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1. THE PROBLEM 

We consider a process of fiber spinning, where a viscous (but not necessarily 
Newtonian) fluid is being pushed through a narrow "spinning hole" and, upon 
exit, is being stretched, the latter step in order to obtain an acceptable align­
ment of the (polymeric) molecules in the fluid. This alignment is necessary for 
the final mechanical properties of the fiber. After leaving the spinning hole, the 
fluid passes through a layer of air (the "air gap") and enters a bath, in which 
it solidifies almost instantaneously. Somewhere inside this bath, the fiber is 
being drawn by a wheel, which delivers the force, necessary for the stretching 
process. 
When the speed of the drawing wheel is set to high, it is impossible to obtain 
a uniform fiber: one clearly observes variations in the fiber diameter. This 
phenomenon is called draw resonance. Experimental evidence suggests that 
the draw ratio, that is, the ratio between the speeds at the wheel and at the 
exit of the spinning hole, is the unique parameter to steer the onset of draw 
resonance, and for Newtonian fluids this is known to be true. The reader is 
referred to [1 J and [2]. In the Newtonian case, the onset of draw resonance can 
be shown to be a Hopf bifurcation. 

The question, asked to the Study Group, was to extend the results on Newto­
nian fluids to fluids with more general rheologies, with power law fluids as a 
first choice. What came out of the Study Group was not yet a final solution 
to this problem, but rather an attempt to come to an easier formulation of 
the model equations. At the workshop, we thought that we had succeeded, 
but afterwards we found that there was a hidden mistake, which we could not 
easily correct. This mistake in itself is worth mentioning, because the approach 
we tried may be successful in other cases, and this mistake may easily slip into 
the considerations there. In this note, we restrict ourselves to the Newtonian 
case, because it is easy to describe the mistake in this setting, and the power 
law setting would not add anything. 
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As a final remark, we note that the "power law case" has been solved now, by 
using similar methods as we did in the Newtonian case. A publication is in 
preparation. 

Apart from the authors, during the study group the following persons have 
worked on this problem: Pieter de Groen (Free University, Bruxelles) and 
Sandro Merino (University of Strathclyde, Glasgow). 

2. SUMMARY OF THE PREVIOUS RESULTS 

When the (very thin) fluid jet is considered one dimensional, a nondimension­
alized model for the Newtonian case is given by 

Pr+ (pv)x = 0 (1) 

Re(pvr + pvvx) = (PVx )x (2) 

p(O,T) =v(O,T) = 1 (3) 

v(l,T) = s, (4) 

where T, :r, p and v are nondimensionalized time, length along the jet, cross­
section and speed, respectively. The parameter s is the draw ratio. Re is the 
Reynolds number, defined by Re= ~'where V 8 , £, p and 17 are, respectively, 
the speed at the exit of the spinning hole, the length of the air gap, the density 
and the (Trouton) viscosity. Actually, Re is very small, so that we are left with 

Pr+(pv)x= 0 

Vxx + p,v,. = 0 
p 

v(l,T) = S 

p(x,O) = p(x), 

where p is an initial situation. Note that (P1 ) has a unique stationary solution, 
given by p(x, t) = po(x) = s-x, v(x, t) = v0 (x) = sx, where we have assumed 
that p = p0 . We are interested in the stability of this stationary solution. 
Therefore, we linearize around p0 , v0 , as follows: we set 

and we omit all terms that are of order > 1 in {p, q}. Next, we require that 
the boundary condition are not perturbed: p(O, T) = q(O, T) = q(l, T) = 0. 
The resulting system of equations for {p, q} can be transformed into one single 
equation 
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slogs 1(s-l)/(slogs) {yslogs + 1-s} 
o-(T) = --1 (1 1 )2 a(T - y) dy, s - 0 s -y ogs 

(5) 

where a( T) is the perturbation in drawing force. The next step is to show 
that the stability question is completely determined by the complex valued 
eigenvalues >., given by 

slogs 1(s-l)/(slogs) {yslogs + 1- s} -.>. 
-- e Y dy = 1. 
s - 1 0 s(l -ylogs)2 

The stationary solutions are unstable when there is an eigenvalue with positive 
real part, and stable when all eigenvalues are in the left half plane. A proof is 
contained in [3, Section I, Th.5.4]. 

3. APPROACH OF THE STUDY GROUP 

The first purpose has been to come to a different problem formulation, which 
we did for the Newtonian case first. We did not a priori assume Re to be small, 
but we have used the letter c in stead of Re. 

We introduce the new coordinates 

1.j;(x, T) = 1x p(~, T) d~, t(x, T) = T. 

This choice is justified by the fact that 1./Jx = p > 0. Note that 1.j; is a stream 
function and that 

1.j;., = 1- pv. 

By abuse of notation, we use the same letters for the dependent variables as 
before. Upon the transformation, the region { 0 < x < 1} is transformed into 
the region 

0<1.j; < fo 1 p(~,t) d~ = ((t), 

where 

('(t) = 1- p(((t), t)s. 

Apparently, the coordinate transformation has left us with a free boundary 
problem. Note that, in the stationary case, we have that p(((t), t) = v(C:(~),t) = 

~'so that ('(t) = 0, as expected. 

In the new coordinates, the differential equations read 

Pt + p,µ + p2v1/J = 0, 

1 2 
Vt + V,p = -(p V1f.J)1/J· 

e 

(6) 

(7) 
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The equations are valid in the region 0 < 7f; < ((t), where ( 1 (t) = 1-p(((t), t)s. 
As boundary conditions we have 

p=v=l (7,1;=0), 

v=s (7f;=((t)). 

The stationary solution {po, vo} satisfies 

I 2 I 0 Po+ PoVo = , 

By (8), we find from (10) that 

vopo = 1. 

Equation (11) may be integrated, to yield that 

v' 0 €Vo= 2 - C. 
Vo 

From this result we deduce that 

l s __ dv __ = (o. 
1 v2 (e:v + c) 

In order to determine c, we recall that, in the "old" variables, we have 

d'lj; 1 
-=po=-, 
dx vo 

so that 

rl d1j; r<o 
1 = Jo Vo dx dx = Jo v0 d7,I;. 

From (13) we deduce that d7,I; = 2( dv"+ ) , so that 
Vo EVo c 

l s dv 

1 v(ev+c) =l. 

This relation enables us to determine c and, thus, vo and Po· 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

So far so good. In order to analyze the stabilty of the steady solution, we 
linearise around (6), (7), writing 

p =po +u; v =Vo +w. 

Formally, this gives, to first order, 

Ut + u.,p + 2pouv~ + p~w..p = 0, 
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1 ( I 2 ) 
Wt+ w"' = - 2pouv0 + p0 w"' 1/J· 

€ 

67 

But here we made the following mistake. When we perturb p, we implicitly 
perturb our coordinate 'lj;, which must be taken into account in the linearization. 
We did not perceive this during the workshop, and afterwards we found that 
correcting the mistake made the equations rather awful. 
After the workshop and the detection of the mistake, we again tried the "old" 
approach on power law fluids. We seem to have been successful now, and 
another publication is in preparation. 
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