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Abstract
As power markets become liberalised and include more intermittent generation, the trade of reserve energy
will become more important. We propose a novel bidding mechanism to integrate power and reserve
markets. It facilitates planning for bidding in both markets and adds expressivity to reserve bids1.

1 Introduction
The currently most popular power market design is to conduct two separate ahead-markets for each hour
of the following day - one market to trade binding commitments to transfer power (the day-ahead market),
and one market to trade optional intervals of power (the reserve market). In a real-time balancing phase,
the differences between the outcome of the day-ahead market and actual demand are settled by executing
parts of the intervals sold in the reserve market. The System Operator (SO) most often functions as the
market maker, who, in our case, clears both markets simultaneously. Formally, during the day-ahead phase,
a generator g, with a capacity ∈ [PL

g , P
U
g ] and a convex cost function cg(P ), sells a default amount of power

P def
g and offers an optional interval [0, P opt

g ]. During balancing, the SO can execute P exe
g ∈ [0, P opt

g ] per
generator g. In both phases combined, g will sell at least P def

g and at most Pmax
g = P def

g + P opt
g ≤ PU

g .
The trade volume of reserve power is expected to grow: We are faced with decreasing certainty of

supply caused by the advent of intermittent generation, i.e. renewables like solar and wind, and hope to use
technologies like storage systems and Demand Response to manage this problem. This paper explores this
new research challenge, beginning with the standard use case of reserve capacity offered by supply.

Although there is in fact only one product (power capacity) which can be offered in both markets, the
bids for fixed power and reserves are currently made separately. This causes several problems for bidders.
First, the success in one market depends strongly on the accuracy of assumptions made about the outcomes
in the other market - this includes, but is not limited to, the problem of calculating opportunity costs for
unsold parts of P opt

g . It would simplify this planning problem if g could make assumptions about the
outcome for P opt

g while constructing the bid for P def
g , and vice versa. Second, one convex cost function

cannot be represented by two convex bid functions - therefore, the bid for reserves are currently restricted to
only a constant price for each activated unit in P exe

g . As the costs to produce P exe
g are convex, this leads to

imprecise bids by design, which increases the volatility of prices.
We propose a novel, bundled bid format for generators and an associated clearing mechanism for an

integrated power- and reserve market. The bid format helps g with the problem of bidding in two dependent
markets by allowing to include an assumption about the ratio between P def

g and P opt
g . It also allows to

offer P opt
g with a convex price function, which allows for a constant per-unit profit, independent of P exe

g .
The profit maximisation problem which g faces becomes less complex and its outcomes can be more sta-
ble against uncertainty and misconceptions about market outcomes. We formulate the two-stage clearing
process of the SO as a Strictly Convex Quadratic Programming problem [1], which we have successfully
implemented in the well-known electricity network simulation framework AMES [3] (which incorporates
transmission constraints into power pricing).

1This work is a part of the IDeaNeD project and sponsored by Agentschap NL, a research funding agency of the dutch ministry of
economic affairs, in the IOP-EMVT program. It has also been presented at the AAMAS 2011 conference[2].



2 The bid format
Generator g maps amounts of power to total prices via a quadratic bid function. Quadratic functions are
widely used to model bids in power markets because they are sufficiently realistic and their derivatives are
continuous, and thus marginal prices are well-defined. To also express bidding for reserve capacity P opt

g

within these supply functions, we propose that g fixes the ratio r = P opt
g /Pmax

g for each bid, such that
knowing P def

g determines P opt
g = P def

g
r

1−r . For example, with r = 1
3 we denote that P def

g will certainly
be sold and [0, P opt

g ] = [0, ( 13P
def
g )/ 2

3 ] is the optional interval. Thus, the market clearing determines the
two intervals [0, P def

g ] and [P def
g , Pmax

g ], allowing g to price P def
g and P exe

g on the same function.
At r = 0, no flexibility is offered and the generator has full certainty how much he sells (P def

g =
Pmax
g , P opt

g = 0). This resembles traditional bid functions with no reserve offer. At r = 1, everything is
flexible and the SO will assume full flexibility over P exe

g in the balancing phase (P def
g = 0, P opt

g = Pmax
g ).

Generator g can place several bids bg,r, each using a different r ∈ [0, 1].
With values for r > 0, g will want to account for costs of (potentially) lost opportunity in the bid. He

can increase the slope of the bid function, such that the expected total revenue, when taking an expected
probability distribution over P exe

g into account, compensates these costs.

3 The market mechanism
We now formulate a Constraint Satisfaction Problem for the day-ahead phase. The SO conducts a one-shot
auction. Demand is modelled by agents l ∈ L, where L stands for Load-serving-entities (LSE), who only
submit the requested amounts for fixed power P def

l and reserve power P opt
l . The SO chooses one bid bg,rg

per generator g and announces a market clearing price γdef , which defines how much each unit in
∑G

g P
def
g

will be paid for. The marginal clearing price of the balancing phase γexe will be higher - its theoretical
maximum is known as it will also be determined from the winning bids bg,rg . Via γdef , each generator can
look up on bg,rg how much power P def

g he is committed to supply and this also tells him how much reserve
capacity P opt

g he needs to keep available. The optimisation goal of the SO is to minimise generation costs.
One approach is to only minimise the costs which are known for sure in this phase (

∑G
g P

def
g γdef ), another

is to include an estimation of the costs of the balancing phase (
∑G

g P
exe
g γexe). The first constraint to this

optimisation requires that demand is satisfied:
∑G

g P
def
g =

∑L
l P

def
l . Secondly, the SO needs to make sure

that each generator will stay within his generation limits: PL
g ≤ P def

g ≤ PU
g (1−rg). Each generator agrees

to hold back reserve capacity P opt
g = P def

g
r

1−r . The overall reserve capacity needs to match the demand

for reserves. Hence, we add the third constraint
∑G

g P
opt
g ≥

∑L
l P

opt
l .

The number of functions each generator can bid is a parameter of the mechanism. This is a trade-off
between the time complexity of finding a solution and the freedom of the generators to bid on many r.

During the balancing phase, LSEs announce their balancing requirements P exe
l ∈ [0, P opt

l ]. In order to
find γexe and thereby allocate each generator a value for P exe

g ∈ [0, P opt
g ], the SO translates the interval

[P def
g , Pmax

g ] of each successful bid bg,rg from the day-ahead phase into a new bid function bbalg in the
interval [0, P opt

g ]. These translated bids are then used to minimise
∑G

g P
exe
g γexe.
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