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We develop a hydrostatic Hamiltonian particle-mesh (HPM) method for efficient
long-term numerical integration of the atmosphere. In the HPM method, the hydro-
static approximation is interpreted as a holonomic constraint for the vertical posi-
tion of particles. This can be viewed as defining a set of vertically buoyant horizontal
meshes, with the altitude of each mesh point determined so as to satisfy the hydro-
static balance condition and with particles modelling horizontal advection between
the moving meshes. We implement the method in a vertical-slice model and evaluate
its performance for the simulation of idealized linear and nonlinear orographic flow
in both dry and moist environments. The HPM method is able to capture the basic
features of the gravity wave to a degree of accuracy comparable with that reported
in the literature. The numerical solution in the moist experiment indicates that the
influence of moisture on wave characteristics is represented reasonably well and the
reduction of momentum flux is in good agreement with theoretical analysis. Copy-
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1. Introduction

In recent years efforts have been made to extend the
use of Hamiltonian particle-mesh (HPM) methods for
atmospheric modelling (Frank et al., 2002; Frank and
Reich, 2004; Cotter et al., 2004; Shin and Reich, 2009).
An important issue in atmospheric modelling, particularly
for climate simulation, is the numerical conservation of mass
of air, water and long-lived tracers (Thuburn, 2008). The
hydrostatic HPM method has some advantages with respect
to this issue in that it conserves mass locally and satisfies
an exact advection equation for long-term simulations. The
key idea is to approximate horizontal motion along the lines
of the Hamiltonian particle-mesh method, while the vertical
motion is discretized as a moving-mesh method. Lin (2004)
has also discussed the reduction of dimensionality from 3D
to layered 2D by using floating vertical coordinates in the

context of a finite-volume dynamical core. In this article we
present the hydrostatic HPM method and test the scheme
for idealized orographic flows. We demonstrate that the
HPM is able to represent fundamental processes, such as the
generation of gravity waves due to orographic forcing and
the influence of moist processes on the character of idealized
linear and nonlinear orographic waves, properly. Compared
with previous numerical studies by Durran and Klemp
(1983, hereafter DK83) and Pinty et al. (1995, hereafter P95)
for linear hydrostatic orographic flows with an isolated hill
of 1 m height, the wave generation is well represented in our
model.

In the following sections we explain the details of the HPM
method and how we represent moving meshes to enforce
time-dependent hydrostatic balance. Then we discuss the
results of numerical experiments and propose further work
with the HPM method.
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2. The hydrostatic HPM

The hydrostatic HPM method is derived for a vertical
slice model, using Eulerian coordinates (x, z) ∈ ! ⊂ R2

and Lagrangian labels (a, c) ∈ !. We denote discrete
approximations of dependent variables over the Eulerian
grid with Latin indices, and those over a discrete label space
with Greek indices. For example, fα,γ is an approximation
to f (a, c) at a grid point (aα , cγ ) = (α$a, γ$c) in label
space, where $a, $c are mesh sizes and α, γ ∈ Z. For
mixed Eulerian–Lagrangian approximations, we use a form
such as fi,γ ≈ f (xi, cγ ). More details about such mixed
approximations will be given in the following paragraphs.

The hydrostatic HPM method is different in nature from
a non-hydrostatic HPM (Shin and Reich, 2009) in that
the vertical motion is discretized using a moving mesh.
We define time-dependent Lagrangian particles with x-
positions denoted by xα,γ+1/2(t), and vertically buoyant
mesh points with z-coordinates zi,γ (t). As indicated by
the indexing, the horizontal position of the mesh point is
fixed in the Eulerian frame, while its vertical position is
fixed in the Lagrangian frame, i.e. z = z(x, c). We define
horizontal basis functions with support centred at the mean
of two vertically moving mesh points, i.e. at (xi, zi,γ+1/2) with
zi,γ+1/2 = (zi,γ+1 + zi,γ )/2. The basis functions, denoted by
ψi,γ+1/2(x), are non-negative and satisfy the partition of
unity property:

∑

i

ψi,γ+1/2(x) = 1 (2.1)

for all (x, z) ∈ !. We also introduce the scaled basis
functions:

ψ̂i,γ+1/2(x) =
ψi,γ+1/2(x)

$x
. (2.2)

It is natural to use the same basis function at xi, independent
of the value of γ . Hence we will use the simpler notation
ψi(x) and ψ̂i(x). A basis function having the desired
properties is the cubic B-spline with support radius 2$x.

A Lagrangian particle with x position xα,γ+1/2 carries a
mass mα,γ+1/2 and a potential temperature θα,γ+1/2. Note
that we do not request that θα,γ+1/2 = θγ+1/2, i.e. lines
of constant cγ+1/2 need not be lines of constant potential
temperature (isentropes). Additionally, in the case of moist
simulations, a particle also carries a moisture budget, which
is commonly represented by the total mixing ratio rtα,γ+1/2 .
The moisture can experience phase changes and in this
study we consider only those between cloud water and water
vapour. The three quantities (mα,γ+1/2, θα,γ+1/2, rtα,γ+1/2 )
remain constant under unsaturated conditions, but θα,γ+1/2
may vary when latent heat is released in association
with phase changes of water. The quantities mα,γ+1/2
and rtα,γ+1/2 always remain constant. Regardless of the
saturated/unsaturated condition, moist static energy is
conserved so that the scheme can be energetically consistent.

Here we consider simple problems of air flows in
hydrostatic balance, which are a good approximation for
orographic flow arising due to moderate surface terrain.

2.1. Density approximation

The density ρi,γ+1/2(t) ≈ ρ(xi, zi,γ+1/2) is approximated by

ρi,γ+1/2(t)

= 1

zi,γ+1(t) − zi,γ (t)

[
∑

α

mα,γ+1/2 ψ̂i(xα,γ+1/2(t))

]

.

(2.3)

Conservation of mass is encoded in the identity

∑

i,γ

ρi,γ+1/2(t) $x [zi,γ+1(t) − zi,γ (t)]

=
∑

i,γ

[
∑

α

mα,γ+1/2 ψ̂i(xα,γ+1/2(t))

]

$x

=
∑

α,γ

mα,γ+1/2

[
∑

i

ψi(xα,γ+1/2(t))

]

(2.4)

=
∑

α,γ

mα,γ+1/2,

due to (2.1). The product of density and potential temper-
ature, i.e. µ = θρ, is a primitive variable approximated at
(vertically moving) mesh points (xi, zi,γ+1/2). The approxi-
mation for µi,γ+1/2 is

µi,γ+1/2(t) = 1

zi,γ+1(t) − zi,γ (t)
[
∑

α

θα,γ+1/2 mα,γ+1/2 ψ̂i(xα,γ+1/2(t))

]

, (2.5)

and we obtain conservation via

∑

i,γ

µi,γ+1/2(t) $x [zi,γ+1(t) − zi,γ (t)] (2.6)

=
∑

α,γ

θα,γ+1/2 mα,γ+1/2.

Other thermodynamic quantities are now easily approxi-
mated over (xi, zi,γ+1/2) using the standard identities

T = θπ , π =
(

µ

µ0

)κ/(1−κ)

, (2.7)

where µ0 = p0/R is a constant reference value, cp =
cv/(1 − κ) and κ = Rd/cp = 2/7, where Rd is the ideal
gas constant for dry air.

2.2. Equations of motion and discrete hydrostatic balance

Since we work with the hydrostatic approximation, the
vertical motion does not contribute to the kinetic energy,
the discrete approximation for which is

T = 1

2

∑

α,γ

mα,γ+1/2|ẋα,γ+1/2|2. (2.8)
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The potential energy is defined by

Vanalytic =
∫

!

[

cvµ0

(
µ

µ0

)1/(1−κ)

+ gρz

]

dx dz. (2.9)

With our given approximations, this becomes

V =
∑

i,γ

[
cvµ0

(
µi,γ+1/2

µ0

)1/(1−κ)

+ gρi,γ+1/2zi,γ+1/2

]
$x$zi,γ+1/2 = VP + VG,

(2.10)

where for ease of notation we introduce the following
abbreviation:

$zi,γ+1/2 = zi,γ+1 − zi,γ . (2.11)

The continuous equations of motion are now obtained from
the Lagrangian functional

L =
∫

L dt, (2.12)

where L = T − V . The associated discrete Euler–Lagrange
equations are straightforward to derive. At time level tn, the
contribution to the Lagrangian is

Ln(xn
α,γ+1/2) = 1

2
mα,γ+1/2

(
xn
α,γ+1/2 − xn−1

α,γ+1/2

$t

)2

− V(xn
α,γ+1/2). (2.13)

The fully discrete approximation of the action integral L is
then given by

L$t =
N∑

n=1

Ln$t. (2.14)

Computing partial derivatives of L$t with respect to
xn
α,γ+1/2, and setting them equal to zero, we obtain

0 = ∂L$t

∂xn
α,γ+1/2

= −mα,γ+1/2
(xn+1

α,γ+1/2 − 2xn
α,γ+1/2 + xn−1

α,γ+1/2)

$t
− $t∇xV(xn

α,γ+1/2). (2.15)

This equation is the discrete analogue of the Euler–La-
grangian equation

d

dt

∂L
∂ ẋ

= ∂L
∂x

. (2.16)

The momentum equation is given by

mα,γ+1/2ẍα,γ+1/2 = −∇xV(xn
α,γ+1/2)

= FG
x,α,γ+1/2 + FP

x,α,γ+1/2, (2.17)

where the gravitational force applied on the particle is

FG
x,α,γ+1/2 = −g mα,γ+1/2

∑

i

[zi,γ+1/2∇xψi(xα,γ+1/2)],

(2.18)

and the pressure gradient force is

FP
x,α,γ+1/2 = −cpmα,γ+1/2 θα,γ+1/2

×
∑

i

[(
µi,γ+1/2

µ0

)κ/(1−κ)

∇xψi(xα,γ+1/2)

]

. (2.19)

Störmer–Verlet time-stepping equivalent to (2.15) leads to
the explicit update

mα,γ+1/2

[
xn+1
α,γ+1/2 − 2xn

α,γ+1/2 + xn+1
α,γ+1/2

]

= $t2
[

FG,n
x,α,γ+1/2 + FP,n

x,α,γ+1/2

]
. (2.20)

Since L does not depend on żi,γ+1/2, the associated
Euler–Lagrange equation for z results in a holonomic
constraint, which on the discrete level becomes

0 = ∂L$t

∂zn
i,γ+1/2

= −$t∇zV(zn
i,γ+1/2). (2.21)

These nonlinear constraint equations are coupled in the
index γ but not in i. Hence we essentially have to solve
a decoupled set of discretized, one-dimensional, nonlinear
elliptic equations in the vertical. Note that this also holds true
in three dimensions. The appropriate boundary conditions
are zi,0 = 0 and zi,M = H for the bottom and top surfaces.
It is easy to include orography into this approach by simply
setting zi,0 = zs(xi), where zs(xi) is the height of the surface
at xi.

To simplify notation in the following, we define
µi,γ+1/2= µi,γ+1/2$zi,γ+1/2 and ρ i,γ+1/2= ρi,γ+1/2$zi,γ+1/2.
To complete the time-step at tn+1, we obtain the new vertical
positions zn+1

i,γ that satisfy the discrete hydrostatic balance
condition. Equation (2.21) becomes

0 = FG
z,i,γ + FP

z,i,γ , (2.22)

with

FG
z,i,γ = − g

2
[ρ̄i,γ+1/2 + ρ̄i,γ−1/2], (2.23)

and

FP
z,i,γ =cvµ0

[(
µi,γ+1/2

µ0

)1/(1−κ)

−
(

µi,γ−1/2

µ0

)1/(1−κ)
]

− cp

[
µi,γ+1/2

(
µi,γ+1/2

µ0

)κ/(1−κ)

− µi,γ−1/2

(
µi,γ−1/2

µ0

)κ/(1−κ)]

=−κcpµ0

[(
µi,γ+1/2

µ0

)1/(1−κ)

−
(

µi,γ−1/2

µ0

)1/(1−κ)
]

,

(2.24)

by again applying the discrete variational principle. These
equations are solved subject to the boundary conditions zi,0
= zs(xi) and zi,M = H. Note that with particles horizontally
fixed, FG

z,i,γ is constant. We use the relation

FP
z,i,γ = − κcpµ0

[(
µi,γ+1/2

µ0

)1/(1−κ)

$z1/(κ−1)
i,γ+1/2

−
(

µi,γ−1/2

µ0

)1/(1−κ)

$z1/(κ−1)
i,γ−1/2

]
(2.25)
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and

∂

∂zi,γ
$z1/(κ−1)

i,γ+1/2 = ∂

∂zi,γ
(zi,γ+1 − zi,γ )1/(κ−1)

= 1

1 − κ
$z1/(κ−1)

i,γ+1/2 $z−1
i,γ+1/2 (2.26)

plus related formulae to set up a Newton iteration for finding
zi,γ+1/2. The vertical position of the particle at xα,γ+1/2 is
then approximated by

zα,γ+1/2 =
∑

i

zi,γ+1/2 ψi(xα,γ+1/2(t)), (2.27)

and the diagnostic estimation of the vertical velocity can be
given by

Wn+1
α,γ+1/2 = 1

$t
(zn+1

α,γ+1/2 − zn
α,γ+1/2), (2.28)

while we denote the zonal velocity of a particle, ẋα,γ+1/2 by
Uα,γ+1/2. The grid-based zonal and vertical winds are then
defined by

ui,γ+1/2 =
∑

α Uα,γ+1/2mα,γ+1/2 ψi(xα,γ+1/2)

ρi,γ+1/2$x$zi,γ+1/2
, (2.29)

wi,γ+1/2 =
∑

α Wα,γ+1/2mα,γ+1/2 ψi(xα,γ+1/2)

ρi,γ+1/2$x$zi,γ+1/2
, (2.30)

for diagnostic purposes such as analysis of divergence and
vorticity fields (Frank et al., 2002). We illustrate the moving
meshes in response to the generation of an orographic wave
associated with an isolated hill in the vertical-slice model
(Figure 1). If there is a disturbance that generates imbalance
in the vertically stratified layers, the meshes move vertically
to find new positions zn+1

i,γ+1/2 that satisfy hydrostatic balance.
The particles lie midway between adjacent horizontal meshes
so that they also adjust vertically, conforming to the buoyant
meshes. A similar moving-mesh approach was combined
with an Eulerian finite-volume scheme and semi-Lagrangian
advection in Lin (2004).

We did not use numerical diffusion for tests in this study,
but spurious small-scale perturbations are filtered using a

0 50 100 150 200 250
0

0.5

1

1.5
Moving meshes and particles

zγ
zγ + 1/2

X (km)

Z
 (

km
)

Figure 1. Schematic descriptions of particles conforming to a moving
mesh due to an isolated hill. Vertical grids (zγ ) are denoted by black lines
and the mean of two vertically moving meshes, zi,γ+1/2 = (zi,γ+1 + zi,γ )/2
by shaded lines (red in the online article). We plot every 20th particle
(black dots) in each layer. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

Helmholtz operator on the thermodynamic quantities over
the grid (Frank et al., 2002). The Helmholtz operator is
applied directly in the Lagrangian such that Hamiltonian
structure is maintained. In the current context, we
smooth ρ, µ, z and the Exner function π . Frank et al.
(2005) showed that the combination of this regularization
and Störmer–Verlet time-stepping modifies the dispersion
relation in a manner equivalent to a two-time-level semi-
implicit time discretization for the linearized shallow-water
equations. Let Hi′

i denote a discrete approximation to the
Helmholtz operator

H = 1 − α2
x

∂2

∂x2
(2.31)

over the x grid, subject only to x and its periodic boundary
conditions. Here αx ≥ 0 is a given smoothing length. Then
a smoothed µ̃i is defined as the solution of

∑

i′
Hi′

i µ̃i′ = µi. (2.32)

Likewise we obtain ρ̃ and z̃ using the Helmholtz operator.
Note that now z̃, µ̃/$zi,γ+1/2 and ρ̃/$zi,γ+1/2 replace z, µ
and ρ in (2.10). The associated force fields (2.18) and (2.19)
are then given by

F̃G
x,α,γ+1/2 = −g mα,γ+1/2

∑

i

[̃zi,γ+1/2∇xψi(xα,γ+1/2)]

(2.33)

and

F̃P
x,α,γ+1/2 = −cpmα,γ+1/2 θα,γ+1/2

×
∑

i

[
π̃i,γ+1/2∇xψi(xα,γ+1/2)

]
, (2.34)

where π̃i is defined as the solution of
∑

i′ Hi′
i π̃i′ =

[µ̃/(µ0$zi,γ+1/2)]κ/(1−κ).

3. Numerical experiments with orography

We evaluate the performance of our scheme by testing the
generation of gravity waves due to an idealized orography.
Details of the experiments are listed briefly in Table I. The
aim of these tests is to examine whether the hydrostatic HPM
method is capable of capturing general features of gravity
waves in the presence of orography. For this purpose we use
the tests in the linear hydrostatic flow regime reported in
DK83 and P95. As is pointed out in a number of references
in the literature, an appropriate upper boundary layer is
essential in numerical simulations of orographic flow to
prevent the reflection of waves back into the domain.
The portion of the domain where a dissipative boundary
condition is put into operation is often called a ‘sponge layer’.
In our experiments we apply such a boundary condition only
to the zonal wind. The sponge layer in DK83 is defined by

U+ = U− + $t

2
τ (z)(U− − U0), (3.1)

where U− is an updated zonal wind of a particle using (2.17),
U0 a constant zonal wind speed given at the initial time,
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Table I. Description of numerical experiments.

Test Details Description

T1 U = 20 m s−1, a = 10 km, N = 0.0196 s−1 Linear hydrostatic flow in DK83
T2 U = 32 m s−1, a = 16 km, N = 0.0187 s−1 Linear hydrostatic flow in P95
T3 U = 20 m s−1, a = 10 km, N = 0.0132 s−1 Linear dry/moist flow in DK83
T4 U = 20 m s−1, a = 10 km, N = 0.0132 s−1 Nonlinear dry/moist flow with h0 = 1km

$t a time interval and U+ a new velocity. In DK83, τ (z) is
defined by

τ (z) =






0 for z ≤ zB,

−χ
2

(
1 − cos z−zB

zT−zB
π

)
for 0 ≤ z−zB

zT−zB
≤ 0.5,

−χ
2

[
1 +

(
z−zB

zT−zB
− 1

2

)
π

]
for 0.5 ≤ z−zB

zT−zB
≤ 1,

(3.2)

where χ is a constant, zT is the top of the domain and zB
is the bottom of the sponge layer. We choose the constant
χ = 20 h−1, with which an optimal solution is produced in
the experiments of this study. We have observed excessive
dissipation or instability with values respectively much larger
or smaller than this. Meanwhile, the type of sponge layer in
P95 is given such that

U+ = (1 − β)U− + β U0. (3.3)

The coefficient β = βv for the vertical sponge layer in P95 is
defined by

βv =






0 for z < zB,
(

z−zB
zT−zB

)2
for zB < z < zT,

(3.4)

and similarly the coefficient β = βh for lateral sponge zones
is given by

βh =






cos2
[

π
2

(
x

xD

)]
for 0 < x < xD,

cos2
[

π
2

(
xL−xD

xD

)]
for xL − xD < x < xL

0 otherwise,

(3.5)

where xL is the lateral size of the domain and xD is the
thickness of the sponge zone. We choose the P95 type of
lateral sponge zone, since we obtain an optimal solution
close to the analytic solution with this boundary condition.
The Coriolis parameter is set to be zero for all tests. We use
a bell-shaped profile for the orography, represented by

h(x) = h0

(
a2

x + a2

)
. (3.6)

Initially we begin with the peak height h0 = 0 and increase
h0 gradually during the early stage of the integration until
h0 = 1 m. The isolated hill is placed at the centre of the
domain. The number of particles is two per cell and the total
number of particles per layer is kept uniform.

3.1. T1: Linear hydrostatic flow

Figure 2 shows the grid-based zonal wind perturbation (u′

= u − U0) and the vertical wind perturbation (w′ = w). The
size of the spatial domain is Lx = 180 km and Lz = 16 km and
the atmosphere is isothermal with temperature T0 = 250 K as
in DK83. The bottom of the sponge layer zB is 8 km. For the
lateral sponge zone, we choose the thickness xL = 2 km. The
smoothing length αx = 1 km. The spatial resolution in DK83
was 2 km, but we choose it to be 1 km since we obtain a
more accurate solution with the doubled spatial resolution.
The vertical velocity perturbation is better captured in our
hydrostatic model with the increase in spatial resolution.
We can integrate the equation with a time-step size of 18 s.
Figure 2 also shows time tendency of the energy and the
profile of the vertical flux of horizontal momentum M,
which is defined by

M =
∫ ∞

−∞
ρu′w′ dx (3.7)

in terms of Reynolds stress, and this is normalized by the
pressure drag on the surface, approximated by

D = −π

4
ρ0NU0h2

0 (3.8)

for a linear mountain wave (Durran and Klemp, 1983).
As shown in (3.8), the buoyancy frequency N controls
the magnitude of the surface drag given the mountain
height and mean wind speed. The simulation is stable, as
implied by the energy tendency, and the wave structure
and magnitude of the perturbation are in good agreement
with the reference solution presented in DK83. For example,
the local minimum of the zonal wind perturbation around
z = 5 km is correctly captured, as seen by the contour
line of −24 × 10−3 m s−1 (see figure 1a in DK83 for the
analytic solution). The normalized momentum flux during
the quasi-steady state is about 0.998 (Figure 2) and this is
quite close to the theoretical value of 1. We observe that
the coefficient χ for the vertical sponge layer influences
the magnitude of the perturbation and the behaviour of the
vertical momentum flux (not shown). The larger χ becomes,
the weaker the momentum flux.

3.2. T2: Linear hydrostatic flow in P95

The height of the hill h0 is the same as DK83, but the hill
is broader and the uniform initial wind speed is stronger
(32 m s−1 instead of 20 m s−1). Also the domain size is larger,
with Lx = 512 km and Lz = 20 km. We use the same spatial
resolution $x = 3.2 km and $z = 0.25 km as in P95. In
our simulations $t can be up to 36 s, with the smoothing
scale αx = 3.2 km for the result shown in this article. In
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Figure 2. The zonal wind (u′), vertical velocity (w′), time tendency of the total energy (H) and potential energy (PE) and the vertical profile of the
normalized momentum flux. We display here 1000u′ and 1000w′. The contour interval is 6 × 10−3 m s−1 for the zonal wind and 0.6 × 10−3 m s−1 for
the vertical wind. They are the solution at t = 10 h, when it is quasi-steady. The momentum flux at 10 h is shaded (red in the online article) and the flux
at earlier integration times displayed in dashed lines (blue in the online article). See text for more details. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

P95, zB is not explicitly given, but they suggest that zB = Lz
− λz, where λz is the vertical wavelength of the dominant
wave. The wavelength is λz = 2πU0/N so that the bottom
of the sponge layer zB is estimated to be 9.29 km. For the
lateral sponge zone, we choose the thickness xL = 2 km as
in T1. Figure 3(a) shows the result from the experiment
with the P95 type of vertical sponge layer and Figure 3(b)
shows the result with the DK83 type of sponge layer. In
both simulations we use the P95 type of lateral sponge
zone. The wave structure is similar in each case and also
similar to the reference solution in P95, but the magnitude
of the perturbation in Figure 3(a) is slightly weaker. The
momentum flux is well resolved in both experiments and
close to the analytical estimation.

4. Representation of moist processes

We consider here highly simplified condensation and
evaporation processes explicitly resolved over particles. We
summarize the notation for the variables associated with
moist processes:

md dry air mass component

mv mass of water-vapour component

mc mass of liquid water component

rv mixing ratio of water vapour, rv = mv/md

rc cloud water, rc = mc/md

rs mixing ratio of liquid water

rt total moisture content of an air parcel, rt = rv + rc

L latent heat of vaporization at 0 ◦C = 2.5 ×106 J kg−1

Rv specific gas constant of water vapour=461.5 J kg−1 K−1

To account for liquid water loading and water vapour in the
reversible moist process, the ideal gas equation in the moist
environment can be expressed by

p = ρRdT
1 + rv/ε

1 + rt
, (4.1)

where ε = Rd/Rv ≈ 0.622, the ratio of the gas constant of
dry air to water vapour. Accordingly, hydrostatic balance is
defined by

dπ

dz
= − g

cpθ

1 + rt

1 + rv/ε
. (4.2)

The relation between π and µ = ρθ becomes

π =
[

µ

µ0

(
1 + rv

ε

1 + rt

)]κ/(1−κ)

. (4.3)

Given an initial condition, the density over the position of a
particle xα,γ+1/2 can be approximated by

ρα,γ+1/2 =
pα,γ+1/2

RTα,γ+1/2

1 + rvα,γ+1/2/ε

1 + rtα,γ+1/2

. (4.4)

We assign the (total) mass of the ‘moist particle’ as mα,γ+1/2
≈ ρα,γ+1/2(t = 0)$a$c. This is done at the initial time and
the mass of the particle remains unchanged in time. Using
the hydrostatic equation (4.2), we calculate the vertical
mesh position zi,γ+1/2 and the pressure gradient force for
the particles is given by

FP
x,α,γ+1/2 = −cpmα,γ+1/2 θα,γ+1/2

×
∑

i




(

µi,γ+1/2

µ0

1 + rvi,γ+1/2/ε

1 + rti,γ+1/2

)κ/(1−κ)

∇xψi(xα,γ+1/2)



 .

(4.5)
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Figure 3. The same as Figure 2, except that the contour interval is 5 × 10−3 m s−1 for the zonal wind and 0.5 × 10−3 m s−1 for the vertical wind. (a) T2
with the vertical sponge layer of P95. (b) T2 with the vertical sponge layer of DK83. The P95 type of lateral sponge zone is used in both simulations. This
figure is available in colour online at wileyonlinelibrary.com/journal/qj

Even in the absence of phase changes, rsα,γ+1/2 on the
particles at each time t needs to be calculated if the pressure
and temperature approximated at the position have been
changed. We use Bolton’s formula (1980) for the saturated
vapour pressure:

esα,γ+1/2 = 6.11 exp
[

17.67(Tα,γ+1/2 − 273)

243.5 + Tα,γ+1/2 − 273

]
, (4.6)

where es is in hPa. Then we obtain the saturation mixing
ratio rs:

rsα,γ+1/2 ≈ ε
esα,γ+1/2

(pα,γ+1/2 − esα,γ+1/2 )
. (4.7)

The thermodynamic equations for the phase conversion
processes are similar to those for the moisture budget
in Klemp and Wilhelmson (1978), but we do not
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Figure 4. The same as Figure 2, except for some parameters given for the initial set-up. (a) Dry simulation with RH = 0% and surface temperature
T0= 273 K. (b) The same as (a), but RH = 100%. (c) RH = 100% and T0= 280 K. See text for details. This figure is available in colour online at
wileyonlinelibrary.com/journal/qj

include any numerical diffusion terms or subgrid turbulent
parametrization. The prognostic equations for the two moist
components –water vapour and condensed liquid water
–and the potential temperature are given by

drv

dt
= δ(rv, rc)

drs

dt
,

drc

dt
= −δ(rv, rc)

drs

dt
, (4.8)

d ln θ

dt
= − L

cpT

drv

dt
.

The Heaviside function δ(rv, rc) has been introduced to
represent phase conversions that occur under the conditions

δ(rv, rc) =
{

1 for rv ≥ rs or rc > 0,

0 for rv < rs and rc = 0.

We assume that the phase conversions take place over each
particle and the moist components compose the total mass
of the particle. The latent heat of vaporization (L) does
indeed vary with the temperature, but we take it as constant
for the numerical experiments, where the effect is negligible
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Figure 4. (Continued) This figure is available in colour online at wileyonlinelibrary.com/journal/qj

for the purpose of this study. The total water content rt is
conserved in the absence of rain and turbulent mixing.

Once the parcel is saturated, rv − rs > 0, the excess
is converted into liquid water and added to rc. The new
rv becomes equal to rs. The change of saturation mixing
ratio $rs and the associated change of the temperature $T
through phase conversion is approximated by

$rs ≈ rs − rv

1 + L2rs/(cpRvT2)
, (4.9)

$T ≈ −L$rs

cp
. (4.10)

The derivation of the equation for $rs is described in
Appendix A. To ensure the values of rc and rv remain non-
negative and rt is invariant, we limit $rs = max($rs, rv)
for condensation and $rs = min($rs, −rc) for evaporation.
Subsequently, we can update the mixing ratio of water
vapour, liquid water and potential temperature using (4.8).
Then, the mesh height zi,γ+1/2 is calculated to satisfy a
new hydrostatic balance after the occurrence of phase
changes. To be consistent with (4.2) and (4.8), the energy
(E = V + T + Q) of the system has contributions

V =
∑

i,γ

[
cvµ0

[
µi,γ+1/2

µ0

(
1 + rvi,γ+1/2/ε

1 + rti,γ+1/2

)]1/(1−κ)

+ gρi,γ+1/2zi,γ+1/2

]
$x $zi,γ+1/2, (4.11)

T = 1

2

∑

α,γ

mα,γ+1/2 |ẋα,γ+1/2|2, (4.12)

Q = L
∑

α,γ

rvα,γ+1/2 mα,γ+1/2. (4.13)

4.1. T3: Linear dry/moist hydrostatic flow compared with
DK83

As described in the literature (e.g. DK83), the strength of the
orographic wave can diminish when moisture is present. The
temperature profile is calculated given stability N = 0.0132
s−1 with surface temperature T0 = 273 K. The approximate
Scorer parameter l = [N2/U2

0 − (∂2U0/∂
2z)/U0]1/2 can be

constant with height, as discussed in DK83. For test T3 we
use the same numerical set-up as for test T1, except $t = 9 s.
To obtain a stable moist solution in the test with a higher
surface temperature than 273 K, a smaller time-step size
than $t = 18 s is required. Figure 4(a) shows the result from
the dry simulation and Figure 4(b) shows the result from the
moist simulation with relative humidity RH = 100% with
rc = 0 initially. In comparison with the dry simulation with
RH = 0% (Figure 4(a)), the wavelength is longer and the
perturbation is weaker. The theoretical vertical wavelength
λz = 2πU/N might increase as the stability is reduced
due to the presence of moist processes. We approximate
the first vertical half-wavelength of numerical solutions by
examining the height at which the contour of the isentropic
surface becomes a mirror image of the isolated hill (DK83).
The first vertical half-wavelength is about 4.5 km in the test
without moisture (RH = 0%), while it is about 7.5 km in the
moist simulation. As in DK83, we compare the momentum
flux in this test with an analytical estimation using the
approximate moist stability Nm suggested in Durran and
Klemp (1982). For comparison, we denote the reference
magnitude of momentum flux of the dry case by D, defined
in (3.8). The approximate moist stability is Nm = 0.008 s−1

at the surface given T0 = 273 K and RH = 100%. The
momentum flux can be reduced to 0.61D theoretically, if
Nm replaces N in (3.8). The vertical mean (0 ∼ 8 km) of
the momentum flux in Figure 4(a) is about 0.56D, which is
lower than the expected value of 0.61D. In DK83, note that
the momentum flux is about 0.4D instead of the theoretical
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Figure 5. The same as Figure 4(a) and (b), except that h0 = 1 km, Lz = 32 km and the contour interval is 6 m s−1 for zonal wind and 0.6 m s−1 for vertical
wind perturbation. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

estimation 0.47D in the partially cloudy case, while the
difference is smaller in the ‘everywhere cloudy’ case in DK83.
In our simulation it is cloudy in the layer below about 5 km.
To examine the effect of the cloudiness we retain the stability
N = 0.0132 s−1, but increase the surface temperature to
280 K so that more latent heat can be released. This initial
set-up yields the approximate moist stability Nm = 0.006 s−1

and the depth of the cloudy layer extends to 6.5 km. The
analytic estimation of surface drag is reduced to 0.46D with
the decreased stability. The vertical mean of the momentum
flux is about 0.47D in our simulation (Figure 4(c)), which
shows that the vertical profile of momentum flux becomes

closer to the theoretical analysis as cloudiness increases.
Those results from T3 experiments indicate that the effect of
moist processes on the characteristics of a mountain wave is
reasonably represented by the hydrostatic HPM.

4.2. T4: Nonlinear dry/moist hydrostatic flow

We use the same initial set-up as for the first two tests
in T3, except that h0 = 1 km, $t = 18 s and the vertical
domain size Lz = 32 km for the nonlinear test. We increase
the domain size to implement a very thick sponge layer
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for highly nonlinear mountain waves (Durran and Klemp,
1983), but maintain the same vertical resolution as in T3.
The height of the mountain is increased from zero to 1 km
gradually for an hour to avoid the generation of instabilities.
During this period, we also add a frictional damping,

FF
α,γ+1/2 = −β mα,γ+1/2

(
ẋα+1,γ+1/2

− 2ẋα,γ+1/2 + ẋα−1,γ+1/2
)
,

to the right-hand side of the momentum equation (2.17). A
damping coefficient β = 2/$t is used in this test. Since the
damping is applied only while the height is increased, the
variational relation would not be affected after the height of
mountain reaches 1 km. The momentum flux is normalized
by Dn = −(π/4)ρ0NU0h2

0

[
1 + (7/16)(h0 l)2

]
(Miles and

Huppert, 1969) instead of (3.8). Figure 5(a) shows that the
dry solution is stable and represents a similar wave structure
to that of the linear counterpart (Figure 4(a)). However,
the momentum flux diverges with height, especially above
4 km where streamline reversal occurs. Non-hydrostatic
effects may play an important role in this highly nonlinear
case (Durran and Klemp, 1983) and the vertical transport
of momentum might not be adequately represented by a
hydrostatic model. Durran (1995) suggests that the wave-
induced momentum fluxes need to be parametrized for a
complete description of subgrid-scale forcing related to wave
propagation. Such aspects would certainly require further
investigation. Figure 5(b) shows that the nonlinear moist
wave is weakened by latent heat releases, as in the linear test
T3. The results from the nonlinear tests show that our model
performs stably in the more challenging nonlinear case, and
produces wave structures that are qualitatively similar to
those of the linear cases.

5. Discussion and outlook

We have extended the HPM method to a hydrostatic
vertical-slice model and evaluated its performance using
some idealized tests of both dry and moist atmospheres. It is
shown that the model captures the fundamental features of
an orographic gravity wave and the results are quantitatively
in good agreement with reference solutions. In particular,
moist processes are newly implemented in an HPM model
and the moist effect on the gravity wave is reasonably well
reproduced. We show the potential of the hydrostatic HPM
for a dynamical core suitable for climate simulations, where
conservation of mass of air, water and long-lived tracers is
essential and no artefactual generation of energy is desirable.

As the method stands, particles adjust vertically
conforming to the moving mesh. However, we may need to
consider a redistribution of particles when diabatic processes
lead to convective instability. A simple solution might be
vertically exchanging particles between layers dependent on
heating/cooling, to resemble convection. In future we will
test such vertical exchanges of particles, aiming to develop a
convective parametrization method for the hydrostatic HPM
to describe cumulus convection and the response of larger-
scale circulations. One can anticipate in such situations
that the horizontal velocity distribution of particles may
tend to be non-uniform. To prevent this, we may need to
include a diffusion mechanism. This implies that we leave the
strictly Lagrangian variational approach, but it would add
computational flexibility. We will investigate the technical
aspect of particle remapping further in future publications.
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A. Appendix

We use the simplified description of a moist process
suggested in Haltiner and Williams (1980). The con-
densation/evaporation of water vapour should satisfy the
following relation:

rv + $rv = rs(T + $T, p) (A.1)

during the time interval$t, assuming pressure is unchanged.
This assumption is relevant for the hydrostatic regime. The
term on the right-hand side can be approximated using the
Taylor expansion

rs(T + $T, p) ≈ rs(T) +
(

∂rs

∂T

)

p
$T. (A.2)

Since

rs = ε

(
es

p

)
(A.3)

and

des

dT
= Les

RvT2
, (A.4)

we rewrite the Clausius–Clapeyron equation in terms of rs
as

drs

dT
= Lrs

RvT2
. (A.5)

Since $T = −L$rv /cp by the thermodynamic law, we
combine (A.1) and (A.2) and use (A.5) to obtain

rv + $rv ≈ rs +
(

Lrs

RvT2

) (−L$rv

cp

)
. (A.6)

Thus,

$rv ≈ rs − rv +
(

Lrs

RvT2

) (−L$rv

cp

)
. (A.7)

Solving this for $rv yields

$rv ≈ rs − rv

1 +
(

L2rs
cpRvT2

) . (A.8)
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