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1 Introduction

It was a new, and somewhat scary adventure for me to start working in a mathematical
environment: after my undergraduate studies in biology, I had worked on problems in
theoretical biology in computer science, biology, and physics institutes, but never had I
been so close to “real” mathematicians. I joined CWI via the Netherlands Consortium for
Systems Biology in September 2008, and became part of MAC-4, the Life Sciences group.
Would the mathematicians not frown upon our simulation methods? Our methods help
develop new hypotheses for biologists, show how complex biological phenomena can be
driven by simple underlying rules, and also produce beautiful pictures, but they do not
produce any real proofs or theorems.

My worries were quickly taken away after having received a warm welcome at CWI,
and after the introduction to Jan Karel Lenstra. The original Escher print in Jan
Karel’s office made me feel more at ease among mathematicians. The mathematics of
life and biological morphogenesis is prominent in the work of M.C. Escher: apart from
the metamorphosis from fish to bird in Jan Karel’s office, Escher made many lizard
tessellations, and of course the Pedalternorotandomovens centroculatus articulosus - the
cute rolling creature similar to the extant pill millipede (Figure 1). Later on I learned
that Jan Karel had been one of the main proponents of building a Life Sciences group
at CWI, and also helped to establish the Netherlands Institute for Systems Biology that
ensures that the models, simulation, and methods are developed in collaboration with
experimental biologists, so they are applied to “real life” applications.

1.1 Biological morphogenesis

What kind of “real life” applications does my group work on? Here I would like to
focus on morphogenesis, the mechanisms driving biological growth and form. A classic
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Figure 1: A “real life” and “mathematical” creature side by side. A. Pill millipede,
possibly from order Glomerida. B. Pedalternorotandomovens centroculatus articulosus,
or wentelteefje by M.C. Escher.

mathematical study of morphogenesis is Alan Turing’s seminal paper “The chemical basis
of morphogenesis”[16]. Turing showed how periodic chemical patterns, e.g., the signals
eliciting the growth of fingers or the stripes of a zebra, could arise from a homogeneous
initial condition of two chemical substances, the morphogens A and B,

∂A

∂t
= a(A− h) + b(B − k) +DA

∂2A

∂x2
,

∂B

∂t
= c(A− h) + d(B − k) +DB

∂2B

∂x2
, (1)

with a, b, c, and d production or degradation rates for morphogen A and B. h and
k are the homogeneous steady states for A and B, and DA and DB are the diffusion
coefficients for morphogen A and B. Turing showed that uniform “stationary waves with
finite wave-length”, that is stripes or spots, are a steady state of this system if one of
the morphogens diffuses much faster than the other.

Turing beautifully showed how patterns can arise out of “nothing” in a strip of
tissue consisting of identical cells exchanging chemicals. My group builds upon Turing’s
pioneering work, and attempts to explain morphogenesis as a problem of self-organization
of moving, growing and dividing cells. The cells in a multicellular organism follow simple
rules, encoded by the information in their DNA. These rules guide cell behavior: how
does a cell move, how strongly does it adhere to surrounding cells and to extracellular
materials, what materials does it secrete itself, etc. Perhaps more importantly, the
cellular rules determine how a cell will respond to signals from its neighbors, and to
signals the cells have deposited in the extracellular space. In a typical response, they
would “switch on” a different set of cellular rules: they could, for example, change their
shape, start or stop moving, or tighten the adhesion to adjacent cells. Such shifts in cell
behavior occur, e.g., during “cell differentiation”.

Using cell-based computer simulations, a form of agent-based simulations in which
the agents are biophysically detailed models of cells [9, 11], we predict the emergent
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Figure 2: Snapshots from a Cellular Potts simulation of de novo formation of a vascular
network from dispersed endothelial cells (panels A-C) and corresponding graph repre-
sentations (panels D-F). Snapshots taken at 50 (A, D), 2000 (B, E), and 20000 (C, F)
Monte Carlo steps.

collective behavior following from the stochastic behaviors of many, discrete cells, that
follow a discrete set of cellular rules. In this way, we have studied how cells form blood
vessels [7, 12], and how other cells with different rules form plants [8, 10].

1.2 Biological tissues are graphs

Did I just write “discrete”? Discrete cells, discrete rules? Yes, cells are discrete objects.
Yet, many of the simulation methods in morphogenesis rely on continuum methods,
including PDEs. This is a very powerful approach if we are interested in phenom-
ena at large scales in tissues consisting of more-or-less identical cells, so we can safely
“smoothen” away the individual cells. It allows us to make use of a wealth of tools in
dynamic systems theory: find bifurcations, do linear stability analyses. . . But at smaller
scales, and in more heterogeneous tissues, we cannot ignore biology’s innate discreteness.
For this reason, cell-based simulation methods model cells as individual entities. A chal-
lenge in cell-based models, however, is that the analytical tools currently lack the level of
sophistication of tools for continuum models. To what extent could such methodology
be developed using the tools available to discrete mathematicians? Cells are discrete
objects, so could discrete mathematics methods be of use in analyzing multicellular
morphogenesis?

In this contribution, I will explore the use of graph theory in analyzing the cellular
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configurations coming from our simulations of blood vessel growth. As a first step, we
transform the simulated biological tissue into a graph that represents the adjacency
relations of cells. That is simple: cells become nodes. If two cells are adjacent to
each other, an edge connects them. Here I only focus on topology; that is, I throw
away the locations of cells, and only keep the adjacency relations. Figure 2 shows an
example of such a transformation. In the remainder, I will first briefly outline the
cell-based algorithms we use to simulate blood vessel growth, and then outline some
preliminary explorations in the use of graph theoretic measures for characterizing blood
vessel sprouting. I will end by discussing some future developments in the discrete
mathematics of biological morphogenesis.

2 Methods

2.1 Hybrid cellular Potts model

We modeled cell motility at a mesoscopic level using the Cellular Potts model (CPM)
[4, 5]. The CPM is a lattice-based Monte-Carlo approach that describes biological cells
as spatially-extended patches of identical lattice indices σ(~x) on a square or triangular
lattice, where each index uniquely identifies, or labels a single biological cell. Connections
(links) between adjacent lattice sites ( ~x1, ~x2) of unlike index, σ( ~x1) 6= σ( ~x2), represent
bonds between apposing cell membranes, where the bond energy is J( ~x1, ~x2), assuming
that the types and numbers of adhesive cell-surface proteins determine J . A penalty
increasing with the cells deviation from a designated target volume Atarget(σ) imposes a
volume constraint on the simulated cells. We define the pattern’s effective energy:

H =
∑

( ~x1, ~x2)

J(σ( ~x1, ~x2))(1−δ(σ( ~x1), σ( ~x2)))+λA
∑
σ

(a(σ)−AT(σ))2+λL
∑
σ

(l(σ)−LT(σ))2,

(2)
where ( ~x1, ~x2) is a pair of adjancent lattice sites, a(σ) is the current area of cell σ, and
AT(σ) is its target area. The parameter λA represents the cell’s resistance to compres-
sion, and δ is the Kronecker delta. The last term represents a cellular length constraint,
with l(σ) representing the current length of cell σ, LT a target length, and λL a param-
eter setting the cell’s rigidity along its long axis [7].

To mimic the cytoskeletally-driven cell extensions and retractions that drive cell
motility, we randomly choose a source lattice site ~x1, and attempt to copy its index σ( ~x1)
into a randomly-chosen adjacent lattice site ~x2. During a Monte Carlo Step (MCS) we
carry out N copy attempts, with N the number of sites in the lattice. We calculate how
much the effective energy change, ∆H, that would occur if we performed the copy, and
accept the attempt with a Boltzmann-like probability,

P (∆H) = {e
−∆H
M(σ) ,∆H ≥ 0; 1,∆H < 0}, (3)

where M(σ) defines an intrinsic random cell motility M of cell σ, that drives energetically
unfavorable movements.
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We assume that endothelial cells secrete a morphogen c(~x, t) that diffuses and de-
grades in the extracellular matrix,

∂c

∂t
= α(1− δ(σ(~x), 0)− εδ(σ(~x), 0)c+D

∂2c

∂x2
, (4)

with δ(σ(~x), 0) = 0 inside cells and δ(σ(~x), 0) = 1 otherwise. Here α is the rate at which
cells secrete the morphogen c, ε denotes the morphogen’s degradation rate, and D is the
morphogen diffusion. We further assume that cells chemotact towards the morphogen:
they preferentially move towards higher concentrations of c. To do so, we include an
additional chemical effective-energy change, ∆Hchemotaxis, at each copy attempt [15]
from site ~x1 into adjacent site ~x2,

∆Hchemotaxis = −µ(c( ~x2 − ~x1)). (5)

In this way the algorithm favors cellular extensions into the direction of higher concentra-
tions of the morphogen. We solve the partial differential equations for chemoattractant
diffusion and degradation (Eq. 4) numerically using a finite-difference scheme on a lattice
matching the CPM lattice, with ∆x = 2 µm. We use 15 diffusion steps per Monte Carlo
step, with ∆t = 2 s, thus equating a Monte Carlo step to 30 s real time.

2.2 Cellular networks as graphs

To study a cellular pattern as a graph, we first construct a graph. We represent patches
of identical indices σ = i (i.e., a biological “cell”) by node i. Nodes i and j share an
edge e(i, j) if,

∃( ~x1, ~x2) : σ( ~x1) = i ∧ σ( ~x2) = j ∧ σ( ~x1) 6= σ( ~x2). (6)

So cell i and cell j share an edge e(i, j) if there exists an adjacent pair of lattice sites
( ~x1, ~x2) such that σ( ~x1) = i and σ( ~x2) = j. We exclude self-connected nodes.

The resulting graphs can be studied using standard tools from graph theory. To do
so, we made use of the graph tools implemented in Mathematica 8 and the algorithms
in the Mathematica Graph Utilities Package. In this pilot study, we looked only at the
above defined adjacency relations of cells. In more extensive studies the nodes can be
given attributes, including cell type, surface area, or cellular locations. No additional
notation is required to represent these node attributes, because the node indices uniquely
identify the cells.

3 Results

3.1 Simulation of de novo formation of a blood vessel network

Figures 2A-C show an example of blood vessel network formation in our model, with
an appropriate set of parameters (Table 1 lists the parameters used). After the initial
formation of the chemical gradients, the cells move towards one another and form a
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λA = 50 AT = 400 µm2

λL = 5 LT = 120 µm
Jcell,medium = 20 Jcell,cell = 40
M(σ) = 50 D = 1.0× 10−13 m2s−1

α = 1.8× 10−4 s−1 ε = 1.8× 10−4 s−1

µ = 1000
Grid size: 200× 200 lattice sites Number of cells: 100

Table 1: Parameters used for the de novo vasculogenesis simulation studied in this paper

network structure closely resembling real-life blood vessel networks in animals and in cell
cultures [6]. Also note that the initial fine-grained network slowly coarsens over time,
a phenomenon also seen in cell cultures [6]. A movie of this simulation is available at
http://www.youtube.com/watch?v=VbeRFcl6RD4. For more details on the mechanisms
driving such blood vessel sprouting, the relation to actual blood vessel growth, and
extensive parameter studies of this model, see our previous and ongoing work [12, 6,
7]. Figures 2D-F show the graph representations corresponding with the blood vessel
networks.

3.2 Variability of graph measures marks morphological events

What graph measures could we use to analyze the morphological transformation from a
set of disconnected cells, to a fine-grained network, and into a coarse-grained network?
To detect the first occurence of a vascular network, the first obvious measure to look at is
the number of connected components in the graph: the number of connected components
drops rapidly during the first steps of the simulation, as the cells move towards one
another (Figure 3A). After around 300 Monte Carlo steps all cells have connect to one
another.

After the first connections between cells have been made, the blood vessel network
slowly coarsens over time; a good measure of graph complexity should capture this
coarsening process. Also, we would like to have a good definition of the number of
branches in the simulated networks. We first identified the eccentricity of the vertices in
the graph, where the eccentricity of a node is the longest of all shortest paths to all other
nodes in the graph. We expect nodes in the branches to have high eccentricity. Another
useful measure is the graph periphery, defined as the set of vertices with maximum
eccentricity. We noticed that many branches typically contained a set of connected
peripheral nodes; so simply counting the peripheral nodes overestimates the number of
branches. We therefore defined the number of connected peripheral subgraphs as the
number of connected components in the graph periphery. We plot this measure in
Figure 3B as a function of time. The number of connected peripheral subgraphs jitters
over time, suggesting that it is very sensitive to the small variations in morphology due
to our Monte-Carlo simulation algorithm.

Interestingly, between time steps 20000 and 40000 and after time step 80000 we
observed a temporary drop of the values and variability of the number of connected pe-
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Figure 3: A Number of connected components of the vascular network over time (in
Monte Carlo steps). B Number of connected peripheral subgraphs in the vascular net-
work over time. C Snapshot of simulation at 20000 Monte Carlo steps, D at 30000
Monte Carlo steps, and E at 40000 Monte Carlo steps.

ripheral subgraphs. What happened in our simulation during this period? Figures 3C-E
show three snapshots of our simulation at 20000, 30000, 40000 timesteps. Two large
sprouts form; at around step 40000 they touch and form a large “hole” in the morphol-
ogy. It steadily shrinks and disappears around step 60000. Once the two sprouts have
reconnected the number of connected peripheral components increases again. A similar
event occurs after timestep 80000, whereas we have not observed other, similar events
in the simulation. Thus these observations suggest that the variation of the number of
connected peripheral subgraphs may help to identify morphological transformations in
our simulations. We are now exploring a) if other measures more reliably identify the
number of branches in these networks, and b) if indeed the time-variation or structural
stability of graph measures may be a useful measure for other dynamical morphological
features as well.

3.3 Network complexity: community partition structure

Changes in the variability of the eccentricity-based graph measures may help to identify
morphological events, as we have seen in the previous section. However, exactly because
of their high variability we cannot use them for the morphological analyses of static
vascular networks. We next explored the use of community structure measures [14]. A
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Figure 4: Community structure of vascular networks A-B Optimal number of community
partitions detected in the vascular network over time. A Monte Carlo steps 0 to 1000; B
Monte Carlo steps 0 to 100000. C-D Community modularity (Q) of optimal community
partition of vascular networks. C Monte Carlo steps 0 to 1000; D Monte Carlo steps 0
to 100000.

community in a graph is a subset of the graph that is more strongly connected internally
than with the other nodes in the graph. The community modularity Q of a partition of
the nodes V in communities Vi, is defined as

Q =
k∑
i=1

(eii − a2
i ), (7)

with eii denoting the fraction of all edges in the graph internal to community i, and ai
denoting the fraction of edges running between community i and the other nodes. The
community modularity is a number smaller than 1, with larger values of Q corresponding
to stronger community structure. To calculate community partitions and community
modularities we use the algorithm by Clauset [2] implemented in Mathematica 8.

Figure 4A shows the number of detected communities corresponding with the highest
value of Q for the first 1000 Monte Carlo steps of the vasculogenesis simulation. Panel B
shows the development of the number of communities for MCS 0 to 100000. During the
first 1000 Monte Carlo steps the number of communities decreases from about twenty
to about five communities, corresponding with the coarsening of the network pattern.
Over a longer timescale, the number of communities in the simulated vascular network
fluctuates around six. Thus, the number of communities nicely characterizes the slow
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coarsening of the vascular network, but once the network has settled on a characteristic
size, the community structure does not capture the dynamic, topological transformations
of the network.

Figures 4C-D show the community modularity Q corresponding with the optimal
community partition as a function of time. During the first 1000 Monte Carlo steps of
our simulation, Q drops gradually from a value of above 0.9 to a value of about 0.7,
corresponding with the expected reduction in community structure during network for-
mation and coarsening. Interestingly, over a longer time scale the community modularity
continues to fluctuate. The modularity drops to a value of around 0.6 around Monte
Carlo step 20000 and peaks at 0.7 near Monte Carlo step 40000, after which it drops
steadily until time step 60000. Possibly this variation of the community modularity
corresponds with the formation of two large sprouts between Monte Carlo steps 20000
and 40000, the reconnection of the sprouts and the subsequent shrinking and closure
of the resulting hole at Monte Carlo step 60000. Thus formation and closure of holes
are clearly indentified. Our initial explorations suggest that changes in optimal values
of the community modularity Q identify both the initial network coarsening, and more
long-term, topological transformations of the vascular network.

4 Discussion

In this contribution I presented some initial explorations on the use of discrete mathe-
matical methodology for the analysis of biological morphogenesis. I first identified the
number of connected peripheral nodes for each frame of a vascular network simulation.
Although this number itself varied too much to provide useful information about the
structure of the vascular networks, I found that close to major morphological events its
temporal variation dropped, for example during the formation of large sprouts and the
fusion of these sprouts. This suggests that the robustness of a graph measure against
small modifications of the graph structure can provide useful information [1, 3], even if
the graph measure itself does not. Thus, a differential graph theory might be useful for
the study of multicellular morphogenesis and other dynamic networks [3].

I next looked at the evolution of community modularity in a simulated vascular
network. I found that the number of communities in an optimal community partition
characterizes the initial coarsening of the simulated vascular network well, whereas the
subsequent formation and fusion of sprouts are not well captured. However, the commu-
nity modularity associated with the optimal community partition correlates well with
both the initial network coarsening and the subsequent formation and fusion of sprouts.

The presented methodology indeed is a useful extension of our existing toolbox for
analyzing angiogenic sprouting, based on computational geometry and mathematical
morphology [13, 7, 12]. However, the real power of using graph representations of mor-
phogenetic topological transformations may only be unleashed once we will use it to
state and solve generalized problems of biological morphogenesis in formal mathemati-
cal terms. Assuming that evolution of multicellular organisms strives for optimality, we
can pose various interesting questions about optimal mechanisms of biological morpho-
genesis. An example: assume a two-dimensional (or n-dimensional) piece of tissue, in
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which cells with diameter 1 communicate via contact-dependent (“juxtacrine”) signals.
That is, cells must be in contact in order to pass a signal. What is the fastest way that
a signal can spread through the tissue?

If the cells do not move relative to one another (epithelial tissues, plants) the answer
is trivial: if a signal spread from a cell to its neighbors in time ∆t, the signal spreads
over a volume of radius r in time r∆t. But what if the cells shift positions and mix?
How much faster or slower will the signal spread? What is the optimal way and speed
for the cells to mix in order to attain optimal spread of the signal? Suppose all cells must
have been in contact with one another in order for a biological mechanism to proceed.
For a finite piece of biological tissue, what is the optimal mixing strategy, under the
condition that cells can only exchange positions with their neighbors? How does this
depend on the topology of the tissue; e.g., does it differ between branched tissues (e.g.,
lungs, kidney, gland tissue) and flat layers of tissue? If one cell type can invade a tissue
of another type, how will the mixing strategy determine the spreading speed? What is
the optimal way for a flat tissue to change into a branched topology? How should they
locally change their adjacency relations? Do we expect a different strategy if cells can
mix, as in most animal tissues, and if they cannot, as in plants and some animal tissues?
And how do these insights compare with biological observation: is biology optimal?

Using cell-based computer simulations and biological experiments it is possible to get
useful insights into these questions. But what is still missing from cell-based modeling
approaches in biology, is a formal differential graph theory of dynamic, discrete repre-
sentations of growing and developing tissues. So, Jan Karel, if you are still wondering
what to work on now you can spend more time on discrete mathematics, I hope to have
convinced you that the theoretical biology of multicellular morphogenesis is full of fun
and challenging problems. I look forward to discuss these with you!

5 Acknowledgments

Erik van Dijk and Margriet Palm are thanked for their suggestion to use graph rep-
resentations for analyzing tissue patterns; Stefan Canzar is thanked for discussion, and
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