All Schatten spaces endowed with the Schur product are Q-algebras

Jop Briët ${ }^{\text {a }}{ }^{1, *}$, Harry Buhrman ${ }^{\text {a, }}$, Troy Lee ${ }^{\text {b }}$, Thomas Vidick ${ }^{\text {c }}$
${ }^{a}$ CWI and University of Amsterdam. Science Park 123, 1098 SJ, Amsterdam, The Netherlands.
${ }^{b}$ Centre for Quantum Technologies, Block S15, 3 Science Drive 2 Singapore 117543
${ }^{c}$ Computer Science Division, 615 Soda Hall, University of California at Berkeley, Berkeley, CA 94720, USA

Abstract

We prove that the Banach algebra formed by the space of compact operators on a Hilbert space endowed with the Schur product is a quotient of a uniform algebra (also known as a Q-algebra). Together with a similar result of PérezGarcía for the trace class, this completes the answer to a long-standing question of Varopoulos.

Keywords: Schatten space, Schur product, Banach algebra, Q-algebra.
Classification codes: 46J50, 46J40, 46B28, 46B70.
In this paper, we consider the commutative Banach algebras formed by p Schatten spaces for $1 \leq p \leq \infty$ on the Hilbert space ℓ_{2} endowed with the Schur product. In particular, we deal with the problem of determining if these algebras are quotients of a uniform algebra (Q -algebra).

The spectral theorem asserts that the space of compact operators on ℓ_{2}, which we denote by S_{∞}, consists of the operators A that admit a representation of the form

$$
A=\sum_{i=1}^{\infty} \lambda_{i}\left\langle\cdot, e_{i}\right\rangle f_{i},
$$

where $\left(e_{i}\right)_{i}$ and $\left(f_{i}\right)_{i}$ are orthonormal bases for ℓ_{2} and the sequence $\left(\lambda_{i}\right)_{i} \subset \mathbb{R}$ satisfies $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0$ and $\lim _{i \rightarrow \infty} \lambda_{i}=0$. The space S_{∞} is endowed with the norm $\|A\|=\sup \{|\langle x, A y\rangle|:\|x\|,\|y\| \leq 1\}$. For $1 \leq p<\infty$, the

[^0]Schatten p-norm of A is given by $\left(\operatorname{Tr}|A|^{p}\right)^{1 / p}$ where $|A|=\left(A^{*} A\right)^{1 / 2}$. The p Schatten space $S_{p} \subseteq S_{\infty}$ is the subspace of compact operators that have finite Schatten p-norm. Common examples of these spaces are the trace class S_{1} and the Hilbert-Schmidt operators S_{2}. The Schur product * (also known as the Hadamard product) is a continuous and commutative multiplication for S_{∞} defined as the entry-wise product when the elements of S_{∞} are represented by matrices using the canonical basis for ℓ_{2}. Endowed with the Schur product, p Schatten spaces form the commutative Banach algebras $\left(S_{p}, *\right)$. A commutative Banach algebra is said to be uniform if it is isometrically isomorphic to a closed subalgebra of $\mathcal{C}(K)$ the space of continuous functions on a closed Hausdorff topological vector space K.

Definition 1. Let \mathcal{X} be a commutative Banach algebra. Then \mathcal{X} is a Q-algebra if there exists a uniform algebra \mathcal{Y} and a closed ideal $\mathcal{I} \subseteq \mathcal{Y}$ such that \mathcal{X} is isomorphic, as a Banach algebra, to the quotient algebra $\mathcal{Y} / \mathcal{I}$.

The most interesting feature of Q-algebras, discovered by Cole (see [20]), is that they are isometrically isomorphic to a closed (commutative) subalgebra of $B(\mathcal{H})$, the algebra of bounded operators on a Hilbert space. In other words, Q-algebras are commutative operator algebras. In general, the converse is false [18], but Tonge [16] showed that it is true for every algebra generated by a set of commuting Hilbert-Schmidt operators when equipped with the regular matrix product.

Davie [5] and Varopoulos [17] proved that the Banach algebra $\left(\ell_{p}, *\right)$ is a Q-algebra for all $1 \leq p \leq \infty$. Since the space of Hilbert-Schmidt operators is isometrically isomorphic to ℓ_{2} it follows immediately that $\left(S_{2}, *\right)$ is also a Qalgebra. Varopoulos [19] asked the natural question if the same is true for all non-commutative analogues $\left(S_{p}, *\right)$.

$$
\text { Is it true that }\left(S_{p}, *\right) \text { is a } Q \text {-algebra for all } 1 \leq p \leq \infty \text { ? }
$$

Recently, progress on this question was made by Le-Merdy [12] and PérezGarcía [13], who proved that the property holds true for all $2 \leq p \leq 4$ and $1 \leq p \leq 2$, respectively. Mantero and Tonge [11] proved that $\left(S_{\infty}, *\right)$ fails to be a 1-summing algebra, which requires slightly stronger conditions than for being a Q-algebra. Nevertheless, in this paper we give a positive result for the high end of the spectrum.

Theorem 1. The Banach algebra $\left(S_{\infty}, *\right)$ is a Q-algebra.
A related result of Varopoulos himself [17] which characterizes the algebras $\left(S_{p}, *\right)$ for the intermediate values $1<p<\infty$ via the complex interpolation method as intermediate algebras of the couple $\left(\left(S_{1}, *\right),\left(S_{\infty}, *\right)\right)$, implies that the answer to his question is in fact completed.

Corollary 2. For any $1 \leq p \leq \infty$, the Banach algebra $\left(S_{p}, *\right)$ is a Q-algebra.

The proof of Theorem 1 relies on a simple characterization of Q-algebras due to Davie [5, Theorem 3.3]. We use a slight reformulation of it, as given in [7, Lemma 18.5 and Proposition 18.6]. Let \mathbb{T} denote the closed unit disc in \mathbb{C} and for Banach space X let $\mathcal{B}_{X}=\{A \in X:\|A\| \leq 1\}$ denote the unit ball in X. For positive integers n, N let $\{1, \ldots, n\}^{N}$ denote the N-fold Cartesian product of the set $\{1, \ldots, n\}$. For complex tensor $T:\{1, \ldots, n\}^{N} \rightarrow \mathbb{C}$, we abbreviate the coordinates $\left(i_{1}, \ldots, i_{N}\right) \in\{1, \ldots, n\}^{N}$ of T by I. We define the norm $\|T\|_{\infty}$ to be

$$
\sup \left\{\left|\sum_{I \in\{1, \ldots, n\}^{N}} T[I] \chi_{1}\left(i_{1}\right) \cdots \chi_{N}\left(i_{N}\right)\right|: \chi_{1}, \ldots, \chi_{N}:\{1, \ldots, n\} \rightarrow \mathbb{T}\right\}
$$

Theorem 3 (Davie). Let $\mathcal{X}=(X, \cdot)$ be a commutative Banach algebra. Then \mathcal{X} is a Q-algebra if and only if there exists a universal constant $K>0$, such that for every choice of positive integers n, N, complex tensor $T:\{1, \ldots, n\}^{N} \rightarrow \mathbb{C}$, and X-valued sequences $A_{1}, \ldots, A_{N}:\{1, \ldots, n\} \rightarrow \mathcal{B}_{X}$, the inequality

$$
\begin{equation*}
\left\|\sum_{I \in\{1, \ldots, n\}^{N}} T[I] A_{1}\left(i_{1}\right) \cdots A_{N}\left(i_{N}\right)\right\|_{X} \leq K^{N}\|T\|_{\infty} \tag{1}
\end{equation*}
$$

holds.
We prove that $\left(S_{\infty}, *\right)$ satisfies Davie's criterion using a multilinear generalization of the famous Grothendieck inequality, due to Blei [2] and Tonge [16] (see also [4]). The (complex) Grothendieck inequality [8, 10] states that there exists a universal constant K_{G} such that for every positive integer n, complex matrix $M \in \mathbb{C}^{n \times n}$ and complex vectors $x(1), \ldots, x(n), y(1), \ldots, y(n)$ in $\mathcal{B}_{\ell_{2}}$, the inequality

$$
\left|\sum_{i, j=1}^{n} M_{i j}\langle x(i), y(j)\rangle\right| \leq K_{G}\|M\|_{\infty}
$$

holds. Currently the exact value of K_{G} is unknown, but it is known to be bounded as $1.3380 \lesssim K_{G} \lesssim 1.4049$. The lower and upper bounds on K_{G} were proved by Davie [6] and Haagerup [9], respectively.

For vector $x \in \ell_{2}$, we will denote by x_{ℓ}, the number $\left\langle x, e_{\ell}\right\rangle$, where e_{1}, e_{2}, \ldots are the canonical basis vectors for ℓ_{2}.

The multilinear extension of Grothendieck's inequality we use replaces the matrix M by a complex N-tensor T, and the inner product of pairs of unit vectors by the multilinear form (the generalized inner product) on N-tuples of vectors $x_{1}, \ldots, x_{N} \in \ell_{2}$ given by

$$
\left\langle x_{1}, \ldots, x_{N}\right\rangle=\sum_{\ell=1}^{\infty}\left(x_{1}\right)_{\ell} \cdots\left(x_{N}\right)_{\ell}
$$

Theorem 4 (Tonge). For all positive integers n, N, any complex tensor T : $\{1, \ldots, n\}^{N} \rightarrow \mathbb{C}$ and sequences $x_{1}, \ldots, x_{N}:\{1, \ldots, n\} \rightarrow \mathcal{B}_{\ell_{2}}$, the inequality

$$
\begin{equation*}
\left|\sum_{I \in\{1, \ldots, n\}^{N}} T[I]\left\langle x_{1}\left(i_{1}\right), \ldots, x_{N}\left(i_{N}\right)\right\rangle\right| \leq 2^{(N-2) / 2} K_{G}\|T\|_{\infty} \tag{2}
\end{equation*}
$$

holds.
This inequality was also used by Pérez-García [13] to prove that $\left(S_{1}, *\right)$ is a Q-algebra.

Proof of Theorem 1: We fix integers $n, N \in \mathbb{N}$, tensor $T:\{1, \ldots, n\}^{N} \rightarrow \mathbb{C}$ and operator-valued maps $A_{1}, \ldots, A_{N}:\{1, \ldots, n\} \rightarrow \mathcal{B}_{S_{\infty}}$. Define

$$
M=\sum_{I \in\{1, \ldots, n\}^{N}} T[I] A_{1}\left(i_{1}\right) * \cdots * A_{N}\left(i_{N}\right)
$$

By Theorem 3 (Davie's criterion) it suffices to show that the inequality

$$
\begin{equation*}
\|M\| \leq K^{N}\|T\|_{\infty} \tag{3}
\end{equation*}
$$

holds for some constant K independent of n, N, T and A_{1}, \ldots, A_{N}.
We begin by making four small preliminary steps to show that without loss of generality we may assume that T is real valued and the A_{i} are finite-dimensional Hermitian matrices. Afterwards we will be able to apply Theorem 4 in order to prove Eq. (3). In the first step we show that without loss of generality, we may assume that the tensor T is real-valued. To this end, define the realvalued tensors T_{R} and T_{C} by $T_{R}[I]=\Re(T[I])$ and $T_{C}[I]=\Im(T[I])$ for every $I \in\{1, \ldots, n\}^{N}$. Define

$$
\begin{aligned}
M_{R} & =\sum_{I \in\{1, \ldots, n\}^{N}} T_{R}[I] A_{1}\left(i_{1}\right) * \cdots * A_{N}\left(i_{N}\right) \\
M_{C} & =\sum_{I \in\{1, \ldots, n\}^{N}} T_{C}[I] A_{1}\left(i_{1}\right) * \cdots * A_{N}\left(i_{N}\right)
\end{aligned}
$$

Since $M=M_{R}+i M_{C}$, we have $\|M\| \leq 2 \max \left\{\left\|M_{R}\right\|,\left\|M_{C}\right\|\right\}$. Proving Eq. (3) for real-valued tensors thus suffices.

In the second step we show that it suffices to consider the case where the operators $A_{1}\left(i_{1}\right), \ldots, A_{N}\left(i_{N}\right) \in \mathcal{B}_{S_{\infty}}$ are finite-dimensional matrices (in the canonical basis for ℓ_{2}). Recall that norm of M is given by

$$
\|M\|=\sup \left\{|\langle u, M v\rangle|: u, v \in \mathcal{B}_{\ell_{2}}\right\}
$$

For any $u \in \ell_{2}$ with $\|u\| \leq 1$ and any $\varepsilon>0$ there exists a $D \in \mathbb{N}$ such that the vector $u^{\prime}=\sum_{\ell=1}^{D} u_{\ell} e_{\ell}$ has norm at least $1-\varepsilon$. Hence, for any $u, v \in \mathcal{B}_{\ell_{2}}$ and $\varepsilon>0$ there exist $D \in \mathbb{N}$ and $u^{\prime}, v^{\prime} \in \mathcal{B}_{\ell_{2}}$ supported only on e_{1}, \ldots, e_{D} such that

$$
|\langle u, M v\rangle| \leq\left|\left\langle u^{\prime}, M v^{\prime}\right\rangle\right|+\left(2 \varepsilon(1-\varepsilon)+\varepsilon^{2}\right)|\langle u, M v\rangle| .
$$

It follows that for some $D \in \mathbb{N}$ and vectors $u^{\prime}, v^{\prime} \in \mathcal{B}_{\ell_{2}}$ supported only on e_{1}, \ldots, e_{D}, we have

$$
\begin{equation*}
\|M\| \leq 2\left|\left\langle u^{\prime}, M v^{\prime}\right\rangle\right| . \tag{4}
\end{equation*}
$$

Define for every $k=1, \ldots, N$ and $i_{k}=1, \ldots, n$ the D-by- D complex matrix $A_{k}^{\prime}\left(i_{k}\right)=\left(\left\langle e_{\ell}, A_{k}\left(i_{k}\right) e_{m}\right\rangle\right)_{\ell, m=1}^{D}$. Note that $\left\|A_{k}^{\prime}\left(i_{k}\right)\right\| \leq\left\|A_{k}\left(i_{k}\right)\right\| \leq 1$. Expanding the definition of M then gives

$$
\begin{align*}
& \left\langle u^{\prime}, M v^{\prime}\right\rangle=\left\langle u^{\prime}, \sum_{I \in\{1, \ldots, n\}^{N}} T[I] A_{1}\left(i_{1}\right) * \cdots * A_{N}\left(i_{N}\right) v^{\prime}\right\rangle= \\
& \sum_{I \in\{1, \ldots, n\}^{N}} T[I]\left\langle u^{\prime}, A_{1}\left(i_{1}\right) * \cdots * A_{N}\left(i_{N}\right) v^{\prime}\right\rangle= \\
& \sum_{I \in\{1, \ldots, n\}^{N}} T[I]\left\langle u^{\prime}, A_{1}^{\prime}\left(i_{1}\right) * \cdots * A_{N}^{\prime}\left(i_{N}\right) v^{\prime}\right\rangle . \tag{5}
\end{align*}
$$

Define the complex number $\Theta=\left\langle u^{\prime}, M v^{\prime}\right\rangle$. Eq. (4) shows that to prove the theorem, it suffices to show that the inequality

$$
\begin{equation*}
|\Theta| \leq K^{N}\|T\|_{\infty} \tag{6}
\end{equation*}
$$

holds for some constant K, and Eq. (5) shows that we can write Θ using the matrix-valued maps $A_{1}^{\prime}, \ldots, A_{N}^{\prime}$.

In the third step we absorb the complex part of the number Θ into the matrix-valued map A_{1}^{\prime}. Let us write Θ in polar coordinates as $|\Theta| e^{i \phi}$ for some $\phi \in[0,2 \pi]$. Define $A_{1}^{\prime \prime}\left(i_{1}\right)=e^{-i \phi} A_{1}^{\prime}\left(i_{1}\right)$. Then by Eq. (5), we have

$$
\begin{equation*}
\sum_{I \in\{1, \ldots, n\}^{N}} T[I]\left\langle u^{\prime}, A_{1}^{\prime \prime}\left(i_{1}\right) * A_{2}^{\prime}\left(i_{2}\right) * \cdots * A_{N}^{\prime}\left(i_{N}\right) v^{\prime}\right\rangle=|\Theta| . \tag{7}
\end{equation*}
$$

In the fourth step we symmetrize the situation by making the matrices Hermitian. To this end, define the map $\rho: \mathbb{C}^{D \times D} \rightarrow \mathbb{C}^{2 D \times 2 D}$ by

$$
\rho(A)=\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right]
$$

Define matrix-valued maps $B_{1}, \ldots, B_{N}:\{1, \ldots, n\} \rightarrow \mathbb{C}^{2 D \times 2 D}$ by

$$
\begin{aligned}
B_{1}\left(i_{1}\right) & =\rho\left(A_{1}^{\prime \prime}\left(i_{1}\right)\right) \\
B_{2}\left(i_{2}\right) & =\rho\left(A_{2}^{\prime}\left(i_{2}\right)\right) \\
& \vdots \\
B_{N}\left(i_{N}\right) & =\rho\left(A_{N}^{\prime}\left(i_{N}\right)\right)
\end{aligned}
$$

Note that $\left\|B_{k}\left(i_{k}\right)\right\| \leq 1$ for all $k=1, \ldots, N$ and $i_{k}=1, \ldots, n$, since the map ρ leaves the norm unchanged. Define the matrices

$$
\begin{aligned}
M^{\prime} & =\sum_{I \in\{1, \ldots, n\}^{N}} T[I] A_{1}^{\prime \prime}\left(i_{1}\right) * A_{2}^{\prime}\left(i_{2}\right) * \cdots * A_{N}^{\prime}\left(i_{N}\right) \\
M^{\prime \prime} & =\sum_{I \in\{1, \ldots, n\}^{N}} T[I] B_{1}\left(i_{1}\right) * B_{2}\left(i_{2}\right) * \cdots * B_{N}\left(i_{N}\right) .
\end{aligned}
$$

Since the tensor T is real-valued we have $M^{\prime \prime}=\rho\left(M^{\prime}\right)$.
Define the vector $w=\left(v^{\prime} \oplus u^{\prime}\right) / \sqrt{2}$ and note that $\|w\| \leq 1$. We have

$$
\begin{align*}
\left\langle w, M^{\prime \prime} w\right\rangle & =\frac{1}{2}\left[\left(u^{\prime}\right)^{*},\left(v^{\prime}\right)^{*}\right]\left[\begin{array}{cc}
0 & M^{\prime} \\
\left(M^{\prime}\right)^{*} & 0
\end{array}\right]\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right] \\
& =\Re\left(\left\langle u^{\prime}, M^{\prime} v^{\prime}\right\rangle\right) \\
& =\Re\left(\sum_{I \in\{1, \ldots, n\}^{N}} T[I]\left\langle u^{\prime}, A_{1}^{\prime \prime}\left(i_{1}\right) * \cdots * A_{N}^{\prime}\left(i_{N}\right) v^{\prime}\right\rangle\right) \\
& =|\Theta| \tag{8}
\end{align*}
$$

where the last identity follows from Eq. (7), which shows that the term between brackets on the third line is the real number $|\Theta|$.

Next, we absorb the complex parts of the vector w into the matrix-valued map B_{1}. Using polar coordinates we can write

$$
w=\sum_{\ell=1}^{2 D} w_{\ell} e^{i \psi_{\ell}} e_{\ell}
$$

for some moduli $w_{\ell} \in \mathbb{R}_{+}$and arguments $\psi_{\ell} \in[0,2 \pi]$. Let $U \in \mathbb{C}^{D \times D}$ be the diagonal unitary matrix given by $U=\operatorname{diag}\left(e^{i \psi_{1}}, \ldots, e^{i \psi_{D}}\right)$. Define the nonnegative real vector $w^{\prime}=U^{*} w=\sum_{\ell=1}^{2 D} w_{\ell} e_{\ell}$ and define the matrix-valued map B_{1}^{\prime} by $B_{1}^{\prime}\left(i_{1}\right)=U^{*} B_{1}\left(i_{1}\right) U$. Note that $\left\|B_{1}^{\prime}\left(i_{1}\right)\right\| \leq\left\|B_{1}\left(i_{1}\right)\right\| \leq 1$.

Then, by Eq. (8) and by expanding the definition of $M^{\prime \prime}$ we have

$$
\begin{equation*}
\sum_{I \in\{1, \ldots, n\}^{N}} T[I]\left\langle w^{\prime}, B_{1}^{\prime}\left(i_{1}\right) * B_{2}\left(i_{2}\right) * \cdots B_{N}\left(i_{N}\right) w^{\prime}\right\rangle=\left\langle w, M^{\prime \prime} w\right\rangle=|\Theta| \tag{9}
\end{equation*}
$$

We can now make a connection to Theorem 4 using the following two claims.
Claim 5. There exist real numbers $\mu_{1}, \ldots, \mu_{2 D} \geq 0$ such that

$$
\begin{equation*}
0 \leq \sum_{\ell, m=1}^{2 D} \mu_{\ell} \mu_{m} \min \{\ell, m\} \leq 1 \tag{10}
\end{equation*}
$$

and for $1_{\ell}=e_{1}+\cdots+e_{\ell}$,

$$
\begin{equation*}
|\Theta|=\sum_{\ell, m=1}^{2 D} \mu_{\ell} \mu_{m} \theta_{\ell, m} \tag{11}
\end{equation*}
$$

where

$$
\theta_{\ell, m}=\sum_{I \in\{1, \ldots, n\}^{N}} T[I]\left\langle 1_{\ell}, B_{1}^{\prime}\left(i_{1}\right) * B_{2}\left(i_{2}\right) * \cdots * B_{N}\left(i_{N}\right) 1_{m}\right\rangle
$$

Proof: By relabeling the basis vectors $e_{1}, \ldots, e_{2 D}$ appropriately, we may assume that the coefficients of the above vector w^{\prime} satisfy $w_{1} \geq w_{2} \geq \cdots \geq w_{2 D}$. Setting $\mu_{\ell}=\left(w_{\ell}-w_{\ell-1}\right)$ for $\ell=1, \ldots, 2 D-1$ and $\mu_{2 D}=w_{2 D}$ gives

$$
w^{\prime}=\sum_{\ell=1}^{2 D} \mu_{\ell} 1_{\ell}
$$

since $\left\langle w^{\prime}, e_{k}\right\rangle=\mu_{k}+\mu_{k+1}+\cdots+\mu_{2 D}=w_{k}$. Eq. (10) follows as $0 \leq\left\langle w^{\prime}, w^{\prime}\right\rangle \leq 1$ and $\left\langle 1_{\ell}, 1_{m}\right\rangle=\min \{\ell, m\}$, and Eq. (11) follows by expanding w^{\prime} in Eq. (9).

Claim 6. For every $1 \leq \ell, m \leq 2 D$, we have

$$
\begin{equation*}
\left|\theta_{\ell, m}\right| \leq C_{N} \min \{\ell, m\}\|T\|_{\infty} \tag{12}
\end{equation*}
$$

where $C_{N}=2^{(N-2) / 2} K_{G}$.
Proof: Expanding the vectors 1_{ℓ} in the canonical basis gives

$$
\begin{align*}
\left\langle 1_{\ell}, B_{1}^{\prime}\left(i_{1}\right) * B_{2}\left(i_{2}\right) * \cdots\right. & \left.* B_{N}\left(i_{N}\right) 1_{m}\right\rangle= \\
& \sum_{s=1}^{\ell} \sum_{t=1}^{m}\left\langle e_{s}, B_{1}^{\prime}\left(i_{1}\right) * B_{2}\left(i_{2}\right) * \cdots * B_{N}\left(i_{N}\right) e_{t}\right\rangle . \tag{13}
\end{align*}
$$

Note that each term in the double sum on the right-hand side of Eq. (13) is simply the product of (s, t)-entries of the matrices $B_{1}^{\prime}\left(i_{1}\right), B_{2}\left(i_{2}\right), \ldots, B_{N}\left(i_{N}\right)$.

Suppose that $\ell \leq m$. Since the matrices $B_{1}^{\prime}\left(i_{1}\right), B_{2}\left(i_{2}\right), \ldots, B_{N}\left(i_{N}\right)$ have norm at most 1 , their rows belong to $\mathcal{B}_{\ell_{2}^{m}}$ (where ℓ_{2}^{m} is the set of length-m 2summable sequences). Hence, the inner sum on the right-hand side of Eq. (13),

$$
\begin{aligned}
\sum_{t=1}^{m}\left\langle e_{s}, B_{1}^{\prime}\left(i_{1}\right) * B_{2}\left(i_{2}\right) \cdots\right. & \left.\cdots B_{N}\left(i_{N}\right) e_{t}\right\rangle= \\
& \left.\sum_{t=1}^{m}\left\langle e_{s}, B_{1}^{\prime}\left(i_{1}\right) e_{t}\right\rangle\left\langle e_{s}, B_{2}\left(i_{2}\right) e_{t}\right)\right\rangle \cdots\left\langle e_{s}, B_{N}\left(i_{N}\right) e_{t}\right\rangle
\end{aligned}
$$

is the generalized inner product of a set of N vectors in $\mathcal{B}_{\ell_{2}^{m}}$. The result for the case $\ell \leq m$ now follows from the triangle inequality and Theorem 4, as

$$
\begin{aligned}
& \left|\theta_{\ell, m}\right|=\left|\sum_{I \in\{1, \ldots, n\}^{N}} T[I]\left\langle 1_{\ell}, B_{1}^{\prime}\left(i_{1}\right) * B_{2}\left(i_{2}\right) * \cdots * B_{N}\left(i_{N}\right) 1_{m}\right\rangle\right| \leq \\
& \sum_{s=1}^{\ell}\left|\sum_{I \in\{1, \ldots, n\}^{N}} T[I] \sum_{t=1}^{m}\left\langle e_{s}, B_{1}^{\prime}\left(i_{1}\right) e_{t}\right\rangle\left\langle e_{s}, B_{2}\left(i_{2}\right) e_{t}\right)\right\rangle \cdots\left\langle e_{s}, B_{N}\left(i_{N}\right) e_{t}\right\rangle \mid \leq \\
& \ell 2^{(N-2) / 2} K_{G}\|T\|_{\infty}
\end{aligned}
$$

The case $\ell \geq m$ is proved in the same manner.

Putting Claim 5 and Claim 6 together gives

$$
\begin{aligned}
|\Theta| & =\sum_{\ell, m=1}^{2 D} \mu_{\ell} \mu_{m} \theta_{\ell, m} \\
& \leq \sum_{\ell, m=1}^{2 D} \mu_{\ell} \mu_{m}\left|\theta_{\ell, m}\right| \\
& \leq C_{N}\|T\|_{\infty} \sum_{\ell, m=1}^{2 D} \mu_{\ell} \mu_{m} \min \{\ell, m\} \\
& \leq C_{N}\|T\|_{\infty}
\end{aligned}
$$

We conclude that Eq. (6) (Davie's criterion) holds for $K \leq 4$.

Corollary 2 now follows directly from the following two lemmas and the fact that both $\left(S_{1}, *\right)$ and $\left(S_{\infty}, *\right)$ are Q-algebras. Pietsch and Triebel [15] characterized the p-Schatten spaces for the intermediate values $1<p<\infty$ via the complex interpolation method (see [1] for a detailed account).

Lemma 7 (Pietsch and Triebel). For $0 \leq \theta \leq 1$, denote by $\left(S_{\infty}, S_{1}\right)_{[\theta]}$ the Banach space obtained via the complex interpolation method. Then, for $p=1 / \theta$, we have $\left(S_{\infty}, S_{1}\right)_{[\theta]}=S_{p}$.

Varopoulos [17] proved that the property of being a Q-algebra is inherited under the complex interpolation method if it holds for both parent algebras.

Lemma 8 (Varopoulos). Let $\left(\mathcal{X}_{0}, \mathcal{X}_{1}\right)$ be a compatible pair of complex Banach algebras. For $0<\theta<1$, denote by $\left(\mathcal{X}_{0}, \mathcal{X}_{1}\right)_{[\theta]}$ the Banach algebra obtained via the complex interpolation method. If \mathcal{X}_{0} and \mathcal{X}_{1} are Q-algebras, then $\left(\mathcal{X}_{0}, \mathcal{X}_{1}\right)_{[\theta]}$ is a Q-algebra.

Remark 1. Surprisingly, the main result of this paper came about in the context of quantum information theory [3], after a translation to an equivalent problem in this field was given by Pérez-García et al. [14].

Acknowledgements

JB thanks David Pérez-García and Ronald de Wolf for useful comments on earlier versions of this manuscript, Carlos Palazuelos for helpful suggestions and Carlos González Guillén for providing the reference [15].

References

[1] J. Bergh, J. Löfström, Interpolation spaces: An introduction, SpringerVerlag, 1976.
[2] R.C. Blei, Multidimensional extensions of the Grothendieck inequality and applications, Arkiv fur Matematik 17 (1979) 51-68.
[3] J. Briët, H. Buhrman, T. Lee, T. Vidick, Multipartite entanglement in XOR games, 2011. To appear.
[4] T.K. Carne, Banach Lattices and Extensions of Grothendieck's Inequality, J. London Math. Soc. s2-21 (1980) 496-516.
[5] A.M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. 7 (1973) 31-40.
[6] A.M. Davie, Lower bound for K_{G}, 1984. Unpublished note.
[7] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, number 43 in Cambridge Studies in Advanced Mathematics, Cambrige University Press, New York, NY, 1995.
[8] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Boletim Da Sociedade de Matemática de São Paulo 8 (1953) 1.
[9] U. Haagerup, A new upper bound for the complex Grothendieck constant, Israeli journal of mathematics 60 (1987) 199-224.
[10] J. Lindenstrauss, A. Pełczyński, Absolutely summing operators in $L_{p^{-}}$ spaces and their applications, Studia Math. 29 (1968) 275-326.
[11] A. Mantero, A. Tonge, The Schur multiplication in tensor algebras, Studia Math. 68 (1980) 109-114.
[12] C. Le Merdy, The Schatten space S_{4} is a Q-algebra, Proc. Amer. Math. Soc. 126 (1998) 715-719.
[13] D. Pérez-García, The trace class is a Q-algebra., Ann. Acad. Sci. Fenn. Math. 31 (2006) 287-295.
[14] D. Pérez-García, M.M. Wolf, C. Palazuelos, I. Villanueva, M. Junge, Unbounded violation of tripartite bell inequalities, Communications in Mathematical Physics 279 (2008) 455-486.
[15] A. Pietsch, H. Triebel, Interpolationstheorie für Banachideale von beschränkten linearen Operatoren, Studia Math. 31 (1968) 95-109.
[16] A. Tonge, The von Neumann inequality for polynomials in several HilbertSchmidt operators, J. London Math. (2) 18 (1978) 519-526.
[17] N. Varopoulos, Some remarks on Q-algebras, Ann. Inst. Fourier, Grenoble 22 (1972) 1-11.
[18] N. Varopoulos, On an inequality of von Neumann and an application of the metric theory of tensor products to operator theory, Journal of Functional Analysis 16 (1974) 83-100.
[19] N. Varopoulos, A theorem on operator algebras, Math. Scand. 37 (1975) 173-182.
[20] J. Wermer, Quotient algebras of uniform algebras, Symposium on function algebras and rational approximation, University of Michigan, 1969.

[^0]: *Corresponding author. Phone: +31 20592 4051. Fax: +3120592 4199. Postal address: Science Park 123, 1098 SJ, Amsterdam, The Netherlands.

 Email addresses: j.briet@cwi.nl (Jop Briët), buhrman@cwi.nl (Harry Buhrman), troylee@gmail. com (Troy Lee), vidick@eecs.berkeley.edu (Thomas Vidick)
 ${ }^{1}$ Supported by a Vici grant from the Dutch Science Foundation (NWO) and EU-grant QCS.

