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Information Distance in Multiples
Paul M. B. Vitányi

Abstract—Information distance is a parameter-free similarity
measure based on compression, used in pattern recognition, data
mining, phylogeny, clustering and classification. The notion of
information distance is extended from pairs to multiples (finite
lists). We study maximal overlap, metricity, universality, minimal
overlap, additivity and normalized information distance in mul-
tiples. We use the theoretical notion of Kolmogorov complexity
which for practical purposes is approximated by the length of
the compressed version of the file involved, using a real-world
compression program.

Index Terms—Data mining, information distance, Kolmogorov
complexity, multiples, pattern recognition, similarity.

I. INTRODUCTION

I N pattern recognition, learning and data mining one obtains
information from objects containing information. This in-

volves an objective definition of the information in a single ob-
ject, the information to go from one object to another object in
a pair of objects, the information to go from one object to any
other object in a multiple of objects and the shared information
between objects, [34].

The classical notion of Kolmogorov complexity [21] is an
objective measure for the information in an a single object and
information distance measures the information between a pair
of objects [3]. This last notion has spawned research in the
theoretical direction, among others [6], [30], [35], [37]–[39].
Research in the practical direction has focused on the normal-
ized information distance, the similarity metric, which arises by
normalizing the information distance in a proper manner and
approximating the Kolmogorov complexity through real-world
compressors [7]–[9], [26], This normalized information dis-
tance is a parameter-free, feature-free, and alignment-free
similarity measure that has had great impact in applications.
A variant of this compression distance has been tested on all
time sequence databases used in the last decade in the major
data mining conferences (sigkdd, sigmod, icdm, icde, ssdb,
vldb, pkdd, pakdd) [18]. The conclusion is that the method is
competitive with all 51 other methods used and superior in
heterogenous data clustering and anomaly detection. In [4] it
was shown that the method is resistant to noise. This theory
has found many applications in pattern recognition, phylogeny,
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clustering and classification. For objects that are represented
as computer files such applications range from weather fore-
casting, software, earthquake prediction, music, literature, ocr,
bioinformatics, to internet [1], [2], [5], [8]–[10], [12], [19],
[20], [22], [23], [25], [31]–[33], [40]. For objects that are only
represented by name, or objects that are abstract like “red,”
“Einstein,” “three,” the normalized information distance uses
background information provided by Google, or any search
engine that produces aggregate page counts. It discovers the
“meaning” of words and phrases in the sense of producing a
relative semantics. Applications run from ontology, semantics,
tourism on the web, taxonomy, multilingual questions, to ques-
tion-answer systems [13]–[15], [17], [36], [41]–[43]. For more
references on either subject see the textbook [28] or Google
Scholar for references to [8], [9], [26].

However, in many applications we are interested in shared in-
formation between many objects instead of just a pair of objects.
For example, in customer reviews of gadgets, in blogs about
public happenings, in newspaper articles about the same occur-
rence, we are interested in the most comprehensive one or the
most specialized one. Thus, we want to extend the information
distance measure from pairs to multiples.

A. Related Work

In [27] the notion is introduced of the information required to
go from any object in a multiple of objects to any other object in
the multiple. This is applied to extracting the essence from, for
example, a finite list of internet news items, reviews of electronic
cameras, tv’s and so on, in a way that works better than other
methods. Let denote a finite list of finite binary strings
defined by , the constituting strings ordered
length-increasing lexicographic. We use lists and not sets, since
if is a set we cannot express simply the distance from a string
to itself or between strings that are all equal. Let be the refer-
ence universal Turing machine, for convenience the prefix one
as in Section II. We define the information distance in by

.
It is shown in [27, Theorem 2] that

(I.1)

up to a logarithmic additive term. Define
. In [27, Theorem 3], they state that for

every list we have

(I.2)
up to a logarithmic additive term. This is not a corollary of (I.1)
as stated in [27], but both inequalities follow from the defini-
tions. The left-hand side (LHS) is interpreted as the program
length of the “most comprehensive object that contains the most
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information about all the others [all elements of ],” and the
right-hand side (RHS) is interpreted as the program length of
the “most specialized object that is similar to all the others.”
The paper [27] develops the stated results and applications. It
does not develop the theory in any detail. That is the purpose of
the present paper.

B. Results

Information distance for multiples, that is, finite lists, appears
both practically and theoretically promising. In nearly all cases
below the results imply the corresponding ones for the pair-
wise information distance defined as follows. The information
distance in [3] between strings and is

. In the current paper
. These two definitions coincide for

since up to an additive constant term. We
investigate the maximal overlap of information (Theorem 3.1)
which for specializes to Theorem 3.4 in [3], Corollary
3.2 shows (I.1) and Corollary 3.3 shows that the LHS of (I.2)
can be taken to correspond to a single program embodying the
“most comprehensive object that contains the most information
about all the others” as stated but not argued or proved in [27];
metricity (Theorem 4.1) and universality (Theorem 5.2) which
for (for metricity) and (for universality)
specialize to Theorem 4.2 in [3]; additivity (Theorem 6.1); min-
imum overlap of information (Theorem 7.1) which for
specializes to [29, Theorem 8.3.7] and the nonmetricity of nor-
malized information distance for lists of more than two elements
and certain proposals of the normalizing factor (Section VIII).
In contrast, for lists of two elements we can normalize the infor-
mation distance as in Lemma V.4 and Theorem V.7 of [26]. The
definitions are of necessity new as are the proof ideas. Remark-
ably, the new notation and proofs for the general case are sim-
pler than the mentioned existing proofs for the particular case
of pairwise information distance.

II. PRELIMINARIES

Kolmogorov Complexity: This is the information in a single
object [21]. The notion has been the subject of a plethora of pa-
pers. Informally, the Kolmogorov complexity of a finite binary
string is the length of the shortest string from which the original
can be losslessly reconstructed by an effective general-purpose
computer such as a particular universal Turing machine. Hence
it constitutes a lower bound on how far a lossless compression
program can compress. For technical reasons we choose Turing
machines with a separate read-only input tape, that is scanned
from left to right without backing up, a separate work tape on
which the computation takes place and a separate output tape.
Upon halting, the initial segment of the input that has been
scanned is called the input “program” and the contents of the
output tape is called the “output.” By construction, the set of
halting programs is prefix free. We call the reference universal
prefix Turing machine. This leads to the definition of “prefix
Kolmogorov complexity” which we shall designate simply as
“Kolmogorov complexity.”

Formally, the conditional Kolmogorov complexity is
the length of the shortest input such that the reference universal
prefix Turing machine on input with auxiliary information

outputs . The unconditional Kolmogorov complexity is
defined by where is the empty string (of length 0). In
these definitions both and can consist of a nonempty finite
lists of finite binary strings. For more details and theorems that
are used in the present work see Appendix I.

Lists: A list is a multiple of finite
binary strings in length-increasing lexicographic order. If is a
list, then some or all of its elements may be equal. Thus, a list is
not a set but an ordered bag of elements. With some abuse of the
common set-membership notation we write for every

to mean that “ is an element of list .” The
conditional prefix Kolmogorov complexity of a list
given an element is the length of a shortest program for the
reference universal Turing machine that with input outputs the
list . The prefix Kolmogorov complexity of a list is
defined by . One can also put lists in the conditional
such as or . We will use the straightforward
laws and up to an
additive constant term, for and equals the list with
the element deleted.

Information Distance: To obtain the pairwise information
distance in [3] we take in (I.1). Then(I.1) is
equivalent to .

III. MAXIMAL OVERLAP

We use the notation and terminology of Section I-A. Define
, and . We prove

a maximal overlap theorem: the information needed to go from
any to any in can be divided in two parts: a single string
of length and a string of length (possibly depending on

), everything up to an additive logarithmic term.

Theorem 3.1: A single program of length
bits concatenated

with a string of bits, possibly depending on , suffice to find
from for every . To find an arbitrary element

from it suffices to concatenate at most another
bits, possibly depending on and .

Proof: Enumerate the finite binary strings lexicographic
length-increasing as . Let be a graph de-
fined as follows. Let be the set of finite binary strings and
the set of vectors of strings in defined by
such that

Given and the set can be enumerated. Define
. Define by length-increasing lexicographic enumer-

ating and put with and
if for some , where is

chosen as follows. It is the th string of length where is
the number of times we have used . So the first times
we choose an edge we use , the next we use
and so on. In this way, so that . By adding

to we take care that the degree of is at most and not
at most as it could be without the prefix . The degree of a
node is trivially .
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In addition, we enumerate length-increasing lexicographic
and “color” everyone of the edges incident with an enumer-
ated vector with the same binary string of length

. If and is connected by edges
to nodes , then choose as the minimum color
not yet appearing on any edge incident with any

. Since the degree of every node is bounded
by and hence the colors already used for edges incident on
nodes number at most

, a color is always available.
Knowing , , one can reconstruct and color its edges.

Given an element from the list and knowing the appro-
priate string of length and the color of the edge ,
we can find . Hence a single program, say , of length

bits suffices to find from
for any and with . An additional bits suffice
to select any element of . Taking these bits so that they
encode the difference from to we can compute from
every to every and vice versa with the same
program of length con-
catenated with a string of length and a string of length ,
both possibly depending on and . Since we know , ,
from the fixed program , where they are encoded as a self-de-
limiting prefix of length say, we can concatenate
these strings without separation markers and reconstruct them.

Corollary 3.2: Since , the theorem implies (I.1),
that is, [27, Theorem 2].

It is not a priori clear that in the LHS of (I.2) cor-
responds to a single program that represents the information
overlap of every shortest program going from any to the list

. This seems in fact assumed in [27] where is inter-
preted as the [Kolmogorov complexity of] “the most compre-
hensive object that contains the most information about all the
others.” In fact, for every we can choose a shortest pro-
gram going from to the list so that these programs have
pairwise no information overlap at all (Theorem 7.1). But here
we have proved the following.

Corollary 3.3: The quantity corresponds to a single
shortest program that represents the maximum overlap of in-
formation of all programs going from to the list for any

.

IV. METRICITY

We consider nonempty finite lists of finite binary strings, each
list ordered length-increasing lexicographic. Let be the set
of such ordered nonempty finite lists of finite binary strings. A
distance function on is defined by where
is the set of nonnegative real numbers. Define if
is a list of the elements of the lists and and the elements
of are ordered length-increasing lexicographical. A distance
function is a metric if and

1) Positive definiteness: if all elements of are
equal and otherwise.

2) Symmetry: is invariant under all permutations of .
3) Triangle inequality: .

Theorem 4.1: The information distance for lists, , is
a metric where the (in)equalities hold up to a addi-
tive term. Here is the largest quantity involved in the metric
(in)equalities.

Proof: It is clear that satisfies positive definite-
ness and symmetry up to an additive term where

. It remains to show the triangle inequality.

Claim 4.2: Let , , be three nonempty finite lists of fi-
nite binary strings and . Then,

up to an ad-
ditive term.

Proof: By Theorem 3.1

equalities up to a additive term. Here , ,
are the elements for which the maximum is reached for the re-
spective ’s.

Assume that , the case being symmet-
rical. Let be some element of . Then

The first inequality follows from the general ,
the second inequality by the obvious subadditive property of

, the third inequality since in the first term and
the is reached for and in the
second term both and for take any element from
and the fourth inequality follows by in the second term dropping

from the conditional and moving from the conditional to
the main argument and observing that both and the

is reached for . The theorem
follows with (in)equalities up to an additive term.

V. UNIVERSALITY

Let . A priori we allow asymmetric distances. We
would like to exclude degenerate distance measures such as

for all . For each , we want only finitely many
lists such that . Exactly how fast we want the
number of lists we admit to go to is not important; it is only a
matter of scaling. For every distance we require the following
density condition for every :

(V.1)

Thus, for the density condition on we consider only lists
with and not all elements of are equal. Moreover,
we consider only distances that are computable in some broad
sense.

Definition 5.1: An admissible list distance is a total,
possibly asymmetric, function from to the nonnegative real
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numbers that is 0 if all elements of are equal and greater
than 0 otherwise (up to an additive additive term with

), is upper semicomputable and satisfies the density
requirement in (V.1).

Theorem 5.2: The list information distance is ad-
missible and it is minimal in the sense that for every admissible
list distance function we have up to
an additive constant term.

Proof: It is straightforward that is a total real-
valued function, is 0 only if all elements of are equal and
unequal 0 otherwise (up to an additive term with

) and is upper semicomputable. We verify the den-
sity requirement of (V.1). For every , consider lists

of at least two elements not all equal and . Define
functions . Then, . It
is easy to see that for every

where the RHS sum is taken over all programs for which the
reference prefix machine , given , computes a finite list
of at least two elements not all equal and such that .
This sum is the probability that , given , computes such a list

from a program generated bit by bit uniformly at random.
Therefore, the RHS sum is at most 1 and satisfies the
density requirement (V.1).

We prove minimality. Fix any . Since is upper
semicomputable, the function defined by
for satisfying and and 0 otherwise, is
lower semicomputable. Since ,
we have for every . Note that given we
can compute and hence . By the
conditional version of Eq. (A.2) in the Appendix, that is [28,
Theorem 4.3.2], we have with

, that is, is a positive constant
depending on only. By the conditional version of Eq. (A.3)
in the Appendix, that is [28, Theorem 4.3.4], we have for every

that . Hence, for every
we have .

Altogether, for every admissible distance and every
and every list satisfying , there is a constant

such that . Hence,
.

VI. ADDITIVITY

Theorem 6.1: is not subadditive: neither
nor

, the (in)equalities up to logarithmic additive terms,
holds for all lists .

Proof: Below, all (in)equalities are taken up to log-
arithmic additive terms. Let , be strings of length ,

and with denoting the empty word.
Then ,
and . If and , then

. Hence,
.

Let , be strings of length such that
, , , and . Then

, and . Hence,
.

Let and . Note that subadditivity
holds for lists of singleton elements since

, where the equality
holds up to an additive term and the
inequality holds up to an additive constant term.

VII. MINIMAL OVERLAP

Let and be a shortest program con-
verting to . Naively we expect that the
shortest program that that maps to contains the informa-
tion about that is lacking in . However, this is too simple,
because different short programs mapping to may have
different properties.

For example, suppose and both elements are
strings of length with . Let be a pro-
gram that ignores the input and prints . Let be a program such
that (that is, ), where denotes bitwise
addition modulo 2. Then, the programs and have nothing in
common.

Now let and be arbitrary strings of length at most .
Muchnik [29], see also the textbook [28, Theorem 8.3.7], shows
that there exists a shortest program that converts to (that
is, and ), such that is
simple with respect to and therefore depends little on the
origin , that is, . This is a fundamental
coding property for individual strings that parallels related re-
sults about random variables known as the Slepian-Wolf and
Csiszár-Körner-Marton theorems [11].

Theorem 7.1: Let be a list of binary
strings of length at most . For every there exists a
string of length such that
and .

Proof: Muchnik’s theorem as stated before gives a code
for when is known. There, we assumed that and have
length at most . The proof in [29] does not use any assumption
about . Hence we can extend the result to information distance
in finite lists as follows. Suppose we encode the constituent list
elements of self-delimitingly in altogether
bits (now takes the position of and we consider strings of
length at most ). Substitute by for some

. Then the theorem above follows straightfor-
wardly from Muchnik’s original theorem about two strings of
length at most .

The code is not uniquely determined. For example, let
and be a string such that ,

and . Then, both and can be used
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for with and . But and
have no mutual information at all.

Corollary 7.2: Let . For every string
there is a program such that ,
where and

and the last four equalities hold up to an
additive term.

VIII. NORMALIZED LIST INFORMATION DISTANCE

The quantitative difference in a certain feature between many
objects can be considered as an admissible distance, provided
it is upper semicomputable and satisfies the density condition
(V.1). Theorem 5.2 shows that is universal in that among
all admissible list distances in that always least. That is, it ac-
counts for the dominant feature in which the elements of the
given list are alike. Many admissible distances are absolute, but
if we want to express similarity, then we are more interested in
relative ones. For example, if two strings of 1 000 000 bits have
information distance 1000 bits, then we are inclined to think that
those strings are relatively similar. But if two strings of 1000
bits have information distance 1000 bits, then we find them very
different.

Therefore, our objective is to normalize the universal infor-
mation distance to obtain a universal similarity distance.
It should give a similarity with distance 0 when the objects in
a list are maximally similar (that is, they are equal) and dis-
tance 1 when they are maximally dissimilar. Naturally, we desire
the normalized version of the universal list information distance
metric to be also a metric.

For pairs of objects, say , , the normalized version of
defined by

(VIII.1)

takes values in and is a metric. Several alternatives for
the normalizing factor do not work.
Dividing by the length, either the sum or the maximum does
not satisfy the triangle property. Dividing by results in

for and
(and hence ) and this

is improper as should be 1 in this case. We would like
a proposal for a normalization factor for lists of more than two
elements to reduce to that of (VIII.1) for lists restricted to two
elements. This leads to the proposals below, which turn out to
be improper.

As a counterexample to normalization take the following
lists: , and . With
and the equalities below up to an additive term we de-
fine: ,

and
. Using the symmetry of infor-

mation (A.1) we have . Let , , be lists.
We show that for the proposals below the triangle property

is violated.

• Consider the normalized list information distance

(VIII.2)

That is, we divide by . Here,
, with

where the list equals the list with the th
element deleted . Then, with
equalities holding up to we have:

,

and
. Hence the triangle inequality

does not hold.
• Instead of dividing by in (VIII.2) divide by

where equals with deleted. The same
counterexample to the triangle inequality holds.

• Instead of dividing by in (VIII.2) divide by
where is the set of elements in .

To equate the sets approximately with the corresponding
lists, change to where equals but with the

bit flipped . Again, the triangle inequality
does not hold.

• Instead of dividing by in (VIII.2) divide by
where is the set of elements in . Change

as in the previous item. Again, the triangle inequality
does not hold.

APPENDIX

KOLMOGOROV COMPLEXITY THEORY

Theory and applications are given in the textbook [28]. Here
we give some relations that are needed in the paper. The in-
formation about contained in is defined as

. A deep and very useful, result due to Levin
and Kolmogorov [44] and for the prefix version [16] called sym-
metry of information shows that

(A.1)

with the equalities holding up to additive precision.
Here, . Hence, up to an additive loga-
rithmic term and we call this the mutual
(algorithmic) information between and .

The universal a priori probability of is
. The following results are due to Levin [24].

There exists a lower semicomputable function
with , such that for every

lower semicomputable function with
we have

(A.2)

for every . Here is the length of a shortest program for
the reference universal prefix Turing machine to lower semi-
compute the function . For every

(A.3)

with equality up to an additive constant independent of . Thus,
the Kolmogorov complexity of a string coincides up to an ad-
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ditive constant term with the logarithm of and also
with the logarithm of . This result is called the “Coding
Theorem” since it shows that the shortest upper semicomputable
code is a Shannon-Fano code of the greatest lower semicom-
putable probability mass function.

REFERENCES

[1] C. Ané and M. Sanderson, “Missing the forest for the trees: Phylo-
genetic compression and its implications for inferring complex evolu-
tionary histories,” Systemat. Biol., vol. 54, no. 1, pp. 146–157, 2005.

[2] D. Benedetto, E. Caglioti, and V. Loreto, “Language trees and zipping,”
Phys. Rev. Lett., vol. 88, no. 4, p. 048702, 2002.

[3] C. H. Bennett, P. Gács, M. Li, P. M. B. Vitányi, and W. Zurek, “In-
formation distance,” IEEE Trans. Inf. Theory, vol. 44, pp. 1407–1423,
1998.

[4] M. Cebrián, M. Alfonseca, and A. Ortega, “The normalized compres-
sion distance is resistant to noise,” IEEE Trans. Inf. Theory, vol. 53, pp.
1895–1900, 2007.

[5] X. Chen, B. Francia, M. Li, B. Mckinnon, and A. Seker, “Shared in-
formation and program plagiarism detection,” IEEE Trans. Inf. Theory,
vol. 50, pp. 1545–1550, 2004.

[6] A. V. Chernov, An. A. Muchnik, A. E. Romashchenko, A. K. Shen,
and N. K. Vereshchagin, “Upper semi-lattice of binary strings with the
relation � is simple conditional to �,” Theor. Comput. Sci., vol. 271,
no. 1–2, pp. 69–95, 2002.

[7] R. Cilibrasi, P. M. B. Vitanyi, and R. de Wolf, “Algorithmic clustering
of music based on string compression,” Comput. Music J., vol. 28, no.
4, pp. 49–67, 2004.

[8] R. Cilibrasi and P. M. B. Vitanyi, “Clustering by compression,” IEEE
Trans. Inf. Theory, vol. 51, pp. 1523–1545, 2005.

[9] R. L. Cilibrasi and P. M. B. Vitanyi, “The Google similarity distance,”
IEEE Trans. Knowl. Data Eng., vol. 19, no. 3, pp. 370–383, 2007.

[10] C. C. Santos, J. Bernardes, P. M. B. Vitanyi, and L. Antunes, “Clus-
tering fetal heart rate tracings by compression,” in Proc. 19th IEEE
Symp. Comput.-Based Med. Syst., 2006, pp. 685–690.

[11] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[12] K. Emanuel, S. Ravela, E. Vivant, and C. Risi, “A combined statis-
tical-deterministic approach to hurricane risk assessment,” in Manu-
script Program in Athmospheres, Oceans and Climate. Cambridge,
MA: MIT, 2005.

[13] D. Fensel and F. van Harmelen, “Unifying reasoning and search to web
scale,” IEEE Internet Comput., vol. 11, no. 2, pp. 94–96, 2007.

[14] G. Geleijnse and J. Korst, “Web-based artist categorization,” in Proc.
Conf. Music Inf. Retr., 2006, pp. 266–271.

[15] R. Gligorov, W. ten Kate, Z. Aleksovski, and F. van Harmelen, “Using
Google distance to weight approximate ontology matches,” in Proc.
16th Int. Conf. World Wide Web, NY, 2007, pp. 767–776.

[16] P. Gács, “On the symmetry of algorithmic information,” Soviet Math.
Dokl., vol. 15, pp. 1477–1480, 1974.

[17] B. Hu and B. Hu, “On capturing semantics in ontology mapping,”
World Wide Web, vol. 11, no. 3, pp. 361–385, 2008.

[18] E. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei, H. S. Lee, and
J. Handley, “Compression-based data mining of sequential data,” Data
Mining Knowl. Discov., vol. 14, no. 1, pp. 99–129, 2007.

[19] S. R. Kirk and S. Jenkins, “Information theory-based software metrics
and obfuscation,” J. Syst. Software, vol. 72, pp. 179–186, 2004.

[20] A. Kocsor, A. Kertész-Farkas, L. Kaján, and S. Pongor, “Application
of compression-based distance measures to protein sequence classi-
fication: A methodology study,” Bioinformatics, vol. 22, no. 4, pp.
407–412, 2006.

[21] A. N. Kolmogorov, “Three approaches to the quantitative definition of
information,” Problems Inf. Transmiss., vol. 1, no. 1, pp. 1–7, 1965.

[22] N. Krasnogor and D. A. Pelta, “Measuring the similarity of protein
structures by means of the universal similarity metric,” Bioinformatics,
vol. 20, no. 7, pp. 1015–1021, 2004.

[23] A. Kraskov, H. Stögbauer, R. G. Andrzejak, and P. Grassberger, “Hier-
archical clustering using mutual information,” Europhys. Lett., vol. 70,
no. 2, pp. 278–284, 2005.

[24] L. A. Levin, “Laws of information conservation (nongrowth) and as-
pects of the foundation of probability theory,” Probl. Inf. Transm., vol.
10, pp. 206–210, 1974.

[25] M. Li, J. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang, “An
information-based sequence distance and its application to whole mi-
tochondrial genome phylogeny,” Bioinformatics, vol. 17, no. 2, pp.
149–154, 2001.

[26] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi, “The similarity
metric,” IEEE Trans. Inf. Theory, vol. 50, pp. 3250–3264, 2004.

[27] M. Li, C. Long, B. Ma, and X. Zhu, “Information shared by many
objects,” in Proc. 17th ACM Conf. Inf. Knowl. Manage., 2008, pp.
1213–1220.

[28] M. Li and P. M. B. Vitányi, An Introduction to Kolmogorov Complexity
and its Applications, 3rd ed. New York: Springer-Verlag, 2008.

[29] An. A. Muchnik, “Conditional complexity and codes,” Theor. Comput.
Sci., vol. 271, pp. 97–109, 2002.

[30] An. A. Muchnik and N. K. Vereshchagin, “Logical operations and Kol-
mogorov complexity II,” in Proc. 16th IEEE Conf. Comput. Complex.,
2001, pp. 256–265.

[31] M. Nykter, N. D. Price, M. Aldana, S. A. Ramsey, S. A. Kauffman, L.
E. Hood, O. Yli-Harja, and I. Shmulevich, “Gene expression dynamics
in the macrophage exhibit criticality,” Proc. Nat. Acad. Sci. USA, vol.
105, no. 6, pp. 1897–1900, 2008.

[32] M. Nykter, N. D. Price, A. Larjo, T. Aho, S. A. Kauffman, O. Yli-Harja,
and I. Shmulevich, “Critical networks exhibit maximal information di-
versity in structure-dynamics relationships,” Phys. Rev. Lett., vol. 100,
p. 058702(4), 2008.

[33] H. Otu and K. Sayood, “A new sequence distance measure for phyloge-
netic tree construction,” Bioinformatics, vol. 19, no. 6, pp. 2122–2130,
2003.

[34] P. Tan, V. Kumar, and J. Srivastava, “Selecting the right objective mea-
sure for association analysis,” Inf. Syst., vol. 29, no. 4, pp. 293–313,
2004.

[35] A. K. Shen and N. K. Vereshchagin, “Logical operations and Kol-
mogorov complexity,” Theor. Comput. Sci., vol. 271, no. 1–2, pp.
125–129, 2002.

[36] Z. Xiang, K. Wober, and D. R. Fesenmaier, “Representation of the on-
line tourism domain in search engines,” J. Travel Res., vol. 47, no. 2,
pp. 137–150, 2008.

[37] N. K. Vereshchagin and M. V. Vyugin, “Independent minimum length
programs to translate between given strings,” Theor. Comput. Sci., vol.
271, no. 1–2, pp. 131–143, 2002.

[38] M. V. Vyugin, “Information distance and conditional complexities,”
Theor. Comput. Sci., vol. 271, no. 1–2, pp. 145–150, 2002.

[39] M. V. Vyugin, “Systems of strings with high mutual complexity,” Prob.
Inform. Transmiss., vol. 39, no. 4, pp. 88–92, 2003.

[40] S. Wehner, “Analyzing worms and network traffic using compression,”
J. Comput. Secur., vol. 15, no. 3, pp. 303–320, 2007.

[41] W. Wong, W. Liu, and M. Bennamoun, “Featureless data clustering,”
in Handbook of Research on Text and Web Mining Technologies. New
York: Idea Group Inc., 2008, ch. IX, pp. 141–164.

[42] X. Zhang, Y. Hao, X. Zhu, and M. Li, “Information distance from a
question to an answer,” in Proc. 13th ACM SIGKDD Int. Conf. Knowl-
edge Discovery and Data Mining, 2007, pp. 874–883.

[43] J. Zhou, S. Wang, and C. Cao, “A Google-based statistical acquisition
model of Chinese lexical concepts,” in Proc. 2nd Conf. Knowl. Sci.,
Eng. Manage., Lect. Notes Comp. Sci., 2007, vol. 4798, pp. 243–254.

[44] A. K. Zvonkin and L. A. Levin, “The complexity of finite objects and
the development of the concepts of information and randomness by
means of the theory of algorithms,” Russian Math. Surveys, vol. 25,
no. 6, pp. 83–124, 1970.

Paul M. B. Vitányi received the Ph.D. degree from the Free University of
Amsterdam in 1978.

He is a CWI Fellow with the National Research Institute for Mathematics and
Computer Science, Netherlands, CWI, and Professor of Computer Science with
the University of Amsterdam. He has worked on cellular automata, computa-
tional complexity, distributed and parallel computing, machine learning and pre-
diction, physics of computation, Kolmogorov complexity, information theory,
quantum computing, publishing about 200 research papers and some books.
Together with M. Li, they pioneered applications of Kolmogorov complexity
and coauthored An Introduction to Kolmogorov Complexity and its Applications
(New York: Springer-Verlag, 1993), (3rd ed. 2008) parts of which have been
translated into Chinese, Russian, and Japanese. Web page: http://www.cwi.nl/
~paulv/

Dr. Vitányi serves on the editorial boards of Distributed Computing
(1987–2003), Information Processing Letters, Theory of Computing Systems,
Parallel Processing Letters, International Journal of Foundations of Computer
Science, Entropy, Information, Journal of Computer and Systems Sciences
(guest editor), and elsewhere. He received a Knighthood (Ridder in de Orde
van de Nederlandse Leeuw) in 2007.


