
DIFFUSION ESTIMATION FROM MULTISCALE DATA BY

OPERATOR EIGENPAIRS∗

DAAN CROMMELIN† AND ERIC VANDEN-EIJNDEN‡

Abstract. In this paper we present a new procedure for the estimation of diffusion processes from
discretely sampled data. It is based on the close relation between eigenpairs of the diffusion operator
L and those of the conditional expectation operator Pt, a relation stemming from the semigroup
structure Pt = exp(tL ) for t ≥ 0. It allows for estimation without making time discretization
errors, an aspect that is particularly advantageous in case of data with low sampling frequency.
After estimating eigenpairs of L via eigenpairs of Pt, we infer the drift and diffusion functions that
determine L by fitting L to the estimated eigenpairs using a convex optimization procedure. We
present numerical examples where we apply the procedure to one- and two-dimensional diffusions,
reversible as well as nonreversible.

In the second part of the paper we consider estimation of coarse-grained (homogenized) diffusion
processes from multiscale data. We show that eigenpairs of the homogenized diffusion operator are
asymptotically close to eigenpairs of the underlying multiscale diffusion operator. This implies that
we can infer the correct homogenized process from data of the multiscale process, using the estimation
procedure discussed in the first part of the paper. This is illustrated with numerical examples.

Key words. parameter estimation, diffusion process, stochastic differential equation, generator,
discrete sampling, multiscale analysis, homogenization, subsampling

AMS subject classifications. 62M05, 60J60, 60J35, 60H10, 47A75, 62F12, 60H30, 35B27,
34E13, 47D07

1. Introduction. Estimation of stochastic models from timeseries is an impor-
tant tool in scientific disciplines ranging from econometrics [23, 2, 4] to chemistry
[17, 25, 41, 9] and atmosphere-ocean science [35, 7, 40]. A widely used class of such
models are diffusion processes, described by stochastic differential equations (SDEs):

dXt = b(Xt)dt+ σ(Xt)dWt (1.1)

where Xt ∈ Ω ⊆ Rd and Wt is a d-dimensional Wiener process.
Inferring the drift b(x) and the diffusion a(x) = σ(x)σ(x)T from timeseries data

is a challenging task, facing two major practical issues. The first is that of discrete-
time data. In applications, the available timeseries data is nearly always discrete in
time, whereas a diffusion is a continuous-time process. With only few exceptions,
the finite-time transition densities of a diffusion process are unknown functions of
b(x) and a(x). This causes great difficulties for estimation, in particular in case of
low-frequency data (i.e., data with long sampling intervals).

Reflecting this difficulty, and the variety of approaches proposed to overcome it,
the literature on diffusion estimation from discrete-time data is extensive. It includes
likelihood-based estimation as well as Bayesian methods, in which transition densities
are approximated with simulations [34, 19, 20, 36, 13, 8] or with closed-form expan-
sions [1, 3]. Alternative approaches include the use of estimating functions [10, 27, 11]
and spectral methods [23, 22, 14]. An overview of different approaches can be found
in [38]; the difficulties of estimation from low-frequency data are highlighted in [22].

The second major difficulty is that of model misspecification, occurring when the
data is not consistent with the chosen model class (in this case, the class of diffusion
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processes). If the data differs significantly from a diffusion process, estimation of
a ”best-fit” diffusion process can be a delicate task. A notable example arises if
one observes a process with multiple scales in space and/or time and one wishes to
model the coarse-grained dynamics of this process with a diffusion process. In this
case the chosen model should be consistent with the coarse-grained features of the
data, but not necessarily with its ”fine-grained” (small-scale) features. Because of the
inconsistency of model and data at small scales, care has to be taken when inferring
a coarse-grained model from multiscale data, as was shown for example in [32].

In this paper we present a methodology for estimation that allows to tackle both
issues. In summary, the methodology consists of two steps. First we estimate eigen-
functions and eigenvalues of the operator Pt = exp(tL ), where the generator L is
the diffusion operator associated with (1.1),

L =

d
∑

i=1

bi(x)
∂

∂xi
+

1

2

d
∑

i,j=1

aij(x)
∂2

∂xi ∂xj
. (1.2)

Eigenpairs of L follow directly from estimated eigenpairs of Pt. In the next step,
we solve the inverse problem of inferring the coefficients (b and a) of L from its
eigenpairs. This is done by casting the inverse problem as a convex minimization
problem.

The use of eigenpairs solves the difficulty of discrete-time data, because the rela-
tion between Pt and L is exact for any t ≥ 0. Furthermore, the proposed methodology
gives a handle on model misspecification, because of the formulation as a minimiza-
tion problem and the possibility to infer b and a from a small number of eigenpairs.
This allows to use the eigenpairs that best represent the coarse-grained features of
the observed process. In section 5 we analyze, for a broad class of multiscale diffu-
sions, how the correct coarse-grained process can be inferred from data of a multiscale
process with the methodology proposed here.

Estimation procedures that use estimates of eigenpairs to infer L were proposed
in [23, 27, 22, 14]. They all exploit the close relation between the spectrum of L and
that of the conditional expectation operator Pt of the process Xt. This operator is
defined by

(

Pt f
)

(x) = E(f(Xt) |X0 = x) (1.3)

for suitable functions f(x) and t ≥ 0. L is the generator associated with Pt:

L f(x) = lim
t↓0

(Ptf)(x) − f(x)

t
(1.4)

For a diffusion process, L is the diffusion operator (1.2). As mentioned before, Pt

and L are related via

Pt = exp(tL ) , (1.5)

and similarly for the adjoints in L2(Ω, dx) of L and Pt, denoted L ∗ and P ∗
t . As a

consequence,

Ptφ = Λφ implies L φ = λφ (1.6a)

P ∗
t ψ = Λ̄ψ implies L

∗ψ = λ̄ψ (1.6b)
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with

λ =
1

t
log Λ (1.7)

The procedures in [23, 27, 22] require either explicit expressions of b(x) and a(x)
in terms of the eigenfunctions and eigenvalues, or a priori knowledge of the eigen-
functions. In [14] it was proposed to estimate eigentriplets (φ, ψ, λ) and minimize the
residuals L φ−λφ and L ∗ψ− λ̄ψ under variation of b(x) and a(x). For this procedure
it is not necessary to know the eigenfunctions a priori, nor to have explicit expres-
sions of b(x) and a(x) in terms of (φ, ψ, λ) available. Also, sampling error or model
misspecification can cause problems (e.g., a(x) may become negative for some x) if
explicit expressions are used. Such problems can be avoided by minimizing residuals
under appropriate constraints (such as a(x) ≥ 0).

In this paper we expand and modify the approach from [14] in several ways. In
section 3 we put the estimation of eigentriplets (φ, ψ, λ) in the framework of Galerkin
methods. This leads to two alternative ways to estimate eigentriplets, depending
on whether the Galerkin basis functions are smooth or discontinuous (piecewise con-
stant). In the latter case, P ∗

t is effectively approximated by the transition probability
matrix of a finite-state Markov chain, the method also used in [14].

Next, in section 4 we present a modification of the minimization procedure pro-
posed in [14]. Rather than minimizing the residuals L φ−λφ or L ∗ψ−λ̄ψ themselves,
we integrate them against suitable test functions and minimize the integrals. This
modified procedure has a natural connection with the Galerkin method for estimating
eigentriplets. It also allows for estimation of L without requiring estimates of the
derivatives of the eigenfunctions, thereby circumventing a major source of error. The
proposed procedure is suitable for estimation of reversible as well as nonreversible
diffusion processes.

In section 5 we investigate the eigenspectrum of diffusion operators with a multi-
scale character. We consider multiscale diffusions whose slow dynamics can effectively
be described by an homogenized diffusion process. We show that the leading eigen-
triplets of the multiscale diffusion operator and those of the homogenized operator
are, in essence, the same at leading order in ǫ, where ǫ ≪ 1 is a measure for the
scale separation in the multiscale process. This makes inference procedures that use
the eigenspectrum attractive for estimation of a coarse-grained process from multi-
scale data. Included in section 5 is a discussion of partially observed diffusions and
subsampling.

The paper finishes with a conclusion and discussion in section 6. Numerical
examples will be presented throughout the paper.

2. Mathematical preliminaries. In this section, we summarize some proper-
ties of the diffusion operator and its eigenvalues and eigenfunctions. We also fix some
conventions, definitions and notations that will be used in the paper.

We define Ω ⊆ Rd to be the domain of the process Xt. Throughout the paper, we
assume that the process has an invariant measure (denoted µ) that admits a density
ρ, i.e. µ(dx) = ρ(x)dx, x ∈ Ω. We also assume that the process is ergodic and that ρ
is unique. Furthermore, b and a do not depend explicitly on time, so the process is
time-homogeneous.

We use the notation 〈., .〉ω for the L2(Ω, ωdx) inner product with some weight
function ω(x). A process Xt is said to be reversible if its associated L is selfadjoint
with respect to the L2(Ω, µ) inner product (note that L ∗ is defined as the adjoint in
L2(Ω, dx) rather than in L2(Ω, µ), therefore reversibility does not imply L = L ∗).
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We consider the Sobolev space H2(Ω, µ) as the domain of L . For the domain
of Pt, denoted F , taking F = dom(L ) seems the most natural choice. However, it
will be convenient to consider a larger space, F = L2(Ω, µ). This allows us to use
functions that approximate the eigenfunctions of L but do not approximate their
derivatives.

The eigentriplets of Pt and L are ordered by decreasing |Λ|. Thus, 1 = Λ1 >
|Λ2| ≥ |Λ3| ≥ |Λ4| ≥ ... (where the strict inequality |Λ2| < 1 follows from the as-
sumption of ergodicity). We assume that the discrete spectrum of Pt is non-empty
and that its essential spectrum is bounded by a radius smaller than some appropri-
ate |Λk|. The eigenfunctions are normalized so that they form a bi-orthonormal set:
〈ψk, φl〉1 = δkl. The ordering by decreasing |Λk| implies that ψ1 = ρ, φ1 = 1 and
0 = λ1 > Reλ2 ≥ Reλ3 ≥ Reλ4 ≥ .... Finally, we will make use of the functions ξk,
defined such that

ψk = ρ ξk . (2.1)

If Xt is a reversible process, ξk = φk.
Finally, an overbar denotes complex conjugation, and the Hermitian transpose of

a matrix A is denoted A∗. Also, we will occasionally use the abbreviated notation
L = b · ∇+ 1

2a : ∇∇ for the diffusion operator (1.2).

3. Statistical inference of operator eigenpairs. By the relations (1.6a) and
(1.6b), estimates of eigenpairs of L and L ∗ can be obtained by estimating eigenpairs
of Pt and P

∗
t . The relation (1.7) is nontrivial in case of complex eigenvalues, because

of the non-uniqueness of the logarithm. This subtlety is discussed in detail in [15];
here, we use the principal branch of the logarithm in case of complex eigenvalues.
For reversible diffusion processes, all eigenvalues are real and the relation (1.7) is
unambiguous.

In this section we discuss estimation of eigenpairs of Pt and P ∗
t using Galerkin

methods to discretize F . For simplicity we assume that the data has a constant
sampling interval t = τ , i.e. we have data X0, Xτ , X2τ , ..., XNτ from which we want
to infer eigenpairs of Pτ and P ∗

τ . In [15], estimation from data with nonconstant
(e.g., random) sampling intervals is discussed. Although the context there was gen-
erator estimation for Markov jump processes, the spectral estimation procedure in
[15] is similar to what is proposed here, and many of the ideas carry over to diffusion
estimation.

3.1. Galerkin method. In the Galerkin method for estimating eigenpairs, the
domain F of Pτ is approximated by its projection into a finite-dimensional subspace
FM . Correspondingly, Pτ is approximated by a matrix-valued operator mapping this
subspace to itself. We refer to [6] (and refences therein) for a discussion of Galerkin
approximations for eigenvalue problems involving linear operators. If the operator is
self-adjoint (as in the case of a reversible diffusion process), the Galerkin method is
also known as the Rayleigh-Ritz method. In [16, 22], the Galerkin method to estimate
eigenpairs is referred to as the sieve method.

3.1.1. Galerkin approximation for eigenpairs of Pτ . The Galerkin method
starts from a weak formulation of the eigenvalue problem for Pτ . Let the set of
independent functions fi : Ω → R, i = 1, ...,M , be a basis for FM ⊂ F . We want to
find pairs (Λg

k, φ
g
k) with Λg

k ∈ C, |Λg
k| ≤ 1 and φgk ∈ FM \ {0} such that

〈Pτφ
g
k, fi〉ρ = 〈Λg

kφ
g
k, fi〉ρ for all i = 1, ...,M (3.1)
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We expand φgk, the Galerkin approximation of φk, on the basis f1, ..., fM ,

φgk(x) =

M
∑

i=1

vkifi(x) , (3.2)

and define V as the matrix of expansion coefficients vki (∈ C). Furthermore, we define
the matrices R and T with elements

Rij = 〈fi, fj〉ρ , (3.3a)

Tij = 〈Pτfi, fj〉ρ . (3.3b)

Because all fi are real functions, R and T are real matrices. Also, R is symmetric.
In matrix notation, it can be seen that the weak formulation (3.1) of the eigenvalue
problem for Pτ is the generalized eigenvalue problem

V T = DΛ V R (3.4)

where DΛ is the diagonal matrix

DΛ = diag(Λg
1, ...,Λ

g
M ) . (3.5)

The adjoint problem can be treated similarly, resulting in

T W ∗ = RW ∗DΛ , (3.6)

where W is the matrix of expansion coefficients for the ξgk, cf. (2.1),

ξgk(x) =

M
∑

i=1

wkifi(x) , (3.7)

and we have used the identity

〈P ∗
τ ψ

g
k, fi〉1 = 〈ξgk , Pτfi〉ρ (3.8)

Thus, the operator eigenvalue problem Pτφk = Λkφk and the adjoint problem P ∗
τ ψk =

Λ̄kψk are converted into the generalized matrix eigenvalue problems (3.4) and (3.6).
We will assume that (T,R) form a regular matrix pair, implying that they can

both be diagonalized with the same pair of matrices. Bi-orthonormality of the eigen-
functions translates into

V RW ∗ = I , (3.9)

where I is the unit matrix. Combining (3.9) with either (3.4) or (3.6) gives

V T W ∗ = DΛ . (3.10)

3.1.2. Estimators for the Galerkin method. The inner products that define
R and T in (3.3) can be written as expectations with respect to the law of Xt:

〈fi, fj〉ρ = Efi(Xt)fj(Xt) , (3.11a)

〈Pτfi, fj〉ρ = Efi(Xt+τ )fj(Xt) . (3.11b)
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Because we have assumed ergodicity of the process Xt, we can estimate the matrix
elements of R and T from the timeseries, using for example the estimators

R̂ij =
1

N

N−1
∑

n=0

fi(Xnτ )fj(Xnτ ) (3.12a)

T̂ij =
1

N

N−1
∑

n=0

fi(X(n+1)τ )fj(Xnτ ) (3.12b)

In [22], the estimators

R̂′
ij =

1

N

(1

2
fi(X0)fj(X0) +

1

2
fi(XNτ )fj(XNτ ) +

N−1
∑

n=1

fi(Xnτ )fj(Xnτ )
)

(3.13a)

T̂ ′
ij =

1

2N

N−1
∑

n=0

(

fi(X(n+1)τ )fj(Xnτ ) + fi(Xnτ )fj(X(n+1)τ )
)

(3.13b)

are proposed. The validity of T̂ ′ as an estimator of T is limited to reversible processes,
where 〈Pτfi, fj〉ρ = 〈fi, Pτfj〉ρ and thus T T = T .

We solve the eigenproblems (3.4) and (3.6) by substituting T̂ , R̂ for T,R, resulting
in the estimates V̂ , Ŵ and D̂Λ:

V̂ T̂ = D̂Λ V̂ R̂ , T̂ Ŵ ∗ = R̂ Ŵ ∗ D̂Λ . (3.14)

The estimated (eigen)functions φ̂gk and ξ̂gk are obtained by using the elements of V̂

and Ŵ in the expansions (3.2) and (3.7). Note that this procedure does not give
estimates of the ψg

k. To obtain those, one first has to estimate the invariant density
ρ. However, estimates of ψg

k are not needed in the inference procedure discussed in

section 4. The estimates ξ̂gk and φ̂gk suffice.

3.1.3. Discontinuous Galerkin method: binning. A particular version of
the Galerkin method occurs if the basis functions are chosen to be indicator functions
on subdomains (”bins”) Ωi of Ω. It is also used in Ulam’s method for approximating
invariant measures of mappings, see e.g. [26, 21, 18]. One discretizes Ω by covering
it with a non-overlapping finite set Ωi, i ∈ S = {1, ...,M}:

M
∑

i=1

Ωi = Ω , Ωi ∩Ωj = ∅ if i 6= j . (3.15)

As mentioned, the basis functions are indicator functions on the subdomains:

fi(x) = 1Ωi
(x) (3.16)

Hence, they are discontinuous. With this choice for fi, R in (3.3a) becomes a diagonal
matrix,

Rij = δijρi with ρi =

∫

Ωi

ρ(x)dx , (3.17)

so that (3.4) and (3.6) are reduced from generalized to regular eigenvalue problems.
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With (3.16), the estimators R̂ and T̂ in (3.12) become

R̂ij = δij ρ̂j with ρ̂j =
1

N

N−1
∑

n=0

1Ωj
(Xnτ ) , (3.18a)

T̂ij =
1

N

N−1
∑

n=0

1Ωj
(Xnτ )1Ωi

(X(n+1)τ ) . (3.18b)

Calculating the spectrum from these estimators is equivalent to calculating the spec-
trum of the maximum-likelihood estimator (MLE) P̂ for transitions on S. The ele-
ments of P̂ are estimators for the conditional probabilities pij = P(Xt+τ ∈ Ωj |Xt ∈
Ωi). They are given by

p̂ij =











k
(N)
ij

∑

j k
(N)
ij

if
∑

j k
(N)
ij 6= 0

0 otherwise

(3.19)

where K(N) is the frequency matrix with elements

k
(N)
ij =

N−1
∑

n=0

1Ωi
(Xnτ )1Ωj

(X(n+1)τ ) . (3.20)

Comparing (3.18), (3.19) and (3.20), we see that

R̂ P̂ = T̂ T . (3.21)

Let us assume that P̂ admits the spectral decomposition

P̂ = ÛD̂ΛÛ
−1 . (3.22)

This identity is equivalent to the generalized eigenvalue problems in (3.14) if we iden-
tify

Û = V̂ T , Û−1 = (R̂ Ŵ ∗)T . (3.23)

3.1.4. Galerkin representation of L and its spectrum. If it is assumed
that the basis functions fi(x) are all twice differentiable, so that fi ∈ dom(L ), the
Galerkin method can also be applied to the eigenvalue problems L φk = λkφk and
L ∗ψk = λ̄kψk. Because of the relations (1.6a) and (1.6b) this results in

V Q = Dλ V R (3.24a)

QW ∗ = RW ∗Dλ (3.24b)

where Q is the matrix with elements

Qij = 〈L fi, fj〉ρ (3.25)

and Dλ is the matrix

Dλ = diag(λg1, ..., λ
g
M ) (3.26)
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with λgk = τ−1 log Λg
k, cf. (1.7). Using (3.9) we find

V QW ∗ = Dλ (3.27)

The last identity suggests to infer L by minimizing the residual matrix V QW ∗−Dλ.
This will be discussed in section 4.

If the fi are not smooth, as in the binning method, the resulting eigenfunction
approximations are not in dom(L ). This poses no problem, because the procedure
presented in section 4 allows us to infer L without letting L (or its adjoint) act on
the estimated eigenfunctions. Thus, although L is a differential operator, it is not
necessary to estimate the derivatives of φk, ξk or ψk in order to infer L .

To conclude, we point out once more that for diffusion processes, eigenfunc-
tions of Pτ or P ∗

τ are also eigenfunctions of L or L ∗, see (1.6a) and (1.6b). Thus,
the matrix estimates V̂ and Ŵ , obtained with the Galerkin method, determine the
(eigen)function estimates φ̂gk and ξ̂gk associated with L and L ∗. The eigenvalues of
Pτ and L are related through (1.7), so that the diagonal matrix with estimates of
the eigenvalues of L is

D̂λ = diag(λ̂g1 , ..., λ̂
g
M ) = τ−1diag(log Λ̂g

1, ..., log Λ̂
g
M ) (3.28)

3.2. Sampling and discretization errors. There are two sources of error for
the estimated triplets (φ̂gk, ξ̂

g
k , λ̂

g
k): finite sample size N and finite discretization level

M . The former results in sampling error (the difference φ̂gk − φgk), the latter in dis-
cretization error (the difference φgk − φk). For the total error we have

‖φ̂gk − φk‖ ≤ ‖φ̂gk − φgk‖+ ‖φgk − φk‖ , (3.29)

and similarly for ‖ξ̂gk − ξk‖ and |λ̂gk − λk|. We will not analyse convergence in detail
here, but we have some remarks about it. It is reasonable to expect, under mild
conditions (e.g., maxj Vol(Ωj) → 0 as M → ∞ in the case of binning, or more
generally FM → F as M → ∞), that the sampling and discretization errors vanish
as N,M → ∞ (and τ remains fixed):

‖φ̂gk − φgk‖ → 0 as N → ∞ , (3.30a)

‖φgk − φk‖ → 0 as M → ∞ , (3.30b)

so that

lim
M→∞

lim
N→∞

‖φ̂gk − φk‖ → 0 . (3.31)

Note that even though the eigenvalues are scalars, they are affected by discretization
error, in the sense that in general, |λgk − λk| > 0 if M <∞.

By ergodicity, the estimators P̂ , R̂ and T̂ converge to P , R, T as N → ∞.
The convergence of the eigenvalues and eigenvectors of P̂ to those of P as P̂ → P
was analyzed in detail in [15]. For other Galerkin approximations than the binning
method, the analysis is more complicated because it involves a generalized eigenvalue
problem instead of a regular one. In [22], rigorous results are given for the case of a
reversible scalar diffusion on a bounded domain. The asymptotics of the discretization
errors as M → ∞ is treated in many texts on Galerkin methods, see e.g. [6] and
references therein. In [37, 24], the approximation of transfer operators (such as P ∗

t )
and their spectra by discretization of Ω is investigated extensively. The literature on
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Ulam’s method also contains convergence results relevant in this context [26, 21, 18].
We leave further analysis for a future study.

For the particular case of the binning method, the error due to finiteM and hence
to finite bin volumes is tightly connected to the sampling interval of the data: the
smaller τ , the smaller the bins must be to avoid bias in the estimated eigenvalues.
This will be demonstrated in the next section. It can be particularly problematic in
case of multivariate processes: M will increase very rapidly by decreasing bin volumes,
easily leading to an intractable number of bins and/or severe undersampling.

Finally, we note that besides finite sample size and finite discretization level,
model misspecification may also be a source of error. The observations may have
been generated by a process that is not a diffusion. Alternatively, it may be the case
that one observes a true diffusion, but only part of it, or that the data is contaminated
by observation error. In section 5 we consider a generic situation of model misspeci-
fication, by analyzing estimation of a coarse-grained (homogenized) diffusion process
from data of a multiscale diffusion, and quantifying the model errors involved.

3.3. Numerical example: OU process. As an illustration of the issues dis-
cussed in this section, we present a numerical example. From discretely sampled
timeseries of the Ornstein-Uhlenbeck (OU) process, we estimate the leading eigen-
functions φk(x) and eigenvalues λk. Because the OU process is one of the rare cases
for which the spectrum of the diffusion operator is known exactly, we can assess the
estimation errors on the spectrum.

The SDE for the OU process is

dXt = −Xt dt+ dWt (3.32)

with Xt ∈ R. As usual, Wt is a Wiener process. The associated diffusion operator is

L = −x ∂
∂x

+
1

2

∂2

∂x2
(3.33)

As is well known, the OU process is reversible and its invariant density is ρ(x) =
π−1/2 exp(−x2). The eigenvalues of L are 0,−1,−2,−3, ...; the eigenfunctions are
the Hermite polynomials, φ1 = 1, φ2 = 2x, φ3 = 4x2 − 2, φ4 = 8x3 − 12x, etc.

We generate a timeseries of N = 104 datapoints with sampling interval τ = 0.1
by numerically integrating the SDE (3.32). From this timeseries we estimate the
spectrum of L . For the Galerkin method with smooth basis functions we use fi(x) =
xi with i = 0, ...,M = 10. For the binning method we use 100 equally sized bins
(M = 100), with the first (last) located such that the minimum (maximum) of the
timeseries falls in it. The matrices R and T are estimated using (3.13a), (3.13b).

In figure 1 we show the estimate φ̂2 as well as the exact φ2 = 2x (for comparison).

To highlight the region where ρ is not small, we plot ρ φ̂2 and ρ φ2 rather than φ̂2 and
φ2. As is clear from the figure, both methods reproduce the correct φ2 quite well.

The estimated eigenvalues show significant bias due to finite bin size when the
number of bins is small. This bias is investigated in table 1. We estimate the lead-
ing eigenvalue λ2 of L from 100 different sample paths of the OU process, using
both methods. The table shows the means and standard deviations of λ̂g2; the ex-
act value is λ2 = −1. The calculations are repeated for varying discretization levels
(M = 100, 20, 10 for binning, M = 10, 7, 4 for smooth Galerkin) and varying sampling
intervals (τ = 0.01, 0.1, 1). Most striking is the strong bias of the binning method if
both τ and M are small. The bias largely disappears if either τ or M increases. The
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Fig. 1. Estimated and exact eigenfunctions of the diffusion operator for the Ornstein-Uhlenbeck
process. The eigenfunctions are multiplied with the (exact) invariant density ρ = π−1/2 exp(−x2)
of the OU process, in order to highlight the region where ρ is not small. Dashed curves are for
ρ φ2 with φ2 the exact eigenfunction, φ2 = 2x. Solid curves are for ρ φ̂2, where φ̂2 is the estimate
of φ2. In the left panel, φ̂2 was obtained using the Galerkin method with smooth basis functions
x0, x1, ..., x10. In the right panel, the binning method with 100 bins was used.

Table 1

Estimates of the eigenvalue λ2 for the diffusion operator of the Ornstein-Uhlenbeck process.
From 100 different sample paths of the process, each with N = 104 data points and sampling interval
τ , λ2 was estimated using both the binning and the smooth Galerkin method. M is the discretization
level (number of bins, or number of smooth basis functions, see text). Shown are the mean and

standard deviation (std) of the 100 estimates λ̂
g
2
, for varying τ and M . The true value is λ2 = −1.

As can be seen, the binning method is strongly biased if both the sampling interval and the number
of bins are small.

data binning smooth Galerkin

N τ M mean λ̂g2 std λ̂g2 M mean λ̂g2 std λ̂g2
104 0.01 100 -1.02 0.16 10 -1.01 0.15
104 0.01 20 -1.79 0.23 7 -1.02 0.16
104 0.01 10 -3.35 0.42 4 -1.02 0.13
104 0.1 10 -1.43 0.10 10 -0.99 0.06
104 1 10 -1.05 0.02 10 -0.99 0.03

estimates using smooth Galerkin basis functions are not noticeably affected by small
sampling intervals.

In this numerical example, the smooth Galerkin method is superior to the binning
method. However, it must be kept in mind that here, it was easy to choose a suitable
basis of functions fi(x) for smooth Galerkin. Because the eigenfunctions are Hermite
polynomials in case of an OU process, by taking fi(x) = xi we selected just the right
subspace FM to approximate the leading eigenfunctions. For many other processes,
a good choice of smooth basis functions will be more difficult.
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4. Inference of L from eigenpairs. The previous section was devoted the
problem of estimating eigenpairs of L and L ∗ from observations of Xt. In this
section we discuss how L can be inferred from these eigenpairs.

Given the leading eigentriplets (φk, ψk, λk), k ≤ K, we want to identify b(x) and
a(x) such that

L (b, a)φk = λkφk (4.1a)

L
∗(b, a)ψk = λ̄kψk (4.1b)

for all k ≤ K, under the constraint that a be positive semi-definite everywhere. Other
constraints on b or a may apply in specific situations (depending on e.g. application,
geometry, boundary conditions); we do not specify these further. We summarize the
constraints by requiring b ∈ Θb, a ∈ Θa.

This inverse problem can be approached in several ways. In [23, 22], (4.1) is solved
exactly for univariate diffusions, resulting in explicit expressions for b and a in terms
of λ2, ψ1, φ2 and its derivatives ∂xφ2, ∂xxφ2. However, this procedure requires esti-
mates of ∂xφ2, ∂xxφ2, introducing a major source of error (in [22] this differentiation
is interpreted as an ill-posed operation). Furthermore, (4.1) may have no solution
(b, a) ∈ (Θb,Θa) at all, due to e.g. sampling error or model misspecification. Finally,
it will be difficult to generalize this approach to multivariate processes.

An alternative to solving (4.1) exactly is to minimize ‖L (b, a)φk−λkφk‖2 and/or
‖L ∗(b, a)ψk − λ̄kψk‖2, summed over k ≤ K. This approach was proposed in [14],
where the binning method was used for estimation of eigenpairs, and b and a were
discretized on the same set of bins as the eigenfunctions. The procedure in [14]
is nonparametric, but requires estimates of eigenfunction derivatives. With enough
data and small bins, so that these derivatives can be calculated reliably by finite
differences, this is a feasible strategy, as was demonstrated in [14]. Notwithstanding,
in this section we present a modification of the procedure from [14]. This modified
procedure is much more robust against sampling error, because it allows to avoid
eigenfunction differentiation. It also makes a natural connection with the Galerkin
representation of L .

4.1. A new objective function. Let σi(x), i = 1, ..., Nσ be a collection of
test functions, σn ∈ dom(L ). Instead of minimizing the residuals L ∗ψk − λ̄kψk

directly, we can integrate them against the σi and minimize the (squared) integrals.
Using the adjoint property as well as (2.1) gives 〈L ∗ψk − λ̄kψk, σi〉1 = 〈ξk,L σi〉ρ −
λ̄k〈ξk, σi〉ρ. Hence, given the estimates (ˆ̄λk, ξ̂k), k ≤ K, we propose to estimate b, a
by minimization of the objective function

E(b, a) =

K
∑

k=1

Nσ
∑

i=1

αki

∣

∣〈ξ̂k,L (b, a)σi〉ρ − ˆ̄λk〈ξ̂k, σi〉ρ
∣

∣

2
, (4.2)

with nonnegative constant weights αki. We discuss three different ways to use (4.2).

4.1.1. Smooth Galerkin. If the eigenpairs are estimated with smooth Galerkin
basis functions, it is natural to use the estimated eigenfunctions as test functions:

σi = φ̂gi (4.3)

We take the weights αki = ckci with ck ∈ [0,∞). The objective function (4.2) now
reads

Eg(b, a) = ‖V̂ Q̂Ŵ ∗ − D̂λ‖2c (4.4)
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where ‖ · ‖2c denotes a weighted Frobenius norm: given any square matrix A with
entries aij ,

‖A‖2c =
∑

i,j

cicj |aij |2 (4.5)

The matrices V̂ , Ŵ and D̂λ were defined in section 3.1. The elements of the matrix
Q̂ = Q̂(b, a) are estimates of 〈L (b, a)fi, fj〉ρ, see (3.25). Note that ρ is the true
invariant density of the process Xt, not to be confused with the invariant density
associated with L (b, a). Similar to the matrices T and R, see (3.11), the elements of
Q(b, a) can be cast as expectations, therefore they can be estimated with

Q̂ij(b, a) =
1

N + 1

N
∑

n=0

fj(Xnτ )(L (b, a)fi)(Xnτ ) . (4.6)

We remark that the identity (3.27) already suggested an objective function that
minimizes V̂ Q̂Ŵ ∗ − D̂λ, as in (4.4). Furthermore, (4.4) is almost identical to the ob-
jective function used in [15] for the inference of generators for Markov jump processes
from discrete samplings. There, Q itself is the generator, whereas here Q is a matrix
that represents the action of the generator L (b, a) on the subspace FM . Following
[15], we propose to relate the weights to the eigenvalues:

ck = |Λ̂g
k|δ (4.7)

with some δ ≥ 0.

4.1.2. Binning. If the eigenpairs are estimated with the binning method, we
choose smooth test functions and write the inner product in (4.2) as the expectation

E
[

ξ̂gk(Xt)(L σi)(Xt)− ˆ̄λgk ξ̂
g
k(Xt)σi(Xt)

]

. (4.8)

We denote by Σ̂ki the estimator of this expectation:

Σ̂ki =
1

N + 1

N
∑

n=0

[

ξ̂gk(Xnτ )(L σi)(Xnτ )− ˆ̄λgk ξ̂
g
k(Xnτ )σi(Xnτ )

]

(4.9)

Then (4.2) can be written as

Eb(b, a) =
∑

k,i

αki

∣

∣Σ̂ki

∣

∣

2
(4.10)

We emphasize that in (4.10), no eigenfunction derivatives are used. The functions ξ̂gk
are obtained from ξ̂gk = ψ̂g

k/ψ̂
g
1 , cf. (2.1). Clearly, this is ill-defined at points where

ψ̂g
1 = 0. However, ξ̂gk is only evaluated at the observed datapoints Xnτ , where ψ̂

g
1 > 0.

4.1.3. Mixed. One can mix the previous approaches, by estimating eigenpairs
with the smooth Galerkin method and using test functions that are not eigenfunctions.
If we pick the Galerkin basis functions as test functions, σi = fi, we obtain the
objective function

Em(b, a) =
∑

k,i

αki

∣

∣

∣

(

Ŵ Q̂T − D̂λ̄Ŵ R̂
)

ki

∣

∣

∣

2

(4.11)

where we have used that Q̂ is real and thus Q̂∗ = Q̂T , as well as D̂∗
λ = D̂λ̄. In (4.11), as

in (4.10), L (b, a) acts on the test functions and not on the estimated eigenfunctions.
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4.2. Inference by minimization. The true drift and diffusion functions b∗, a∗
associated with the observed process Xt are estimated by minimization:

(b̂, â) = argmin
b∈Θb, a∈Θa

E(b, a) (4.12)

where E is the objective function (4.2). We focus on the situation where b and a are
each expanded on a basis of linearly independent functions (e.g. polynomials):

b(x) =

Nb
∑

j=1

bjgj(x) , a(x) =

Na
∑

j=1

ajhj(x) . (4.13)

The expansion coefficients are denoted by θ,

θ = (b1, ..., bNb
, a1, ..., aNa

) ∈ Θ , (4.14)

where Θ = {θ | b ∈ Θb, a ∈ Θa}. In appendix A, we give the expressions for the
objective functions Eg, Eb and Em that follow from (4.13).

In section 4.4 we present examples with low-order expansions (Nb + Na ≤ 9).
Whether the procedure can be successfully extended to the nonparametric case (limit
of infinite expansions) remains to be investigated. The condition KNσ ≥ Nb + Na

(discussed below) may be an obstacle for this. Alternative ideas to solving (4.1)
nonparametrically for b and a may be found in literature on inverse problems for
elliptic systems, e.g. [5, 28, 30]. A much studied problem there is to estimate a from
∂x(a ∂xu) + f = 0, where f is given and u is observed (possibly with observation
errors, see e.g. [28]). Although there are differences with the problem considered
here, the ideas may have value for finding a procedure to solve (4.1), alternative to
what is proposed here and in [14]. We leave this for future study.

With (4.13), L is linear in θ and the objective function is of the form E =
|Aθ − γ|2, where A is a (KNσ) × (Nb + Na) matrix. Thus, E is convex quadratic
and we are dealing with a least squares problem. E is strictly convex if null(A)=0, or

equivalently 〈L ∗(θ)ψ̂k, σi〉1 = 0 ∀ k ≤ K, i ≤ Nσ iff θ = 0. Two necessary conditions

for this are (i) KNσ ≥ Nb + Na, and (ii) K > 1 (to see this, note that ψ̂1 is a

probability density, so there can be θ 6= 0 such that L ∗(θ)ψ̂1 = 0).
If E is strictly convex and, additionally, Θ is convex, (4.12) has a unique solution,

i.e. there is a single global minimum of E and no other local minimum [12]. The
existence of a unique minimum is computationally advantageous. If E is convex
quadratic and Θ is convex and determined by linear constraints, (4.12) is a quadratic
program (QP) and can be solved using well-established, efficient numerical methods
(see e.g. [29]). Notwithstanding, in the numerical examples in this paper we estimate
θ with the unconstrained minimum of the objective function.

4.3. Procedure summary. The entire procedure can be summarized as fol-
lows. Starting from a timeseries X0, Xτ , ..., XNτ one has to make several steps. For
the smooth Galerkin method:

1s. Choose the functions gj(x) and hj(x) for the expansions (4.13) of b(x) and
a(x), and determine the parameter domain Θ.

2s. Choose the smooth Galerkin basis functions fi(x). Calculate the estimators
R̂ and T̂ (3.12).

3s. Solve the generalized eigenvalue problems (3.14), resulting in V̂ , Ŵ and D̂Λ.
Calculate D̂λ from D̂Λ (3.28).
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4s. Fix the weights αki. Minimize Eg (4.4), (A.1) or Em (4.11), (A.6) under
variation of θ ∈ Θ.

If the binning method is used, one can calculate the MLE P̂ and its decomposition
(3.22), resulting in Û , Û−1 and D̂Λ. As was shown in section 4.1.2, this is equivalent
to calculating R̂, T̂ and solving (3.14). Hence, for the binning method the procedure is:

1b. Choose the functions gj(x) and hj(x) for the expansions (4.13) of b(x) and
a(x), and determine the parameter domain Θ.

2b. Choose the subdomains Ωi, thereby determining the Galerkin basis functions
fi(x) = 1Ωi

(x).
3b. Calculate the MLE P̂ and its decomposition (3.22), resulting in Û , Û−1 and

D̂Λ. Calculate D̂λ from D̂Λ (3.28).

4b. Construct ξ̂gk(x) =
∑

i 1Ωi
(x) (Û−1)ki/(Û

−1)1i .
5b. Choose the test functions σi and the weights αki.
6b. Minimize Eb (4.10), (A.4) under variation of θ ∈ Θ.

4.4. Numerical examples. In this section we present several examples, where
we estimate parameters from sample paths of various processes, observed at discrete
points in time. We numerically investigate consistency, bias and variance of the
estimated parameters, we compare the performance of the different objective functions
(Eg, Eb, Em) and their dependence on choices of Galerkin basis functions, number
of bins, test functions and weights.

In each example, the true set of parameters will be denoted θ∗ and the estimated
set θ̂. For a single parameter θi, the bias is the difference between the expectation of
θ̂i and θi∗. We approximate the expectation by calculating the mean of an ensemble
of estimates, i.e. bias(θ̂i) = mean(θ̂i)− θi∗. From the same ensemble we calculate the

variance var(θ̂i). As measures for the ”collective” bias and variance of all elements in

θ̂ we use

bias(θ̂) =
(

∑

i

[

bias(θ̂i)
]2
)1/2

, var(θ̂) =
∑

i

var(θ̂i) (4.15)

Thus, bias(θ̂) is defined as the L2 distance in parameter space between the expectation

of θ̂ and θ∗; var(θ̂) is simply the sum of the variances of the individual parameter
estimates.

4.4.1. Diffusion on T 1. The first example concerns the process with SDE

dXt = (1 + 0.5 sin(Xt))dt +
√

1 + 0.3 cos(Xt) dWt (4.16)

where Xt ∈ [0, 2π] with periodic boundary conditions. This process has nonconstant
diffusion (multiplicative noise) and is nonreversible (indicated by the presence of com-
plex pairs of eigenvalues, e.g. λ2,3 ≈ −0.56±i 0.96). We fit the diffusion operator with
drift b(x) = b1 + b2 cos(x) + b3 sin(x) and diffusion a(x) = a1 + a2 cos(x) + a3 sin(x)
to timeseries generated by the SDE (4.16). As is clear, the true set of parameters is
θ∗ = (b1∗, ..., a3∗) = (1, 0, 0.5, 1, 0.3, 0).

We generate timeseries by numerically integrating the SDE (4.16) using the Euler
scheme with time step 0.001. Their length N varies from 103 to 106; all timeseries
have sampling interval τ = 0.1. For the smooth Galerkin method we use Fourier basis
functions, cos(ix) and sin(ix) with i = 0, 1, ..., Nf . The test functions used in Eb are
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also Fourier functions. For each value of N we infer the parameters from 100 different
numerically generated paths of Xt.
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Fig. 2. Example on T 1. The parameters of the process (4.16) are estimated using the three
different objective functions Eg (4.4), Eb (4.10) and Em (4.11). For precise choices of Galerkin
basis functions, test functions etc., see text. Shown are the means and standard deviations of the
parameters b1 and a1 inferred from 100 different sample paths, each N datapoints long. The dotted
lines indicate the value of the true parameters b1∗, a1∗.

First we compare the three different objective functions, Eg, Eb, and Em. With
Eg we set Nf = 5 for the basis functions (i.e., M = 11) and δ = log(0.5)/ log |Λ̂2| for
the weights ck (4.7), so that c2 = 0.5. For Eb we use M = 200 bins and test functions
σi = cos(x), sin(x), cos(2x), sin(2x). The weights are set to αki = 1 for all k = 1, 2, 3
and i = 1, ..., 4, and zero otherwise. The settings for Em are consistent with those
used for Eg and Eb (i.e., Nf = 5 and αki = 1 for k = 1, 2, 3 and i = 2, ..., 5). In
figure 2 we show the means and standard deviations of the 100 estimates for b1 and a1
for increasing values for N , as representative examples of individual parameters. In
figure 3 we plot bias(θ̂) and var(θ̂), as defined in (4.15). All three objective functions

show convergence of the estimates, i.e. θ̂ → θ∗ (or bias(θ̂) → 0) as N grows. The

decrease of var(θ̂) is nearly proportional to N−1. The Galerkin objective function Eg

shows the best performance, in particular for the diffusion parameters aj .

A natural question to ask is how the accuracy of the estimation is affected by the
choices for the Galerkin basis functions, test functions and weights. The left panel of
figure 4 shows bias(θ̂) versus N for Eg with Nf = 2, 5 and 8 (weights are such that
c2 = 0.5). With Nf = 2 the bias only marginally decreases beyond N = 104, a sign
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Fig. 3. Example on T 1. Results are from the same calculations as as those in figure 2. Shown
are the bias and variance (for all parameters b1, ..., a3), bias(θ̂) and var(θ̂), as defined in (4.15).

that the convergence is halted by discretization error.
In the right panel of figure 4 we use Eb with varying numbers of bins, M =

20, 70, 200. As before, the test functions are cos(jx) and sin(jx) with j = 1, 2), and
the weights are set at αki = 1 for k = 1, 2, 3 and i = 1, ..., 4. With M = 20 the
bias no longer decreases beyond N = 104, with M = 70 the decrease halts beyond
N = 105. This is due to discretization error (finite bin volumes). With short timeseries
(N = 103), M = 20 gives only marginally better results than M = 200 and M = 70,
so there is no reason not to choose a large number of bins.

As for the weights, the higher δ, the steeper the weights ck (4.7) decrease with
increasing k, hence the more weight is put on the leading estimated eigenfunctions
in the objective function Eg. With c2 = 1 (and hence ck = 1 for all k) there is too
much weight on the non-leading eigenpairs; with c2 = 0.1 there is too much emphasis
on k = 1. The intermediate value c2 = 0.5 (i.e. δ = log(0.5)/ log |Λ̂2|) gives the
best results (figure not shown). Finally, increasing the number of test functions from
Nσ = 4 to Nσ = 6, 8 in Eb was found to degrade the performance (results not shown).
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Fig. 4. Example on T 1. Left: results using Eg with different values for Nf , the highest

wavenumber of the Fourier Galerkin basis functions. Right: results from Eb with different values
for M , the number of bins. Both panels show bias(θ̂), as defined in (4.15).
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4.4.2. Double-well potential in R1. In this example we consider a diffusion
process on R1 with SDE

dXt = −V ′(Xt)dt+
√

1 +X2
t dWt with V (x) = (1 − x2)2 . (4.17)

This process is reversible and is driven by multiplicative noise. It has a bimodal
invariant density, ρ ∝ (1 + x2)7 exp(−4 x2), due to the double-well structure of the
potential V . The process is metastable: it switches between the two wells on a
relatively long timescale, as indicated by the separation between the second and third
eigenvalue: λ2 ≈ −0.5, λ3 ≈ −4.7, λ4 ≈ −9.1.

We fit the diffusion operator with b(x) = b1 + b2x+ b3x
2 + b4x

3 and a(x) = a1 +
a2x + a3x

2. The vector of true parameters is θ∗ = (b1∗, ..., a3∗) = (0, 4, 0,−4, 1, 0, 1).
Sample paths are generated with sampling interval τ = 0.1 using the Milstein scheme
with time step 0.0001. Both for the Galerkin basis functions and for the test functions
we take monomials: fi = xi with i = 0, 1, .., Nf and σi = xi with i = 1, ..., Nσ.

In figures 5 and 6 we compare Eg, Eb and Em. For Eg we take Nf = 15 and δ
such that c2 = 0.5. For Eb we use 200 bins, K = 2 and Nσ = 4. For Em we take
Nf = 15, K = 2 and Nσ = 4. Different from the previous example, Eb and Em

perform significantly better than Eg (compare figures 3 and 6). We hypothesize that
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Fig. 5. Example with double-well potential on R1. The parameters of the process (4.17) are
estimated using the three different objective functions Eg (4.4), Eb (4.10) and Em (4.11). For
precise choices of Galerkin basis functions, test functions etc., see text. Shown are the means and
standard deviations of the parameters b1 and a1 inferred from 100 different sample paths, each N

datapoints long. The dotted lines indicate the value of the true parameters b1∗, a1∗.
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Fig. 6. Example with double-well potential on R1. Results are from the same calculations as
those in figure 5. Shown are the bias and variance (for all parameters b1, ..., a3), bias(θ̂) and var(θ̂),
as defined in (4.15).
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Fig. 7. Example with double-well potential on R1. Left: results using Eg with increasing number
of smooth Galerkin basis functions (Nf ). Right: results using Em with increasing Nf . Both panels

show bias(θ̂), as defined in (4.15). Note the different vertical scalings in both panels.

this is due to the high degree (Nf = 15) of the polynomials used to represent the
eigenfunctions in case of Eg and Em. With Em, this is mitigated because only up to
quartic test functions are used (Nσ = 4).
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In figure 7 we show results obtained with Eg and Em using different numbers of
Galerkin basis functions (Nf = 5, 10, 15, 20). If Nf is too low, the eigenfunctions are
not well enough represented for further bias reduction beyond N = 104. With Nf

too high, the results using Eg are affected by the high polynomial degree of the test
functions. By contrast, Em performs well with Nf = 15, 20.
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b1 b2 b3 b4 b5 a1 a2 a3 a4
true 2 0.5 -0.3 1 0.5 2 1 1 0.2
Eg mean 2.00 0.50 -0.30 1.00 0.50 1.99 1.004 0.995 0.20
Eg std 0.02 0.02 0.02 0.01 0.02 0.01 0.007 0.009 0.02

Eb mean 1.7 0.42 -0.3 1.00 0.50 1.6 1.027 0.8 0.2
Eb std 0.3 0.07 0.1 0.01 0.01 0.3 0.005 0.1 0.2

Table 2

Results for T 2 example.

4.4.3. Diffusion on T 2. With this example we demonstrate that the inference
approach discussed in this paper is capable of handling a challenging case: we consider
a nonreversible, multivariate (2-dimensional) process with both cross-diffusion (a12 =
a21 6= 0) and multiplicative noise (∇a11 6= 0). The SDE of the process is

dXt = (2 + 0.5 cos(Xt)− 0.3 cos(Yt)) dt+ dVt +
√

1 + 0.2 cos(Yt) dWt , (4.18a)

dYt = (1 + 0.5 cos(Yt)) dt+ dVt . (4.18b)

Vt andWt are independent Wiener processes. The domain is doubly periodic, (Xt, Yt)
∈ [0, 2π]× [0, 2π]. The diffusion matrix associated with this process is

a(x, y) =

(

2 + 0.2 cos(y) 1
1 1

)

(4.19)

The leading eigenvalues form complex pairs, indicating that the process is nonre-
versible: λ2,3 ≈ −0.56± i0.96.

We fit a diffusion process with drift

b(x, y) = b1

(

1
0

)

+ b2

(

cos(x)
0

)

+ b3

(

cos(y)
0

)

+ b4

(

0
1

)

+ b5

(

0
cos(y)

)

(4.20)
and diffusion

a(x, y) = a1

(

1 0
0 0

)

+ a2

(

0 0
0 1

)

+ a3

(

0 1
1 0

)

+ a4

(

cos(y) 0
0 0

)

(4.21)

The true parameter values are (b1∗, ..., a4∗) = (2, 0.5,−0.3, 1, 0.5, 2, 1, 1, 0.2).
The parameters are estimated from 100 different sample paths of the process

(Xt, Yt), each sample path being 105 datapoints long with sampling interval τ =
0.1. We use Eg and Eb. For Eg we use Galerkin basis functions cos(mx) cos(ny),
cos(mx) sin(ny), sin(mx) cos(ny) and sin(mx) sin(ny), with m,n = 0, 1, 2. For the
weights we take δ such that c2 = 0.5. For Eb we use 50 × 50 bins, K = 3 and
test functions cos(x), sin(x), cos(y), sin(y), cos(x) cos(y), sin(x) cos(y), cos(x) sin(y),
sin(x) sin(y).

In table 2 we summarize the results by showing the means and standard deviations
of the estimated parameters. The binning-based approach has difficulties estimating
the parameters that appear in the SDE for Xt; the other parameters (b4, b5, a2) are
estimated rather well. We hypothesize that this is due to the cross-diffusion term and
the multiplicative noise term in the SDE for Xt. The approach using Eg gives good
results, showing no significant bias and fairly small errors.
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5. Inference of multiscale diffusions. We consider the diffusion process
(Xt, Yt) ∈ Ωx × Ωy ⊂ Rn × Rm with SDEs

dXt =

(

1

ǫ
F1(Xt, Yt) + F0(Xt, Yt)

)

dt+ α(Xt, Yt)dW
x
t (5.1a)

dYt =
1

ǫ2
G(Xt, Yt)dt+

1

ǫ
β(Xt, Yt)dW

y
t (5.1b)

where W x
t and W y

t are independent Wiener processes of dimension n and m, respec-
tively. It is assumed that (i) if Xt is fixed at x, Yt is ergodic with unique invariant
measure µx(y) and (ii) the centering condition

∫

Ωy

µx(dy)F1(x, y) = 0 ∀ x ∈ Ωx (5.2)

is satisfied. For systems of this type, it is known that in the limit ǫ→ 0, Xt converges
in law to the solution X̄t of the effective (homogenized) SDE

dX̄t = F̄ (X̄t)dt+ ᾱ(X̄t)dW
x
t (5.3)

Explicit expressions for the homogenized drift and diffusion F̄ and ᾱ can be found in
e.g. [33]. In what follows, it is assumed that the conditional invariant measure for Yt
admits a density ρx(y), i.e.

µx(dy) = ρx(y)dy . (5.4)

The central question in this section is whether it is possible to estimate the ho-
mogenized process (5.3) from data of the multiscale process (5.1). As was discussed
and analyzed in [32, 31], estimates can be strongly biased if the sampling interval
of the multiscale data is too short (see also [2, 42] for related results, albeit in a
different framework). However, different estimation procedures can lead to different
perspectives on this question. Here, we put it in the perspective of the estimation-
by-eigenpairs procedure discussed in section 4. In section 5.1 we will analyse the
eigenfunctions and eigenvalues of the diffusion operator (and its adjoint) associated
with (5.1) and relate them to the spectrum of homogenized diffusion operator associ-
ated with (5.3). The relation between these spectra is of importance for estimation,
as will be discussed in section 5.2. In section 5.3 we consider estimation of (5.3) from
partial observations of (5.1) (only Xt observed, not Yt) and show how partial obser-
vation may necessitate subsampling. We present numerical examples in sections 5.4
and 5.5.

5.1. Asymptotics of the diffusion operator and its adjoint. The diffusion
operator corresponding to (5.1) is

L = L0 +
1

ǫ
L1 +

1

ǫ2
L2 (5.5)

with

L0 = F0 · ∇x + 1
2 (αα

T ) : ∇x∇x (5.6a)

L1 = F1 · ∇x (5.6b)

L2 = G · ∇y +
1
2 (ββ

T ) : ∇y∇y (5.6c)
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It is known (e.g. [33]) that the diffusion operator of the homogenized system with
SDE (5.3) is

L
H = Π(L0 − L1L

−1
2 L1)Π , (5.7)

where the projection operator Π is defined as

(Πh)(x) =

∫

Ωy

dy ρx(y)h(x, y) . (5.8)

The operator L2 is not invertible in general, but condition (5.2) guarantees that
L1Πh is orthogonal to the nullspace of the adjoint of L2, for arbitrary functions
h(x, y). By the Fredholm alternative, the equation L2H = L1Πh has a solution H ,
loosely written as H = L

−1
2 L1Πh.

The eigenpair (φk, λk), solving

L φk = λkφk , (5.9)

can be approximated using the expansions

φk = φ
(0)
k + ǫφ

(1)
k + ǫ2φ

(2)
k + . . . (5.10a)

λk =
1

ǫ2
λ
(−2)
k +

1

ǫ
λ
(−1)
k + λ

(0)
k + . . . (5.10b)

By equating terms of equal power in ǫ, it can be shown (see appendix B) that the
leading eigenpairs of L satisfy

λ
(−2)
k = 0 , λ

(−1)
k = 0 , Π(L0 − L1L

−1
2 L1)φ

(0)
k = λ

(0)
k φ

(0)
k (5.11)

where φ
(0)
k depends on x only (i.e., Πφ

(0)
k = φ

(0)
k ). This implies that the leading

eigenvalues and eigenfunctions of the diffusion operator L of the full system (5.1)
on the one hand and those of the diffusion operator L H of the homogenized system
(5.3) on the other hand, are the same at leading order:

L φk = λkφk, L
Hφ

(0)
k = λ

(0)
k φ

(0)
k (5.12a)

φk(x, y) = φ
(0)
k (x) +O(ǫ) (5.12b)

λk = λ
(0)
k +O(ǫ) (5.12c)

A similar result holds for the eigenpairs of the adjoint operator L ∗, see appendix
B. The leading eigenfunctions ψk(x, y) of L ∗ associated with the full system (5.1)

have leading order terms ψ
(0)
k (x, y) that can be written as ψ

(0)
k (x, y) = uk(x)ρx(y).

The functions uk(x) are eigenfunctions of the adjoint L H∗ of the diffusion operator
of the homogenized system (5.3):

L
∗ψk = λ̄kψk, L

H∗uk = λ̄
(0)
k uk (5.13a)

ψk(x, y) = uk(x)ρx(y) +O(ǫ) (5.13b)

λk = λ
(0)
k +O(ǫ) (5.13c)



24 DAAN CROMMELIN AND ERIC VANDEN-EIJNDEN

5.2. Implications for statistical inference. The results (5.12) and (5.13)
have important implications for statistical inference of the homogenized diffusion pro-
cess (5.3) from data of the multiscale process (5.1). From a timeseries for the slow
variable(s) Xt of the full system (5.1), can we infer the correct homogenized process
(5.3)? In [32] it was shown that for certain types of estimators (quadratic variation
of the path for estimating the diffusion, path-space likelihood with respect to a pure
diffusion for estimating the drift), one has to be careful about choosing the sampling
interval τ . If τ is too short, these estimators will result in biased estimates for the
homogenized process, due to finite ǫ. In such cases, subsampling of the data is nec-
essary. However, for longer sampling intervals, the finite difference approximation
underlying the estimators in [32] becomes inaccurate. Given the time scale separation
ǫ in (5.1), it was found in [32] that the sampling interval should be between O(ǫ) and
O(1). This range may be too narrow so that the estimates suffer from either the error
due to finite ǫ or the error due to finite τ (or both).

With the spectral approach discussed in this paper, the situation is different.
First of all, there is no finite difference approximation involved that deteriorates with
growing τ . The relations (1.6a) and (1.6b) are exact, so that we can avoid approx-
imations whose errors only disappear in the limit τ → 0. Furthermore, if one can
estimate the leading eigenpairs of L and/or L ∗ correctly, one can infer the correct
homogenized process, due to the close relations (5.12) and (5.13) between the leading
eigenpairs of L ,L ∗ and L H ,L H∗. As will be discussed below, estimates of eigen-
pairs of L ,L ∗ can be affected by too small τ if the multiscale process (Xt, Yt) is only
partially observed. However, if τ grows this error (or bias) vanishes, without trading
it for finite τ errors.

5.3. Partially observed diffusions. If one observes only the slow variable(s)
Xt of the full multiscale system (5.1) and not the fast ones Yt, clearly it is not possible
to estimate eigenfunctions of L or L ∗ that are dependent on both x and y. However,
the leading eigenfunctions can be constructed, to leading order in ǫ, fromXt data only,
because of their structures as given in (5.12) and (5.13).

Having only Xt data available, one can only use Galerkin basis functions that
depend on x but not on y. With fi = fi(x) for all i, the inner products in (3.3b)
become

〈Pτfi, fj〉ρ =

∫

Ωx

dx ρ̃(x)fj(x)(ΠPτ fi)(x) = 〈ΠPτfi, fj〉ρ̃ (5.14)

where ρ̃(x) is the marginal invariant density for Xt:

ρ̃(x) =

∫

Ωy

ρ(x, y) ⇔ ρ(x, y) = ρ̃(x)ρx(y) , (5.15)

and Π is the projection operator defined in (5.8). Thus, one effectively observes the
operator ΠPτ instead of Pτ . However, we show below that under appropriate con-
ditions (notably, τ ≫ ǫ2), the operator ΠPτ has eigenpairs that are O(ǫ) close to
the leading eigenpairs of Pτ . As a consequence, the leading eigenpairs of L can be
inferred, to O(ǫ) accuracy, without observing Yt. Together with (5.12) this implies we
can infer the leading eigenpairs of L H to O(ǫ) accuracy from Xt data only.

Theorem 1. Let (Λk, φk) be a leading eigenpair of Pτ (i.e. k ∈ K0, see appendix
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B), and let the following conditions hold:

(i) τ ≫ ǫ2 (5.16a)

(ii) |Λk − Λk′ | ≫ ǫ for all k′ 6= k (5.16b)

Then

∃ (Λg
k, φ

g
k) such that











(a) ΠPτφ
g
k = Λg

kφ
g
k

(b) φk − φgk = O(ǫ)

(c) Λk − Λg
k = O(ǫ)

(5.17)

Thus, under conditions (i) and (ii), the operator ΠPτ has an eigenpair (Λg
k, φ

g
k)

that is O(ǫ) close to the eigenpair (Λk, φk), k ∈ K0, of Pτ . Condition (ii) ensures that
the eigenvalue Λk has multiplicity 1 and is well separated from all other eigenvalues.
To prove theorem 1, we will use that for k ∈ K0,

φk−Πφk = O(ǫ) , (5.18a)

ψk−ρxΠ∗ψk = O(ǫ) , (5.18b)

resulting from (5.12) and (5.13). The projection operator Π∗ is defined in (B.15). We
will also need the following lemma:

Lemma 2. If τ ≫ ǫ2, then Pτh− PτΠh = O(ǫ) for any h(x, y) ∈ F .

Proof of lemma 2. We split h − Πh = h0 + h⊥, where h0 lies in the subspace
spanned by the φk with k ∈ K0 and h

⊥ lies in the subspace spanned by all other eigen-
functions. Because of (5.18) we have 〈ψk, h − Πh〉1 = O(ǫ) if k ∈ K0, and therefore
h0 = O(ǫ). The spectral radius of Pτ being 1, this implies Pτh

0 = O(ǫ). Further-
more, ‖Pτh

⊥‖ ≤ |Λl| ‖h⊥‖ where Λl = exp(τλl) is the largest eigenvalue with l /∈ K0.
Because λl = O(ǫ−2) if l /∈ K0, setting τ = ǫq with q < 2 gives |Λl| = exp(−cǫq−2)
with c > 0 a real constant of order 1 in ǫ. Thus, as ǫ → 0, |Λl| approaches zero at a
rate that is exponential in ǫ if q < 2.

Proof of theorem 1. Because Pτφk = Λkφk, we have (PτΠ+Pτ (1−Π))φk = Λkφk.
By lemma 2, ‖Pτ (1 − Π)‖ is O(ǫ) if condition (i) is satisfied. Using (ii), it then fol-
lows from operator perturbation theory that PτΠ has an eigenpair (Λg

k, φ̃
g
k) that is

O(ǫ) close to the eigenpair (Λk, φk) of PτΠ + Pτ (1 − Π). Thus, Λg
k − Λk = O(ǫ) and

φ̃gk−φk = O(ǫ). Furthermore, because Pτ Π φ̃
g
k = Λg

k φ̃
g
k we have ΠPτ Π φ̃

g
k = Λg

k Π φ̃
g
k,

therefore (Λg
k, φ

g
k) with φgk = Π φ̃gk is an eigenpair of ΠPτ . Finally, φk, φ̃

g
k and Πφk

are all O(ǫ) close to each other, see also (5.18), so that φk − φgk = O(ǫ).

For the adjoint operator P ∗
τ a similar result holds, as is shown below. We note

that for the adjoint of ΠPτ we have 〈v,ΠPτh〉1 = 〈Π∗P ∗
τ ρxv, h〉1 for appropriate

functions v(x) and h(x). Hence, (ΠPτ )
∗v = Π∗P ∗

τ ρxv.

Theorem 3. Let (Λ̄k, ψk) be a leading eigenpair of P ∗
τ (k ∈ K0), and let condi-
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tions (i) and (ii) from theorem 1 hold. Then

∃ (Λ̄g
k, u

g
k) such that











(a) (ΠPτ )
∗ugk = Λ̄g

ku
g
k

(b) uk − ugk = O(ǫ)

(c) Λk − Λg
k = O(ǫ)

(5.19)

where uk is defined in (5.13).

Thus, under conditions (i) and (ii), the adjoint operator (ΠPτ )
∗ has an eigenpair

(Λ̄g
k, u

g
k) that is O(ǫ) close to the Π∗ projection of the eigenpair (Λ̄k, ψk) of P

∗
τ (in the

sense that ugk is O(ǫ) close to Π∗ψk).

Proof of theorem 3. Consider two functions h ∈ dom(Pτ ), r ∈ dom(P ∗
τ ). We

have 〈r, Pτ (1 − Π)h〉1 = 〈(1 − ρxΠ
∗)P ∗

τ r, h〉1. Thus, (1 − ρxΠ
∗)P ∗

τ is O(ǫ) if condi-
tion (i) is satisfied, by lemma 2 and the fact that h and r are arbitrary. We rewrite
P ∗
τ ψk = (ρxΠ

∗P ∗
τ + (1− ρxΠ

∗)P ∗
τ )ψk = Λ̄kψk. Because, as noted, (1 − ρxΠ

∗)P ∗
τ is a

small perturbation (under (i)), ρxΠ
∗P ∗

τ has an eigenpair (Λ̄g
k, ψ

g
k) that is O(ǫ) close

to (Λ̄k, ψk). Furthermore, we note that if (ΠPτ )
∗ugk = Λ̄g

ku
g
k then ρxΠ

∗P ∗
τ ρxu

g
k =

Λ̄g
kρxu

g
k, i.e. (Λ̄g

k, ρxu
g
k) is an eigenpair of ρxΠ

∗P ∗
τ . Hence, we identify ψg

k = ρxu
g
k.

Theorems 1 and 3 show that if Λk, k ∈ K0, is well separated from other eigenvalues
and τ ≫ ǫ2, then Pτ and ΠPτ (and their adjoints) have eigenpairs that are O(ǫ) close.
However, an additional constraint on τ is needed to ensure that λk = τ−1 log Λk and
λgk = τ−1 log Λg

k are also close to each other. To see this, we write Λg
k = Λk + ǫ δΛk,

and note that Λg
k and Λk are O(1) unless τ ≫ 1. By substituting τ = ǫq and using

Taylor expansion for the logarithm, we arrive at

λgk = λk + ǫ1−q δΛk

Λk
+O(ǫ2−q) . (5.20)

Thus, λgk → λk as ǫ→ 0, provided 0 ≤ q < 1. Put differently:

λgk = λk +O(ǫ) if τ = O(1) in ǫ (5.21)

If τ is too small, the eigenpairs of Pτ and ΠPτ are no longer O(ǫ) close to each
other. To see what happens if τ is very small, consider the expansion Pτ = exp(τL ) =
1 + τL + 1

2τ
2L 2 + ... Substitution of (5.5) and τ = ǫq, q > 3, gives

〈Pτ fi, fj〉ρ = 〈fi, fj〉ρ + ǫq〈L0fi, fj〉ρ +O(ǫ2q−3) . (5.22)

To see this, note that L2fi = 0 because fi depends only on x, and 〈L1fi, fj〉ρ =
0 due to the centering condition (5.2). Furthermore, 〈L0fi, fj〉ρ = 〈ΠL0fi, fj〉ρ̃
if fi = fi(x) and fj = fj(x). Thus, if τ ≪ ǫ3 the solutions to the generalized
eigenvalue problem (3.4) are approximations of the eigenpairs of exp(τ ΠL0) rather
than exp(τL ). We remark that ΠL0 corresponds to the diffusion operator that
would result from averaging (rather than homogenizing) the multiscale system (5.1).
We refer to [33] for more details about averaging.

The analysis in this section makes clear that partial observation may necessitate
subsampling. If only Xt, generated by (5.1), is observed and not Yt, a τ that is too
small results in eigenpair estimates that are not close to the eigenpairs of L H and
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L H∗. The estimation procedure discussed in section 4 will then give biased estimates
of the homogenized drift and diffusion. In such case, subsampling (skipping data
points in order to increase τ) is needed to arrive at correct estimates. Our analysis
points out that the sampling interval should scale as τ = ǫq with 0 ≤ q < 1 for
estimating the correct homogenized diffusion process from Xt data of (5.1).

5.4. Numerical example: noise-driven motion in a multiscale potential.

We consider a system studied previously in [32, 31], consisting of noise-driven motion
in a potential with two spatial scales. The SDE of this system reads

dXt = −V ′(Xt)dt+
√
2σ dWt (5.23)

where, as usual, Wt is a Wiener process and V ′(x) = dV/dx. The diffusion coefficient
σ is constant (additive noise). The potential consists of two parts:

V (x) = αV0(x) + p(xǫ ) with V0(x) =
1
2x

2 and p(y) = cos(y) (5.24)

Strictly speaking, L associated with (5.23) is slightly different from (5.6) becauseW x
t

and W y
t are correlated, see [32, 31]. However, as this does not change the asymptotic

results in section 5.1, we will not discuss this further.
The effective SDE of the homogenized system is

dXt = −V ′
h(Xt)dt+

√
2Σ dWt (5.25)

with

Vh(x) = KhαV0(x) and Σ = Khσ (5.26)

The constant Kh is determined by the small-scale part of the potential p(y) and its
period L:

Kh =
L2

ZẐ
, Z =

∫ L

0

dye−p(y)/σ, Ẑ =

∫ L

0

dyep(y)/σ (5.27)

With p(y) = cos(y) and thus L = 2π we find Kh = 0.1924. Following [32], we set
ǫ = 0.1, α = 1 and σ = 1/2. The homogenized SDE then reads

dXt = −KhXtdt+
√

Kh dWt (5.28)

We fit drift and diffusion functions

b(x) = b1x , a(x) = a1 (5.29)

to Xt data generated by the multiscale process (5.23). We use 100 sample paths of the
process, each with a total time length T = 4× 104, obtained by numerical integration
with time step 10−4. We sample them at various intervals. The parameters b1, a1 are
estimated using the objective functions Eg, Eb and Em.

Because the homogenized process (5.28) is an Ornstein-Uhlenbeck process, the
leading eigenfunctions of L H are Hermite polynomials and the subspace FM =
span{1, x, x2} captures the leading 3 eigenfunctions of L H . Hence, we use Galerkin
basis functions f1 = 1, f2 = x, f3 = x2 for Eg and Em. Furthermore, for Eb we
use 200 bins, K = 2 and test functions σ1 = x, σ2 = x2. For Em we use the same
test functions. The weights in Eg are such that c2 = 0.5. In figure 8 we plot the
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Fig. 8. Example with multiscale potential. The drift and diffusion functions (5.29) are fitted
to Xt data of the multiscale process (5.23) with sampling interval τ . The parameters b1 and a1 are
estimated using Eb (200 bins), Eg and Em (FM = {1, x, x2} for both). The dotted lines indicate
the values predicted by homogenization theory.

mean values of the estimated parameters, for different values of the sampling interval
(τ = 0.01, 0.03, 0.1, 0.3, 1, 3). The standard deviations of the estimates are not shown;
they are small (ranging from 0.001 to 0.01).

It can be seen that the estimates obtained with Eb are consistent with the values
predicted by homogenization theory (−b1 = a1 = Kh), for all values of τ . The
estimates from Eg and Em are only consistent with homogenization theory if τ is large
enough. These results are in agreement with the discussion in section 5.3. Because
of the large number of bins used in the binning method, we resolve the small-scale
features of the eigenfunctions, induced by the small-scale part of the potential. Thus,
with the binning method we estimate the (approximate) eigenpairs of Pτ itself. With
the smooth Galerkin method with FM = span{1, x, x2}, these small-scale features
are not resolved at all. We effectively observe only the large-scale part of the process,
therefore we get estimates of eigenpairs of ΠPτ instead of Pτ . As was discussed in
section 5.3, the eigenpairs of Pτ and ΠPτ can differ significantly in case of small τ .
This affects the results from both Eg and Em. In the limit τ → 0, the estimates
from Eg and Em approach b1 = −1, a1 = 1, consistent with ΠPτ approximating
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exp(τ ΠL0) if τ ≪ ǫ3 (as discussed in section 5.3). The quadratic variation estimator
used in [32] also overestimates a1 for small τ (and approaches 1 as τ → 0).

5.5. Numerical example: One OU process driving another. In this ex-
ample we consider the case where a (slow) variable Xt is forced by a fast stochastic
variable Yt:

dXt = F0(Xt)dt+
γ

ǫ
Ytdt (5.30a)

dYt = − β

ǫ2
Ytdt+

σ

ǫ
dWt , (5.30b)

where γ, β, σ are all real O(1) constants (β > 0) and ǫ≪ 1. As can be seen, Yt is an
OU process. Comparing to equation (5.1) we see that we have F1(Xt, Yt) = γYt and
F0(Xt, Yt) = F0(Xt). Because Yt has mean zero, condition (5.2) is satisfied. Hence,
there is an homogenized equation for Xt [33], reading

dX̄t = F0(X̄t)dt+ s dWt (5.31)

with F0(x) as in (5.30a) and the constant s given by

s2 = 2γ2
∫ ∞

0

dτ EY o
t Y

o
t+τ (5.32)

Here, Y o
t is the solution to (5.30b) with ǫ = 1. The expectation in (5.32) is with respect

to the law of Y o
t , so s

2 is proportional to the integrated autocorrelation function of
Y o
t . Because Y

o
t is an OU process we can calculate this function exactly:

EY o
t Y

o
t+τ =

σ2

2β
exp(−βτ) and s2 =

γ2σ2

β2
(5.33)

In what follows, we set ǫ = 0.1 and β = σ = γ = 1, so that s = 1. For F0 we
choose a simple form, F0(x) = −x. Thus, heuristically speaking, Xt is an OU process
forced by ”red noise” (the fast OU process Yt) instead of the usual ”white noise” (the
Wiener process). In the homogenized equation, the red noise gets replaced by white
noise of an appropriate amplitude (determined by s). Because of the form of (5.30a),
Stratonovich corrections do not play a role in going from (5.30) to (5.31).

Similar to the previous example, we fit drift and diffusion functions

b(x) = b1x , a(x) = a1 (5.34)

to timeseries of Xt generated by the multiscale process (5.30). We use 100 different
sample paths of the process, each of total time length T = 105, obtained by numerical
integration with time step 10−4. We vary the sampling interval τ from 0.01 (yielding
107 data points) to 3 (3.3× 104 data points).

The parameters b1 and a1 are estimated using Eg, Eb and Em. Settings for these
objective functions (Galerkin basis functions, etc.) are the same as in the previous
example. For comparison, we also estimate a1 from the quadratic variation of the
path,

aqv1 =
1

hτ Nh

Nh
∑

i=1

(Xihτ −X(i−1)hτ )
2 (5.35)
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Fig. 9. Example with a fast OU process driving a slow one. The drift and diffusion functions
(5.34) are fitted to Xt data of the multiscale process (5.30) with sampling interval τ . Shown are
the mean values of the a1 estimates obtained from 100 different sample paths of total time length
T = 105. From top to bottom: results using Eg, Eb, Em and quadratic variation (QV), see (5.35).
Homogenization theory predicts a1 = 1, indicated by the dotted lines.

with Nh = ⌊N/h⌋. As discussed before, homogenization theory predicts b1 = −1 and
a1 = 1.

In figure 9 the mean values for the estimates of a1 are plotted. Away from the
small τ limit, the estimates obtained with Eg, Eb, Em are consistent with homog-
enization theory. For very long sampling intervals, these estimates are affected by
sampling error, visible in the decrease of the Eb estimates as τ > 2.5 (with Eg and
Em this occurs at even longer τ , beyond the range of the figure). The quadratic
variation underestimates a1 at every τ ; it peaks at aqv1 ≈ 0.85 around τ = 0.15. This
underestimation is not due to sampling error. There is no plot of b1 estimates; for all
τ we find that b1 is near −a1, deviations are largest for large τ .
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All estimates tend to zero in the limit of small τ , due to the fact that the process
(5.30) is only partially observed. As is discussed in section 5.3, for very small τ the
operator ΠPτ approaches exp(τ ΠL0). The multiscale process (5.30) in this example
is a hypoelliptic diffusion, i.e. α = 0 in (5.1) and (5.6). Therefore ΠL0 = (ΠF0) · ∇x

(in fact, in this example ΠF0 = F0 because F0 = F0(x)). As a consequence, the
matrix Qx defined as

Qx
ij = 〈ΠL0fi, fj〉ρ̃ = 〈L0fi, fj〉ρ (5.36)

can be shown to be antisymmetric: because L ∗ρ = 0 we have

0 = 〈L fifj, ρ〉1 = 〈fiL0fj + fjL0fi, ρ〉1 , (5.37)

where we use that L2fi = 0 because fi = fi(x), and 〈L1fi, fj〉ρ = 0 because of (5.2).
Qx being antisymmetric, its eigenvalues must have zero real part.

As mentioned, L ∗ρ = 0 so that 〈L g, ρ〉1 = 0 for any function g ∈ dom(L ).
Assume that for all i, j ≤ M there exist functions gij(x) ∈ dom(L ) such that
fi∇xfj = ∇xgij . Then fi(L0 + ǫ−1L1)fj = (L0 + ǫ−1L1)gij = L gij and the el-
ements of Qx satisfy

Qx
ij = 〈fjL0fi, ρ〉1 = 〈L gij , ρ〉1 = 0 (5.38)

Hence, Qx = 0 and therefore all its eigenvalues are zero. If x is one-dimensional, as
in the current example, the functions gij(x) always exist: they are the antiderivatives
of fi∇xfj.

If the eigenvalues ofQx are zero, it means that in the limit of small τ , we are fitting
a diffusion process to eigenpairs whose eigenvalues approach zero. As a consequence,
the fitted drift and diffusion approach zero too. It explains why b1 → 0 and a1 → 0
as τ → 0, see figure 9.

6. Conclusion. In this paper we considered estimation of diffusion processes
from discrete-time data. The paper consists of two parts. In the first part (sections 3
and 4) we presented a new estimation method, applicable for a broad class of diffusion
processes (scalar as well as multivariate, reversible and nonreversible, with nonlinear
drifts and/or multiplicative noises). In the second part of the paper (section 5) we
discussed estimation of coarse-grained (homogenized) diffusion processes from multi-
scale data and we investigated the performance of the method presented in sections
3 and 4 in this context.

The estimation method presented in sections 3 and 4 relies on the close relation
between eigenpairs of the diffusion operator L and those of the conditional expecta-
tion operator Pt, see (1.6a). This relation is a consequence of the semigroup structure
Pt = exp(tL ) for t ≥ 0. A similar relation holds for the adjoint operators, see (1.6b).
Hence, eigenpairs of L and L ∗ can be inferred by estimating eigenpairs of Pt and
P ∗
t : the eigenfunctions are identical, and the eigenvalues are related as in (1.7).

In section 3, we showed how to estimate eigenpairs of Pt and P ∗
t by means of

the Galerkin method. Both smooth and discontinuous approaches were discussed.
The next step, inferring the drift b(x) and diffusion a(x) that determine L from
eigenpairs of L and/or L ∗, was considered in section 4. We presented a new method

to infer b and a from eigenpairs, in which residuals (L ∗ − ˆ̄λk)ψ̂k are minimized via
minimization of an objective function. We integrate the residuals against smooth test
functions and build an objective function from the squared integrals. This allows us to
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infer b and a without estimating eigenfunction derivatives, thereby avoiding a major
source of error. If b and a are linear in their parameters, as in (4.13), the objective
function is convex quadratic and has a unique minimum. The total computational
cost of estimating eigenpairs and inferring b and a is small (e.g., in the 2-dimensional
example in section 4.4.3, estimating the parameters from N = 105 datapoints takes
us around 5 seconds) .

In several numerical examples, the performance of the newly presented method
was investigated, demonstrating the overall feasibility of this method and its good
results in some highly nontrivial examples. One of the examples (section 4.4.2) in-
volved a (mildly) metastable system, where the process switches between the wells of a
double-well potential. The long-timescale dynamics of a metastable system (hopping
between metastable states) is captured by the leading eigenmodes [37, 24], so that our
spectral procedure, in which these eigenmodes play a central role, is in a good position
to estimate such a system. Indeed, the spectral method was well capable of estimating
the system in section 4.4.2. It is important that the available timeseries data contain
enough switches between metastable states, in order to obtain good estimates of the
leading eigenvalues. We note that the leading eigenvalues can be estimated correctly
even if the sampling intervals of the data are too long to obtain good estimates of the
non-leading eigenvalues (representing the fast dynamics of the metastable system).
This was analysed in detail in [15].

In this paper we focussed on estimation from data with constant sampling inter-
vals. However, our estimation procedure can be generalized to deal with data with
nonconstant sampling intervals. In [15], it was shown how the spectral estimation
procedure can be used to estimate generators for Markov jump processes from data
with nonconstant τ . We expect that a similar generalization to nonconstant τ can be
formulated for diffusion estimation.

We note that there are some limitations to the estimation procedure as presented
here. It is assumed throughout that the diffusion process to be estimated has an
invariant measure. Thus, for processes such as pure diffusion on R

1 (dXt = σdWt)
or geometric Brownian motion, which have no invariant measure, the procedure does
not apply. However, we are currently investigating how to adapt the spectral proce-
dure to deal with such processes; we will report on this work elsewhere. A second
limitation is that the estimation procedure cannot be used to estimate parameters in
equations for unobserved variables. An example is the Heston model for option prices
(or other models for stochastic volatility). One can observe the option price but not
the volatility, so our procedure does not enable estimation of parameters that appear
in the volatility SDE.

Because the relations (1.6a), (1.6b) and (1.7) are exact, the use of eigenpairs makes
it possible to estimate b and a from discrete-time samplings without making time
discretization errors. This makes the eigenpair approach particularly attractive in
case of data with long sampling intervals (low-frequency data). It is also advantageous
when fitting a coarse-grained diffusion process to multiscale data. As was shown in
[32], a too short sampling interval can lead to biased estimates for the coarse-grained
process. An estimation method that allows to use longer sampling intervals without
introducing time discretization errors is obviously attractive in this situation.

Estimation of homogenized diffusion processes from data of multiscale diffusions
was investigated in detail in section 5. We showed that the leading eigenpairs of the
homogenized diffusion operator L H and those of the underlying multiscale operator
L are the same at leading order in ǫ (where ǫ measures the scale separation, ǫ≪ 1),
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see section 5.1. Moreover, those eigenpairs can be estimated from data of the slow
variables alone, provided the sampling interval is long enough (τ = ǫq with 0 ≤ q < 1),
as was discussed in section 5.3. The necessity to subsample (or more precisely, the
necessity to avoid very short sampling intervals) is a consequence of partial observation
(only the slow variables are observed, not the fast ones). The analysis of sections 5.1-
5.3 was illustrated with two numerical examples in sections 5.4 and 5.5. Both showed
that the estimation method presented in this paper is well suited to infer correct
homogenized diffusion processes from multiscale data.
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Appendix A. Expressions for Eg, Eb and Em.

We assume b and a have expansions as in (4.13). Then (4.4) becomes

Eg(b1, ..., bNb
, a1, ..., aNa

) =
∥

∥

∥

∑

j

bjB̂
g
j +

∑

j

ajÂ
g
j − D̂λ

∥

∥

∥

2

c
(A.1)

with

B̂g
j = V̂ B̂′

jŴ
∗ , Âg

j = V̂ Â′
jŴ

∗ . (A.2)

The elements of the matrices B̂′
j and Â′

j are

B̂′
jmn =

1

N + 1

N
∑

i=0

[

fn(Xiτ )
(

gj · (∇fm)
)

(Xiτ )
]

(A.3a)

Â′
jmn =

1

N + 1

N
∑

i=0

[

fn(Xiτ )
(

1
2hj : (∇∇fm)

)

(Xiτ )
]

(A.3b)

For the binning approach, the expansions (4.13) lead to

Eb(b1, ..., bNb
, a1, ..., aNa

) =
∑

k,n

αkn

∣

∣

∣

(

∑

j

bjB̂
b
j +

∑

j

ajÂ
b
j − Ĉb

)

kn

∣

∣

∣

2

(A.4)

with

B̂b
jkn =

1

N + 1

N
∑

i=0

(ξ̂kgj · ∇σn)(Xiτ ) (A.5a)

Âb
jkn =

1

N + 1

N
∑

i=0

(12 ξ̂khj : ∇∇σn)(Xiτ ) (A.5b)

Ĉb
kn = ˆ̄λk

1

N + 1

N
∑

i=0

(ξ̂kσn)(Xiτ ) (A.5c)

For the ”mixed” approach, finally, (4.13) results in

Em(b1, ..., bNb
, a1, ..., aNa

) =
∑

k,n

αkn

∣

∣

∣

(

∑

j

bjB̂
m
j +

∑

j

ajÂ
m
j − Ĉm

)

kn

∣

∣

∣

2

(A.6)

with

B̂m
j = (B̂′

jŴ
∗)∗ , Âm

j = (Â′
jŴ

∗)∗ , Ĉm = D̂λ̄Ŵ R̂ (A.7)

and B′
j and A′

j as in (A.3).

We note that the matrices B̂g
j , Â

g
j and D̂λ need to be evaluated only once, at

the beginning of the minimization of Eg (and not at every step of the minimization
algorithm). The same holds for B̂b

j , Â
b
j , Ĉ

b in the minimization of Eb and for B̂m
j ,

Âm
j , Ĉm in the minimization of Em.

Appendix B. Asymptotics of L and L ∗.
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B.1. Eigenpairs of L . We consider the asymptotics of the multiscale diffusion
operator (5.5), (5.6). Let L ∗

2 be the adjoint of L2 in L2(Ωy, dy). The assumption
that Yt is ergodic with unique invariant measure if Xt is fixed implies that the null
spaces of both L2 and L ∗

2 are one-dimensional. Assuming that µx has a density,
dµx(y) = ρx(y)dy, we have

L21(y) = 0, L
∗
2 ρx(y) = 0 (B.1)

where 1(y) = 1 ∀ y ∈ Ωy.
Substituting the expansions (5.10) in (5.5), (5.6), we obtain for the eigenpairs

(φk, λk) of L a sequence of problems:

O(ǫ−2) L2φ
(0)
k = λ

(−2)
k φ

(0)
k (B.2a)

O(ǫ−1) L1φ
(0)
k + L2φ

(1)
k = λ

(−1)
k φ

(0)
k + λ

(−2)
k φ

(1)
k (B.2b)

O(1) L2φ
(2)
k + L1φ

(1)
k + L0φ

(0)
k = λ

(−2)
k φ

(0)
k + λ

(−1)
k φ

(1)
k + λ

(0)
k φ

(0)
k (B.2c)

...

The equation at leading order is itself an eigenvalue equation. Solutions with nonzero

λ
(−2)
k give the leading order terms for eigenpairs (φk, λk) with eigenvalues of order

O(ǫ−2). More interesting to us are solutions of (B.2a) with λ
(−2)
k = 0. The corre-

sponding φ
(0)
k lies in the null space of L2, hence it can be a function of x but must

be constant in y.

We define K0 to be the set of all indices k for which λ
(−2)
k = 0 and hence L2φ

(0)
k =

0:

K0 := {k | λ(−2)
k = 0} (B.3)

Furthermore, for all k ∈ K0 we have Πφ
(0)
k = φ

(0)
k , with Π as defined in (5.8). Now

we consider (B.2b) for k ∈ K0:

L2φ
(1)
k = λ

(−1)
k φ

(0)
k − L1φ

(0)
k (k ∈ K0) (B.4)

The solvability condition for this equation is

Π (L1φ
(0)
k − λ

(−1)
k φ

(0)
k ) = 0 (B.5)

Because φ
(0)
k = φ

(0)
k (x) and because of the assumption (5.2), we have

ΠL1φ
(0)
k = 0 (B.6)

and thus

λ
(−1)
k = 0 (k ∈ K0) (B.7)

Equation (B.2b) with λ
(−2)
k = λ

(−1)
k = 0 gives L2φ

(1)
k = −L1φ

(0)
k . Since ΠL1φ

(0)
k = 0,

we may write

φ
(1)
k = −L

−1
2 L1φ

(0)
k (B.8)
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Finally, we go to equation (B.2c) and substitute λ
(−2)
k = λ

(−1)
k = 0 as well as (B.8):

L2φ
(2)
k = −L0φ

(0)
k + L1L

−1
2 L1φ

(0)
k + λ

(0)
k φ

(0)
k (B.9)

The solvability condition for this equation gives

L
Hφ

(0)
k = λ

(0)
k φ

(0)
k (B.10)

where L H is the diffusion operator (5.7).

B.2. Eigenpairs of L ∗. Let ψk(x, y) be an eigenfunction of the adjoint L ∗ of
the multiscale diffusion operator (5.5), (5.6). Then

L
∗ψk =

(

L
∗
0 +

1

ǫ
L

∗
1 +

1

ǫ2
L

∗
2

)

ψk = λ̄kψk (B.11)

with

L
∗
0 ψk = ∇x · (F0ψk) +

1
2∇x∇x : (ααTψk) (B.12a)

L
∗
1 ψk = ∇x · (F1ψk) (B.12b)

L
∗
2 ψk = ∇y · (Gψk) +

1
2∇y∇y : (ββTψk) (B.12c)

Expanding ψk = ψ
(0)
k + ǫψ

(1)
k + ǫ2ψ

(2)
k + ... and λk as in (5.10), we obtain the sequence

O(ǫ−2) L
∗
2 ψ

(0)
k = λ̄

(−2)
k ψ

(0)
k (B.13a)

O(ǫ−1) L
∗
1 ψ

(0)
k + L

∗
2 ψ

(1)
k = λ̄

(−1)
k ψ

(0)
k + λ̄

(−2)
k ψ

(1)
k (B.13b)

O(1) L
∗
2 ψ

(2)
k + L

∗
1 ψ

(1)
k + L

∗
0 ψ

(0)
k = λ̄

(−2)
k ψ

(0)
k + λ̄

(−1)
k ψ

(1)
k + λ̄

(0)
k ψ

(0)
k (B.13c)

...

For all k ∈ K0 we have λ̄
(−2)
k = 0 and

ψ
(0)
k (x, y) = uk(x)ρx(y) (k ∈ K0) (B.14)

Similar to the definition of Π (5.8), we define Π∗ as

Π∗ h(x, y) =

∫

Ωy

dy h(x, y) (B.15)

For k ∈ K0, the solvability condition for (B.13b) gives:

Π∗ (L ∗
1 ψ

(0)
k − λ̄

(−1)
k ψ

(0)
k ) = 0 (B.16)

Assumption (5.2) and (B.14) imply

Π∗
L

∗
1 ψ

(0)
k = 0 (B.17)

and we find, as before, that λ̄
(−1)
k = 0 if λ̄

(−2)
k = 0. Furthermore, we have

ψ
(1)
k = −(L ∗

2 )
−1

L
∗
1 ψ

(0)
k (B.18)
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Finally, the solvability condition for (B.13c) gives us, for k ∈ K0:

Π∗ (L ∗
0 − L

∗
1 (L

∗
2 )

−1
L

∗
1 )ψ

(0)
k = λ̄

(0)
k Π∗ ψ

(0)
k (B.19)

Recalling (B.14) and the fact that Π∗ ψ
(0)
k = uk we get the following eigenequation

for uk(x):

L
H∗uk = λ̄

(0)
k uk (B.20)

where L H∗ is defined as

L
H∗· = Π∗ (L ∗

0 − L
∗
1 (L

∗
2 )

−1
L

∗
1 )ρx· (B.21)

It can be shown that L H∗ is the adjoint of L H (5.7) in L2(Ωx, dx). Also, the operator
(L0 − L1L

−1
2 L1)

∗ is the adjoint of L0 − L1L
−1
2 L1 in L2(Ωx × Ωy, dx dy), and is

equal to L ∗
0 − L ∗

1 (L
∗
2 )

−1L ∗
1 .
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