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Abstract. We consider the process theory PA that includes an oper
ation for parallel composition, based on the interleaving paradigm. We 
prove that the standard set of axioms of PA is not w-complete by pro
viding a set of axioms that are valid in PA, but not derivable from the 
standard ones. We prove that extending PA with this set yields an w
complete specification, which is finite in a setting with finitely many 
actions. 

1 Introduction 

The interleaving paradigm consists of the assumption that two atomic actions 
cannot happen at the same time, so that concurrency reduces to nondetermin
ism. To express the concurrent execution of processes, many process theories have 
been accomodated with an operation for parallel composition that behaves ac
cording to the interleaving paradigm. For instance, CCS (see, e.g., Milner (1989)) 
has a binary operation for parallel composition -we shall denote it by -11 _
that satisfies the so-called Expansion Law: 

m n m n 

if p = L ai·Pi and q = L bj.qj, then p II q >=::: L ai.(Pi II q) + L bj.(qj II p); 
i=l j=l i=l j=l 

here the ai·- and the bj·- are unary operations that prefix a process with an 
atomic action, and summation denotes a nondeterministic choice between its 
arguments. 

The Expansion Law generates an infinite set of equations, one for each pair of 
processes p and q. Bergstra and Klop (1984) enhanced the equational characteri
sation of interleaving. They replaced action prefixing with a binary operation _ · _ 
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for sequential composition and added an auxiliary operation lL (the left merge; 
it is similar to 11, except that it must start execution with a step from its left 
argument). Their axiomatisation is finite for settings with finitely many atomic 
actions. Moller (1990) proved that interleaving is not finitely axiomatisable with
out an auxiliary operation such as the left merge. 

The axioms of Bergstra and Klop (1984) form a ground-complete axioma
tisation of bisimulation equivalence; ground terms p and q are provably equal 
if, and only if, they are bisimilar. Thus, it reflects for a large part our intuition 
about interleaving. On the other hand, it is not optimal. For instance, it can be 
shown by means of structural induction that every ground instance of the axiom 
x II (y II z)::::::; (x II y) II z is derivable (see Baeten and Weijland (1990)); however, 
the axiom itself is not derivable. 

If an equational specification E has the property that E f- tu ::::::; ·uu for all 
ground substitutions a implies that E f- t ::::::; u, then E is called w-complete (or: 
inductively closed). To derive any equation from such an equational specification 
it is never needed to use additional proof techniques such as structural induction. 
Therefore, in applications dealing with theorem proving, w-completeness is a 
desirable property to have (see Lazrek et al. (1990)). In Heering (1986) it was 
argued that w-completeness is desirable for the partial evaluation of programs. 

Moller (1989) obtained an w-complete axiomatisation for CCS without com
munication, by adding a law for standard concurrency: 

(x lL y) ll z::::::; x lL (y II z). 

In this paper we shall address the question whether PA, the subtheory of ACP 
without communication and encapsulation, is w-complete. While the algebra 
studied by Moller (1989) has sequential composition in the form of prefix mul
tiplication, PA incorporates the (more general) binary operation · for sequential 
composition. Having this operation, it is no longer sufficient to add the law for 
standard concurrency to arrive at an w-complete axiomatisation. However, sur
prisingly, it is sufficient to add this law and the set of axioms generated by a 
single scheme: 

(x ·a lL a)::::::; (x lL a) ·a, 

where a ranges over alternative compositions of distinct atomic actions; if the 
set of atomic actions is finite, then this scheme generates finitely many axioms. 

An important part of our proof has been inspired by the excellent work 
of Hirshfeld and Jerrum (1999) on the decidability of bisimulation equivalence 
for normed process algebra. In particular, they distinguish two kinds of mixed 
equations, in which a parallel composition is equated to a sequential composition. 
The first kind consists of equations 

for positive natural numbers k and l, and for sums of atomic actions a. These 
equations can be derived using standard concurrency and our new axioms. The 
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second kind of mixed equations are the so-called pumpable equations, which are 
of a more complex nature (seep. 419 of Hirshfeld and Jerrum (1999) ). Basically, 
we show that there cannot exist pumpable equations that contain variables by 
associating with every candidate t ;::::; u a ground substitution a such that ta '* 

The notion of w-completeness is related to action refinement, where each 
atomic action may be refined to an arbitrary process. That is, in a theory with 
action refinement, the actions take over the role played by variables in our theory; 
the actions, as they occur in our theory, are not present in theories for action 
refinement. Aceto and Hennessy (1993) presented a complete axiomatisation for 
PA (including a special constant nil, being a hybrid of deadlock and empty 
process) with action refinement, modulo timed observational equivalence from 
Hennessy (1988). In this setting, laws such as a lL x ~ a · x, which hold in 
standard PA, are no longer valid, as the atomic action a can be refined into any 
other process. 

This paper is set up as follows. In §2 we introduce the standard axioms of 
interleaving, and we prove that they do not form an w-complete specification by 
proving that all ground substitution instances of our new axioms are derivable, 
while the axioms themselves are not. In §3 we state some basic facts about the 
theory of interleaving that we shall need in our proof of w-completeness. In §4 
we collect some results on certain mixed equations, and in §5 we investigate 
a particular kind of terms that consist of nestings of parallel and sequential 
compositions. In §6 we prove our main theorem, that the standard theory of 
interleaving enriched with the law for standard concurrency and our new axioms 
is w-complete. 

2 Inter leaving 

A process algebra is an algebra that satisfies the axioms Al-A5 of Table 1. 
Suppose that A is a set of constant symbols and suppose that 11 and lL are 
binary operation symbols; a process algebra with interpretations for the constant 
symbols in A and the operations II and lL satisfying Ml, M4, M5, M2a and M3a 
for all a E A, and M60 for all sums of distinct elements of A, we shall call an 
A-merge algebra; the variety of A-merge algebras we denote by PAA· 

Table 1. The axioms of PAA, with a EA and a any sum of distinct elements of A. 

(Al) x + y ~ y + x 
(A2) x + (y + z) ~ (x + y) + z 
(A3) x + x ~ x 
(A4) (x + y) · z ~ x · z + y · z 
(A5) (x · y) · z ~ x · (y · z) 

(Ml) x]]y :::::xLLy+yll_x 
(M2a) all x :::::: a· x 
(M3a)a·xll_y ;::::oa·(x]]y) 
(M4) (x + y) ll z :::::: x LL z + y ll z 
(M5) (x ll y) ll z :::::: x LL (y II z) 
(M6a) x ·all a: :::::: (x LL a:) ·a 
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The axioms Al-A5 together with the axioms Ml-M4 form the standard ax
iomatisation of interleaving. Consider the single-sorted signature E with the 
elements of A as constants and the binary operations +, ·, ll and \ \. In writ
ing terms we shall often omit the operation · for sequential composition; we 
assume that sequential composition binds strongest and that the operation + 
for alternative composition binds weakest. 

Let R consist of the axioms A3-A5 and Ml-M4 of Table 1 interpreted as 
rewrite rules by orienting them from left to right. The term rewriting system 
(E, R) is ground terminating and ground confluent modulo associativity and 
commutativity of+ ( cf. the axioms Al and A2). A ground term t is a basic term 
if there exist disjoint finite sets I and J, elements a; and bj of A and basic terms 
ti, for i E I and j E J such that 

t ';::j I: aiti + I: bj (by Al and A2). 
iEJ jEJ 

Every ground normal form of (E, R) is a basic term. 
It is well-known that the axioms Al-A5 together with Ml-M4 do not con

stitute an w-complete axiomatisation; all ground substitution instances of M5 
are derivable, while the axiom itself is not. Moller (1989) has shown that, in a 
setting with prefix sequential composition instead of the binary operation ·, it 
suffices to add M5 to obtain an w-complete axiomatisation (see Groote (1990) 
for an alternative proof). Clearly, neither xa ll_ a nor (x ll_ a)a is an instance of 
any of the axioms Al-A5 and Ml-M5, so M6a is not derivable. However, each 
ground substitution instance of M6a is derivable. 

Proposition 1. If a is a finite sum of elements of A, then, for every ground 
term t, 

Al, ... , A5, Ml, ... , M4 I- tall_ a ';::j (t ll_ a)a. 

Consequently, in the case of binary sequential composition, the axioms Al-A5 
together with Ml-M5 do not constitute an w-complete axiomatision. In the 
sequel, we shall prove that PAA is w-complete. 

3 Basic Facts 

In every A-merge algebra, + and I\ are commutative and associative; we shall 
often implicitly make use of this. Also, we shall frequently abbreviate the state
ment PAA I- u ';::j u + t by t ~ u; if t ~ u, then we call t a summand of u. Note 
that ~ is a partial order on the set of terms modulo ';::j; in particular, if t c==$ u 
and ·u ~ t, then t ';::j u. 

Lemma 2. Let a be an element of A and let t, u and v be ground terms. If 
at c==$ u + v, then at ~ u or at ~ v. 
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Suppose t is a ground normal form of the system (E, R) and suppose that 

t ~ l:::a;t; + 2=bj; 
iEI jEJ 

then the degree d(t) oft is defined by d(t) = Ill+ IJI. We let the degree of an 
arbitrary ground term be the degree of its unique normal form in (E, R). By 
dmax(t) we shall denote the maximal degree that occurs in t, i.e., 

dmax(t) = max({d(t)} U {dmax(t') I there exists an a EA such that at'~ t}). 

Lemma 3. If a is a finite sum of elements of A, then 

Proof. It is straightforward to show by induction on n that the identity (*) 
an+l ~ an 11 a is derivable from PAA; we shall use it in the proof of the first set 
of equations (**) xa LL an~ (x LL an)a, which is by induction on n. If n = 1, 
then(**) is an instance of M6a, and for the induction step we have the following 
derivation: 

xa LL an+l ~ xa LL (an II a) 

~ (xa LL an) LL a 

~ (x LL an)a LL a 

~ ((x LL an) LL a)a 

~ (x ll (an II a))a 

~ (x LL an+l)a 

(by*) 

(by M5) 

(by IH) 

(by M6a) 

(by M5) 

(by *). 

The second set of equations is also derived by induction on n, using (**). D 

Milner and Moller (1993) proved that if t, u and v are ground terms such 
that t II v and u II v are bisimilar, then t and ·u are bisimilar (a similar result was 
obtained earlier by Castellani and Hennessy (1989) in the context of distributed 
bisimulation). Also, they proved that every finite process has, up to bisimulation 
equivalence, a unique decomposition into prime components. Since PAA is a 
sound and complete axiomatisation for bisimulation equivalence (Bergstra and 
Klop, 1984), the following two results are consequences of theirs. 

Lemma 4. If t, u and v are ground terms such that PAA f- t II v ~ u II v, then 
PAA f- t ~ u. 

Definition 5. A grnund term t we shall call parallel prime if there do not exist 
ground terms u and v such that PAA f- t ~ u 11 v. 

Theorem 6 (Unique factorisation). Any ground term can be expressed uni
quely as a parallel composition of parallel prime components. 
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We associate to each term ta norm ltJ and a depth ftl as follows: 

lxJ=laJ=l 

l x * Y J = l x J + lY J 

l x + y J = min {l x J , lY J} 

fal=fxl=l 

fX*Yl = fxl + fyl 

Ix + Y l = max U x l , I Y l}. 

(a E A and x a variable); 

if* E {-, LL II}; and 

Notice that if t ::::::: u, then t and u must have equal norm and depth. 

Lemma 7. If t, t', u and u' are ground terms such that lt J = lt' J, Lu J = l u' J 
and PAA f--tu::::::: t'u', then PAA f--t::::::: t' and PAA f-- u::::::: u'. 

Definition 8. Lett and t' be ground terms; we shall write t--+ t' if there exists 
a EA such that at'~ t and Lt'J < ltJ. We define the set red(t) of reducts oft 
as the least set that contains t and is closed under --+; if t --+ t', then we call 
t' an immediate reduct oft. 

Lemma 9. Let t be a ground term. If t --+ t' and t --+ t" implies that PAA f
t' ::::::: t 11 for all ground terms t' and t", then there exists a parallel prime ground 

term t* such that PAA f--t ::::::: t* 11 ... 11 t*. 

Proof. First, suppose that u and v are parallel prime, and let u' and v' be such 
that u--+ u' and v--+ v'; then, u II v--+ u' II v and u II v--+ u II v'. So, if 
u' 11 v ::::::: ·u 11 v', then since l u' J < l u J , u cannot be a component of the prime 
decomposition of u'; hence, by Theorem 6, u::::::: v. 

Suppose t ::::::: t1 11 ... 11 t 11 , with ti parallel prime for all 1 :S i :S n and 

ltiJ::::; · · · '.S ltnJ· 
If ltiJ = 1, then Ltd = 1 for all I ::::; i ::::; n; for suppose that t; is a ground term 

such that t i--+ t;, then from t2 I I · . · I I tn ::::::: t 1 11 · . · I I ti-1 11 t; 11ti+1 11 · . · I I tn, we get by 
Lemma 4 that t; ::::::: t11 ltj, but ti is parallel prime. From ti 11 · · ·I lti-1 I lti+1 I I· · · 1 ltn ::::::: 
ti II··· II tJ-1 II tJ+i II··· 11 tn, we conclude by Lemma 4 that ti::::::: tj. 

The remaining case is that l t;j > 1 for all 1 ::::; i ::::; n. Let t; and tj be 
ground terms such that t; --+ t; and tJ --+ tj for some 1 ::::; i < j ::::; n; then by 
Lemma 4 t; II tJ ::::::: t; II tj. Since lt;J < Lt;J, t; cannot be a component of the 
prime decomposition of t;, so by Theorem 6 ti ::::::: tj. D 

4 Mixed Equations 

We shall collect some results about mixed equations; these are equations of the 
form tu ::::::: v 11 w. 

Lemma 10. If t, ·u and v are ground terms such that PAA f-- tu::::; u II v, then 
there exists a finite sum a of elements of A such that PAA f-- u ::::; ak for some 
k ?: 1. 

Proo f. Note that It l = Iv l ; we shall first prove the following 
Claim: if I tl, Iv l = 1, then there exists a k ?: 1 such that u ::::; tk and t ::::; v. 

Let t = ai + ... +am with ai, ... , am E A; we proceed by induction on l u J. 
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If luJ = 1, then there exists a EA such that a~ u, whence at~ u II v. Since 
a1 u + · · · +am u ~ u 11 v, there exists by Lemma 2 an i such that aiu ~ av; hence 
by Lemma 7 u ~ v. Since r v l = 1 it follows that tu~ v II v ~ vv ~vu, hence by 
Lemma 7 t ~ v. 

If l u J > 1, then there exist b1 , ... , bn E A and ground terms u 1 , ... , Un such 
that u ~ b1u1 + .. . +bnun. Then aiu+ ... +amu ~tu~ ullv ~ b1(u1 llv)+ ... + 
bn(un II v) +vu, so by Lemma 2 ui II v ~ u, for all 1::::; i:::; n. By Lemma 4 there 
exists u' such ui ~ u' for all 1 ::::; i ::::; n, and, by A4, (b1 + ... + bn)u' ~ u ~ u' 11 v. 
Hence by the induction hypothesis v ~ b1 + ... + bn and u' ~ vk for some k ~ l. 
Sou~ vk+l, and from 

tu~ vu+ bi(u' II v) + · · · + bn(u' II v) 
~vu+ vu 

~vu 

(by A4) 

(by A3) 

it follows, by Lemma 7, that t ~ v. This completes the proof of our claim. 
The proof of the lemma is by induction on Iv 1- If I tl, Iv l = 1 then t is a finite 

sum of elements of A and by our claim u ~ tk for some k ~ 1. If I tl, Iv l > 1, then 
there exists a E A and ground terms t' and v' such that av' ~ v and t' u ~ u 11 v1 ; 

hence, by the induction hypothesis, there exists a finite sum a of elements of A 
such that u ~ ak, for some k ~ 1. D 

Lemma 10 has the following consequence. 

Lemma 11. !ft, t', u andv are ground terms such that PAAl-t·u ~ t'u II v, then 
there exists a finite sum a of elements of A such that PAA I- u ~ cl for some 
k ~ l. 

Lemma 12. Let a be a finite sum of elements of A; if t, u and v are ground 
terms such that PAA I- tak ~ u 11 v for some k ~ 1, then PAA I- u ~ a 1 for some 
l :::; k, or there exists a ground term t' such that PAA I- u ~ t' ak. 

Proof. The proof is by induction on the norm of v. 
If l v J = 1, then there exists an a E A such that a =:;: v, whence au ~ tak. If 

a =:;: t, then u ~ ak, and if there exists a ground term t' such that at' ~ t, then 
u ~ t1ak. 

Suppose that l v J > 1 and let v 1 be a ground term such that l v' J < l v J and 
av1 =:;: v, whence a( u 11 v') ~ tak. If a ~ t, then u 11 v1 ~ ak, hence there exists an 
l < k such that u ~ a 1. Otherwise, suppose that t* is a ground term such that 
at* ~ t and u 11 v' ~ t* ak; by induction hypothesis u ~ o.1 for some l ::::; k, or 
there exists a ground term t1 such that u ~ t' ak. D 

Hirshfeld and Jerrum (1998) give a thorough investigation of a particular 
kind of mixed equations; we shall adapt some of their theory to our setting. 

Let a be a finite sum of elements of A. A ground term t we shall call a-free 
if t f, a and there exists no ground term t' such that t ~ t' 11 a. We shall call a 
ground term t an a-term if t ~ a"' for some k ~ 1. The a-norm l t J °' of a ground 
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term t is the length of the shortest reduction oft to an a-term, or the norm of 
t if such a reduction does not exist. Note that if t ;::::: u, then l t J °' = l u J °'; the 
a-norm of an equation is the a-norm of both sides. We shall write t ----+a t' if 
t----+ t' and lt'Ja < ltJ°'; if luJa = 1, then we say that u is an a-unit. In line 
with Definition 8, a ground term t' is an a-reduct of a ground term t if t' is 
reachable from t by an a-reduction. 

It is easy to see that l t [ [ u J °' = l t J °' + l u J °', so we have the following lemma. 

Lemma 13. Let a be a finite sum of elements of A; any a-free a-unit is parallel 
prime. 

Lemma 14. If t is a-free, then ta is a-free. 

Hirshfeld and Jerrum (1998) proved a variant of Lemma 9. 

Lemma 15. Let a be a finite sum of elements of A, and let t be an a-free 

ground term. If t --+" t' and t --+" t" implies that PAA f- t' ;::::: t" for all ground 
terms t' and t", then there exists a parallel pr"ime ground term t* such that 

PAA f-t ~ t* fl · .. ff t*. 

A pumpable equation is a mixed equation of the form 

where a is a finite sum of elements of A, k ;::: 1, m, n ;::: 2 and t; and Uj are 
a-free ground terms for 1 :::; i :::; m and 1 :::; j :::; n. The following lemma occurs 
in Hirshfeld and Jerrum (1998) as Lemma 7.2. 

Lemma 16. There are no pumpable equations with a-norm less than three. 

Proposition 17. Lett, u, u' and v be ground terms such that t and v are a-free 
and 

(1) 

If u and ur are a-units, then PAA f- u ;::::: u'. 

Proof. If there exists a ground term u* such that u;::::: ·u* [ [ a, then by Lemma 3 
vak If urak ;::::: (t II u* [[ a)ak ;::::: (t II u*)ak [[ a; by Lemma 14 vak is a-free, 
hence there exists a ground term u** such that ur ;::::: u** [[a. Vice versa, from 
u' ;::::: u** 11 a we obtain the existence of a u* such that u ;::::: u* [ [ a. In both cases 
(t [[ u*)ak II a;::::: vak II u••ak [[a, whence 

(t ff u*)ak;::::: vak II u**ak. 

Hence, we may assume without loss of generality that the a-units ·u and u' are 
a-free, so that (1) is a pumpable equation. By Lemma 16 there are no pumpable 
equations with a-norm less than three, so lt J "' l v J °' ;::: 2; we prove the lemma 
by induction on ltJa· 
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If there exist ground terms t' and v' such that t --t 0 t', v --1 0 v' and ( t' 11 

u)ci ::::::! v'ak II u'ak, then we may conclude u ~ u' from the induction hypothesis. 
Since the a-units u'ak and u have unique immediate a-reducts, in the case 
that remains, t and v have unique immediate a-reducts t' and v', respectively; 
hence, by Lemma 15 there exists a parallel prime ground term v* such that 
v ~ v* 11 · · · 11 v*. By Lemma 3 

(t' II u)ak ~ vak II ak+i ::::::! (v II ak+i)ak, for some i 2: 0, 

so t' II u ~ v* II · · · II v* II ak+i. Since u is a-free, whence parallel prime by 
Lemma 14, it follows that u ~ v•; hence 

(t II u)ak ::::::! (u II·.· II u)ak II u'ci and t' ::::::! u II·.· II u II ak+i. 

Clearly, there exists a j 2: k such that u'ak II aj is an a-reduct of vak II u'ak 
(a-reduce vak to a:j). Hence, by Lemma 3, (u' 11 aj)ak is an a-reduct of (t 11 u)a:k, 
so u' 11 aj is an a-reduct oft 11 u. If u' JI a.i is obtained by reducing t to an a-term, 
then u ~ u' follows, since u and u' are a-free. Otherwise, there exists j' ~ j such 
that u' 11 ai' is an a-reduct oft, hence of the unique immediate a-reduct t' of 
t. Every a-reduct oft' with a-norm 1 is of the form u 11 ai''. Since u and u' are 
parallel prime, u ~ u' follows. D 

5 Mixed Terms 

We shall now define the set of head normal forms, thus restricting the set of terms 
that we need to consider in our proof that PAA is w-complete. The syntactic form 
of head normal form motivate our investigation of a particular kind of terms that 
we shall call mixed terms (nestings of parallel and sequential compositions). We 
shall work towards a theorem that certain instantiations of mixed terms are 
either parallel prime or a parallel composition of a parallel prime and ak for 
some finite sum a of elements of A. 

Let x be a variable, suppose t = x or t = xt' for some term t', and suppose 
ii = u1, ... , Uj and v = v1, ... , Vj are sequences of terms; we define the set of 
x-prefixes Lj [t, ii, v] inductively as follows: 

Lo[t] = t; and 

LHi[t, u, uH1, v, vH1l = (Lj [t, ii, v] lL uH1 )vH1. 

A term t is a head normal form if there exist finite sets I, J, K and L such 
that 

t ~ L aiti + L bj + L Vk lL uk + L wz (by Al and A2) 
iEJ jEJ kEK lEL 

with the a; and bj elements of A, the ti and Uk arbitrary terms and each Vk and 
Wt an x-prefix for some variable x. 
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Lemma 18. For each term t there exists a head normal form t* such that PAA 1-
t:::::: t*. 

We shall associate with every equation t :::::: u a substitution O' such that 
t(J" :::::: u(J" implies that t :::::: u. The main idea of our w-completenss proof is to 
substitute for every variable in t or u a ground term that has a subterm 'Pn of 
degree n, where, intuitively, n is large compared to the degrees already occurring 
in t and u. Let a be an element of A and let n ~ 1; we define 

'Pn =an +an-1 + ... +a. 

Lemma 19. If n ~ 2 and t is a ground term, then i.f!nt is parallel prime. 

Suppose t is a term, and let u = u 1 , ... , u1 and v = v1 , ... , v1 be sequences 
of terms; we define the set of mixed terms M1 [t, u, v] inductively as follows: 

Mo [t] = t; and 

MH1[t,u,uH1,v,vH1l = (MJ[t,u,v] II uJ+1)vH1· 

Let t be a ground term; we denote by d;;;ax(t) the least upperbound for the 
degrees of all the reducts oft, i.e., 

d;::ax(t) = max{d(t') It' E red(t)}. 

Definition 20. A mixed term M1 ['Pnt, u, v] we shall call a generalised 1.f!n-term 
if 

Note that there are no generalised 'Pi-terms. 

Lemma 21. Let MJ [1.pnt, u, v] be a generalised 'Pn-term and let u be a ground 
term such that 

Then there exists a finite sum a of elements of A such that PAA 1-- v1 · · ·VJ :::::: ak 

and PAA 1-- u :::::: u1 11 · · · 11 UJ :::::: a 1 for some k, l ~ l. 

Proof. From MJ['Pnt,u,v]----+ MJ[t,u,v] and d(MJ[t,u,v]) < nit follows that 
Mj [t, u, v] ::::::: tv1 ... Vj 11 u; hence 

(2) 

Note that luJ = lu1 II··· 11 ·uJJ; we shall prove the lemma by induction on luJ. 
If l u J = 1, then j = 1 and l u1J = l. By Lemma 11 there exists a finite sum 

a of elements of A such that v1 :::::: ak for some k;::: 1, and hence by Lemma 12 
u:::::: a. By Lemma 3 (1.pnt II u1)ak::::::: i.f!nlak II a::::::: ('Pnt 11 a)ak, so u1::::::: a. 

If l u J > 1, then there are three cases: l u1 J = 1 and j > 1, l uJJ > 1 and 
j = 1, and l Uj J > 1 and j > l. We shall only treat the last case; for the other 
two cases the proof is similar. 
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Let uj be an immediate reduct of Uj; by (2) there exists an immediate reduct 
u' of u such that 

Mj[\Ont,u1, ... ,uj-1,uj,v]:::::; \Ontv1 · · ·Vj 11 u'. 

Since MJ [<pnt, u1, ... , Uj-h uj, v], there exists by the induction hypothesis a finite 

sum a of elements of A such that v1 ···VJ :::::; ak and u 1 11 · · · 11 Uj-l 11 uj :::::; a.1 for 
some k, l ;::: 1. By means of j - 1 applications of Lemma 3, we find that 

MJ[\Ont,u,v] R:: (<pntci-LvJJ II u1)alvJJ II a.1 :::::; <pntak 11 u. 

Since <pnta.k is parallel prime by Lemma 19, there exists a ground term u* with 
lu*J = lu1J and lu*Jc" = luJJ°' such that u:::::; u* II a 1 and (<pnta.k-LvjJ II 
u1)alvjJ :::::; <pnta.k II u•. If Lu*J ::; Lv1J, then by Lemma 12 u* is an a-term, 
which implies that u and uJ are also a-terms. So suppose that lu*J > LvJJ, 
and let ut be a ground term such that u• :::::; utaLvJJ. Since Lu1j > lutj and 
luJJ°' = lutj°', by Proposition 17, u1 and ut are not a-units. Since uj is an a.
term and u1 --t uj, Uj must be an a-term, so also ut is an a-term. Consequently, 

u:::::; u* II a 1 :::::; utalv1J II a 1 is an a-term. 0 

Lemma 22. Let MJ [<pnt, u, v] be a generalised IPn -term. If MJ [<pnt, u, v] is not 
a-free, then there exists i ::; j such that PAA f-v; · · · Vj :::::; ak and u; is not a-free. 

Proof. Let t* be a ground term such that 

(3) 

Since \Ontv1 · · · Vj is a reduct of M1 [<pnt, u, v] and by Lemma 19 'Pntv1 • • • Vj is 
parallel prime, \Ontv1 · · · Vj must be a reduct of t*. Then l{Jntv 1 ···VJ 11 a is a 
reduct of Mj [1Pnt, u, v], so there exist sequences of ground terms u' and v' such 
that for some 1 ::; j' ::; j and 1 ::; i ::; j, 

By Lemma 21 v; · · · Vj :::::; ak, so in particular Vj :::::; a 1 for some l ::; k. Clearly, 
lt* J > l, so by Lemma 12 there exists tt such that t* :::::; tt a 1• We apply Lemma 3 
to the right-hand side of (3) and cancel the a 1-tail on both sides to obtain 

Mj-1[1Pnt,u1, ... ,uj-1,V1, ... ,vj-l] lluj ::::;tt II a. 

The remainder of the proof is by induction on j. If j = 1, then \On t 11 Uj :::::; t t 11 a 
implies that Uj is not a-free and we are done. If j > 1 and Uj is a-free, then 
Mj-1 ['Pnt, u1, ... , Uj-l, v1, ... , VJ-1] is not a-free, so by the induction hypothesis 

there exists some 1 ::; i' ::; j - I such that u;' is not a-free and v;' · · · VJ-1 :::::; ak', 
k'+l whence v;' · · ·VJ R:: a: . 0 

Proposition 23. If a generalised IPn-term t* is not parallel prime, then there 
exists a finite sum a of elements of A and a parallel prime generalised lfln -term 
tt such that t* :::::; tt II cl for some k ~ 1. 
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Proof. Let t* ~ Mj [rpnt, u, v] and let t 1 , ... , t 0 be parallel prime ground terms 
such that 

Since tfntv 1 · · · Vj is a reduct of lvlj [rpnt, u, v] and parallel prime, 'Pntv 1 · · · Vj must 
be a reduct of some ti (1 ::; i::; o); assume without loss of generality that it is a 
reduct of t 1. 

Suppose that MJ [ipnt, u, v] is not parallel prime and let u ~ t2 I I · · · 11 t 0 • Since 
<pntv1 ···v1 11 u is a reduct of Mj [<pnt, u, v], there exist sequences of ground terms 
u' and ii' such that, for some 1 ::; j' ::; j and 1 ::; i :::; j, 

So by Lemma 21, there exists a finite sum a of elements of A such that u ~ ak, 

for some k? 1. 
It remains to prove that if MJ['Pnt,u,v] ~ tt II a, then tt is a generalised 

'Pn-term, for then it follows that t 1 is a generalised 'Pn-term by induction on k. 
Since MJ [ 'Pnt, u, v] is not a-free, there exists by Lemma 22 an i :::; j such that ui 
is not a-free and Vi · · · Vj ~ a 1 for some l ? 1. So either ui ~ a or there exists u; 

such that Ui ~ u; II a; we only consider the second possibility, as the other can 
be dealt with similarly. By Lemma 3 we obtain 

Hence tt ~ lv!J-d'Pnt, u1 , ... , u;_ 1 , u;, Ui+l, ... , Uj, v] is a generalised 'Pn-term. 
D 

6 w-Completeness 

Let A be a nonempty set; we shall now prove that PAA is w-complete. We 
shall assume that the variables used in an equation t ~ u are enumerated by 
X1, x2, ... , Xk, ... Let Xi be a variable and let m be a natural number; the par
ticular kind of substitutions <J m that we shall use in our proof satisfy 

O"m(xi) = a(a'Pi+m + a)a. 

We want to choose m large compared to the degrees already occurring in t 

and u; with every term t we associate a natural number d~ax(t) that denotes 
the maximal degree that occurs in t after applying a substitution of the form 
described above, treating the terms tfi+m as fresh constants. 

Definition 24. S·uppose S = {6,6, ... ,~k, ... } is a countably infinite set of 
constant symbols such that Sn A = 0. Lett be a term and let <J be a substitution 
such that 

O"(xi) = a(a~; + a)a. 

We define d':nax(t) as the maximal degree that occurs in ta, i.e., d':nax(t) 
dmax(ta), 
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Lemma 25. If t is a term and let m be a natural number, then 

i. d-;;;ax(tam) :S d'{.,.ax(t); and 
ii. if a E A and t' is a ground term such that at' =::;'. tam, then d(t') :S d':nax/t). 

If Lj [t, u, ii] is an x;-prefix and m is a natural number, then 

L [t ·u- v-]"m - ' ~1' [( + )t" - -]""' '-·· M [ t" - -Jam j , , ---r .m j a<p;+rn a , u, v '?' a j IPi+m , u, V , (4) 

where t" = a if t = x; and t" = at' if t = xJ' for some term t'. If m 2: 
d~ax(LJ[t,u,ii]), then MJ[IPi+mt",'ii,v]O'"' is a generalised IPn-term; we shall call 
it the generalised IPi+m -term associated with Lj [t, u, ii] by um. 

For ground terms t and t*, let us write t i-t t* if there exists a ground term 
t' and an a E A such that t --+ t' ~ at*. 

Lemma 26. Lett be an x-prefix and suppose that m 2: d':nax(t). If n > m and 
t* and tt are generalised IPn-terms such that ta-,,. i-t t* and ta"' i-t tt, then 
PAA f-- t* :::::: tt. 

Proof. Note that the unique immediate reduct of t"m is of the form Mj [ ( arpi+rn + 
a)t',u,ii]""'. Moreover, m;::: d~iax(t), so MJ[if;+mt',u,ii]a"' is the unique ground 
term t* such that at*=::;'. Mj[(a<pi+m + a)t',u,ii]""' and d(t*) > m. Hence, if t* 
is any generalised ipn-term with n > d~ax(t) such that t<Tm 1-7 t*, then t* :::::: 
Mj [IPi+mt', il, ii]"m. 

Note that if t is an x-prefix, m 2: d~ax(t) and t* is the generalised IPi+rn-term 
associated with t by urn, then t* has no reduct with a degree in {m + 1, m + 
2, ... , m + i - 1}. Lemma 26 has the following consequence. 

Lemma 27. Lett be an x-prefix, let u be a y-prefix and let m;::: max{d':nax(t), 
d':nax('u) }. If PAA f-- t<Tm :::::: ·u""', then X = y. 

We generalise the definition of a-freeness to terms with variables: a term t is 
a-free if t ';fa a and there exists no term t' such that t :::::: t' 11 a. 

Theorem 28 (w-completeness). Let A be a nonempty set; then PAA is w
complete, i.e., for all terms t and u, 

if PAA f-- ta :::::: u" for all ground substitutions u, then PAA f-- t :::::: ·u. 

Proof. Let m ;::: max{d~iax(t), d~ax(u)}. We shall prove by induction on the 
depth oft that if t""' :::::: u""', then t :::::: u; clearly, this implies the theorem. 

In the full version of this paper we simultaneously prove that one may assume 
without loss of generality that the generalised IPn-term associated by Urn with 
an x-prefix is parallel prime; we need this assumption in the remainder of the 
proof. 

Suppose that t""' :::::: u""'; it suffices to show that every summand of u is a 
summand oft, for then by a symmetric argument it follows that every summand 
oft is a summand of u, whence t :::::: u. There are four cases: 
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1. If b EA such that b =;< u, then b =;< t since am-instances of summands of one 
of the three other types have a norm > l. 

2. If a E A and u' is a term such that au' =;< u, then by Lemma 25 d( u') ::; 
d~ax(u). Since m 2:: d~ax(u), (u')""m cannot be an immediate reduct of a 
O"m-instance of an x-prefix or of a term v ll w, with v an x-prefix. So there 
exists i EI such that a(u')O"m ~ aitfm. By the induction hypothesis u' ~ ti, 
hence au' =;< t. 

3. Let v be an x-prefix and let u' is a term such that v ll u' =;< u. By our 
assumption that generalised (/Jn-terms associated by O"m with x-prefixes are 
parallel prime, there exists k E K such that vO"m ~ v~m and ( u')<Tm ~ u~m; 
by Lemma 27 Vk is also an x-prefix. Hence, by the induction hypothesis 
v ~ Vk and u' ~Uk, so v ll ·u =;< t. 

4. If w is an x-prefix such that w =;< u, then by our assumption that generalised 
(/Jn-terms associated by O"m with x-prefixes are parallel prime, there exists 
l E L such that wcrm ~ wf"'; by Lemma 27 Wz is also an x-prefix. If the 
generalised Cfn-term associated tow by O"m is of the form CfnW', then clearly 
the generalised (/Jn-term associated to Wz by O"m must be of the form CfnWf 
and it is immediate by the induction hypothesis that w' ~ wf and w ~ Wz. 

Let w = (t' ll u')v' and let Wz = (t" ll u")v", where t' and t" are x-prefixes 
to which CJm associates parallel prime generalised (/Jn-terms tt and tt. If 
l(v')""ml = l(v")""ml, then by the induction hypothesis (t' ll u') ~ (t" ll u") 
and v' ~ v", whence w ~ wz. So let us assume without loss of generality that 
l(v')crml < l(v")crm l; then there is a ground term v* such that (t' ll u')O"m ~ 
(t" [l u")crmv* v*(v')"m ~ (v")<Tm. Note that (tt II u")"mv* ~ (tt II u')"m, 
which is not parallel prime. So there exists by Proposition 23 a finite sum 
o: of elements of A and a parallel prime generalised 1Pn-term t* such that 
( t+ 11 ( u"r" )v* ~ t* 11 ak. Hence by Lemma 22 v* ~ a 1 for some l ;:::: 1. 
Consequently, v" ~ o:1v' and by the induction hypothesis t' ll u' ~ ( t" [l u")a1; 

hence, w =;< t. D 
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