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a b s t r a c t

A widely accepted method to specify (possibly infinite) behaviour is to define it as the
solution, in some process algebra, of a recursive specification, i.e., a system of recursive
equations over the fundamental operations of the process algebra. The method only works
if the recursive specification has a unique solution in the process algebra; it is well-known
that guardedness is a sufficient requirement on a recursive specification to guarantee a
unique solution in any of the standard process algebras.

In this paperwe investigate towhat extent guardedness is also a necessary requirement
to ensure unique solutions. We prove a theorem to the effect that all unguarded recursive
specifications over BPA have infinitely many solutions in the standard models for BPA. In
contrast, we observe that there exist recursive specifications over PA, necessarily involving
parallel composition, that have a unique solution, or finitelymany solutions in the standard
models for PA.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the beginning of the 1980s, concurrency theory was developing rapidly, and many different methods and techniques
were applied to this fledgling field. It was found that a concurrent process can be defined as the solution, in some process
algebra, of a recursive equation, or a system of recursive equations, provided that this solution is unique. It was established
in different ways that guarded equations admitted unique solutions in different models, and so, could be used to define a
process (as some fixed point). The situation with respect to unguarded equations wasmuch less clear. In their seminal paper
[3] (publishedmuch later as [4]), Bergstra and Klop established that in their projective limitmodel of concurrency, also every
unguarded equation has a solution. Moreover, a solution can be found by starting an iteration from an arbitrary process. This
led to the firmly established belief in concurrency theory, that unguarded equations are unsuitable to define processes, as
they admit not just one, but many solutions.

In this paper we study unguardedness in more detail. In particular, we shall ask under what conditions, in which process
algebras, do unguarded equations have an infinite number of solutions?

Section 2 defines the process algebras and the sets of recursive equationswewill consider. Next, in Section 3,we establish
that in a minimal process algebra (a process algebra just having action prefix and alternative composition, no sequential
composition or parallel composition) every unguarded equation has infinitely many different solutions in the standard
models, and also every unguarded specification (i.e., finite or countably infinite set of recursion equations) has infinitely
many different solutions. In Section 4 we extend this result to include sequential composition, but then, in Section 5 we find
these results fail as soon as we include a form of parallel composition.
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Table 1
Axioms for the theory PA01 .

A1 p + q = q + p S1 (p + q) · r = p · r + q · r
A2 (p + q) + r = p + (q + r) S2 (p · q) · r = p · (q · r)
A3 p + p = p S3 (a.p) · q = a.(p · q)

A4 p + 0 = p S4 0 · p = 0
S5 1 · p = p

P a = a.1 S6 p · 1 = p

M p ‖ q = p ‖ q + q ‖ p L4 0 ‖ p = 0
L5 1 ‖ 0 = 0

L1 a ‖ p = a.p L6 1 ‖ 1 = 1
L2 a.p ‖ q = a.(p ‖ q) L7 1 ‖ a.p = 0
L3 (p + q) ‖ r = p ‖ r + q ‖ r L8 1 ‖ (p + q) = 1 ‖ p + 1 ‖ q

2. Process algebras and recursive specifications

2.1. Process algebras

In [3], Bergstra and Klop put forward the term process algebra to denote models of the axiomatic process theory PA. In
this paper it is convenient to assign a slightly more general meaning to the term process algebra: we use it to denote an
arbitrary non-empty set P (the elements of which are thought of as processes) together with some special distinguished
processes (atomic actions, deadlock, termination) and a family of fundamental process-theoretic operations (action prefix,
sequential composition, alternative composition, parallel composition), satisfying some collection of equational axioms. So,
we allow different signatures and different axiomatizations.

Let A be a non-empty finite set of actions. (As in [3], we assume that A is finite; the results in Sections 3 and 4 remain
valid for an infinite alphabet, but this is less clear for the remarks in Section 5.) The process theory PA as presented in
[3,4] considers the actions in A as constants in the theory, denoting distinguished atomic processes, and includes binary
operations for sequential composition (denoted by ·), alternative composition (denoted by +), left merge (denoted by ‖ ) and
parallel composition (denoted by ‖). Here, we want to consider a slight reformulation of PA. In the original formulation,
the action constants denote both action execution and termination. When different forms of termination are considered
(especially in extensions with timing) it is useful to separate the two, and to replace action constants by action prefix in
combination with termination constants. Thus we declare, in addition, the existence of a deadlocked process (denoted by
the constant 0) and a successfully terminated process (denoted by the constant 1), and have unary action prefixes a. (a ∈ A).
Assuming the presence of the constants 0 and 1 and the action prefixes will considerably simplify the presentation in the
remainder of the paper, but their presence is not essential for the results that we are going to obtain.

We denote the process theory that consists of all the aforementioned constants and operations, together with all the
axioms listed in Table 1, by PA01. We shall also consider in this paper the following two subtheories of PA01: the subtheory
MPA01 (for minimal process algebra) consists of the constants 0 and 1, the unary action prefixes a. (a ∈ A) and the binary
operation+, togetherwith the axioms A1–A4; the subtheory BPA01 (for basic process algebra) extendsMPA01 with the binary
operation · for sequential composition and the axioms S1–S6. We note that the theory PA of [4] can also be obtained as a
subtheory of PA01, by excluding the action prefixes and the constants 0 and 1, and by replacing in L1 and L2 a.p by a · p and
a.(p ‖ q) by a · (p ‖ q).

We proceed to briefly describe two models of the theory PA01: a projective limit model and a model of countably
branching process graphs modulo bisimilarity. The first was considered in [3,4], the second has since then become the
standard model. (The model of countably branching process graphs modulo bisimilarity is isomorphic to the so-called term
model that consists of transition systems – associated with recursive specifications via structural operational semantics [7]
– modulo bisimilarity; see, e.g., [1]. The phrase ‘termmodel’ is really a misnomer since it not only considers finite terms but
also terms built using infinite recursive specifications.)
Projective limit model. Denote by I the initial algebra associated with the process theory PA01. That is, I is the quotient of the
set of all (ground) terms that can be built from the constants and operations of PA01 modulo the congruence induced on
them by derivability from the axioms in Table 1 using the rules of equational logic.

For p1, . . . , pk ∈ I (k ∈ ω), the indexed sum is inductively defined as follows: if k = 0, then
∑

1≤i≤k pi = 0, and if k > 0,
then

∑
1≤i≤k pi = (

∑
1≤i≤k−1 pi) + pk.

Proposition 1. Modulo the equivalence on (ground) PA01-terms generated by the axioms of PA01, the initial algebra I is
inductively generated by the following rule: if ai ∈ A and pi ∈ I (1 ≤ i ≤ k), then−

1≤i≤k

ai.pi[ + 1] ∈ I.

(By putting + 1 between square brackets we mean that it is optional.)
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According to the above proposition, occurrences of the constants a ∈ A, superfluous occurrences of the constants 0 and
1, and occurrences of the operations ·, ‖ and ‖ can be eliminated from ground PA01-terms by means of the axioms of PA01.
The elements of the subset of ground PA01-terms generated by the rule in the above proposition are often referred to as basic
terms.

On I we now define, for n ≥ 0, projection operations πn : I → I inductively as follows:

π0

−
1≤i≤k

ai.pi[ + 1]


= 0[ + 1], and

πn+1

−
1≤i≤n

ai.pi[ + 1]


=

−
1≤i≤k

ai.πn(pi)[ + 1].

A projective sequence over I is a sequence (pi)i<ω of elements of I such that, for all i < ω,

pi = πi(pi+1).

We denote by I∞ the process algebra that consists of all projective sequences over I, with the operations of PA01 induced on
them component-wise. The process algebra I∞ satisfies the axioms of PA01 and is called the projective limit model for PA01
(see, e.g., [3,5].
Graph model. An alternative model for PA01 is obtained by considering the set G of all countably branching process graphs
(i.e., rooted, directed graphs with edges labelled with actions in A, and vertices possibly labelled with a termination label
↓). A bisimulation between process graphs g and h is a binary relation between the vertices of g and the vertices of h such
that if v is a vertex of g and w is a vertex of h and v and w are related, then for all a ∈ A;

(i) if v a
−−→ v′ is an edge in g, then there exists an edge w

a
−−→ w′ in h such that v′ and w′ are related;

(ii) if w a
−−→ w′ is an edge in h, then there exists an edge v

a
−−→ v′ in g such that v′ and w′ are related; and

(iii) if a vertex v of g is related to a vertex w of h, then v has the termination label ↓ if, and only if, w has the termination
label.

Process graphs g and h are bisimilar (notation: g ↔ h) if there exists a bisimulation relation between them relating their
roots.

It is well-known how the operations of PA01 can be defined on G in such a way that bisimilarity is a congruence and the
quotient G = G/↔ is a model of PA01 (see, e.g., [2,1]).

Let ϕ be the homomorphism from G into I∞ that maps every process graph to the projective sequence consisting of
all its finite projections (see, e.g., [4] for details). The kernel of this homomorphism identifies all process graphs that have
bisimilar finite projections. (Thus, e.g., the process graph that is the alternative composition of all sequences an.0 for some
a ∈ A is identified with the graph having as additional branch an infinite sequence of a’s.) As we will see further on, this
homomorphism is not surjective: there exist projective sequences that can only be the images of uncountably branching
process graphs. Denote by I∞

ℵ1
the subalgebra of I∞ consisting of the homomorphic image of G. As the example above shows,

G and I∞
ℵ1

are not isomorphic.
Let P be a process algebra, and let p be an element of P. A summand of p in P is an element q in P such that p + q = p.

We call a summand q of p simple if q = a.q′ for some q′ in P.

Lemma 2. In the process algebras G and I∞
ℵ1

all processes have at most countably many simple summands.

Proof. In G, if p + a.q = p, then every process graph in the bisimulation equivalence class a.q is bisimilar to a branch of
every graph in the bisimulation equivalence class p. Since every process graph in p has a countable branching degree, it
follows that, up to bisimilarity, there are at most countably many distinct q such that p + a.q = p.

To prove that in I∞
ℵ1

all processes have countably many simple summands, consider elements p and q of G, and suppose
that, for some a ∈ A, ϕ(p+a.q) = ϕ(p). Then all finite projections of a graph in p+a.q are bisimilar to the finite projections
of a graph g in p, and therefore all finite projections of a graph h in a.q are bisimilar to the finite projections of a branch of
g . This branch gives rise to a summand a.q′ of p and clearly ϕ(a.q′) = ϕ(a.q). We have established that for every simple
summand ϕ(a.q) of ϕ(p) in I∞

ℵ1
there is a simple summand a.q′ of p in G such that ϕ(a.q′) = ϕ(a.q). Since in G every process

has at most countably many summands, it follows that in I∞
ℵ1

every process has countably many summands too. �

2.2. Recursive specifications

Let V be a countably infinite set of variables, and let α be a countable ordinal. Furthermore, let P be a process algebra. A
recursive specification (of dimension α) with respect to P is a sequence of equations

(xκ
def
= tκ)κ<α,

with (xκ)κ<α a sequence of distinct variables and (tκ)κ<α a sequence of process terms, i.e., terms built from (symbols
denoting) the operations of P and the variables in (xκ)κ<α .
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In this paper we shall limit our attention to recursive specifications of at most countable dimension (cf. Remark 6 ).
Let P be a process algebra, and let t be a process term built from the operations of P and variables in the sequence

x⃗ = (xκ)κ<α . Furthermore, let, for some β ≥ α, p⃗ = (pκ)κ<β be a sequence of elements of P. We denote by [[t]]p⃗ the element
of P that results from evaluating t with, for all κ < α, the element pκ assigned to the variable xκ .

A solution in P of a recursive specification (xκ
def
= tκ)κ<α is a sequence of processes

p⃗ = (pκ)κ<α

such that [[tκ ]]p⃗ = pκ for all κ < α.
A process algebra P satisfies the recursive definition principle (RDP) if every recursive specification with respect to P has

at least one solution in P.
Proposition 3. The process algebras G, I∞, and I∞

ℵ1
satisfy RDP.

Proof. That G satisfies RDP is proved in [2]. Since I∞
ℵ1

is a homomorphic image of G, it follows that it also satisfies RDP.

(Indeed, if p⃗ = (pκ)κ<α is a solution of a recursive specification S = (xκ
def
= tκ)κ<α in G, then clearly ϕ(p⃗) = (ϕ(tκ))κ<α is

a solution of S in I∞
ℵ1
.) Clearly, since I∞

ℵ1
is a subalgebra of I∞, a solution in I∞

ℵ1
of some recursive specification is also in I∞,

and hence I∞ also satisfies RDP. �

Remark 4. Manyprocess algebras do not satisfyRDP. E.g., in the initial algebra I, there is no solution for the equation x = a.x.
Suppose that the process algebra P is endowedwith a sequence of unary operations a. associated with the actions a ∈ A,

let x be a variable and let t be a term built from variables and the fundamental operations of P. An occurrence of a variable x
in a process term t is guarded if it is within the scope of an action prefix, i.e., if there exists an action a and a term t ′ such that
a.t ′ is a subterm of t and the occurrence of x is within t ′. A term t is completely guarded if it has no unguarded occurrences of
variables. Let S = (xκ

def
= tκ)κ<α be a recursive specification. We say that S is completely guarded if tκ is completely guarded

for all κ < α.
The notion of complete guardedness introduced above is syntactic, and itmay happen that a specificationwith unguarded

occurrences of variables can be transformed into a completely guarded specification with exactly the same solutions. We
are usually interested in a more robust notion of guardedness that is invariant under solution-preserving transformations.
To define such a notion of guardedness, we need a notion of equivalence on specifications. Let S and S′ be recursive
specifications with respect to P. We say that S and S′ are equivalent (notation: S ≈P S′) if they have the same solutions in
P. We call S guarded if there exists an equivalent completely guarded recursive specification, and unguarded otherwise.

A process algebraP satisfies the recursive specification principle (RSP) if every guarded recursive specificationwith respect
to P has a unique solution in P.
Proposition 5. The process algebras G, I∞ and I∞

ℵ1
satisfy RSP.

2.3. Definability

An element p of a process algebra P is called definable if there exists a recursive specification (xκ
def
= tκ)κ<α with a unique

solution (pκ)κ<α in P such that p0 = p.
Remark 6. If we would allow recursive specifications of uncountable size, then the set of definable processes remains the
same. For, the right-hand side of the equation for the start variable contains finitely many variables of the specification;
for each of these, finitely many more variables can be reached. Thus, the reachability tree of variables reachable from the
initial variable is a finitely branching tree of countable depth. Thismeans the equations of only countablymany variables are
relevant for the process defined by the initial variable, and uncountable definability is the same as countable definability.
Proposition 7. The process algebras G, I∞ and I∞

ℵ1
have uncountably many definable elements.

Proof. Let {0, 1}∞ be the set of infinite sequences over {0, 1}. We first associate with every σ ∈ {0, 1}∞ a guarded recursive
specification Sσ . Let σ = (σi)i<ω with σi ∈ {0, 1}; we define Sσ = (xi

def
= ti)i<ω by

ti =


a.xi+1 if σi = 0
a.xi+1 + a.0 if σi = 1.

Since Sσ is guarded, it has a unique solution in G, I∞ and I∞
ℵ1
. Now, since {0, 1}∞ has uncountably many elements, in order

to prove that G, I∞ and I∞
ℵ1

have uncountably many elements, it suffices to prove that if σ ≠ τ , then the solutions of Sσ and
Sτ in G, I∞ and I∞

ℵ1
are distinct.

Recall that ϕ denotes the homomorphism from G into I∞ that maps process graphs to projective sequences consisting of
their finite projections. Note that if p and q are the unique solutions in G of Sσ and Sτ , respectively, then ϕ(p) and ϕ(q) are
the unique solutions of Sσ and Sτ both in I∞ and I∞

ℵ1
.

Therefore, it remains to establish that the unique solutions of Sσ and Sτ in I∞
ℵ1

are distinct. To this end, suppose that p
and q are the unique solutions of Sσ and Sτ in I∞

ℵ1
. Then, since σ ≠ τ , there exists i < ω such that σi ≠ τi, and hence

πi+2(p) ≠ πi+2(q). It follows that p ≠ q. �
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Having defined the projective sequences pσ that are the solutions of specifications Sσ , we can describe an element of I∞
that is not in I∞

ℵ1
. It is found by considering the finite projections of the process

∑
σ∈{0,1}∞ a.pσ for some a ∈ A. The process

graph of this process is uncountably branching, and the first five elements of the projective sequence are

0,
a.0,
a.a.0,
a.a.a.0 + a.(a.0 + a.a.0), and
a.a.a.a.0 + a.(a.0 + a.a.a.0) + a.a.(a.0 + a.a.0) + a.(a.0 + a.(a.0 + a.a.0)),

doubling the number of summands at every step thereafter. As this process is uncountably branching, it cannot be definable:
there is no recursive specification (of any size) having this process as solution of the initial variable.

3. Minimal process algebra

Aminimal process algebra is a process algebra P that is a model for the process theory MPA01, i.e., P has constants 0 and 1,
unary action prefixes a. (a ∈ A), and a binary operation +, and satisfies the axioms A1–A4 of Table 1. Henceforth, we shall
refer to process terms built from variables and the constants and operations of the process theory MPA01 as MPA01-process
terms.

An occurrence of a variable x in an MPA01-process term t is unguarded if it is not within the scope of an action prefix, i.e.,
if there does not exists an action a and a term t ′ such that a.t ′ is a subterm of t and the occurrence of x is within t ′.

Lemma 8. Let P be a minimal process algebra and let S = (xκ
def
= tκ)κ<α be a recursive specification with respect to P. If tκ has

an unguarded occurrence of the variable xλ, then [[tκ ]]p⃗ = [[tκ ]]p⃗ + [[xλ]]p⃗ for all solutions p⃗ of S.

Proof. By straightforward application of the axioms A1–A3. �

Let S be a recursive specification with respect to a minimal process algebra. On the variables (xκ)κ<α of S we define a
binary relation →S by xκ →S xλ if xλ has an unguarded occurrence in tκ .
Lemma 9. Let P be a minimal process algebra, and let S be a recursive specification with respect to P. If →S is terminating, then
S is guarded.

Proof. Note that replacing an occurrence of a variable xκ in a term tλ by its definition tκ preserves solutions. If →S is
terminating, then also the procedure that repeatedly replaces an unguarded occurrence of a variable by its definition
terminates. Clearly, this procedure transforms S into an equivalent completely guarded recursive specification. �

We now prove that every recursive specification over MPA01 has infinitely many solutions in the models we are
considering. In the next section we shall extend this result to a larger theory. Here, the method is basically by showing
that we can add an arbitrary summand to the solutions of the unguarded variables. Thus, to give an example, if we have the
equation x = a.x+ x, then the process that keeps on doing a is a solution, but adding an arbitrary definable element p to the
equation of the unguarded variable xwe obtain another solution a.(a.(a.(. . .) + p) + p) + p.
Theorem 10. Let P be a minimal process algebra satisfying RDP. If for every countable subset P of P there exists a definable
element q in P that is not a summand of any of the elements of P, then every unguarded recursive specification with respect to P
has infinitely many solutions in P.
Proof. Consider an arbitrary unguarded recursive specification S. Then, by Lemma 9, there exists an infinite sequence
U = (κi)i<ω such that xκi →S xκi+1 ; such a sequence U we shall call an unguardedness sequence in S. We proceed to
inductively define an infinite sequence of specifications (Sj)j<ω such that S0 = S and, for all j < ω,
(i) U is an unguardedness sequence in Sj;
(ii) Sj has a solution that differs at κi (i < ω) from every solution of Sj+1; and
(iii) an initial segment of any solution of Sj+1 is a solution of Sj.

Suppose that Sj = (xκ
def
= tκ)κ<α . Since P satisfies RDP, Sj has a solution, say p⃗ = (pκ)κ<α , in P. Let P = {pκi | i < ω}. By the

assumption of the theorem, there exists a definable element q in P such that p + q ≠ p for all p ∈ P . Since q is definable,
there exists a recursive specification, say (yλ

def
= uλ)λ<β , with a unique solution (qλ)λ<β such that q0 = q. We may assume

without loss of generality that xκ ≠ yλ for all κ < α and λ < β .
For µ ≥ α, we denote by µ − α the unique ordinal λ such that µ = α + λ. We prove that the specification

Sj+1 = (zµ
def
= vµ)µ<α+β , with zµ and vµ defined by

zµ =


xµ if µ < α
yµ−α if α ≤ µ < α + β

and vµ =

 tµ if µ < α and µ ∉ U
tµ + zα if µ < α and µ ∈ U,
uµ−α if α ≤ µ < α + β

satisfies the three requirements above.
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(i) By construction, U is an unguardedness sequence in Sj+1.
(ii) Consider a solution r⃗ = (rµ)µ<α+β of Sj+1. Clearly, (rµ)α≤µ<α+β = (qλ)λ<β , so, in particular, it follows that [[zα]]r⃗ =

rα = q. Hence, for all κi ∈ U,

rκi = [[vκi ]]r⃗ (r⃗ is a solution of Sj+1)
= [[tκi ]]r⃗ + [[zα]]r⃗ (definition of vκi )
= [[tκi ]]r⃗ + q,

fromwhich it follows by A2 and A3 that rκi = rκi + q. Now, since pκi ≠ pκi + q, it follows that p⃗ is not an initial segment
of r⃗.

(iii) To prove that the initial segment r⃗ = (rκ)κ<α of a solution of Sj+1 is a solution of Sj, we need to show that [[tκ ]]r⃗ = rκ
for all κ < α. We distinguish cases according to whether κ ∈ U or not. The case when κ ∉ U is straightforward, since
then vκ = tκ . So suppose that κ ∈ U, and let λ be the U-successor of κ; then

[[tκ ]]r⃗ = [[tκ ]]r⃗ + rλ (Lemma 8)
= [[tκ ]]r⃗ + (rλ + rα) (see the proof of item (ii))
= ([[tκ ]]r⃗ + rλ) + rα (A2)
= [[tκ ]]r⃗ + rα (Lemma 8)
= [[vκ ]]r⃗ (definition of vκ )
= rκ .

With the infinite sequence of specifications (Sj)j<ω defined above we can associate an infinite sequence (p⃗j)j<ω such that,
for all i < ω, p⃗i is a solution of Sj, but p⃗j is not an initial segment of any of the solutions of the specifications Sk (j < k < ω).
Now, since for all j < ω, an initial segment of p⃗j is a solution of S and these initial segments are all pairwise distinct, we
conclude that S has infinitely many solutions. �

Remark 11. From the proof of the above theorem it is clear that for all finite unguarded recursive specificationswith respect
to P to have infinitely many solutions it suffices that there exists for all finite subsets P of P a definable element q in P such
that p + q ≠ p for all p in P.

By the MPA01-reduct of a process algebra P we mean the algebra obtained from P by forgetting all process-theoretic
operations except 0, 1, a. (a ∈ A) and +.

Corollary 12. With respect to the MPA01-reducts of G and I∞, all unguarded recursive specifications have infinitely many
solutions.

Proof. First, we establish that all unguarded recursive specifications with respect to G have infinitely many solutions in G.
By Proposition 3, G satisfies RDP. Let P be a countable subset of G. Define Q as the subset of G consisting of all processes
q such that a.q is a simple summand of an element of P . By Lemma 2, Q is countable, and since, by Proposition 7, G has
uncountably many definable elements, there exists a definable element q′ in G such that a.q′ is not a summand of any of
the elements of P. So, G satisfies the requirements of Theorem 10, and hence every recursive specification with respect to
G has infinitely many solutions.

By similar arguments it can now be established that also I∞
ℵ1

satisfies the requirements of Theorem 10, and hence
every recursive specification with respect to I∞

ℵ1
has infinitely many solutions. Since I∞

ℵ1
is a subalgebra of I∞, a recursive

specification S with respect to (the MPA01-reduct of) I∞ is also a recursive specification with respect to (the MPA01-reduct
of) I∞

ℵ1
, and, clearly, a solution of S in I∞

ℵ1
is also a solution of S in I∞. It follows that every unguarded recursive specification

S with respect to I∞ has infinitely many solutions. �

Example 13. Suppose A = {a}. Consider the countable unguarded specification having equations xn
def
= an.0 + a.xn + xn+1

for each natural number n. In G, a solution is the process having as simple summands not only all an.0 but also a.qn where
qn is the sum of all a-sequences of length n or greater. Still, it is easy to find additional definable processes that we can add
as simple summands. Take, e.g., a.rn, where rn = a.0 + an+1.0.

4. Basic process algebra

A basic process algebra is a process algebra P that is a model for the process theory BPA01, i.e., it has constants 0 and 1,
unary action prefixes a. (a ∈ A), and two binary operations + and ·, and satisfies the axioms A1–A4 and S1–S6 in Table 1.
Henceforth, we shall refer to process terms built from variables and the constants and operations of the process theory BPA01
as BPA01-process terms.

We shall prove in this section that, under certainmild conditions on a basic process algebra P, every unguarded recursive
specificationwith respect to P has infinitelymany solutions. Our proof is along the same lines as the proof of themain result
in the previous section. There are, however, some subtleties that we need to take into account, as illustrated in the next
example.
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Example 14. 1. Let S1 be the recursive specification with respect to G consisting of the equations

x1
def
= (a.x1) · x2, and

x2
def
= (b.x2) · x1.

Then, on the one hand, y has an unguarded occurrence in (a.x) · y in the sense of the previous section. On the other
hand, S1 is guarded, for, by axiom S3 it is equivalent to the recursive specification consisting of the equations

x1
def
= a.(x1 · x2), and

x2
def
= b.(x2 · x1).

So S1 has a unique solution, say p⃗ = (p1 , p2), in G, and it is easy to see that if a and b are distinct, then p⃗ satisfies
p1 ≠ p1 + p2 . Hence, [[x1]]p⃗ ≠ [[x1]]p⃗ + [[x2]]p⃗ for all solutions p⃗ of S (cf. Lemma 8).

2. Let S2 be the recursive specification with respect to G consisting of the equations

x1
def
= x2 · x1, and

x2
def
= a.x2.

Then S2 is guarded, for it is equivalent to the recursive specification consisting of the equations

x1
def
= a.(x2 · x1), and

x2
def
= a.x2.

On the other hand, consider the recursive specification S2
′ consisting of the equations

x1
def
= x2 · x1, and

x2
def
= a.x2 + 1.

Note that S2
′ is equivalent to the recursive specification consisting of the equations

x1
def
= a.(x2 · x1) + x1, and

x2
def
= a.x2 + 1.

The recursive specification S2
′ is not guarded with respect to G.

3. Let S3 be the recursive specification with respect to G that consists of the equations

x1
def
= x2 · x1 + a.1, and

x2
def
= x2 + b.1.

Let p⃗ = (p1 , p2) be the unique solution of the guarded recursive specification S3
′ consisting of the equations

y1 = b.y1 + a.1, and
y2 = b.1.

Then it is easy to see that p⃗ is also a solution ofS, and,moreover, if a ≠ b, then p1 ≠ p1+p2 . Hence, [[x1]]p⃗ ≠ [[x1]]p⃗+[[x2]]p⃗
for all solutions p⃗ of S (cf. Lemma 8).

The preceding example illustrates three complications when discussing unguardedness in a recursive specification
containing sequential composition. The first complication is that unguarded occurrences of variables may become guarded
after applying axioms for sequential composition. The second complication is that variables of which the defining equations
have completely guarded right-hand sides may nevertheless fail to be guards themselves. The third complication is that
unguarded occurrences of variables have, in general, trailing sequential components.

To circumvent the complication illustrated in Example 14.1, we shall first prove that every recursive specification S
with respect to a basic process algebra can be transformed into a specification S′ in Greibach Normal Form. For recursive
specifications in Greibach Normal Form we can straightforwardly define when a variable has an unguarded occurrence in
a term. Then, to deal with the complication illustrated in Example 14.2, we introduce the notion of transparent variable,
which allows us to express when a variable fails to act as a guard. Finally, the complication illustrated in Example 14.3 is
directly taken into account in the formulation of Lemma 18.

Let α be a finite sequence of variables. We define the generalized sequential composition α associated with α inductively
by α = 1 if α is the empty sequence, and α = x · α′ if α = xα′.
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Definition 15. A process term is in Greibach Normal Form if there exist m, n ∈ ω, actions a1, . . . , am, and sequences of
variables α1, . . . , αm and β1, . . . , βn such that

t =

−
1≤i≤m

ai.αi +
−
1≤j≤n

βj.

(Here the empty summation denotes 0.) A recursive specification is in Greibach Normal Form if all right-hand sides of its
equations are in Greibach Normal Form.

The transformation of an arbitrary specification S with respect to a basic process algebra into Greibach Normal Form
introduces new variables, and therefore the resulting specification S′ cannot be equivalent to S. It will be the case, however,
that every solution of S is a prefix of a solution of S′, and, vice versa, a solution of S′ has a prefix that is a solution of S.
Suppose that α ≤ β; we write S 4P S′ if every solution of S is a prefix of a solution of S′, and every solution of S′ has a
solution of S as a prefix.

Proposition 16. For every recursive specification S with respect to a basic process algebra P there exists a recursive specification
S′ with respect to P such that S 4P S′

Proof. Consider an equation x = t in S. The following recursive procedure transforms t into Greibach Normal Form:

1. If t is a variable, 0, or 1, then the procedure terminates: t is in Greibach Normal Form.
2. If t = a.t ′, for some process term t ′, then first recursively transform t ′ to Greibach Normal Form t ′′, then add an equation

y def
= t ′′ (for y some fresh variable), and finally replace t by a.y.

3. If t = t1 · t2, for some process terms t1 and t2, then first recursively transform t1 and t2 to Greibach Normal Forms t ′1
and t ′2, respectively. Then, add an equation y def

= t ′′ (for y some fresh variable). Clearly, t = t ′1 · y, and, assuming that
t ′1 =

∑
1≤i≤m ai.αi +

∑
1≤j≤n βj, by axiom S2, t ′1 · y is equal to the Greibach Normal Form

∑
1≤i≤m ai.αiy +

∑
1≤j≤n βjy.

4. If t = t1 + t2, then first recursively transform t1 and t2 into Greibach Normal Forms t ′1 and t ′2, respectively. Then, by
axioms A1–A4, the summands of t ′1 + t ′2 can be rearranged in such a way that the result is in Greibach Normal Form.

Each of the steps described above preserves solutions, and that the procedure terminates can be established bywell-founded
induction. �

Let S = (xκ
def
= tκ)κ<α be a recursive specification in Greibach Normal Form. We inductively define the sequence (Ti)i<ω

of sets of variables by

(i) T0 = ∅;
(ii) if x def

=
∑

1≤i≤m ai.αi+
∑

1≤j≤n βj is an equation in S, and for some 1 ≤ j ≤ n the sequenceβj consists entirely of variables
in Ti, then x ∈ Ti+1.

The set of transparent variables in S is the union


i∈ω Ti.

Lemma 17. LetS be a recursive specificationwith respect to a basic process algebraP, and letα be a finite sequence of transparent
variables in S. Then, for all solutions p⃗ of S in P, it holds that [[α]]p⃗ = [[α]]p⃗ + 1.

Proof. It suffices to prove, for all i ∈ ω, that if α is a sequence of variables in Ti, then

[[α]]p⃗ = [[α]]p⃗ + 1. (1)

We proceed by induction on i.
Clearly, if i = 0, then Ti = ∅, so α is the empty sequence. Hence, α = 1, so (1) follows by axiom A3.
Suppose that, for all sequences β of variables in Ti it holds that [[β]]p⃗ = [[β]]p⃗ +1 (the induction hypothesis).We consider

an arbitrary sequence α of variables in Ti+1, and do a subinduction on the length of α. Clearly, if α is the empty sequence,
then, again, α = 1, so (1) follows by axiom A3. It remains to consider the case that α is non-empty, say α = xα′, assuming
that x ∈ Ti+1, and that α′ is a sequence of variables in Ti+1 for which (1) holds, i.e., [[α′

]]p⃗ = [[α′
]]p⃗ + 1 (the subinduction

hypothesis). Let x def
=
∑

1≤i≤m ai.αi+
∑

1≤j≤n βj inS; that x ∈ Ti+1 means that, for some1 ≤ j ≤ n,βj is a sequence of variables
over Ti. Hence, by the induction hypothesis, [[βj]]p⃗ = [[βj]]p⃗ +1, so, by axioms A1–A3 it follows that [[x]]p⃗ = [[x]]p⃗ +1. Hence,
we now get, by axioms S1, S5,A3, and A2,

[[α]]p⃗ = ([[x]]p⃗ + 1) · ([[α′
]]p⃗ + 1)

= [[x]]p⃗ · ([[α′
]]p⃗ + 1) + 1 · ([[α′

]]p⃗ + 1)
= ([[x]]p⃗ · ([[α′

]]p⃗ + 1) + 1 · ([[α′
]]p⃗ + 1)) + 1

= [[α]]p⃗ + 1. �

Now, let t =
∑

1≤i≤m ai.αi +
∑

1≤j≤n βj be a right-hand side of S. We say that x has an unguarded occurrence in t if, for
some 1 ≤ j ≤ n, there exist a sequence of transparent variables γ and a sequence of variables δ such that βj = γ xδ.
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Lemma 18. Let P be a basic process algebra and let S = (xκ
def
= tκ)κ<α be a recursive specification in Greibach Normal Formwith

respect to P. If tκ has an unguarded occurrence of the variable xλ, then there exists a term t such that [[tκ ]]p⃗ = [[tκ ]]p⃗ +[[xλ]]p⃗ ·[[t]]p⃗
for all solutions p⃗ of S.

Proof. Let tκ =
∑

1≤i≤m ai.αi +
∑

1≤j≤n βj, and suppose that xλ has an unguarded occurrence in tκ . Then there exists a
sequence of transparent variables γ and a sequence of variables δ such that, for some 1 ≤ j ≤ n, βj = γ xλδ. Since γ is a
sequence of transparent variables, by Lemma 17 [[γ ]]p⃗ = [[γ ]]p⃗ + 1. Hence, by axioms S1 and S5,

[[βj]]p⃗ = [[γ xλδ]]p⃗

= ([[γ ]]p⃗ + 1) · [[xλ]]p⃗ · [[δ]]p⃗

= [[γ xλδ]]p⃗ + 1 · [[xλ]]p⃗ · [[δ]]p⃗

= [[γ xλδ]]p⃗ + [[xλ]]p⃗ · [[δ]]p⃗ . �

On the variables (xκ)κ<α of S we define a binary relation → by xκ → xλ if xλ has an unguarded occurrence in tκ .

Lemma 19. Let P be a basic process algebra, and let S be a recursive specification with respect to P. If →S is terminating, then S
is guarded.

Proof. Note that replacing an occurrence of a variable xκ in a term tλ by its definition tκ , and then rewriting the result using
axioms S1–S3, and S5 preserves solutions. Moreover, if →S is terminating and the axioms are only applied from left to
right, then also the procedure that repeatedly replaces an unguarded occurrence of a variable by its definition terminates.
It transforms S into an equivalent completely guarded recursive specification. �

In basic process algebra, an unguarded occurrence of a variable in an equation can be the first argument of a sequential
composition. We cannot add an arbitrary summand to such a variable, but if we add a summand that never terminates, then
for such a summand, the second argument of the sequential composition can never be reached, and so can be ignored, so
that the previous proof can be used. The crucial property we need is right-absorptiveness: an element p of a basic process
algebra P is right-absorptive if p · q = p for all q ∈ P.

Theorem 20. Let P be a basic process algebra satisfying RDP. If for every countable subset P of P there exists a definable right-
absorptive element q in P that is not a summand of any of the elements of P, then every unguarded recursive specification with
respect to P has infinitely many solutions.

Proof. The proof is along the same lines as the proof of Theorem 10. Consider an arbitrary unguarded recursive specification
S, Then, by Lemma 19, there exists an infinite sequence U = (κi)i<ω such that xκi →S xκi+1 ; such a sequence U we shall
call an unguardedness sequence in S.

And, let U = (κi)i<ω be an unguardedness sequence in S. We inductively define an infinite sequence of specifications
(Sj)j<ω such that S0 = S and, for all j < ω,

(i) U is an unguardedness sequence in Sj;
(ii) Sj has a solution that differs at κi (i < ω) from every solution of Sj+1; and
(iii) an initial segment of any solution of Sj+1 is a solution of Sj.

Suppose that Sj = (xκ
def
= tκ)κ<α . Since P satisfies RDP, Sj has a solution, say p⃗ = (pκ)κ<α . Let P = {pκi | i < ω}. By the

assumption of the theorem, there exists a definable right-absorptive element q in P such that p + q ≠ p for all p ∈ P . Since
q is definable, there exists a recursive specification, say (yλ

def
= uλ)λ<β , with a unique solution (qλ)λ<β such that q0 = q. We

may assume without loss of generality that xκ ≠ yλ for all κ < α and λ < β .
For µ ≥ α, we again denote by µ − α the unique ordinal λ such that µ = α + λ. We prove that the specification

Sj+1 = (zµ
def
= vµ)µ<α+β , with zµ and vµ defined by

zµ =


xµ if µ < α
yµ−α if µ ≥ α

and vµ =


tµ if µ < α and µ ∉ U

tµ + zα if µ < α and µ ∈ U,

uµ−α if µ ≥ α

satisfies the three requirements above. The arguments for the first two requirements are entirely analogous to the arguments
for the first two requirements in the proof of Theorem 10, so we only consider the third requirement:

(iii) To prove that the initial segment r⃗ = (rκ)κ<α of an arbitrary solution of Sj+1 is a solution of Sj, we need to show
that [[tκ ]]r⃗ = rκ for all κ < α. We distinguish cases according to whether κ ∈ U or not. The case when κ ∉ U is
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straightforward, since then vκ = tκ . So suppose that κ ∈ U, and let λ be the U successor of κ; then

[[tκ ]]r⃗ = [[tκ ]]r⃗ + rλ · [[t]]r⃗ (Lemma 18)
= [[tκ ]]r⃗ + (rλ + rα) · [[t]]r⃗
= [[tκ ]]r⃗ + (pλ · [[t]]r⃗ + rα · [[t]]r⃗) (S1)
= [[tκ ]]r⃗ + (rλ · [[t]]r⃗ + rα) (rα is right-absorptive)
= ([[tκ ]]r⃗ + pλ · [[t]]r⃗) + rα (A2)
= [[tκ ]]r⃗ + rα (Lemma 18)
= [[vκ ]]r⃗ (definition of vκ )
= rκ .

Similarly as in the proof of Theorem 10 we can now associate with (Sj)j<ω an infinite sequence of solutions of S that are all
pairwise distinct. �

By the BPA01-reduct of a process algebra P we mean the algebra obtained from P by forgetting all process-theoretic
operations except 0, 1, a. (a ∈ A), + and ·. We apply the above theorem to the BPA01-reducts of I∞ℵ1

and G in order to obtain
the following corollary.

Corollary 21. With respect to theBPA01-reducts ofG and I∞ all unguarded recursive specifications have infinitelymany solutions.

Proof. The proof of this corollary to Theorem 20 is analogous to the proof of Corollary 12. If suffices to note that all the
processes in the uncountable set of definable processes in G and I∞

ℵ1
given by Proposition 7 are actually right-absorptive. �

5. Process algebra PA

We call an element p of a process algebra P merge-saturated iff for all processes q ∈ P it holds that p = q ‖ p. In the
process algebras G, I∞ and I∞

ℵ1
, a merge-saturated element χ can be defined by the following guarded equation

x def
=

−
a∈A

a.x.

(Note that, in case the set of actions is infinite, such a guarded specification cannot be given, although we can still give
an unguarded countable specification having equations xn

def
= an.x0 + xn+1 for each natural number n.) This process χ is

merge-saturated; see Remark 2.5.2 of [3].
This means that the unguarded specification consisting of the defining specification for a merge-saturated process

together with the equation y def
= y ‖ x, has the solution consisting of this merge-saturated process for y. Moreover, this

is the unique solution of this specification, as the process is merge-saturated. Thus, we have the following theorem.

Theorem 22. If P is a model of PA or PA01 with a merge-saturated definable element, and P satisfies RSP, then the unguarded
recursive specification consisting of the defining specification of this element together with

y def
= y ‖ x

has a unique solution.

Next, we consider the unguarded recursive specification consisting of the defining equations for the merge-saturated
element together with the unguarded equation y def

= y ‖ x. Obviously, the merge-saturated element is again a solution
of this specification. In PA01, however, also 0 is a solution. In fact, since the equation y def

= y ‖ x leaves the first step of y
undetermined, we can take any subset of actions B for this first step. Hence, for every B ⊆ A, the two-element sequence

χ,
−
a∈B

a.χ


is a solution (here, χ is the merge-saturated element, called RUN in [6]). Since, after the first step, the mergend χ again
saturates all following steps, the only solutions are those mentioned above. This means this specification has 2|A| solutions
in PA01, and one less in PA (not for the empty set of initial actions). So we see that with a form of parallel composition, an
unguarded specification can have a different number of solutions. Of course, it will still be the case that most unguarded
specifications have infinitely many solutions. For example, every process is a solution of

x def
= x ‖ 1,

and every right-absorptive process is a solution of

x def
= x ‖ 0.
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6. Conclusion

Usually, unguarded recursive specifications have infinitelymany solutions. This is the case inminimal process algebra and
basic process algebra (in models where every recursive specification has a solution). However, when parallel composition
is added, we can give unguarded specifications with a finite number of solutions, and even an unguarded specification with
a unique solution.

At each point, we tried to state our theorems in the most general setting. We believe the results cannot be generalized
further, to obtain e.g. theorems in universal algebra.

References

[1] J.C.M. Baeten, T. Basten, M.A. Reniers, Process algebra: equational theories of communicating processes, in: Number 50 in Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 2010.

[2] J.C.M. Baeten, J.A. Bergstra, J.W. Klop, On the consistency of Koomen’s fair abstraction rule, Theoretical Computer Science 51 (1/2) (1987) 129–176.
[3] J.A. Bergstra, J.W. Klop, Fixed point semantics in process algebra. Technical Report IW 206, Mathematical Centre, Amsterdam, the Netherlands, 1982.
[4] J.A. Bergstra, J.W. Klop, A convergence theorem in process algebra, in: J.W. de Bakker, J.J. M.M. Rutten (Eds.), Ten Years of Concurrency Semantics,World

Scientific, Singapore, 1992, pp. 164–195.
[5] N. Bourbaki, Elements of Mathematics: Algebra 1, Springer Verlag, 1989.
[6] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe, A theory of communicating sequential processes, Journal of the ACM 31 (1984) 560–599.
[7] Gordon D. Plotkin, A structural approach to operational semantics, Journal of Logic and Algebraic Programming 60-61 (2004) 17–139.


	Unguardedness mostly means many solutions
	Introduction
	Process algebras and recursive specifications
	Process algebras
	Recursive specifications
	Definability

	Minimal process algebra
	Basic process algebra
	Process algebra 
	Conclusion
	References


