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Abstract. While Kolmogorov complexity is the accepted absolute mea­
sure of information content of an individual finite object, a similarly ab­
solute notion is needed for the relation between an individual data sample 
and an individual model summarizing the information in the data, for 
example, a finite set where the data sample typically came from. The 
statistical theory based on such relations between individual objects can 
be called algorithmic statistics, in contrast to ordinary statistical theory 
that deals with relations between probabilistic ensembles. We develop a 
new algorithmic theory of typical statistic, sufficient statistic, and mini­
mal sufficient statistic. 

1 Introduction 

We take statistical theory to ideally consider the following problem: Given a 
data sample and a family of models (hypotheses) one wants to select the model 
that produced the data. But a priori it is possible that the data is atypical for 
the model that actually produced it, or that the true model is not present in the 
considered model class. Therefore we have to relax our requirements. If selection 
of a "true" model cannot be guarantied by any method, then as next best choice 
"modeling the data" as well as possible, irrespective of truth and falsehood of the 
resulting model, may be more appropriate. Thus, we change 'true" to "as well 
as possible." The latter we take to mean that the model expresses all significant 
regularities present in the data. 

Probabilistic Statistics: In ordinary statistical theory one proceeds as fol­
lows, see for example [3]: Suppose two random variables X, Y have a joint prob­
ability mass function p(x, y) and marginal probability mass functions p(x) and 
p(y). Then the (probabilistic) mutual information I(X; Y) is the relative entropy 
between the joint distribution and the product distribution p(x)p(y): 

I(X;Y) = LLP(x,y)log ~~~·~\· 
:i: y p p y 

(1) 

Every function T(D) of a data sample D-like the sample mean or the sample 
variance-is called a statistic of D. Assume we have a probabilistic ensemble of 
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models, say a family of probability mass functions {!9} indexed by 0, together 
with a distribution over 9. A statistic T(D) is called sufficient if the probabilistic 
mutual information 

I(O; D) = I(9; T(D)) (2) 

for all distributions of 9. Hence, the mutual information between parameter and 
data sample is invariant under taking sufficient statistics and vice versa. That is 
to say, a statistic T(D) is called sufficient for 0 if it contains all the information 
in D about 9. For example, consider n tosses of a coin with unknown bias 9 with 
outcome D = d1d2 ... dn where di E {O, 1} (1 :=::; i :=::; n). Given n, the number of 
outcomes "l" is a sufficient statistic for 9: the statistic T(D) = I:~=l di. Given 
T, every sequence with T(D) "l"s are equally likely independent of parameter 9: 
Given k, if D is an outcome of n coin tosses and T(D) = k then Pr(D I T(D) = 
k) = G)-1 and Pr(D I T(D) =f. k) = 0. This can be shown to imply (2) and 
therefore T is a sufficient statistic for 9. According to Fisher [4]: "The statistic 
chosen should summarise the whole of the relevant information supplied by the 
sample. This may be called the Criterion of Sufficiency . . . In the case of the 
normal curve of distribution it is evident that the second moment is a sufficient 
statistic for estimating the standard deviation." Note that one cannot improve 
on sufficiency: for every (possibly randomized) function T we have 

I(O; D) :?: 1(0; T(D)), (3) 

that is, mutual information cannot be increased by processing the data sample 
in any way. All these notions and laws are probabilistic: they hold in an average 
sense. Our program is to develop a sharper theory, which we call algorithmic 
statistics to distinguish it from the standard probabilistic statistics, where the 
notions and laws hold in the individual sense. 

Algorithmic Statistics: In algorithmic statistics, one wants to select an in­
dividual model (described by, say, a finite set) for which the data is individually 
typical. To express the notion "individually typical" one requires Kolmogorov 
complexity-standard probability theory cannot express this. The basic idea is 
as follows: In a two-part description, we first describe such a model, a finite set, 
and then indicate the data within the finite set by its index in a natural ordering 
of the set. The optimal models make the two-part description as concise as the 
shortest one-part description of the data. Moreover, for such optimal two-part 
descriptions it can be shown that the data will be "individually typical" for 
the model concerned. A description of such a model is an algorithmic sufficient 
statistic since it summarizes all relevant properties of the data. Among the al­
gorithmic sufficient statistics a simplest one (the algorithmic minimal sufficient 
statistic) is best in accordance with Ockham's razor principle since it summa­
rizes the relevant properties of the data as concisely as possible. In probabilistic 
data or data subject to noise this involves separating regularities (structure) in 
the data from random effects. 

Background and Related Work: At a Tallinn conference in 1973, A.N. 
Kolmogorov formulated this task rigorously in terms of Kolmogorov complexity 
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(according to (14, 2]). This approach can also be viewed as a two-part code sep­
arating the structure of a string from meaningless random features. Cover [2, 3] 
interpreted this approach as (sufficient) statistic. Related aspects of "randomness 
deficiency" (formally defined later in (11)) were formulated in [9, 10] and stud­
ied in (14, 17). Algorithmic mutual information, and the associated non-increase 
law, were studied in (11, 12). Despite its evident epistimological prominence in 
the theory of hypothesis selection and prediction, only some scattered aspects 
of the subject have been studied before, for example as related to the "Kol­
mogorov structure function" (14, 2), and "absolutely non-stochastic objects" (14, 
17, 15, 18), notions also defined or suggested by Kolmogorov at the mentioned 
meeting. For the relation with inductive reasoning according to minimum de­
scription length principle see (16). The entire approach is based on Kolmogorov 
complexity [8) (also known as algorithmic information theory). For a general in­
troduction to Kolmogorov complexity, its mathematical theory, and application 
to induction see (7). 

Results: We develop the outlines of a new general mathematical theory of 
algorithmic statistics, in this initial approach restricted to models that are finite 
sets. A set Sis "optimal" if the best two-part description consisting of a descrip­
tion of S and a straightforward description of x as an element of S by an index of 
size log ISI, is as concise as the shortest one-part description of x. Descriptions 
of such optimal sets are algorithmic sufficient statistics, and the shortest de­
scription among them is an algorithmic minimal sufficient statistic. The mode of 
description plays a major role in this. We distinguish between "explicit" descrip­
tions and "implicit" descriptions-that are introduced in this paper as a proper 
restriction on recursive enumeration based description mode. We establish new 
precise range constraints of cardinality and complexity imposed by implicit (and 
hence explicit) descriptions for typical and optimal sets, and exhibit for the first 
time concrete algorithmic minimal (or near-minimal) sufficient statistics for both 
description modes. There exist maximally complex objects for which no finite set 
of less complexity is an explicit sufficient statistic-such objects are absolutely 
non-stochastic. This improves a result of Shen (14] to the best possible. 

Application: In all practicable inference methods, one must use background 
information to determine the appropriate model class first-establishing what 
meaning the data can have-and only then obtain the best model in that class by 
optimizing its parameters. For example in the "probably approximately correct 
(PAC)" learning criterion one learns a concept in a given concept class (like a 
class of Boolean formulas over n variables); in the "minimum description length 
(MDL)" induction, (1), one first determines the model class (like Bernoulli pro­
cesses). Note that MDL has been shown to be a certain generalization of the 
(Kolmogorov) minimum sufficient statistic in [16). 

To develop the onset of a theory of algorithmic statistics we have used the 
mathematically convenient model class consisting of the finite sets. An illustra­
tion of background information is Example 3. An example of selecting a model 
parameter on the basis of compression properties is the precision at which we 
represent the other parameters: too high precision causes accidental noise to be 
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modeled as well, too low precision may cause models that should be distinct 
to be confused. In general, the performance of a model for a given data sam­
ple depends critically on what we may call the "degree of discretization" or the 
"granularity" of the model: the choice of precision of the parameters, the number 
of nodes in the hidden layer of a neural network, and so on. The granularity is 
often determined ad hoe. In [5], in two quite different experimental settings the 
MDL predicted best model granularity values are shown to coincide with the 
best values found experimentally. 

2 Kolmogorov Complexity 

We assume familiarity with the elementary theory of Kolmogorov complexity. 
For introduction, details, and proofs, see [7]. We write string to mean a finite 
binary string. Other finite objects can be encoded into strings in natural ways. 
The set of strings is denoted by { 0, 1} *. The length of a string x is denoted 
by l(x), distinguishing it from the cardinal'ity ISI of a finite set S. The (prefix) 
Kolmogorov complexity, or algorithmic entropy, K(x) of a string x is the length 
of a shortest binary program to compute x on a universal computer (such as a 
universal Turing machine). Intuitively, K(x) represents the minimal amount of 
information required to generate x by any effective process, [8]. We denote the 
shortest program for x by x*; then K(x) = l (x*). (Actually, x* is the first shortest 
program for x in an appropriate standard enumeration of all programs for x such 
as the halting order.) The conditional Kolmogorov complexity K(x I y) of x 
relative toy is defined similarly as the length of a shortest. program to compute 
x if y is furnished as an auxiliary input to the computation. 

+ From now on, we will denote by < an inequality to within an additive con-

stant, and by 4:: the situation when both ;( and !,. hold. We will also use <: to 
denote an inequality to within an multiplicative constant factor, and= to denote 
the situation when both <: and ::> hold. 

We will use the "Additivity of Complexity" (Theorem 3.9.1 of [7]) property 
(by definition K(x,y) = K((x,y))): 

K(x,y) 4:: K(x) + K(y Ix*)~ K(y) + K(x I y*). (4) 

The conditional version needs to be treated carefully. It is 

K(x,y I z) ~ K(x I z) + K(y I x,K(x I z),z). (5) 

Note that a naive version 

K(x,y I z) 4:: K(x I z) + K(y I x*,z) 

is incorrect: taking z = x, y = K(x), the left-hand side equals K(x* I x), and 
the right-hand side equals K(x Ix)+ K(K(x) I x*, x) ~ 0. 

We derive a (to our knowledge) new "directed triangle inequality" that is 
needed below. 
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Theorem 1. For all x,y,z, 

K(x I y*) .:2 K(x,z I y*) ;( K(z I y*) + K(x I z*). 

Proof. Using (4), an evident inequality introducing an auxiliary object z, and 
twice ( 4) again: 

K(x, z I y*) :!: K(x,y, z) - K(y) < K(z) + K(x I z*) + K(y I z*) - K(y) 

:!: K(y, z) - K(y) + K(x I z*) :!: K(x I z*) + K(z I y*). 

0 

This theorem has bizarre consequences. Denote k = K (y) and substitute 
k = z and K(k) = x to find the following counterintuitive corollary: 

Corollary 1. K(K(k) I y,k) :!: K(K(k) I y*) < K(K(k) I k*)+K(k I y,k) :!: 0. 
We can iterate this: given y and K(y) we can determine K(K(K(y))) in 0(1) 
bits. So K(K(K(k))) I y, k) i 0 and so on. 

If we want to find an appropriate model fitting the data, then we are con­
cerned with the information in the data about such models. To define the al­
gorithmic mutual information between two individual objects x and y with no 
probabilities involved, rewrite (1) as 

L LP(x,y)[- logp(x) - logp(y) + logp(x, y)], 
x y 

and note that - logp(s) is the length of the prefix-free Shannon-Pano code for 
s. Consider - logp(x) - logp(y) + logp(x, y) over the individual x, y, and re­
place the Shannon-Fano code by the "shortest effective description" code. 1 The 
information in y about x is defined as 

I(y: x) = K(x) - K(x I y*) i K(x) + K(y) - K(x, y), (6) 

where the second equality is a consequence of (4) and states the celebrated result 
that the information between two individual objects is symmetrical, I(x : y) :!: 
J(y : x), and therefore we talk about mutual information. 2 In the full paper [6] 
we show that the expectation of the algorithmic mutual information I(x: y) is 
close the the probabilistic mutual information I ( x; y )-which corroborates that 

1 The Shannon-Fano code has optimal expected code length equal to the entropy with 
respect to the distribution of the source [3). However, the prefix-free code of shortest 
effective description, that achieves code word length K(s) for source word s, has 
both about expected optimal code word length and individual optimal effective code 
word length, [7]. 

2 The notation of the algorithmic (individual) notion I(x: y) distinguishes it from the 
probabilistic (average) notion I(x; y). We deviate slightly from [7] where I(y: x) is 
defined as K(x) - K(x I y). 
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the algorithmic notion is a sharpening of the probabilistic notion to individual 
objects. 

The mutual information between a pair of strings x and y cannot be in­
creased by processing x and y separately by some deterministic computations, 
and furthermore, randomized computation can increase the mutual information 
only with negligible probability, [11, 12]. Since the first reference gives no proofs 
and the second reference is not easily accessible, in the full version of this paper 
[6] we use the triangle inequality of Theorem 1 to give new simple proofs of this 
information non-increase. 

3 Algorithmic Model Development 

In this initial investigation, we use for mathematical convenience the model class 
consisting of the family of finite sets of finite binary strings, that is, the set of 
subsets of {O, 1}*. 

3.1 Finite Set Representations 

Although all finite sets are recursive there are different ways to represent or 
specify the set. We only consider ways that have in common a method of recur­
sively enumerating the elements of the finite set one by one, and which differ 
in knowledge of its size. For example, we can specify a set of natural numbers 
by giving an explicit table or a decision procedure for membership and a bound 
on the largest element, or by giving a recursive enumeration of the elements to­
gether with the number of elements, or by giving a recursive enumeration of the 
elements together with a bound on the running time. We call a representation 
of a finite set S explicit if the size ISI of the finite set can be computed from it. 
A representation of Sis implicit if the size ISI can be computed from it only up 
to a factor of 2. 

Example 1. In Section 3.4, we will introduce the set Sk of strings whose elements 
have complexity:::; k. It will be shown that this set can be represented implicitly 
by a program of size K(k), but can be represented explicitly only by a program 
of size k. 

Such representations are useful in two-stage encodings where one stage of the 
code consists of an index in S of length :! log ISI. In the implicit case we know, 
within an additive constant, how long an index of an element in the set is. In 
general S* denotes the shortest binary program from which S can be computed 
and whether this is an implicit or explicit description will be clear from the 
context. 

The worst case, a recursively enumerable representation where nothing is 
known about the size of the finite set, would lead to indices of unknown length. 
We do not consider this case. We may use the notation 

Sim pi, Bexpl 
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for some implicit and some explicit representation of S. When a result applies to 
both implicit and explicit representations, or when it is dear from the context 
which representation is meant, we will omit the subscript. 

3.2 Optimal Models and Sufficient Statistics 

In the following we will distinguish between "models" that are finite sets, and 
the "shortest programs" to compute those models that are finite strings. Such a 
shortest program is in the proper sense a statistics of the data sample as defined 
before. In a way this distinction between "model" and "statistics" is artificial, 
but for now we prefer clarity and unambiguousness in the discussion. 

Consider a string x of length n and prefix complexity K(x) = k. We identify 
the structure or reg'ularities in x that are to be summarized with a set S of which 
x is a random or typical member: given S (or rather, an (implicit or explicit) 
shortest program S* for S), x cannot be described much shorter than by its 

+ 
maximal length index in S. Formally this is expressed by K ( x I S*) > log IS I· 
More formally, we fix some constant 

and require K(x I S*) ~ log ISI - (3. We will not indicate the dependence on 

(3 explicitly, but the constants in all our inequalities ( <) will be allowed to be 

functions of this {3. This definition requires a finite S. In fact, since K(x I S*) .d:: 
K(x), it limits the size of S to 0(2k) and a set S (rather, the shortest program 
S* from which it can be computed) is a typical statistic for x iff 

K(x I S*) ~log ISI. (7) 

Depending on whether S* is an implicit or explicit program, our definition splits 
into implicit and explicit typicality. 

Example 2. Consider the set S of binary strings of length n whose every odd 
position is 0. Let x be element of this set in which the subsequence of bits in even 
positions is an incompressible string. Then S is explicitly as well as implicitly 
typical for x. The set {x} also has both these properties. 

Remark 1. It is not clear whether explicit typicality implies implicit typicality. 
Section 4 will show some examples which are implicitly very non-typical but 
explicitly at least nearly typical. 

There are two natural measures of suitability of such a statistic. We might 
prefer either the simplest set, or the largest set, as corresponding to the most 
likely structure 'explaining' x. The singleton set { x}, while certainly a typical 
statistic for x, would indeed be considered a poor explanation. Both measures 
relate to the optimality of a two-stage description of x using S: 

K(x) ~ K(x, S) ~ K(S) + K(x I S*) < K(S) +log ISI, (8) 
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where we rewrite K(x,S) by (4). Here, Scan be understood as either Simpl or 
Sexpl· Call a set S (containing x) for which 

K(x) :!::: K(S) +log \SI, (9) 

optimal. (More precisely, we should require K(x) ;::: K(S) +log \SI - /3.) Depend­
ing on whether K(S) is understood as K(S;mpI) or K(Sexp1), our definition splits 
into implicit and explicit optimality. The shortest program for an optimal set 
is a algorithmic sufficient statistic for x [3]. Furthermore, among optimal sets, 
there is a direct trade-off between complexity and logsize, which together sum to 
:!:: k. Equality (9) is the algorithmic equivalent dealing with the relation between 
the individual sufficient statistic and the individual data sample, in contrast to 
the probabilistic notion (2). 

Example 3. The following restricted model family illustrates the difference be­
tween the algorithmic individual notion of sufficient statistics and the proba­
bilistic averaging one. Following the discussion in section 1, this example also 
illustrates the idea that the semantics of the model class should be obtained 
by a restriction on the family of allowable models, after which the (minimal) 
sufficient statistics identifies the most appropriate model in the allowable family 
and thus optimizes the parameters in the selected model class. In the algorith­
mic setting we use all subsets of {O, l}n as models and the shortest programs 
computing them from a given data sample as the statistics. Suppose we have 
background information constraining the family of models to the n +I finite sets 
Sk = {x E {0,l}n: x = X1 ••. xn&L':~=IXi = k} (0 ~ k ~ n). Then, in the 
probabilistic sense for every data sample x = x1 •.• Xn there is only one single 
sufficient statistics: for L.':i x; = k this is T (x) = k with the corresponding model 
Sk. In the algorithmic setting the situation is more subtle. (In the following ex­
ample we use the complexities conditional n.) For x = x1 ... Xn with L.':; x; = ¥ 
taking Sa as model yields IS a I = ( ~ ) , and therefore log IS a I :!:: n - -21 log n. 

2 2 ~ 2 

The sum of K(S~ In) :!:: 0 and the logarithmic term gives :!:: n - ! logn for the 

right-hand side of (9). But taking x = 1010 ... 10 yields K(x\n) :!:: 0 for the left­
hand side. Thus, there is no algorithmic sufficient statistics for the latter x in 
this model class, while every x of length n has a probabilistic sufficient statistics 
in the model class. In fact, the restricted model class has algorithmic sufficient 
statistics for data samples x of length n that have maximal complexity with 
respect to the frequency of "l"s, the other data samples have no algorithmic 
sufficient statistics in this model class. 

Example 4. It can be shown that the set S of Example 2 is also optimal, and 
so is {x}. Typical sets form a much wider class than optimal ones: {x,y} is still 
typical for x but with most y, it will be too complex to be optimal for x. 

For a perhaps less artificial example, consider complexities conditional to the 
length n of strings. Let y be a random string of length n, let Sy be the set of 
strings of length n which have O's exactly where y has, and let x be a random 
element of Sy. Then x is a string random with respect to the distribution in 
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which l 's are chosen independently with probability 0.25, so its complexity is 
much less than n. The set Sy is typical with respect to x but is too complex to 
be optimal, since its (explicit or implicit) complexity conditional to n is n. 

It follows that (programs for) optimal sets are typical statistics. Equality (9) 
expresses the conditions on the algorithmic individual relation between the data 
and the sufficient statistic. Later we demonstrate that this relation implies that 
the probabilistic optimality of mutual information (1) holds for the algorithmic 
version in the expected sense. 

One can also consider notions of near-typical and near-optimal that arise 
from replacing the (3 above by some slow growing functions, such as O(logl(x)) 
or O(log k) as in [14, 15]. 

3.3 Properties of Sufficient Statistics 

We start with a sequence of lemmas that will be used in the later theorems. 
Several of these lemmas have two versions: for implicit and for explicit sets. In 
these cases, S will denote Simpl or Sexpl respectively. 

Below it is shown that the mutual information between every typical set and 
the datum is not much less than K(K(x)), the complexity of the complexity 
K(x) of the datum x. For optimal sets it is at least that, and for algorithmic 
minimal statistic it is equal to that. The number of elements of a typical set is 
determined by the following: 

Lemma 1. Let k = K (x). If a set S is {implicitly or explicitly) typical for x 
then I(x: S) ~ k - log ISI. 

Proof. By definition I(x: S) ~ K(x) - K(x I S*) and by typicality K(x IS*) :t: 
log 1s1. o 

Typicality, optimality, and minimal optimality successively restrict the range 
of the cardinality (and complexity) of a corresponding model for a datum x. The 
above lemma states that for (implicitly or explicitly) typical S the cardinality 
ISI = 8(2k-I(x:Sl). The next lemma asserts that for implicitly typical S the 
value I(x : S) can fall below K(k) by no more than an additive logarithmic 
term. 

Lemma 2. Let k = K (x). If a set S is {implicitly or explicitly) typical for x 

then I(x: S) > K(k)-K(I(x: S)) and log ISI ;( k- K(k) + K(I(x: S)). (Here, 
S is understood as Sirnpl or Sexpl respectively.) 

Proof. Writing k = K(x), since 

k ~ K(k, x) :t: K(k) + K(x I k*) (10) 

by (4), we have I(x: S) ~ K(x) - K(x IS*) ~ K(k) - [K(x IS*) - K(x I k*)]. 

Hence, it suffices to show K(x I S*) - K(x I k*) ;( K(I(x : S)). Now, from 
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an implicit description S* we can find ± Jog ISI :t: k - I(x : S) and to recover 
k we only require an extra K(I(x : S)) bits apart from S*. Therefore, K(k I 

+ . + S*) < K(l(x : S)). This reduces what we have to show to K(x I S*) < K(x I 
k*) + K(k IS*) which is asserted by Theorem 1. 

0 

The term I(x: S) is at least K(k) - 2logK(k) where k = K(x). For x of 

length n with k > n and K(k) >. l(k) :> logn, this yields I(x : S) > logn -
2loglogn. 

If we further restrict typical sets to optimal sets then the possible number of 
elements in S is slightly restricted. First we show that implicit optimality of a 
set with respect to a datum is equivalent to typicality with respect to the datum 
combined with effective constructability (determination) from the datum. 

Lemma 3. A set S is (implicitly or explicitly} optimal for x iff it is typical and 

K(S Ix*)± o. 
Proof. A set S is optimal iff (8) holds with equalities. Rewriting K(x, S) ± 
K(x) + K(S I x*) the first inequality becomes an equality iff K(S I x*) ± 0, and 
the second inequality becomes an equality iff K(x I S*) ±log ISI (that is, S is a 
typical set). 0 

Lemma 4. Let k = K(x). If a set S is (implicitly or explicitly} optimal for x, 

then I(x: S) ± K(S) > K(k) and log ISI < k - K(k). 

Proof. If Sis optimal for x, then k = K(x) ± K(S)+K(x IS*)± K(S)+log ISI. 

From S* we can find both K(S) ± l(S*) and ISI and hence k, that is, K(k) < 
K(S). We have l(x : S) ± K(S) - K(S I x*) ± K(S) by (4), Lemma 3, 

respectively. This proves the first property. Substitution of l(x : S) > K(k) in 
the expression of Lemma 1 proves the second property. 0 

3.4 A Concrete Implicit Minimal Sufficient Statistic 

A simplest implicitly optimal set (that is, of least complexity) is an implicit 
algorithmic minimal sufficient statistic. We demonstrate that Sk = {y: K(y) :::; 
k }, the set of all strings of complexity at most k, is such a set. First we establish 
the cardinality of Sk: 

Lemma 5. logjSkl ± k-K(k). 

Proof. The lower bound is easiest. Denote by k* of length K(k) a shortest pro­
gram fork. Every string s of length k - K(k) - c can be described in a self-

delimiting manner by prefixing it with k* c*, hence K ( s) .< k - c + 2 log c. For 
a large enough constant c, we have K(s) :::; k and hence there are D(2k-K(kl) 
strings that are in Sk. 

For the upper bound: by (10) all x E Sk satisfy K(x I k*) .< k - K(k) and 
there can only be 0(2k-K(k)) of them. o 
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k 

t 
l(x:Sl 

K(k) 

typical (initial constraint) 

0 
loglSI_. 

k-K(k) k 

Fig. 1. Range of typical statistics on the straight line J(x : S) ~ K(x) - log 151. 

From the definition of sk it follows that it is defined by k alone, and it is the 
same set that is optimal for all objects of the same complexity k. 

Theorem 2. The set Sk is implicitly optimal for every x with K(x) = k. Also, 
we have K(Sk) :1:: K(k). 

Proof. From k* we can compute both k and k-l(k*) = k-K(k) and recursively 
enumerate Sk. Since also log jSkj :1:: k - K(k) (Lemma 5), the string k* plus a 

fixed program is an implicit description of Sk so that K(k) > K(Sk). Hence, 

K(x) 3;. K(Sk) +log jSkj and since K(x) is the shortest description by definition 

equality (:!:) holds. That is, Sk is optimal for x. By Lemma 4 K(Sk) > K(k) 
which together with the reverse inequality above yields K(Sk) :1:: K(k) which 
shows the theorem. D 

Again using Lemma 4 shows that the optimal set Sk has least complexity 
among all optimal sets for x, and therefore: 

Corollary 2. The set Sk is an implicit algorithmic minimal sufficient statistic 
for every x with K(x) = k. 

All algorithmic minimal sufficient statistics S for x have K(S) :1:: K(k), 
and therefore there are 0(2K(k)) of them. At least one such a statistic (Sk) is 
associated with every one of the 0(2k) strings x of complexity k. Thus, while 
the idea of the algorithmic minimal sufficient statistic is intuitively appealing, 
its unrestricted use doesn't seem to uncover most relevant aspects of reality. 
The only relevant structure in the data with respect to a algorithmic minimal 
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sufficient statistic is the Kolmogorov complexity. To give an example, an initial 
segment of 3.1415 ... of length n of complexity logn + 0(1) shares the same 
algorithmic sufficient statistic with many (most?) binary strings of length log n + 
0(1). 

3.5 A Concrete Explicit Minimal Sufficient Statistic 

Let us now consider representations of finite sets that are explicit in the sense 
that we can compute the cardinality of the set from the representation. For 
example, the description program enumerates all the elements of the set and 
halts. Then a set like Sk = {y : K(y) ~ k} has complexity ::!: k (15]: Given 
the program we can find an element not in Sk, which element by definition has 
complexity > k. Given Sk we can find this element and hence Sk has complexity 

). k. Let 

then by Lemma 5 logNk ± k - K(k). We can list Sk given k* and Nk which 

shows K(Sk) < k. 
One way of implementing explicit finittc representations is to provide an ex­

plicit generation time for the enumeration process. If we can generate Sk in time 
t recursively using k, then the previous argument shows that the complexity of 

every number t' 2'. t satisfies K(t', k) ;=:: k so that K(t') ). K(t' I k*) ). k - K(k) 
by (4). This means that t is a huge time which as a function of k rises faster than 
every computable function. This argument also shows that explicit enumerative 
descriptions of sets S containing x by an enumerative process p plus a limit on the 
computation time t may take only l (p) + K ( t) bits (with K ( t) ~ log t + 2 log log t) 
but logt unfortunately becomes noncomputably large! 

In other cases the generation time is simply recursive in the input: Sn = {y : 
l(y) ~ n} so that K(Sn) ± K(n) ~ logn + 2loglogn. That is, this typical suffi­
cient statistic for a random string x with K(x) ± n + K(n) has complexity K(n) 
both for implicit and explicit descriptions: differences in complexity arise only 
for nonrandom strings (but not too nonrandom, for K(x) ± 0 these differences 
vanish again) . 

It turns out that some strings cannot thus be explicitly represented par­
simonously with low-complexity models (so that one necessarily has bad high 
complexity models like Sk above). For explicit representations, there are abso­
lutely non-stochastic strings that don't have efficient two-part representations 
with K(x) ± K(S) +log ISI (x E S) with K(S) significantly less than K(x), 
Section 4. 

Again, consider the special set Sk = {y : K (y) ~ k}. As we have seen earlier, 
Sk itself cannot be explicitly optimal for x since K(Sk) ~ k and log Nk ~ 
k- K(k), and therefore K(Sk) +log Nk ::!: 2k- K(k) which considerably exceeds 
k. However, it turns out that a closely related set (S;;.,z below) is explicitly near­
optimal. Let 1; denote the index of y in the standard enumeration of Sk, where 
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all indexes are padded to the same length ~ k - K(k) with O's in front. For 
K(x) = k, let rnx denote the longest joint prefix of l: and Nk, and let 

l; = rnxOix, Nk = mxln.x, 

s;;,, = {y E Sk : m,,0 a prefix of It} 

Theorem 3. The set S~, is an explicit algorithmic minimal near-sufficient 
statistic for x among subsets of sk in the following sense: 

IK(S~J - K(k) - l(mx)I < K(l(mx)), 

log is;;,, I~ k - K(k) - l(mx)-

Hence K(S~J+loglS~nJ ~ k±K(l(mx)). Note, K(l(mx)) .;( logk+2loglogk. 

The proof is given in the full paper [6). We have not completely succeeded 
in giving a concrete algorithmic exlicit minimal sufficient statistic. However, we 
show [6] that s;;,, is almost always minimal sufficient-also for the nonstochastic 
objects of Section 4. 

4 Non-Stochastic Objects 

Every data sample consisting of a finite string x has an sufficient statistics in the 
form of the singleton set { x}. Such a sufficient statistics is not very enlightening 
since it simply replicates the data and has equal complexity with x. Thus, one 
is interested in the minimal sufficient statistics that represents the regularity, 
(the meaningful) information, in the data and leaves out the accidental features. 
This raises the question whether every x has a minimal sufficient statistics that 
is significantly less complex than x itself. At a Tallinn conference in 1973 Kol­
mogorov (according to [14, 2]) raised the question whether there are objects x 
that have no minimal sufficient statistics that have relatively small complexity. 
In other words, he inquired into the existence of objects that are not in general 
position (random with respect to) every finite set of small enough complexity, 
that is, "absolutely non-random" objects. Clearly, such objects x have neither 
minimal nor maximal complexity: if they have minimal complexity then the 
singleton set { x} is a minimal sufficient statistics of small complexity, and if 
x E {O, l}n is completely incompressible (that is, it is individually random and 
has no meaningful information), then the uninformative universe {O, l}n is the 
minimal sufficient statistics of small complexity. To analyze the question better 
we need a technical notion. 

Define the randomness deficiency of an object x with respect to a finite set 
S containing it as the amount by which the complexity of x as an element of 
S falls short of the maximal possible complexity of an element in S when S is 
known explicitly (say, as a list): 

Js(x) =log !SI - K(x I S). (11) 
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The meaning of this function is clear: most elements of S have complexity near 
log ISI, so this difference measures the amount of compressibility in x compared 
to the generic, typical, random elements of S. This is a generalization of the 
sufficiency notion in that it measures the discrepancy with typicality and hence 
sufficiency: if a set Sis a sufficient statistic for x then Js(x) :!: 0. 

Kolmogorov Structure Function: We first consider the relation between 
the minimal unavoidable randomness deficiency of x with respect to a set S 
containing it, when the complexity of S is upper bounded by a. Such functional 
relations are known as Kolmogorov structure functions. He did not specify what 
is meant by K(S) but it was noticed immediately, as the paper (15] points out, 
that the behavior of hx(a) is rather trivial if K(S) is taken to be the complexity 
of a program that lists S without necessarily halting. Section 3.4 elaborates this 
point. So, this section refers to explicit descriptions only. For technical reasons, 
we introduce the following variant of randomness deficiency (ll): 

6.$(x) = loglSI - K(x I S,K(S)). 

The function /3x(o:) measuring the minimal unavoidable randomness deficiency 
of x with respect to every finite set S of complexity K(S) < a. Formally, we 
define 

/3x(a) = min{ bs(x) : K(S) <a}, s 

and its variant /3; defined in terms of J3. Note that f3x(K(x)) :!: f3;(K(x)) ::!:: 0. 
Optimal Non-Stochastic Objects: We are now able to formally express 

the notion of non-stochastic ojects using the Kolmogorov structure functions 
f3x(a),/3;(o:). For every given k < n, Shen constructed in [14] a binary string x 
of length n with K(x) :::; k and f3x(k - 0(1)) > n - 2k - O(log k). 

Here, we improve on this result, replacing n - 2k - O(log k) with n - k and 
using /3* to avoid logarithmic terms. This is the best possible, since by choosing 

S = {O, l}n we find loglSI - K(x I S,K(S)) :!: n- k, and hence ,e;(c) .:( n - k 

for some constant c, which implies ,B;(a:) :::; f3x(c) .:( n - k for every a >c. The 
proof is relegated to the full version of this paper [6]. 

Theorem 4. For any given k < n, there are constants c1 , c2 and a binary string 
x of length n with K(x In) $ k such that for all o: < k - c1 we have 

13; (a I n) > n - k - C2. 

Let x be one of the non-stochastic objects of which the existence is established 
by Theorem 4. Substituting k ~ K(xln) we can contemplate the set S = { x} 
with complexity K(Sjn) ~ k and x has randomness deficiency :!: O with respect 

to S. This yields 0 ~ ,B;(K(xln)) > n - K(xln). Since it generally holds that 

K(xln) .:( n, it follows that K(xln) :!: n. That is, these non-stochastic objects 
have complexity K(xln) ::!::: n and are not random, typical, or in general position 
with respect to every set S containing them with complexity K(Sln) ,. n, but 
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they are random, typical, or in general position only for sets S with complexity 
+ 

K(Sjn) > n like S = {x} with K(Sjn) :!: n. That is, every explicit sufficient 

statistic S for x has complexity K(Sln) :!: n, and {x} is such a statistic. 
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