CWI-collega's

Typography in Process Algebra

Jos Baeten, Technische Universiteit Eindhoven, and
Jan Willem Klop, Vrije Universiteit, Amsterdam

July 1,2011

Abstract
This note is dedicated in gratitude to Jan Karel Lenstra, who reputedly is able

i

to distinguish an ordinary full stop symbol (”.”) from its italicized version

(”.”), and who has inspired us with his knowledge and passion for typogra-
phy. For his amusement we offer him a sample of typographical matters that
we encountered in Process Algebra, of which the Amsterdam version origi-
nated at MC and CWI in the early eighties. The present note is written in the
fonts Palatino and Euler, the latter being an upright cursive typeface, com-
missioned by the American Mathematical Society and designed and created
by Hermann Zapf with the assistance of Donald Knuth.

1 History

The late seventies of the last century saw the advent of formal systems for
communicating processes, an area then also designated as ‘concurrency’.
At CWI, after Jaco de Bakker introduced this new area in the Netherlands,
Jan Bergstra and Jan Willem Klop endeavoured in the early eighties to de-
velop a family of algebraic systems for various features of processes, specif-
ically centering around ACP, Algebra of Communicating Processes. The
phrase 'Process Algebra” was also coined then. Jan Willem wrote the first
reports on process algebra on his trusted Olivetti with daisywheels, provid-
ing many symbols and fontsizes that could be produced on a typewriter.
But not all symbols were available: the first report [17] introduced the “left-
merge” which in ETEX can be presented as ||, and whose definition and
employment marked our entrance in this field. Because of this auxiliary
operator, process algebra is for a large part "finitely axiomatizable’, which
is important for automation of the process algebra enterprise in systems
such as mCRL. In [17], this symbol was written by hand, using India ink,
see Figure 1.

127

CWiI-collega's

1.1.1. DEFINITION. Let A = {ai!i € I} be some set of atomic "actions".

A process alyebra over A is a slructure A = <p,+,*, | ,ai(ig I).>
where A is a set containing A, the a; are constant symbols corresponding
to the a; cA, and + (union), * (concatenation or composition), |L (left

merge) satisfy for all x,y,zep and a c¢A the following axioms:

PAl Xty = y+x

PA2 X+ (y+z) = (xty)+z
PA3 X+X = X

PR4 (xy)z = x(y2z)

PAS (xty)z = xztyz

PA6 (:{+y)-U_z= x[_Lz+ yU_z
PA7 ax|| y = ax|Ly *+ vl x
pPAa8 all v = ay

Figure 1: Olivetti and handwriting.

For official purposes, all text written by CWI workers, either by type-
writer or by hand, was converted by special typists into troff. They had to
define a special symbol for the left-merge, which they called "Klop”. See
Figure 2, taken from [7].

Then, in 1985, Jan Bergstra and Jos Baeten moved to the University
of Amsterdam, where there were no troff typists. Instead, they had Ap-
ple Macintosh computers and the typographical possibilities they offered.
Some of us have fond memories of the MacPlus (Figure 3), the ImageWriter,
the StyleWriter, MacWrite 5.0 and all that.

But, what to do with special process algebra symbols such as the left-
merge? The group at University of Amsterdam set out to develop a special
font for Process Algebra, using the Mac applications Fontastic and Fontog-
rapher. Two versions were developed: font Amsterdam, see Figure 4, based
on Apple’s font Times, and a sans-serif version called Brussel, based on
Geneva. An example of a text in font Brussel is given in Figure 5.

The problem returned when laserwriters were introduced, then the spe-
cial fonts could not be upgraded, but were still used in the books [1] and
[13]. Later, the home-made process algebra typography was superseded by
the superior ETgX technology, and the rest of this note refers to that frame-
work. One of us persisted until very recent years in using Mac typography
with modern Mac applications such as Pages, but is now also converted to
IETEX.

128

CWiI-collega's

x+y =yp+x Al a<ib =a if not (a<b) Pl
x+@p+z)= (x+y)+z A2 a<b = 8ifa<b P2
xX+x = x A3 x<yz = x<y P3
(x+y)z = xz+yz Ad x<(y+z) = (x<qp)<z P4
(xy)z = x(yz) A5 xy<dz = (x<z)y PS
x+8=x A6 (xt+y)dz = x4z ty<:z P6
6x =& A7

alb =b|a C1

(@|b)|c =al|c). Cc2

§la =34 C3

xly = xlly+yllx+x|y CMI |8e)=a TH1
alLx = ax CM2 | f(xy) = B(x)}6(y) TH2
ax|Ly = a(xlly) CM3 | 8(x +y) = 8(x)<1y +6(y)<ax TH3
x+pllz =xlz+ylz CM4

(ax)|b = (a|b)x CM5

al(bx) = (a|b)x CM6

(ax)|(by) = (a|bXxly) CM7

@+p)lz = x|z+y|z CM8

x|pptz)=x|y+x|z CM9

dyla) =aifagH Dl

y(a) =68ifacH D2

y(x+y) = du(x)+95() D3

dy(xp) = 0 (x 105 (¥) D4

Figure 2: ACP, Algebra of Communicating Processes, with priorities.

129

CWI-collega's

Jos Baeten and Jan Willem Klop

For Jan Karel Lenstra

Figure 3: 1988 MacintoshPlus ED, still alive and well.

130

CWI-collega's

Font name: Amsterdam

Font size: 12

Font number: 150

Location: System :System

LW < > A [| = = |o = | v
W h s ic jrjt =B kwlale |~ ke
i LT n ket ~To (o]e = [ala
Cﬂckamv,c.mvlvﬁA@N»»@e
O~ (vi A >z o |8 2 |e | | U b |C |O
S I S U 2 AT o i L= o R AV PO S O S ™
O [© fH |V |0 |~ Iy [C [T |+ |o oD | |=
o< Bl H |x || [® o > > |« |« |3 x| |3
MNEo = e et > |3 % [N [|— [~ |>
O s |° Qv |o |~ |o|la |~ |=|u]|~ |o
o (O o = (D > B X - [N =~ |-~ T
W@ molamjmom |~ |- |« 2[5 [z o
MO [~ [N | It e o |~ oo |on LN VAR T VAN (o
Nf = e IR R [~ % [+] -] ~
O

O~ N MW O™~ < mO O W LW

The quick brown fox jumps over the lazy dog.

Figure 4: process algebra font Amsterdam.

131

CWiI-collega's

A PAMPHLET ON BISIMULATION AS A CONGRUENCE

J.%_ Klop

in B with

a but hot

Ta-Disimuls

rove thi

i1l to be fo

Figure 5: A "Pamphlet’ from 1986 discussed in the PAM seminar (Process Algebra
Meeting), which was held from 1985 until 2010.

132

CWI-collega's

?

Figure 6: Interrobang in Palatino Linotype, taken from Wikipedia.

2 Punctuation symbols

Punctuation symbols are used in process algebra extensively. Well-
known is the use of the period to denote action prefix, so e.g. a.x means
that action a is prefixed to term x, so first a is executed, followed by x, see
CCS [23]. For sequential composition, the semicolon is sometimes used, so
x;y means x is followed by y, see CSP [21] or x [15].

The exclamation mark is used for replication in the 7-calculus [25], so
Ix = x||!x, often called bang.

Besides this, it stands for a send, in CSP [21], but also in [2] (or is it [3]?),
so action c!d means that data element d is sent at communication port c.

A datum sent can also be received, and the question mark is used for
this, so c?d means that data element d is received at communication port c.
In ACP-style process algebra, the simultaneous execution of matching com-
municating actions in parallel components is the resulting communication,
so the simultaneous communication of c!d and c?d becomes the communi-
cation c?d, see [2] or [3].

The symbol ?, see Figure 6, is the interrobang (interrogation mark plus
bang) invented by Martin K. Speckter in 1962 (see [29])).

It is used to ask a question in an excited manner, expresses excitement
or disbelief in the form of a question, or asks a rhetorical question. It was
popular in the 1960s, but its use declined soon after. Nowadays, we would
write !? or ?! instead.

The asterisk stands for iteration or Kleene star, studied in process al-
gebra in [18] or [10]. In x*, either immediate termination takes place, or
x is executed once, again followed by x*. The vertical bar is used in CCS
for parallel composition [23], while most other process algebras use the
double vertical bar || for this. In ACP-style process algebra, the single bar
is used for communication merge: the parallel composition of terms that
starts with a communication action. The backslash \ is used in CCS for re-
striction (also called encapsulation) [23], sometimes the ‘forward” slash / is
used for abstraction.

133

CWiI-collega's

3 Greek symbols

Many Greek letters are used in process algebra. The letter « sometimes
stands for the alphabet of a process, see [9]. Often, « is also used as ranging
over a given set of actions plus some other actions. In [9], the letter {3 is
used for an approximation of an alphabet, that is easier to calculate. The
letter vy stands for the communication function, indicating which actions
match in order to form a communication action together, probably because
the letter occupies the same place in the Greek alphabet as the letter c in the
Latin alphabet.

The letter 6 is a constant standing for inaction, unsuccessful termination
or deadlock in ACP-style, taking the name from the first letter of the word
deadlock [19]. Since it is the neutral element of alternative composition,
it was later renamed to 0 in [2]. The letter 6 is also used for delay, see
e.g. [24]. The capital letter A stands for divergence, see [20]. The letter ¢
is the constant standing for the empty process, successful termination or
skip [30]. Since it is the neutral element of sequential composition, it was
renamed to 1 in [2].

A use of the letter ¢ in process algebra could not be found. The letter
n was introduced for the silent step in [12], probably for no other reason
than that this was an unused letter up to that time. The priority operator
introduced in [8] uses the letter 0, also for no other reason than that. When
in [2] a new auxiliary operator was used in the axiomatization of the pri-
ority operator, ¥ was used. The letter t stands for an idle transition, e.g. in
[22]. The letter k is often used in ordinal arithmetic, but no use in process
algebra was found.

The letter A is used for the state operator and stems from [4]. Also a
generalized version comes from here, and uses the letter A. The letter p
is used for a fixed point of recursion in CCS, already in [23]. The letter v
stands for now and is used for a process starting with no time delay in [5],
but also stands for new and is used for a fresh variable in 7t-calculus [25].
In [4], the v was used for a localization operator.

We have seen no uses of £ or = so far, however see the item x further
on. The omikron doesn’t distinguish itself from the Latin character, so does
not appear as itself. Lower case 7t of course names the m-calculus [25], and
is used for projection in ACP-style process algebra [19]. Upper case TT is
sometimes used for generalized parallel composition. The letter p is used
for renamings in [4].

The letter o is used for a time step, see e.g. [6] or for a time delay [11].
The capital X is widely used for generalized alternative composition or

134

CWI-collega's

sum, since [23]. The letter T is universally used for a silent or unobserv-
able step, dating back to [23]. As there, Tis put directly for the result of two
matching communicating actions, it is the trace of a communication, and
this is the origin of the name. In timed process algebra, the v is used for
time-out and time initialization, see [11].

The ¢-calculus is a hybrid process algebra developed in [27]. The letter
X is also the name of a hybrid process algebra [15], taking its name from the
initial of the word hybrid. At the moment, the language x is being updated
and renewed, with as working title Xt [14]. Reading this as Greek is the
name of the capital x, but reading it as Latin, X1, it becomes =. The X refers
to the neXt operator of temporal logic. The -calculus is an extension of
the m-calculus with data and assertions about data, see [16]. Finally, w is
a special action denoting success in a testing semantics [26], but also is a
calculus for mobile ad-hoc networks [28].

4 Other symbols

We conclude with some symbols not yet mentioned above.

left-merge We already discussed the left-merge ||, where x||y is the inter-
leaving of processes x and y with the proviso that the first step has to
be done by the left process x, hence the name left-merge. Typograph-
ically, the modern version of this symbol differs a bit from the ancient
one, where the horizontal stroke was longer, see Figure 2. Many ver-
sions of the left-merge exist in I&TEX, such as ||, used in [2, 3].

encapsulation An important operator when composing processes is the
encapsulation operator written as 0. The reason for choosing this sym-
bol was its association in some areas of mathematics as a boundary
operator. It is parametrized by a set of actions H, so that 914(x) means
that process x is not allowed to communicate with the environment
using actions in the set H.

bisimulation Finally, there is the symbol for bisimilarity <. It occurs not in
the syntax of process algebra, but in its semantics, connecting the for-
mal syntax, strings of symbols, with the real processes, mathematical
entities. Processes x and y are bisimilar, x £ y, when roughly said,
they can simulate each other.

135

CWiI-collega's

References

[1] J.C.M. Baeten. Procesalgebra. Programmatuurkunde. Kluwer, 1986.

[2]].C.M. Baeten, T. Basten, and M.A. Reniers. Process Algebra (Equational
Theories of Communicating Processes). Number 50 in Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 2009.
USA Edition.

[3] J.C.M. Baeten, T. Basten, and M.A. Reniers. Process Algebra (Equational
Theories of Communicating Processes). Number 50 in Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 2010.
UK Edition.

[4] J.C.M. Baeten and J.A. Bergstra. Global renaming operators in concrete
process algebra. Information and Computation, 60(1/3):205-245, 1988.

[5] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal
Aspects of Computing, 3(2):142-188, 1991.

[6]].C.M. Baeten and J.A. Bergstra. Discrete Time Process Algebra. Formal
Aspects of Computing, 8(2):188-208, 1996.

[7] J.C.M. Baeten,]J.A. Bergstra, and J.W. Klop. Proces algebra met in-
terrupt mechanisme. In Proceedings NGI-SION Informatica Symposium,
pages 129-135, 1985.

[8] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and Defining Equa-
tions for an Interrupt Mechanism in Process Algebra. Fundamenta In-
formaticae, IX(2):127-168, 1986.

[9] J.C.M. Baeten, J.A. Bergstra, and]J.W. Klop. Conditional Axioms and
o/ B-Calculus in Process Algebra. In M. Wirsing, editor, Formal De-
scription of Programming Concepts - III, IFIP Conference, Proceedings,
pages 77-103. Elsevier, 1987.

[10] J.C.M. Baeten, F. Corradini, and C.A. Grabmayer. A characterization of
regular expressions under bisimulation. Journal of the ACM, 54(2):6.1—
28, 2007.

[11] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Tim-
ing. EATCS Monographs in Theoretical Computer Science. Springer-
Verlag, 2002.

136

CWI-collega's

[12] J.C.M. Baeten and R.J. van Glabbeek. Another look at abstraction
in process algebra. In Th. Ottman, editor, Automata, Languages and
Programming, 14th Colloguium, ICALP 1987, Proceedings, number 267
in Lecture Notes in Computer Science, pages 84-94. Springer-Verlag,
1987.

[13] J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1990.

[14] Jos C.M. Baeten and Michel A. Reniers. Xi — a hybrid process algebra
for cyber-physical systems. Draft., 2011.

[15] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schif-
felers. Syntax and consistent equation semantics of hybrid chi. Journal
of Logic and Algebraic Programming, 68(1-2):129-210, 2006.

[16] J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: Mobile
processes, nominal data, and logic. In Proceedings LICS 2009, pages
39-48, 2009.

[17] J. A. Bergstra and]J. W. Klop. Fixed Point Semantics in Process Alge-
bra. Technical Report IW 206, Mathematical Centre, Amsterdam, the
Netherlands, 1982.

[18] J.A.Bergstra, W.]J. Fokkink, and A. Ponse. Process Algebra with Recur-
sive Operations. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors,
Handbook of Process Algebra, pages 333-389. Elsevier, 2001.

[19] J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Com-
munication. Information and Control, 78(3):109-137, 1984.

[20] J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Failures without Chaos:
a new Process Semantics for Fair Abstraction. In M. Wirsing, editor,
Formal Description of Programming Concepts - III, IFIP Conference, Pro-
ceedings, pages 77-103. North-Holland, 1987.

[21] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[22] A.S. Klusener. Models and Axioms for a Fragment of Real Time Process
Algebra. PhD thesis, Eindhoven University of Technology, Department
of Computer Science, 1993.

137

CWiI-collega's

[23] R.Milner. A Calculus of Communicating Systems. Number 92 in Lecture
Notes in Computer Science. Springer Verlag, 1980.

[24] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25(3):267-310, 1983.

[25] R. Milner. Communicating and Mobile Systems: The m-calculus. Cam-
bridge University Press, 1999.

[26] R. De Nicola and M. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83-133, 1984.

[27] William C. Rounds and Hosung Song. The phi-calculus: A lan-
guage for distributed control of reconfigurable embedded systems. In
HSCC’03, pages 435-449, 2003.

[28] Anu Singh, C. R. Ramakrishnan, and Scott A. Smolka. A process calcu-
lus for mobile ad hoc networks. In Proceedings of the 10th international
conference on Coordination models and languages, COORDINATION'0S,
pages 296-314. Springer-Verlag, 2008.

[29] Martin K. Speckter. Disquisition on the Composing Stick. Typophiles,
Inc., 1971.

[30] J.L.M. Vrancken. The Algebra of Communicating Processes with
Empty Process. Theoretical Computer Science, 177(2):287-328, 1997.

138

