scratch. The aim of SoleX is to enrich solvers with symbolic com
putation so they can treat new function symbols called alien symbols. SoleX consists of a set
of solver extensions (i.e., meta transformation rules) together with a scheduler to control their
application and the execution of the solver to be extended (called the initial solver). The solver
extensions aim at processing alien terms and constraints using alien terms such that these terms
and constraints can be handled by the initial solver (syntactical solver extensions), or such that
information carried by these terms and constraints becomes understandable by the initial solver
(semantic solver extensions). The solver extensions are either derived from some standard fea
tures/properties of the domain of computation, or fed with transformation rules specified by the
user for a given domain, solver, and alien function symbols.

The paper is organized as follows. Section 3 formalizes our framework. Section 4 describes

1CLP('R. + M) is obtained by extending the domain of CLP('R.) with some special nonarithmetic function
symbols.

E. Monfroy and Ch. Ringeissen/ An Open Automated Framework for Constraint Solver Extension 169

c

Figure 1.

cos(<5i) * cos(ch) - cos(<,D) * cos(B) * cos('tf;) + sin(<,D) * sin(1fi) = O
sin(Ji) * cos(o2) - sin(<,D) * cos(B) * cos('tf;) - cos(<,D) * sin(1fi) = O
sin(J2) + sin(B) * cos('tf;) = 0

- cos(o1) * sin(J2) - cos(<,D) * cos(B) * sin(1/!) + sin(<,D) * cos("l/J) = O
- sin(<51) * sin(o2) + sin(<P) * cos(B) *sin('t/J) - cos(cjJ) *cos(1fi) = O
cos(o2) - sin(B) * sin('tf;) = 0
sin(oi) - cos(4>) * sin(B) = 0
- cos(o1) - sin(<,&)* sin(B) = 0

cos(B) = 0

l2 * cos(oi) * cos(o2) - Px = 0
l2 * sin(J1) * cos(J2) - Py= 0
h * sin(o2) + l1 - Pz = 0

Robot-arm with two degrees of freedom

the (rule-based) elementary solvers: semantic solvers (Section 4.2) and syntactical solvers (Sec

tion 4.1). The related transformation rules are formally given in Section 4.3. We then examine

(Section 5) the control of solvers. Section 6 describes some applications of SoleX over different

domains. Finally, comparisons, conclusions and future works are discussed in Section 7.

2. Motivations

The general problematics is the following: we have a solver available (the initial solver) that

is able to handle a definite language of constraints. For some reasons (such as declarativity of

the programming language), we want to use some extra function symbols (the alien symbols).

Thus, we need a solver that can manipulate a larger language of constraints. However, we do

not want to implement a new solver from scratch, but we want to extend the solver we have at

disposal without modifying it (we consider it as a black-box).

The inverse robot kinematics problem [4] illustrates our motivations. We want to deter

mine, for a given robot, a position and an orientation of the end-effector, the distances at the

prismatic joints and the angles at the revolute joints (see Figure 1). The problem for a robot

having two degrees of freedom can be described by a system of equations (see Figure 1) that

also involves trigonometric functions 2 • The solution we look for is a symbolic expression de

scribing the relation between parameters and variables. However, neither trigonometric solvers

nor trigonometric simplifications automatically return the solution we expect. Thus, we would

like to extend a solver for non-linear polynomial constraints (such as Grabner bases computa

tion) with the trigonometric functions sine and cosine. We could solve "by hand" this example

in the following way. First, for each angle a, we replace (abstract) cos(()() and sin(a) by two

new variables Ca and Sa respectively. Then, for each Ca and Sa, we add a new constraint

c& + S~ = 1. We apply Grabner bases computation on this new set of constraints. Finally, we

2The parameters and variables are described in Section 6.

170 E. Monfroy and Ch. Ringeissen/ An Open Automated Framework for Constraint Solver Extension

remove all the constraints we have added, and we replace Co. and So. with cos(a) and sin(a)
respectively. Hence, we obtain the expected solution. Since the problem is rather small and the
transformations are quite simple, we can imagine doing it by hand, and SoleX is just a way to
automate the mechanism. However, when dealing with bigger problems, and numerous more
complex transformations, and when solving the problem requires reaching a fixed point of such
mechanisms, it is no more conceivable that the solver extension can be realized by hand, and
this justify an automated process.

Let us give a second example. One may have to consider unification problems together with
constraints on depths of ground terms, i.e., constraints such as

depth(X) = 4 - depth(g(Z)) /\ g(g(Z)) = g(g(g(b))) /\ g(Y) = g(g(X)).

We have here two disjoint sorts: terms (solved by unification) and integers. Since no solver over
the integers can handle the function depth, we want to extend a Diophantine solver (or a finite
domain like solver) with the depth function. Let us forget that solving this problem by hand
requires numerous transformations. We can determine what kinds of transformations can be
used (such as the depth of a constant is 1, or the depth(g(X)) is 1 + depth(X)), but we do not
know if they are sufficient, and in which order to apply them. Thus, we are not sure to reach a
fixed-point, neither to get a convenient solution. That introduces two other requirements: the
framework for solver extensions must ease the integration and the classification of several kinds
of transformations, and must provide some tools to ensure termination of the extension process.

Nowadays, some methods may be investigated for extending solvers. Solver combination
methods [1, 16, 22, 23] aim at designing a general solver for a union of theories (that corresponds
to a new mixed domain which is a conservative extension of the original ones) based on the
cooperation of elementary solvers, each one already defined for one of the theories. Since we want
to stay on the same interpretation domain, such frameworks are not well suited. Independently
of these theoretical results, more practical issues have been explored for the cooperation of
several solvers on a single domain [21, 5, 2, 8, 17], or on several domains [18, 20, 19]. However,
in such systems, extra function symbols cannot be directly handled.

The problem of integrating deduction techniques into computer algebra has attracted consid
erable interest [24, 10, 3], and standard computer algebra systems (such as Mathematica [26])
already provides some equation simplification tools. Although they are powerful, no meth
ods/techniques are available for designing a solver extension or to ensure its soundness. Similar
comments can be done about CHRs [6] and ELAN [15] 3 . Some works were also conducted in
the area of constraint transformation [18], but these techniques act only as a pre-processing.

To overcome the problems of solver extension, we designed SoleX, a framework together
with a mechanism for extending and completing constraint solvers. SoleX facilitates the design
and the classification of symbolic transformations and also automates their application, in order
to enrich solvers so they can treat alien symbols. The semantics of the alien symbols that

3However, these systems are really well suited for implementing our framework.

E. Monfroy and Ch. Ringeissen /An Open Automatea Framework for Constraint Solver Extension 171

can be introduced using SoieX can be of different kinds. First, they can be syntactic sugar

(or parameterization) to replace the extensional definition of a function (e.g., 3.x2 + 2.x + 1

may be named p(x). Then, 3.y2 +2.y+1 will be denoted p(y).). Second, they can be standard

functions not handled by the solver. For example, usual solvers for arithmetic constraints cannot

manipulate the functions sine and cosine. Unlike to the previous two cases, the last class of

alien symbols corresponds to functions with no defined meaning on the domain. For example,

a function can be characterized by experimental measures that can be expressed as constraints.

The solved form may define the extensional definition of the function (or of a class of functions).

SoleX is the ordered application of four phases (collections of solver extensions fed with

transformation rules designed by the user) to process the alien function symbols and deduce

related information. The Reduction phase reduces the search space by adding semantic and

syntactical information carried by the alien functions. The Expansion phase completes the

constraints with always valid (w.r. t. the extended domain) constraint, i.e., characteristics of

the functions (e.g., an absolute value is always greater than or equal to zero). Then, before the

Solving phase (application of the initial solver), the constraint store is purified by abstracting

remaining alien function symbols. After application of the initial solver, the Contraction phase

replaces abstraction variables with their related alien terms (this is the "opposite" of abstraction)

and removes "redundancies" added by the expansion phase. Several applications of SoleX may

be necessary to reach a fixed point and to solve the constraints.

3. Basic Concepts

Let us first introduce some standard notations about terms and substitutions of variables by

terms. Given a first-order signature :E and a denumerable set V of variables, T(:E, V) denotes

the set of FL;-terms with variables in V. Terms (resp. variables) are denoted by ti, ... , tn (resp.

x 1 , ... , Xn)· A ground term is a term without variables. The terms tlw• t[s]w and t[w ~ s] denote

respectively the subterm oft at the position w, the term t with the subterm s at the position w

and the replacement in t of tiw by s. The symbol oft occurring at the position w (resp. the top

symbol oft) are written t(w) (resp. t(E)). The term t[s] denotes a term t with some subterm

s. The term t[s +-' u] denotes the term where s is replaced by u in all occurrences of s in t.

V(t) denotes the set of variables occurring in the term t. A substitution {x1 i-+ ti, ... , Xn H tn}
is an assignment from V to T(:E, V). We use letters er,µ, -y, c/>, ... to denote substitutions. The

application of a substitution er to a term t is written in postfix notation ta.

We now define the objects handled by SoleX: solvers, and constraint systems.

Definition 3.1. (Constraint system) A constraint system is a 4-uple (E, V, V, .C) where:

• :E is a first-order signature given by a set of function symbols FE, and a set of predicate

symbols PE,
• V is a :E-structure (its domain is denoted by IVI),

• V is an infinite denumerable set of variables,

172 E. Monfroy and Ch. Ringeissen/ An Open Automated Framework for Constraint Solver Extension

• £ is a set of constraints: it is a non-empty set of (L:, V)-atomic formulas closed under
conjunction and disjunction. The unsatisfiable constraint is denoted by ..L. and the truth
constraint is denoted by T. An assignment is a mapping a : V --i IVI. The set of all
assignments is denoted by ASS~. An assignment a extends uniquely to a homomorphism
Q : T(:E, V) --i 1J. The set of solutions of a constraint c E £ is the set Solv(c) of
assignments a E ASS1 such that Q(c) holds. A constraint c is valid in 1J (denoted by
1J f= c) if Solv(c) =ASS~.

The enrichment of a constraint system CS consists of some additional functions defined on
the original domain. The interpretation of symbols previously defined in CS is unchanged.

Definition 3.2. (Constraint system enrichment) Let Cs+ = (L:+, 1J+, v+, c+) and CS =
(:E, D, V, £) be two constraint systems. Then, cs+ is an enrichment of CS if:

• :Fy;, <;;; :Fy;,+ and P"E, = Py;,+
• IDI = 1v+1 and Vr E :E, rv+ = rv, where rv (resp. rv+) represents the interpretation of

r on the :E-structure D (resp. v+).
• v = v+, c i:;;; c+

The notations t[g], t[g t..o u] defined on terms can be extended on constraints as follows:
C[g] means that g is a term occurring in C and C[g t..o u] is the constraint obtained from
C by replacing g by u. In the same way, constraints can be viewed as terms built on atomic
constraints and binary connectives /\, V. This leads to the notion of positions and subconstraints.
The constraint C[[c]]w denotes a constraint with a subconstraint c occurring at the position w,

and C[[w f-> c']] is the constraint obtained by replacing the subconstraint occurring in C at the
position w by c' . The connectives /\, V satisfy the following equational axioms:

C1 /\ C2 = C2 /\ C1
C1 /\ (C2 /\ C3) = (C1 /\ C2) /\ C3

ACD= C1 VC2 = C2 VC1
C1V(C2VC3) = (C1VC2)VC3
C1 /\ (C2 V C3) = (C1 /\ C2) V (C1 /\ C3)

A set of constraints { c1, ... , en} where Ci E £+ for i = 1, ... , n (a constraint store) is represented
by a conjunction of constraints c1 /\ · · · /\ Cn, where ci's are not necessarily atomic constraints.
This conjunction can be split into an impure component in [,+ and a pure component in £. This
explains why we represent any constraint in£+ by a pair (C, P) where C E [,+ and PE£, and
(C, P) means the conjunction C /\ P. If C is in £, then (C, P) is said pure.

Definition 3.3. (Aliens, pure and impure constraints) A pure constraint (resp. term) is
a constraint (resp. term) in £. An alien subterm in a term t is a term with a top-symbol in
:E+\:E such that its super-terms (whenever they exist) have top-symbols in :E. The set of aliens
in C denoted by Alien(C) is the set of alien subterms of terms occurring as arguments of atomic
constraints in C. A constraint C is impure if Alien(C) is non-empty.

E. Monfroy and Ch. Ringeissen/A o A t
n pen u omated Framework for Constraint Solver Extension 173

Intuitively, a component solver is an algorithm wh· h t £ · ·
t . t C' " . l " h ic rans orms a constramt C mto a new

cons ram s1mp er t an C b t · 1 c ·
. ' u eqmva ent to m the structure 1> (a solver preserves the

solutions). Moreover, the repeated application of a sol l h fix · · ·
. . ver a ways reac es a ed-pomt which is

a constramt m solved form.

Definition 3.4. (Component Solve) A l (·
. r component so ver or solver m short) for a constraint

system (:E, 1>, V, £) is a computable function S: .C-+ £ s.t.:

1. VG E .C, Solv(S(C)) ~ Solv(C) (correctness)

2. VG E £, Solv(C) ~ Solv(S(C)) (completeness)

3. VG E £, :Jn EN, sn+1 (C) = sn(C)

A constraint C is in solved form w.r.t. S if S(C) =C. A partial solver is a computable function

S satisfying only conditions (1) and (3). A non-deterministic solver is S = (Sik=i, ... ,m such that

Si is a partial solver for i = 1, ... , m and

m

VG E £, Solv(C) = LJ Solv(Si(C)).
i=l

A constraint C is in solved form w.r.t. S = (Si)i=l, .. .,m if Si(C) = C for i = 1, ... , m. We

denote by s+, the n-th iteration sn of S for some (unspecified) n 2:: 0. Similarly S* denotes the

repeated application of S till reaching the solved form. If S = (Sik .. ,m then sn = (Sf }i=l, ... ,m

and S* = (Si)i=l, ... ,m·

In the following, we represent a solver by a rule of the form:
Rule C

C' if Cond

The different possibilities of Rule application induce a relation -+Rule on £ x £. Whenever

there is no infinite chain C -+Rule ... -+Rule .. ., it is very natural to define a solver S from the

relation -+Rule, where a constraint C usually relates to finitely many constraints C1, ... , Cm such

that C -+Rule C1, ... , C -+Rule Cm. Similarly to the definition of solvers, two kind of constraint

selections can be distinguished. If S olv (C) = S olv (Ci) for any C E .C and i = 1, ... , m, then the

don't care application of Rule chooses an arbitrary Ck fork E [1, m], and S(C) :=Ck. Otherwise,

if Solv(C) = LJ~ 1 Solv(Ci) for any C E .Candi= 1, ... ,m, then the don't know application

of Rule corresponds to a non-deterministic solver S = (Si)i=I, ... ,m such that Si(C) = Ci for

i = 1, ... , m. In both cases, if there is no constraint C' such that C -+Rule C', then S(C) :=C.

For sake of simplicity, we do not consider in the following non-deterministic solvers, but one

should be aware that the same approach could be investigated with such solvers but at the cost

of more complicated notations. It is also important to note that the non-determinism of solvers

is usually implemented via a backtracking mechanism.

Assumption 3.1. S is a solver for CS.

174 E. Monfroy and Ch. Ringeissen /An Open Automated Framework for Constraint Solver Extension

We are interested in the design of a rule-based solver for an enrichment Cs+ of CS which
extends the solver S known for CS. This rule-based solver is given by a set of rules transforming
a constraint in .c+, seen as a pair (C,P) made of an impure constraint C and a pure one P.

Example 3.1. The following rule defines a solver for cs+ if Sis a solver for CS.
Solve (C,P)

(C,S(P))

In the case of a non-deterministic solver S = (Si)i:::l, ... ,m for CS, we need the following rule
to be applied with a don't know strategy:
SolveNonDet (C,P) .

(C, Si(P)) i = l, ... 'm

We will develop a rule-based solver for cs+ using the rule Solve. In addition to Solve, some
other solvers (solver extensions, see Section 4) will be applied on C.

4. Solver Extensions

The solver extensions have been grouped together w.r.t. the kind of action they have on the
constraint store. On one hand, semantic rules (Section 4.2) make use of the properties of
the domain or of the properties of the alien functions. On the other hand syntactical rules
(Section 4.1) are based on syntactical transformations which are always valid in any constraint
system. A formal description of transformation rules is given in Section 4.3.

4.1. Syntactical Solver Extensions

The following transformation rules mainly deal with either equations occurring in the constraint
store, or equations introduced in the constraint store. There are also rules to maintain the
partition of pure and impure constraints.

Variable Abstraction The rule Abstraction transforms impure constraints into pure ones
by adding new variables to name aliens. These variables Xu replace alien subterms u and the
related equations Xu = u are added to the constraint store. Then, equations Xu = u are no more
transformed and remain in the constraint store. To replace alien subterms, we use a bijective
mapping which associates to each non-variable term u a unique variable Xu. According to this
convention, two occurrences of the same term are automatically replaced by the same variable.

Example 4.1. Consider the constraint C = (sin2 (x + y) + cos2 (x + y)) = 1 - sin3 (2x) * (sin(x +
y) + cos(x + y)). Abstraction* transforms C into C' = (X2 + Y2 = 1 - Z 3 * (X + Y)) /\ ((X =
sin(x + y)) /\ (Y = cos(x + y)) /\ (Z = sin(2x))).

E. Monfroy and Ch. Ringeissen/ An Open Automated Framework for Constraint Solver Extension 175

Alien Replacement We have seen above how to purify the constraint store with Abstraction.

Thus, we get a pure constraint together with a conjunction of equations Xu = u involving new

variables called abstraction variables. Then, Solve (see Example 3.1) can obviously be used to

simplify this pure constraint. After that, the idea is to re-built an impure constraint without

abstraction variables in order to be able to apply another kind of solver extensions (described

later on). To this end, AlienRep consists in replacing abstraction variables by their related alien

subterms. Obviously, this rule is the converse of Abstraction and so (AlienRep* o Abstraction*) is

the identity solver, where o represents the usual composition of functions.

Inter-Reduction The idea of this transformation rule lnterRed is to perform the replacement

of a term by another one, provided there is an equation between these two terms in the constraint

store. Thus, we use an ordering -< on heterogeneous terms in T(I:+ U v+) to orient equations

as rewrite rules. This ordering satisfy some requirements: an impure (resp. non-ground) term

cannot be less than a pure (resp. ground) term with respect to -<. These requirements can be

easily understood by the fact that we want to be able to purify constraints and to compute the

truth value of constraints.

Example 4.2. Consider the constraint C = (y :::;: sin2x + sinz) /\ (sinz = 1) /\ (sin2x = 0).

lnterRed transforms C into (y:::;: 0 + 1) /\ (sinz = 1) /\ (sin2x = 0) provided that sinz >- 1 and

sin2x >- 0.

Moving constraints As said before, a constraint store is represented by a couple (C, P).

When a constraint c in C becomes pure (e.g., after Abstraction), it can be carried to P, the purE

part of the store. This is realized with the rule ToPure. In a similar way, constraints in P that

become impure (e.g., after AlienRep) are moved to C with the rule FromPure.

4.2. Semantic Solver Extensions

Rewriting is an ubiquitous concept for reducing expressions by simpler but equivalent ones. In

this section, some meta-transformation rules (mainly based on rewriting) are proposed. These

transformations must be regarded as solvers and aim to integrate properties relevant to functions

and predicates in Cs+. Our aim is to apply rewriting techniques for transforming both terms and

constraints occurring in the constraint store. Hence, we need to consider a database of rewrite

rules for the terms reduction (TGR) and another one for the constraints reduction (CGR).

In the following, we define how to apply such rules coming from a database of properties. In

our framework, a rule is guarded by a constraint, which means that the rule is applied only

if the related constraint is entailed by the current constraint store. Hence, we have chosen

here to use a form of contextual rewriting, where the rewriting context is processed by the

deduction mechanism available in the constraint system enrichment. At this point, another

question should be addressed: how to match a term with the left-hand side of a rule? For sake

of expressiveness, this matching cannot be simply syntactic and we improve it in two directions.

176 E. Monfroy and Ch. Ringeissen/ An Open Automated Framework for Constraint Solver Extension

First, for the constraints matching, we assume that logical connectives satisfy some equational
properties. Second, for the terms matching, our idea is to normalize terms to be rewritten before
applying rules and thus before the matching process. Since a solver S is usually provided with
a normalization process on terms in CS (which is more or less its internal representation), we
must also study the problem of extending this normalization to terms in Cs+.

Term Dependent Guarded Reduction The term rewrite system TG R is a finite set of
guarded rules (l-+ rllg) where g is a constraint in cs+ and l, rare terms such that v+ I= g =>
l = r. An instance of the term l, say la, occurring in the constraint store C can be replaced by
ra when ga is entailed by C. This transformation rule is called TerrnRed.

Example 4.3. Consider the guarded rules (!xl -+ xllx ~ 0) and (Ix! -t -xllx < 0). The
constraint C = (jy- 2j = x + jxj + 1) /\ (y 2: 3) /\ (x * y < 0) can be reduced toy= 3 /\x < 0
thanks to TermRed and Solve (see Example 3.1).

Constraint Dependent Guarded Reduction The constraint rewrite system CGR consists
of a finite set of guarded rules (L-+ RllG) where G is a constraint in cs+ and L, Rare conjunc
tions of atomic constraints in cs+ such that v+ I= G => (L {::} R). A rewrite relation is defined
as previously, except that matching is now performed modulo the associativity-commutativity
of /\,V and the distributivity of/\ with respect to V. The corresponding transformation rule is
called ConsRed.

Example 4.4. Consider the guarded rule (Jx = y -+ x = y2 llx ~ 0). The constraint (x >
'I/\ ((x - 1) * (y - 3) > 0) /\ (yfy=2 = y - 4) can be reduced to (x > 2) /\ ((x -1) * (y- 3) >

/\ (y - 2) = (y - 4)2 since y - 2 ;::: 0. Finally, we get solutions for y using the initial solver.

temark 4.1. Formally, checking the implication (entailment) requires a validity checker for
the enriched constraint system. If such a decision algorithm is not provided, then the semantic
entailment can be approximated by a syntactic constraint inclusion test.

Domain Dependent Completion/Deletion In order to Complete/Delete the information
encoded in the constraint store, we consider a database of valid facts, i.e. a finite set DDR of
valid conjunctions of constraints in Cs+. This leads to a pair of quite opposite transformation
rules, namely DomComp and Dom Del. Dom Comp completes the constraint store C by an instance
of a constraint C' E DDR provided this instance is not yet entailed by C. Conversely DomDel
deletes an instance of C' E DDR occurring in the constraint store. For trigonometric functions,
examples of valid constraints in DDR are: -1~sinx~1, -1~cosx~1, cos2 (x)+sin2 (x) = 1.

Example 4.5. Consider the constraint C = (1 - sin 2x = y) and the valid constraint (-1 :::;
sinX ~ 1) E DDR. Applying DomComp on C yields C /\ (-1 ~ sin2x ~ 1) thanks to
the instantiation of X by 2x. DomComp does not apply on C' = (0 ~ y ~ 1) /\ C since
(0 $ y $ 1) /\ (1 - V = y) already implies (-1~V~1), where V stands for sin2x.

E. Monfroy and Ch. Ringeissen /An Open Automated Framework for Constraint Solver Extension 177

Normalization We assume that the solver S is equipped with a normalizing mapping N F,

that is an idempotent computable mapping N F : T(E, V) --+ T(E, V) such that Vt E T(E, V), 'D I=
t = NF(t). Moreover, the computation of NF(t) does not depend on the names of variables

in V(t) but depends on the ordering of variables given by -<. Formally, this assumption can

be stated as follows: for any term t E T(E, V) and any variable renaming e : V(t) --+ V,

('<lx,y E V(t), xe-< ye{:::? x-< y) implies NF(te) = NF(t)e.

Let us now define the extension Np+ of the normalizing mapping N F.

Definition 4.1. The mapping NF+: T(E+, v+)--+ T(E+, v+) is defined by:

• N F+(J(t1, ... , tm)) = J(N F+(t1), ... , N F+(tm)) if j E E+\E.
• If t is pure, then N F+(t) = N F(t)

• If t is an impure term with a top symbol in E, then N F+(t) is recursively obtained:

1. Compute bi:= NF+(ai) for every alien ai E Alien(t).

2. Compute the term tn obtained by replacing in t aliens a 1 , ... an by new variables

x1, ... , Xn such that Xk -< x1 {:::? bk -< b1 and Xk = xz {:::? bk = b1 for 1 :::; k, l :::; n.

3. NF+(t) is NF(tn){xk i--+ bk}k=1, ... ,n·

The transformation rule Normalize consists in the replacement of any term t by its normal

form Np+ (t) following an innermost strategy.

Example 4.6. Let us consider the function symbols+,*,-, the predicate symbol:::; in E (inter

preted as usual over reals), the new function symbol J in E+, and the normalizing mapping N F

such that: NF(x-x) = 0, NF(x+O) = x and NF(hx) = x. Then NF+(J(1*x)-f(x+O)) = 0

and applying Normalize on the constraint C = (J(l * x) - f(x + 0) :::; x - y) leads to 0:::; x -y.

The initial solver can now treat this constraint and so we get the solution y:::; x.

4.3. Solver Extensions as Solvers

The transformation rules (Figure 2) formalize the solver extensions described in the previous

sections, as well as the constraints (pure and/or impure constraints) they handle. These rules

make precise the behavior /application of the solver extensions, and could be directly prototyped

in programming languages like ELAN [15] and CHRS [6]. It is a routine examination to prove

that each rule transforms a constraint into an equivalent one, and so it is correct and complete.

However, in order to state that rules correspond to solvers, we still have to take care about the

termination of their repeated applications.

Proposition 4.1. Solve, lnterRed, Abstraction, AlienRep, Normalize, DomComp, DomDel, ToP

ure, FromPure are solvers.

Proof:
• Abstraction strictly decreases the number of aliens u in C without any occurrence of the

corresponding abstraction variable Xu.

178 E. Monfroy and Ch. Ringeissen/ An Open Automated Framework for Constraint Solver Extension

• AlienRep strictly decreases the number of abstraction variables Xu in C.
• lnterRed replaces all occurrences but one of a term by a smaller term also occurring in

(C, P). Such kind of replacements cannot be performed infinitely many times.

• ToPure strictly decreases the number of conjuncts in the first component C.

• FromPure strictly decreases the number of conjuncts in the second component P.

• DomComp strictly decreases the number of constraints in DDR which have no instance in
the constraint C.

• Dom Del strictly decreases the number of instances of DDR constraints in C.
• Applying repeatedly Normalize always terminates since N F is idempotent and so is Np+.
• In the same way, the repeated application of Solve terminates since Sis a solver.

0

Since TermRed and ConsRed are parameterized by arbitrary rewrite rules, we cannot in
general ensure their termination.

Assumption 4.1. We assume that the rule system TGR (resp. CGR) is defined in such a way
that the repeated application of Term Red (resp. ConsRed) terminates. Moreover left-hand sides
of rules in TGR (resp. CGR) are impure terms (resp. impure constraints) and valid constraints
in DDR are impure and have only one conjunct (this can be assumed without loss of generality).

Under these assumptions on TGR, CGR and DDR, we get the following facts:

Fact 4.1. According to Assumption 4.1, TermRed and ConsRed are solvers.

Fact 4.2. According to Assumption 4.1, lnterRed, Normalize, TermRed and ConsRed do not
apply on pure constraints.

>. SoleX: the Solver Collaboration

The solver for Cs+ is described as a set of transformation rules (presented in the previous sec
tion) together with control. The basic operation we used for combining solvers is the composition
(of functions). The extended solving process SoleX is (Contraction o Solve o Expansion o Reduction)
where the four phases are as follows:

• Reduction phase (Reduction = (ConsRed+ o TermRed+ o lnterRed+ o Normalize+)): the con
straint store is transformed thanks to semantic and syntactical solver extensions introduced
in the two previous sections.

• Expansion phase (Expansion = (ToPure* o Abstraction* o DomComp*)) : the constraint store
is completed by valid constraints which may be helpful in the next phase and may be
purified thanks to Abstraction.

• Solve phase (Solve): the initial solver is applied on the pure part of the constraint store.

E. Monfroy and Ch. Ringeissen/ An Open Automated Framework for Constraint Solver Extension 179

Solve

lnterRed

Abstraction

Alien Rep

Normalize

Term Red

(C,P)
(0, S(P))

(C[g] /\ g = d, P)
(C[g P d] /\ g = d, P)

(C[u],P)
(C[u P Xu]/\ Xu = u, P)

if g is impure, d ~ g

·r { u E Alien(C),
1 Xu is a new variable.

(C /\ Xu = u, P)
if X is an abstraction variable

(C{Xu t-+ u}, P)

(C[g], P)
(C[g +-> NF+(g)],P) if C is impure,g -:j; NF+(g)

(C[la]w, P) . (I + I=
(C[w P rcr], P) if l-+ rl g) E TGR, 'D (C /\ P) => gu

ConsRed (C, P)
if (L-+ RllG) E CGR,C =AcD C'[[La]]w, v+ I= (C /\P} =>Ga

(C'[[w P Ra]], P)

Dom Comp

Dom Del

ToPure

From Pure

(0, P} 'f C' DDR d . { Alien(C')cr ~ Alien(C)
(c C) i E an a . 1 • •

/\ 1 er, P C er is not a conJunct of C

(C /\O'er, P) if O' E DDR: Alien(C')u ~ Alien(C)
(C,P)

(C,P /\ c)
(C /\ c, P)

(0 /\ c,P)
(C,P/\c)

if c is pure

if c contains some abstraction variable

Figure 2. Solver Extensions

• Contraction phase (Contraction= (DomDel*oAlienRep*oFromPure*)): the impure equations
introduced in the second phase are merged with the new pure part of the constraint store.
The persistent valid constraints added in the same phase are removed.

It is important to notice that a transformation rule is not necessarily a solver since its
repeated application may not terminate. For the same termination problem, a composition of
two solvers yields a new function which is not necessarily a solver (Definition 3.4). For proving
the termination of a composition of solvers, we may need to embed all orderings related to
elementary solvers into a Noetherian ordering <. As solver extensions are parameterized by
NF, ~,rewrite rules in TGR and CGR, or by valid constraints in DDR, we have to give more
precise sufficient conditions in order to ensure the termination of the SoleX process.

180 E. Monfroy and Oh. Ringeissen/ An Open Automated Framework for Constraint Solver Extension

Theorem 5.1. Let 2 be a quasi-ordering on .c+\.c such that> is Noetherian. SoleX is a solver
for Cs+ if the following conditions are satisfied:

1. TermRed and ConsRed are solvers,
2. For any EE {Normalize, lnterRed, TermRed, ConsRed}, we have

E(C, P) = (C', P) and C' E £+\.c => C ~ C'

3. ExtSolve = Contraction o Solve o Expansion is a solver such that

ExtSolve(C,P) = (C',P') => C > C'

The proof is quite obvious since SoleX is ExtSolve o Reduction and we assume a complexity
measure that does not increase by Reduction but strictly decreases by ExtSolve.

Remark 5.1. SoleX is just a partial solver if S is partial. Moreover, if S = (Si)i=l, ... ,m is a
non-deterministic solver, then SoleX becomes a non-deterministic solver if Solve is replaced by
SolveNonDet which is applied with a don't know mechanism.

Remark 5.2. SoleX becomes a solver when DDR, TGR, CGR,-< are empty, and NF is the
identity mapping.

It remains to show how ExtSolve can be turned into a solver. In the case of an empty set D DR,
ExtSolve simply corresponds to Solve and so it is obviously a solver. In general, introducing
a valid constraint to the constraint store could also introduce some disturbance in the future
solver application and we must take care of this situation. On the contrary, our aim is to
express the idea that the Expansion phase may help significantly in the simplification step already
~rformed by the solver. In order to formalize the intuitive notion of further simplification, let
1 introduce yet another ordering t>. This ordering t> is now defined on pure constraints and
is complementary to the ordering > already introduced for impure constraints. The first

.equirement consists in choosing t> in such a way that S does not compute a more complex
constraint w.r.t. t>.

Proposition 5.1. ExtSolve =Contraction o Solve o Expansion is a solver if there exists a quasi
ordering ~ on .C such that t> is Noetherian and

1. P ~ S (P) and P /\ P" ~ P
2. (a} S(P) t> S(P /\ P")

(b} or else S(P /\ P") = S(P) /\ P"

where P" is a pure constraint derived from the abstraction of a constraint in DDR, that is
formally :JC' E DDR :Ja, AlienRep*(P") = C'a.

Item 2. makes sure that a pure constraint P" coming from a DDR constraint permits to strictly
simplify the second component P of the store or is not used by the solver S (the corresponding
DDR constraint will then be removed by DomDel). The ordering t> is defined on constraints in
.C and may be chosen for instance according to the number of "unsolved" variables.

E. M onfroy and Ch. Ringeissen /An Open Automated Framework for Constraint Solver Extension 181

Proof:
ExtSolve is the composition of several solvers. Hence, ExtSolve obviously preserves the solutions

(items 1and2 of Definition 3.4).

Let n(C,P) (resp. t(C,P)) be the pure (resp. impure) component of (C,P) defined in the

following way:

n(C, P) = P' (resp. t(C, P) = C') where (C', P') = ToPure* o Abstraction*(C, P)

Let E be a solver from {To Pure, Abstraction, Alien Rep, From Pure}. Then, by definition, E
does not modify the result of 7f i.e., rr(C, P) = 7r(E(C, P)).

Let >s be the Noetherian ordering defined by: P >s P' if P' = S(P) and P'-=/= P. For sake of

simplicity, we consider in the following that DDR is a singleton but the same kind of proof can

be done by induction on the size of DDR at the cost of more complicated notations. Let C' be

the constraint added to C by DomComp. This constraint is abstracted to P" and added to P
thanks to Abstraction followed by ToPure:

Solve o Expansion(C, P) = Solve o ToPure* o Abstraction* o Dom Comp*(C, P)

= Solve o ToPure* o Abstraction*(C /\ C', P)
= Solve(i(C,P),rr(C,P) /\ P") (1)

Then, two cases corresponding to the restrictions of Proposition 5.1 can happen.

1. Restriction 2.a of Proposition 5.1: S(n(C, P)) t> S(7r(C, P) f\ P"). From Item 1 of Propo

sition 5.1, we have: 7r(C,P) ~ S(7r(C,P)) (2). From Equality (1) and the definitions of

the Solve rule and the 7f function, we obtain:

7r(Solveo Expansion(C,P)) = S(n(C,P) /\P11) (3)

Using restriction 2.a and (3), we get: S(rr(C,P)) [> 7r(Solve o Expansion(C,P)) (4). By

transitivity on (2) and (4), we get: rr(C,P) [> 7r(Solve o Expansion(C,P)) (5). Since

Contraction may remove some constraints, we also have:

7r(Solveo Expansion(C,P)) ~ 7r(ExtSolve(C,P)) (6)

Again by transitivity ((5) and (6)), we get: rr(C, P) [> 7r(ExtSolve(C, P)) (I)

2. Restriction 2.b of Proposition 5.1: S(7r(C, P) /\ P") = S(7r(C, P)) /\ P".

First, we develop ExtSolve(C, P) (when DomComp adds a single constraint C') using Equal

ity (1):

ExtSolve(C, P) = Dom Del* o Alien Rep* o FromPure*(i(C, P), S(n(C, P)) /\ P")

= DomDel* o AlienRep* o FromPure*(i(C,P) /\ C', S(7r(C,P)))

= AlienRep* o FrornPure*(i(C,P), S(7r(C,P))) (7)

182 E. Mon/ray and Ch. Ringeissen /An Open Automated Framework for Constraint Solver Extension

Usingthedefinitionof1T, and Equality (7), we obtain: 1T(ExtSolve(C,P)) = S(7r(C,P)) (8).
Using (8) and the definition of >s, we get:

if7r(C,P) -:f. S(7r(C,P)) then 7r(C,P) >s 7r(ExtSolve(C,P)) (II)
otherwise ExtSolve(C, P) = (C, P) (I I I)

Finally, consider the relation » on L defined by: P » P' if Pr> P' or (P 'I::?. P' and P > s P'). It
is a Noetherian ordering since r> and > s are Noetherian, and > s is included in 'I::?. (by definition).

Since 7r(C, P) » 1T(ExtSolve(C, P)) ((I) and (II)) or ExtSolve(C, P) = (C, P) ((III)), we can
conclude that the repeated application of ExtSolve always terminates and so ExtSolve is a solver.

D

6. Applications

Inverse Robot Kinematics We can now solve the problem [4] briefly described in Section 2.
This problem for a robot (see Figure 1) having two revolute joints (degrees of freedom) can be
described by the system of equations presented in Figure 1 where li, l2,Px,Pz are parameters and
Py, 51 , 52 , if;, 8, 'ljJ are variables. l1, l2 are the lengths of the robot arms, (px, Py,Pz) is the position
of the end-effector, If;, 8, 'ljJ are the Euler angles of the orientation of the end-effector, and 51, 52
are the rotation angles of the revolute joints. The expected solution is a symbolic expression
describing the dependence of the joint variables on the geometrical and position parameters. For
this application, neither trigonometric solvers nor trigonometric simplifications automatically

•urn a symbolic solution expressing the relation between parameters and variables. Thus, we
nd a solver working on the domain of non-linear polynomial constraints (namely Grabner
~s which simplify polynomial equations and return relations between the variables) with

gonometric functions (sine and cosine). Hence, let DDR be {sin2 (X) + cos2(X) - 1 = O}.
l'he Dom(omp solver completes the system by adding for each angle (51, 52 , </>, 8, 'ljJ) the property
of sine and cosine (sin2 (X) + cos2(X) = 1). The Abstraction solver replaces every remaining sine
and cosine with new variables. Finally after Solve and AlienRep, SoleX reaches a fixed-point
which is the desired solution:

sin(1fi) + k1 * cos(q'J) * sin(81) * cos(i51) = 0
/\ sin(8) + k2 * cos(</>) * sin(81) = 0
/\ sin(q'J) + k3 * cos(q'J) * sin(81) * cos(61) = 0
/\ cos(1/i) + k4 * cos(iP) * sin(81) = 0
/\ cos(B) = 0
/\ cos2 (iP) + ks = 0

/\ Py+ k5 * sin(<5i) * cos(<5i)
/\ sin(82) + k1
/\ sin2 (6i) + k8

/\ cos(82) +kg* cos(81)
/\ cos2(61) + k10

Nhere k1, ... , k10 are constants, depending on the parameters l1, l2,Px,Pz·

- 0
- 0
- 0
- 0
- 0

Constraint solving over integers and terms This example illustrates how to extend a
constraint solver working on conjunctions of two-sorted constraints: the integers and the terms.
Constraints over integers are equations and inequations between linear polynomials with integer

E. Monjroy and Ch. Ringeissen/ An Open Automated Framework for Constraint Solver Extension 183

coefficients. Constraints over terms are equations between terms. Formally, the signature is as
follows:

E = { :S: Z x Z; +, - : Z x Z -+ Z; 0, 1 : Z
f : 'JI' x 'JI' -+ 'll'; g : 'JI' -+ 'll'; a : 'JI'

'JI' (resp. Z) denotes ground terms (resp. integers) and the function symbols and the predicate
symbol :S are interpreted as usual. We consider two new function symbols depth : '[' -+ Z and
max : Z x Z -+ Z, interpreted respectively as the depth of a term and the maximum of two
integers. Since we want to extend the constraint solvers associated to integers and terms, we
choose the sets of Term-dependent (Constraint-dependent) Guarded Reduction and DDR as
follows:

(1) depth(J(X, Y)) -+ 1 + max(depth(X), depth(Y))
(2) depth(g(X)) -+ 1 + depth(X)

TGR = (3) depth(a) -+ 1
(4) (max(x, y) -+ yjjx :Sy)
(5) (max(x, y) -+ xllY :S x)

GGR = {(1) depth(X) = 1-+ X =a, (2) depth(X) < 1-+ ..L.},DDR = {1 :S depth(X)} where
a rule l -+ r is an abbreviation for (l -+ rl!T). Consider the repeated application of SoleX to

(I) z' -z = depth(g(Y)) - depth(Y)
(JI) max(z', z) - z = u
(III) 0 < l-v+u
(IV) depth(g(X)) < 'lJ

(V) J(W, W') = J(g(W'), J(X, X))

First, Term Red applies rule (2) of TGR on equation (I). After Normalize, (I) becomes z' = z + 1.
Term Red applies rule (4) of TGR on (II), and after Normalize (II) becomes u = 1. Then, after
ToPure, Solve applies the solver for integers and (III) is transformed into v s 2. TermRed can
now apply rule (2) of TGR on (IV): then application of Normalize, DomComp and ConsRed (rule
(1)) leads to X =a. Finally, after Normalize and ToPure, Solve (solver for terms, i.e., unification)
transforms (V) into W = g(J(a, a))/\ W' = f(a, a). The solved form is:
z' = z + 1 /\ u = 1 /\ v :S 2 /\ X =a/\ W = g(J(a, a))/\ W' = f(a, a)
Here, the complexity measure for proving the termination of SoleX is based on a combination
of elementary measures corresponding to the number of depth and max occurrences and to the
multiset of sizes of depth arguments.

Extending Syntactic Matching with the Commutativity The matching process is a
crucial mechanism in the implementation of functional programming, as well as unification is
at the heart of logic programming. Given a non-ground term s and a ground term t, the aim
of matching is to instantiate variables occurring in s in such a way that the instantiation of
s becomes equal to t. Thus, a matching problem may be viewed as a specific non-symmetric
unification problem, and so, it is still constraint solving over terms. For example, the matching

184 E. Monfroy and Ch. Ringeissen/ An Open Automated Framework for Constraint Solver Extension

problem cons(x, y) = cons(a, cons(b, cons(c, nil))) admits x = a/\ Y = cons(b, cons(c, nil)) a
unique solution. Here, cons may be interpreted as the list constructor, and nil as the empt:
list. The operators cons and nil do no satisfy equational properties, they are free and we tall
about syntactic matching. Due to its relevance for applying rules, syntactic matching must h
implemented very efficiently in rule-based programming languages like ELAN [15]. In this con
text, it is also very important to handle more complicated terms such as a list of "equations1

cons(eq(x,a),cons(eq(x,y),nil)), where eq should be now declared as a commutative operato
since the equality relation is clearly symmetric. But then, syntactic matching is no more suffi
cient to handle such kind of terms. Usually, this combination problem is solved by combining i
syntactic matching algorithm with a commutative matching algorithm. Thanks to the SoleX ap
proach, extending a syntactic matching solver with the commutativity is also possible, providec
that CCR consists of the following rewrite rules:

eq(x1,x2) = eq(y1,Y2) -t x1 = Y1 /\ x2 = Y2
eq(x1,x2) = eq(y1,Y2) -t X1 = Y2 (\ X2 =YI
eq(x1,x2) = f(Y11··· ,ym)-+ J_ for any f EE

Let us describe how SoleX would proceed on a very simple matching problem:

cons(eq(J (x, y), a), z) =cons(eq(a, f (b, c)), cons(eq(b, c), cons(eq(b, d), nil)))

where f, a, b, c, d are free operators, eq is commutative and x, y, z are variables. First, Ab
~raction applies, and we get the pure constraint cons(X,z) = cons(A,cons(B,cons(C,nil))) .

.is pure constraint is solved with Solve, and yields X = A/\ z = cons(B, cons(C, nil)). Af·
AlienRep, we obtain again a new impure constraint: eq(J(x, y), a) = eq(a, f(b, c)) /\ z =

_(ms(eq(b,c),cons(eq(b,d),nil)). Then, ConsRed can be applied on the first equation as a non
deterministic solver generating two branches. The first branch contains the constraint f (x, y) =a
which leads to a failure by Solve. In the second branch, we have a = a/\ J(x,y) = j(b,c)
which is transformed into x = b /\ y = c by Solve. So, we get the expected solution, that i~

r = b /\ y = c /\ z = cons(eq(b, c), cons(eq(b, d), nil)).

7. Conclusion

SoleX enables one extending constraint solvers in order to handle alien function symbols, i.e., an
initial solver (seen as a black-box solver) is completed with a glass-box mechanism. The extension
is composed of several solvers split into: (1) syntactical solvers that process the constraints
independently from the computation domain and (2) semantic solvers that enrich constraints
with information on the domain or on the function interpretation.

In [9], Heintze & al. propose an extension of the solver of CLP(R.) for constraints over n+M.
This extension is based on two methods: (1) simplifications that are similar to our notion of
normal form extension, and (2) substitutions that can be seen as our rule lnterRed. However,
our framework for extension is more complete since we also propose some other syntactic rules,

E. Monfroy and Ch. Ringeissen/ An Open Automated Framework for Constraint Solver Extension 185

as well as semantic rules. Moreover, we can extend every kind of domains whereas in [9] novel
constraint solvers, simplification algorithms or computation domains are always related to R.
On the other hand, Heintze & al. not only extend the solver, but also the programming language.
Thus, their work also enables applications such as debuggers or prototyping of novel CP systems.

A first implementation of SoleX has been realized into CoSAc [21] where two solvers (one
based upon a Grabner bases algorithm for simplifying polynomial equations and the other one
based on Gaussian elimination) are extended with new function symbols (such as sin, cos and
.J respectively corresponding to the usual trigonometric sine and cosine, and square root of
polynomials). Hence, significant problems like the Inverse Robot Kinematics problem [4] (which
is originally expressed with trigonometric functions) and the Robot in a Corridor problem [21]
(which makes use of square roots of polynomials) can be solved automatically.

In this paper, SoleX has been presented as a set of transformation rules plus an initial solver.
Therefore, we could imagine to prototype this rule-based extended solver with a rule-based pro
gramming language. In this context, ELAN [15] is a very good candidate for prototyping issues
since it provides facilities to express strategies for applying rules and to call external solvers.
However, we believe that a more efficient implementation should be based on a collaboration
of several component solvers running concurrently. This explains why a more complete imple
mentation is currently under way with BALI [18, 20, 19] which provides a logical framework for
managing constraints (realized with ECLiPSe and the CHRs [6]) and a language for designing
and executing solver collaborations. In fact BALI and SoleX have similarities that have to be
studied in order to completely merge the two concepts for realizing a framework including either
solver collaboration and solver extension. Furthermore the extension of solvers with new sorts
and new predicates (i.e. constraints) will enable to design solvers on totally different domains.
Thus, extending a well-known solver on a "simple" domain could lead to realize solvers on
complex domains thanks to solver extension of SoleX and solver collaboration of BALI.

References

[1] F. Baader and K. Schulz. On the combination of symbolic constraints, solution domains,
and constraint solvers. In Proc. of CP'95, volume 976 of Lecture Notes in Computer Science,

1995.
[2] F. Benhamou and L. Granvilliers. Combining local consistency, symbolic rewriting, and

interval methods. In J. Pfalzgraf, editor, Proc. AISMC-3, volume 1138 of Lecture Notes in
Computer Science, Steyr, Austria, Sep. 1996. Springer-Verlag.

[3] P. G. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Specification and Integration of
Theorem Provers and Computer Algebra Systems. In Proc. of the International Confer
ence Artificial Intelligence and Symbolic Computation {AISC'98), Plattsburgh (New York,
U.S.A.), volume 1476 of Lecture Notes in Artificial Intelligence, pages 94-106. Springer

Verlag, Sep. 1998.
[4] B. Buchberger. Applications of Grabner Bases in Non-Linear Computational Geometry. In

D. Kapur and J. Mundy, editors, Geometric Reasoning, pages 413-446. MIT Press, 1989.

186 E. Monfroy and Ch. Ringeissen /An Open Automated Framework for Constraint Solver Extension

[5] 0. Caprotti. Extending risc-clp(cf) to handle symbolic functions. In A. Miola, editor, Proc.
of DISCO '93, volume 722 of Lecture Notes in Computer Science. Springer-Verlag, Sep.
1993.

[6] T. Friihwirth. Constraint handling rules. In A. Podelski, editor, Constraint Programming:
Basics and Trends , volume 910 of Lecture Notes in Computer Science. Springer-Verlag,
1995.

[7] T. Friihwirth, A. Herold, V. Kuechenhoff, T. Le Provost, P. Lim, E. Monfroy, and M. Wal
lace. Constraint Logic Programming- An Informal Introduction. In G. Comyn, M. Ratcliffe,
and N. Fuchs, editors, Logic Programming in Action : LPSS'92, Zurich, Switzerland, vol
ume 636 of Lecture Notes in Computer Science. Springer-Verlag, Sep. 1992.

[8] L. Granvilliers. Consistances locales et transformations symboliques de contraintes
d'intervalles. Phd thesis, University of Orleans, France, December 1998. In French.

[9] N. Heintze, S. Michaylov, P. J. Stuckey, and R.H. C. Yap. Meta-Programming in CLP(R).
Journal of Logic Programming, pages 221-259, 1997.

[10] K. Homann and J. Calmet. Combining Theorem Proving and Symbolic Mathematical Com
puting. In J.A. Campbell J. Calmet, editor, Proc. of AISMC-2, volume 814 of Lecture Notes
in Computer Science, pages 18-29. Springer-Verlag, 1995.

[11] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proc. of the 14th ACM Sym
posium POPL, Munich, Germany, pages 111-119. ACM, Jan. 1987.

[12] J. Jaffar and M. Maher. Constraint Logic Programming: a Survey. Journal of Logic Pro
gramming, 19,20:503-581, 1994.

'l J. Jaffar, M. Maher, P. Stuckey, and R. Yap. Output in CLP(R). In ICOT Staff, editor,
Proc. of FGCS'92, pages 987-995, Tokyo (Japan), Jun. 1992. IOS Press.
J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(R) Language and System. ACM
Transactions on Programming Languages and Systems, 14(3):339-395, 1992.

[15] C. Kirchner, H. Kirchner, and M. Vittek. Designing constraint logic programming languages
using computational systems. In P. Van Hentenryck and V. Saraswat, editors, Principles
and Practice of Constraint Programming. The Newport Papers., pages 131-158. MIT press,
1995.

[16] H. Kirchner and C. Ringeissen. Combining symbolic constraint solvers on algebraic domains.
Journal of Symbolic Computation, 18(2):113-155, 1994.

[17] P. Marti and M. Rueher. A Distributed Cooperating Constraints Solving System. Interna
tional Journal on AI Tools, 4(1&2):93-113, 1995.

[18] E. Monfroy. Collaboration de solveurs pour la programmation logique a contraintes. Phd
thesis, Universite Henri Poincare - Nancy 1, Nov. 1996. Also available in english. Available
on-line at http: I />Tww. cwi. nlr eric/Pri vate/Publications/ index. html.

[19] E. Monfroy. An environment for designing/executing constraint solver collaborations. In
Proc. of the 2nd International Workshop on Constraint programming for time critical ap
plications and multi-agent systems (Cotic'98}, Nice (France), volume 16 of Electronic Notes
in Theoretical Computer Science. Elsevier Science Publishers, 1998.

E. Monfroy and Ch. Ringeissen/ An Open Automated Framework for Constraint Solver Extension 187

[20] E. Monfroy. The Constraint Solver Collaboration Language of BALI. In Proc. of Frontiers
of Combining Systems (FroCoS'98}, Amsterdam {The Netherlands), 1998.

[21] E. Monfroy, M. Rusinowitch, and R. Schott. Implementing Non-Linear Constraints with
Cooperative Solvers. In Proc. of ACM SAC'96, pages 63-72, Feb. 1996.

[22] C. G. Nelson and D. C. Oppen. Simplifications by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems, 1(2), 1979.

[23] C. Ringeissen. Cooperation of decision procedures for the satisfiability problem. In Frontiers
of Combining Systems, Applied Logic, pages 121-140. Kluwer Academic Publishers, 1996.

[24] The Calculemus Project. Calculemus and Types '98, Eindhoven, The Netherlands, Jul.
1998.

[25] P. Van Hentenryck and V. Saraswat. Strategic Directions in Constraint Programming. ACM
Computing Surveys, 28(4):701-726, Dec. 1996.

[26] S. Wolfram. The Mathematica Book, 3rd ed. Cambridge University Press, 1996.

