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SUMMARY 

We formulate clustering as a minimisation problem in the space of measures by model
ling the cluster centres as a Poisson process with unknown intensity function. We derive 
a Ward-type clustering criterion which, under the Poisson assumption, can easily be evalu
ated explicitly in terms of the intensity function. We show that asymptotically, i.e. for 
increasing total intensity, the optimal intensity function is proportional to a dimension
dependent power of the density of the observations. For fixed finite total intensity, no 
explicit solution seems available. However, the Ward-type criterion to be minimised is 
convex in the intensity function, so that the steepest descent method of Molchanov & 
Zuyev (2001) can be used to approximate the global minimum. It turns out that the 
gradient is similar in form to the functional to be optimised. If we discretise over a grid, the 
steepest descent algorithm at each iteration step increases the current intensity function 
at those points where the gradient is minimal at the expense of regions with a large 
gradient value. The algorithm is applied to a toy one-dimensional example, a simulation 
from a popular spatial cluster model and a real-life dataset from Strauss ( 1975) concerning 
the positions of redwood seedlings. Finally, we discuss the relative merits of our approach 
compared to classical hierarchical and partition clustering techniques as well as to modern 
model based clustering methods using Markov point processes and mixture distributions. 

Some key words: Cluster analysis; Optimisation on measures; Poisson point process; Steepest descent. 

1. INTRODUCTION 

The term 'cluster analysis' incorporates a wide class of techniques for partitioning data 
'points' representing individuals or objects into groups. Classical clustering techniques are 
often hierarchical in nature, building a tree, the so-called dendrogram, based on some 
distance measure. The method of construction may be agglomerative or divisive, and the 
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distance between two clusters may be defined in various ways. Ward (1963) argues that 
the loss of information caused by merging clusters may be measured by the increment 
of the pooled within groups sum of squared deviations, so that at each step one merges 
those groups whose fusion results in minimum increase in the sum of squares. Finally, the 
tree is thresholded in order to find the meaningful clusters; see for example Hartigan 
( 1975) and Jardine & Sibson ( 1971 ). 

In contrast, partition techniques are based on iteratively allocating points to clusters, 
using some optimality criterion, such as the trace or determinant of the pooled within 
groups sum of squares matrix. The former again is Ward's criterion, and the latter was 
proposed by Friedman & Rubin ( 1967). Similar techniques appear when finding the 
k-mean of a sample of points; see Hartigan (1975) and MacQueen (1967). 

The techniques discussed above are essentially model-free, but recently there has been 
a surge of interest in mixture models. Here, the data is supposed to come from a mixture 
of k components representing the clusters. Suppose that (Yi. ... , Ym) denotes the vector 
of observations, and let </>(j) E { 1, ... , k} denote the component label of Yi· Then one can 
define an optimal clustering by maximising a complete-data likelihood. It turns out that, 
if each component is normally distributed with mean m; and the same covariance matrix 
:E = a2 I, and if the means m; are estimated by the sample means of the observations 
allocated to the component, then the criterion for clustering becomes the Ward criterion. 
For general :E, we re-obtain the Friedman & Rubin criterion. More details and variations 
on this theme can be found in Banfield & Raftery (1993), Diebolt & Robert (1994), 
Richardson & Green (1997), Mclachlan & Basford (1988), Scott & Simons (1971) and 
Stephens (2000). Further information on classical clustering methods can be found in 
Everitt (1974), Hartigan (1975), Johnson & Wichern (1982), Kaufman & Rousseeuw 
(1990), Mardia et al. (1979) and other textbooks on multivariate statistics. 

Most approaches outlined above decide on the number of clusters in an ad hoe, subjec
tive manner. Furthermore, the cluster centres only play an implicit role, approximated by 
the centre of gravity or other 'mean' of the detected clusters, if they appear at all. Such 
an approach may be natural in applications where the main aim is to detect groups in 
data, but less so in datasets of a biological or evolutionary nature such as those discussed 
in § 5. In such cases, a point process approach can be taken. For instance, Baddeley & 
van Lieshout (1993, 2001), Lawson (1993), van Lieshout (1995) and van Lieshout & 
Baddeley (1995) suggest an integrated model for the number of clusters, their centres and 
the data partition simultaneously. Coupling from the past ideas (Propp & Wilson, 1996) 
can be used to sample from the posterior distribution of cluster centres, facilitating the 
estimation of model parameters and other quantities of interest; see Baddeley & van 
Lieshout (2001) and van Lieshout (2000). 

Here we propose an intermediate approach that is neither hierarchical nor strongly 
model-based. As above, we use a point process framework to allow a variable number of 
cluster centres. The parent process of cluster centres is assumed to be distributed as an 
inhomogeneous Poisson process, but no other model assumption is made. Instead of 
choosing the number of clusters or a threshold level in the dendrogram, we fix the total 
intensity of the point process of parents; its spatial distribution is chosen so as to minimise 
the Ward criterion. In contrast to the partition approach based on the same criterion, our 
optimisation problem is convex in the intensity function. This implies that a unique solu
tion can be found by steepest descent techniques, independently of the initialisation of the 
algorithm. 

In§ 2, we consider the cluster centres as a realisation of a Poisson process with unknown 



Clustering methods based on variational analysis 1023 

intensity surface. We formulate a clustering criterion in the spirit of Ward as the expected 
pooled within groups sum of squares. Section 3 considers an asymptotic solution by letting 
the expected number of clusters increase. If this number is instead set at a finite value, 
numerical optimisation is called for. We adapt the steepest descent algorithm of 
Molchanov & Zuyev (2000b, 2001) to the present context in§ 4, and evaluate its perform
ance on synthetic and real-life examples in § 5. The paper is concluded by a critical 
discussion and comparison with hierarchical, partition and model-based approaches. 

2. OPTIMISING THE INTENSITY OF THE POISSON PARENT PROCESS 

Throughout this paper, the data pattern to be analysed consists of a set of points 
y = {Yi, ... , Ym} in a bounded subset D of the d-dimensional Euclidean space !Ra. The 
Euclidean distance between two points x, y E D is denoted by p(x, y). Our aim is to find 
a collection of cluster centres, or parents, x = {x1 , .•. , xk }, fork= 1, 2, ... , explaining the 
data. This can be done by minimising the Ward-type criterion 

[ tr { L L (yi- x;)(yi - x;)T}] = L L p2(x;, Yi), ( 1) 
X; EX Yj E Zx(X;) X; EX .Vj E Zx(X;) 

where Zx(x;) is the collection of points in the plane closer to x; than to any other parent 
xi Ex (j =!= i). In other words, Zx(x;) are the Voronoi cells generated by the set x; see 
Okabe et al. (2000). Minimisation problems for the functional (1 ), also with a general 
power {3 > 0 instead of 2, can be traced to many other applications, including that of 
finding the k-mean (Hartigan, 197 5, Ch. 4) of a configuration yin agglomerative clustering, 
or the mailbox problem discussed by Okabe et al. (2000, Ch. 9). In all these instances the 
number k has to be predetermined and steepest-descent-type minimisation algorithms are 
used to find a configuration x that minimises ( 1 ). This involves optimisation in a space 
of moderate dimension, dk, but the objective functional is not convex, so, as the initial 
configuration must be provided by the user, there is no guarantee that the descent algor
ithm ends up at a global rather than a local minimum. 

The key innovation of the current paper is to interpret x as a realisation of a Poisson 
point process IT on D with finite intensity measure µ. For the homogeneous case, µ is 
proportional to Lebesgue measure, but we are mostly interested in the inhomogeneous 
case when µ becomes a general intensity measure. The total number of points of IT in a 
set B is a Poisson random variable with mean µ(B) and the numbers of points in disjoint 
sets are mutually independent. Therefore, constraints on the number of parent points can 
be rephrased as constraints on the total mass µ(D) which is also the mean number of 
IT-points in D. Since µ(D) is finite by assumption, the total number of points in IT is also 
almost surely finite. 

Replacing x with IT in ( 1) and taking the expectation of the random variable thus 
obtained yields our objective functional that can be written as 

f(µ)=Eµ{ L L p2(x;,yj)}. (2) 
X; En Yj E Zn(X;) 

The subscript µ under the expectation or probability sign is used to indicate that the 
expectation or probability is taken with respect to the distribution of a Poisson process 
with intensity measure µ. A functional of type (2), with an arbitrary power of p(x;, Yi), 
was considered by Molchanov & Zuyev (2000a) for optimising the locations of stations 
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in telecommunication networks. In this context, the daughter points represent subscribers 
of the network, while the parent points correspond to stations. If we write p( y, fI) for the 
minimal distance between y and a point of TI, ( 2) can be reformulated as 

Ill 

f(Jl) = I E,, {p2(yj, rr )}. (3) 
j=l 

Note that with positive probability IT is empty, in which the case the distance p2 (yj, II) 
in (3) is ill-defined. Thus, we must assign some value u to p(yj, 0). Since we are dealing 
with minimisation of f()1), a natural choice for u is the diameter of D, that is the maximal 
distance p(x, _r) between two points x, y ED. 

Since fI is a Poisson point process, it is relatively straightforward to compute the 
expectation in ( 3 ), yielding 

f(Jl)= I r"2 

exp[-,u{Br112(yi)nD}] dt, 
i= 1 Jo 

(4) 

where B11 2(yi) is the ball of radius t 112 centred at Yi· The interested reader is referred to 
the Appendix for a derivation of this formula. 

The objective functional is defined on the set of all finite nonnegative measures and can 
be extended using (4) to signed measures, although without immediate probabilistic 
interpretation. An important implication of ( 4) is that the objective functional is convex 
in 11; that is, for every pair of measures µ and Y/ and for each c E [O, 1 ], 

f{Cfl + ( 1- c)Y/} ~ cf(lt) + ( 1- c)f(17). 

This is easily seen by using the fact that the function pH e - " is convex and observing 
that convexity is preserved by integration. 

Since the value of f(11) can be made arbitrarily small as the total mass of 11 increases 
unboundedly, we have to constrain /t(D) to some fixed a> 0. The minimisation problem 
can then be written as 

f(/1) 1-7 min, 11(D) =a. (5) 

Further constraints on 11 may be added to incorporate additional information about the 
parents, for example by weighting their possible positions with a 'cost' function and con
sidering only those 11 that do not exceed the total cost; see Molchanov & Zuyev (2000a) 
for a general framework for optimising functionals of Poisson point processes. 

3. AN ASYMPTOTIC SOLUTION 

Molchanov & Zuyev (2000a) suggested a framework for asymptotic analysis of minimis
ation problems for functionals on measures with growing total mass. Referring to 
Molchanov & Zuyev (2000a) for details, consider a sequence of measures µa (a> 0) such 
that /ta minimises f(p) over all measures with total mass a. Then under certain technical 
conditions the normalised intensities a- 1 µa converge to a limit as a--+ oo, the so-called 
high intensity solution fi. 

. In our con~~xt, supp.ose that the daughter points y have been sampled from a distribution 
with probab1hty d~n~1ty Py(.), perhaps given a priori or estimated by kernel smoothing 
(Bowman & Azzahm, 1997, Ch. 1) of y. Then the objective function (3) transforms into 

f(ft) = I Eµ {p2(z, TI)} Py(z) dz. ( 6) 
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The same functional ( 6) was considered by Molchanov & Zuyev ( 2000a) in a telecommuni
cation application, where it was shown that the density of a high intensity solution p. is 
proportional to a power of the daughter density: 

P .. (-) T 'p (-)· 1J.tJ+21 
ll - ' t .I' - I · ( 7) 

The interpretation of this result is that, if a large number of parent points are taken into 
account, they can be sampled from a density proportional to {py(.:)i dtd+ 2 1. Such a sample 
provides a natural initial configuration for. for example, the k-means algorithm or the 
constrained optimisation problem ( 5 ), that can be further improved using descent methods. 

4. STEEPEST DESCENT ALGORITHM 

Functionals of measures can be minimised efficiently using steepest descent algorithms, 
as described in Molchanov & Zuyev (2001 ). At every step, the idea is to move from 11 to 
{l + 11 for some signed measure 11 chosen in such a way that the value of the objective 
function decreases as fast as possible and the constraints are not violated. In our case, 
this means that the total mass of ft+ 17 must be the same as that of 11. 

The steepness of a particular update from 11 to fl + 17 is characterised by the directional 
derivative off(µ) evaluated with respect to ry, defined by 

Jim t- 1 {f(p +try)- f(Ji)l = Jgµ(z)r/(dz). 
tLO 

(8) 

The function gµ(.) is called the gradient off(µ). For the objective functionf(p) given by 
(2), the gradient equals 

m f"2 
gµ(z) = - .I ' exp [ -1dBr1 2(yj) n D}] dt. 

J = 1 µ-Cv1.zl 

(9) 

A derivation of this expression can be found in the Appendix. Note that the gradient 
(9) resemblesf(p) as in (4), except for the integration interval. 

The steepest descent algorithm iteratively redistributes mass of ft in the direction deter
mined by this gradient. Clearly, to keep the total mass ofµ+ 11 constant, the added term 
11 must have zero total mass, and hence 17 is necessarily a signed measure. The size c: of a 
step is controlled by the mass of the positive, or negative, part of ry. To minimise the right
hand side of ( 8) one should place an atom of mass eat the minimum of gll(. ), or distribute 
it between several global minima if they exist. Similarly, the negative mass -e should 
ideally be placed at the maximum of gll(.), which amounts to taking away a mass c: from 
Jl at this point. This can seldom be done, however, since the current µ may not have 
enough mass at this point, if any. Thus, we should remove mass from regions where g1,(:) 

is large until an amount e has been taken. More precisely, Molchanov & Zuyev (2001) 
proved that the steepest descent direction ry is obtained when the mass ofµ is redistributed 
in such a way that all mass of Jl is taken from D1 = {x ED: gµ(z)? t} for a suitable t? 0, 
and placed at the point where gµ is minimal. The threshold value t can be found from the 
condition fl(D 1) =e. If the equality has no solution, then we choose the smallest t satisfying 
Jl(Dr),,:;:; c: and remove mass c: - p(D1 ) by reducing the µ-content of points z ED with g1,(z) 
as close as possible to, but smaller than, t. 

At the beginning of the algorithm, the step size e is set at some arbitrary value. Iteratively, 
in the direction specified by the steepest gradient, mass of amount e is redistributed in the 
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manner described above. If this step does not lead to a decrease of the objective function, 
the step size is reduced and the procedure repeated. Note that, since ( 4) is convex in µ, 

the steepest descent algorithm converges to the global minimum fron: ~very initial state. 
It is shown in Molchanov & Zuyev (2000a) that a necessary cond1t10n for a measure 

11* to solve problem ( 5) can be formulated as 

{ 
= c, µ*-almost everywhere, 

gu*(z) 1 ;;:: c, for al z, 
(10) 

for some constant c. The constant c is the Lagrange multiplier for the corresponding 
constrained optimisation problem. The necessary condition ( 10) can be used as a stopping 
rule for the steepest descent algorithm described above: stop if over all points in the 
support of the current p the variation of gµ is a constant c within a predetermined small 
number (), and if, at all other points z in the support of µ, gµ(z) is at least c. The 
algorithm is implemented in the S-Plus and R languages. The code is available at 
ww\v.stats.gla.ac.uki-ilya and www.stams.strath.ac.uk/ ""'sergei and is distributed as an 
R-language bundle mesop. The datasets used in the following examples can be obtained 
from the same sources. 

Figure 1 shows several steps of the steepest descent algorithm applied to a one-dimen
sional problem on D = [O, 1] with y= {0·2, 0·4, 0·5, 0·55, 0·9} and the measure's total mass 
fixed at a= 10. The parent space is discretised into a grid with mesh size s, with s = 0·02 
in our example. and the intensity measure µ is atomic and supported on the grid. Note, 
however, that the data points y do not necessarily lie on the grid; see for example the 
point 0·55 here. The inner integrand in the objective functional ( 4) is a step function in t, 
with break points at the squared distances from yj to grid points. To see this, consider y 1 . 

If necessary we rearrange the indices of the grid poi~ts in such a way that 
p(x1·Y1l~p(x2 • .rd~ ... ~p(xn,y 1 ), and then the integral f~-exp[-µ{B1112(yi)nD}] dt 
can be written as 

P2 (x1. Y1) + {p2 (x2, yi)- P2 (X1, Y1)}e-µ({xi}) + ... + {u2 - p2 (x 11 , yi)}e-µ({xi})- ··· -µ({x,.}). 

A similar formula holds for the other summands in ( 4) and for the gradient. Therefore, if 
for each Yi a record is kept of the grid points sorted according to their distance to yj as 
well as the increments in squared distance, it is easy to perform updates of the gradient 
and objective functional. 

5. EXAMPLES 

5· 1. Preamble 

In a.II the examples below we used the steepest descent algorithm described in § 4 on 
th.e unit squ~re [O, 1] x [O, 1] in the plane. The measures were defined on a uniform grid 
with _mesh size s = 0·02 in both directions. The stopping rule was such that the descent is 
~ermmated i~ the v~ri~tion of the gradient over all atoms ofµ with mass greater than ba 

ts le~s than o rnu~tipl!ed by the total range of the gradient, i.e. the difference between its 
maxmmm and mm1mum. The descent works acceptably fast, taking about one second per 
step on a SUN ULT~A 10 Workstation, 360 MHz, for y consisting of 123 points as in 
t_he case. study descnbed below. Plausible results are obtained for the tolerance level 
b = 0-01 m about 100 steps, while 6 = 0·0001 requires considerably more steps to be done, 
of the order of several thousands depending on the total mass f 

We have opted to present the results in the form of contour pl~ts~f the optimal measure 
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(a) Gradient function 

O·O 0·2 0·4 0·6 0·8 l·O 

(b) Gradient function 

O·O 0·2 0·4 0·6 0·8 1 ·0 

(c) Gradient function 

O·O 0·2 0-4 0·6 0·8 l ·O 

(d) Gradient function 
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(d) Measure 
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Fig. 1. Plots of the gradient function and measure at several steps of the steepest descent algorithm applied 
to a one-dimensional problem on a grid of mesh size 0·02. (a) The initial measure µ0 is uniform over all grid 
points, f(µ 0 ) = 0·03016. (b) The first descent step of size t: = 1 adds an atom of size i; to µ at the grid point 
with smallest gradient value, see (a), and eliminates 11 at those grid points where the gradient shown in (a) 
was the largest, f(µ 1) = 0·02629. (c) The second descent step of size e = 1, f(µi) = 0·02243. (d) The final 

solutionµ* after 477 steps, f(µ*) = 0·01831. 

µ* for a range of total mass values a; these give a good visual indication of clustering. 
Although the optimal measures are not hierarchical with respect to the total mass, if a 
dendrogram is required it can easily be obtained as follows. For each leaf Yi' a 'parent' 
node in the tree is found by optimising {µ*(Yk)- µ*(yi)}/p(yb Yi) subject to the constraint 
that µ*(yk) > µ*(yi) and possibly a threshold constraint on p(yb Yi), where JL* is the 
density of the continuous measure obtained by spreading each atom of the measure JL* 
over the associated pixel centred at that atom. The resulting family trees give the required 
hierarchy; see Koontz et al. (1976) and Silverman (1986, p. 131). Roughly speaking, cluster 
boundaries will tend to follow the valleys in the intensity surface. 

5·2. Synthetic examples 

We analyse a synthetic dataset sampled from a stochastic cluster process. The parents 
follow a Poisson point process with intensity 10; each parent has a Poisson number of 
daughters with mean 10, scattered independently and uniformly in a disc of radius 0·1 
around the parent. After truncation to the unit square, the pattern of 73 points shown in 

Fig. 2 was obtained. 
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1·0 .... 
0·8 ... . . ' .. 
0·6 - ; 

y 
OA 

0·2 
·.· ·=· 

O·O '-,-----~--~---.-! 
O·O 0·2 0·4 0·6 0·8 1·0 

x 

Fig. 2. A synthetic two-dimensional dataset. 

Figure 3 shows the results of applying the numerical procedure of the previous section. 
The optimal measure is shown for a range of total mass levels. If the total mass is small 
in comparison to the number of data points, the contours of the optimal intensity surface 
suggest a few large components. If we increase the total mass, these groups split themselves 
into smaller clusters. Asymptotically, since the high-intensity solution ( 7) is a power of 

(a) 

(c) 

l·O 1 
I 

0·8 

O·O 0·2 0·4 0·6 0·8 l ·O 

l ·O 

0·8 

0·6 

OA 

0·2 

O·O 

1 ·0 

0·8 

0·6 

0-4 

0·2 

O·O 

(b) 

l -~ 

~I .~1. 
~~~ 

\~ -~ 

O·O 0·2 0·4 0·6 0·8 l ·O 

(d) 

~ 

6t ~ 0, 
~8' 

e 
tb~ €> 

0·0 0·2 0-4 0·6 0·8 l ·O 

Fig. 3. Contour !'lots of the optimal measures, with varying total mass 
a, for the synthel!c dataset. The contours are taken at the specified levels: 

(a) a= 10, levels= (0·00001, 0·05, O·! ); 
(b) a= 20, levels= (0·00001, O· l, 0·2); 
(c) a=70,levels=(0·00001,0·5, 1·0); 
(d) a= 100, levels= (0·00001, 0·8, 2·0). 
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the daughter density, its contour lines are those of Pv( .), albeit at different levels. It has 
been observed in numerous simulation experiments that, if the total mass a is approxi
mately half of the number of daughter points, the method leads to optimal measures that 
describe the cluster structure well. 

A more detailed Bayesian analysis based on the cluster process described above and a 
repulsive Markov prior can be found in van Lieshout (2000). 

5·3. Redwood data 

Figure 4 shows the locations of redwood seedlings extracted from a larger dataset in 
Strauss ( 1975 ). The plot suggests aggregation of the seedlings, which Strauss attributes to 
the presence of stumps of older redwoods, the positions of which have not been recorded. 
The tree positions shown in Fig. 4 represent those seedlings falling in region II of Straus 
( 1975, Fig. 1 ), a roughly triangular area containing almost all of the redwood stumps. 

,-, --
.. :\ 

0·8 j •• .... 

0·6 ; 

' 

0·2 I 
I 

. , 

.·:· 
·'· ... 

-:·: 

" 

. :z., .•:'I. 

O·O ·~----~------; 

l 
I 

0·2 0-4 0·6 0·8 

.'( 

Fig. 4. Locations of redwood seedlings. 

In Strauss ( 1975) a point process model was fitted to the redwood data, later shown in 
Kelly & Ripley (1976) to be ill defined. Surprisingly, although the even smaller square 
extracted by Ripley ( 1977) appears frequently in the spatial statistics literature, the full 
dataset seems to have been reanalysed only in van Lieshout ( 1995), where a cluster process 
was fitted with points scattered according to a Gaussian distribution around parents that 
are distributed according to a repulsive point process model and the posterior intensity 
surface of cluster locations was computed. For the smaller dataset, corresponding to the 
top left corner of Fig. 4, Diggle ( 1983, pp. 78-81) fitted a Gaussian scatter model with a 
Poisson parent process using a least squares approach. That yielded an estimated number 
of 26 stumps, which is implausible from a biological point of view. The least squares 
approach does not allow for estimation of cluster positions as such. Use of a uniform 
distribution for the daughters instead of a Gaussian yielded similar results ( Diggle, 1978 ). 
Finally, Lawson (1993) fitted a similar Gaussian scatter point process, but failure to 
include a repulsive parent model led to the implausibly large number of 16 parents. 

We applied the optimisation algorithm for the problem defined by ( 5 ). Figure 5 shows 
contour plots of several optimal measures with varying total mass a. The choice of a is 
obviously subjective, and, as in hierarchical clustering algorithms, we recommend consider
ation of a range of values. As can be seen from Fig. 5, for small values of a a few large 
components explain most of the mass in the optimal measure; if the value of a is increased, 
the support of the optimal measure splits into more and more groups. 
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Fig. 5. Contour plots of measures solving (5) for the Redwood data 
with varying total mass a. The levels of contours are specified: (a) a= 
20, levels= (0·0001, 0·2, 0·4); (b) a= 50, levels= (0·0001, 0·4, 0·8 ); (c) a= 

100, levels= (0·0001, 0·6, 1-2); (d) a= 200, levels= (0·0001, 1 ·0, 2·0). 

6. DISCUSSION 

We have treated the partitioning of a pattern of points into clusters as an optimisation 
problem in the space of measures by assuming the parent process of cluster centres to be 
an inhomogeneous Poisson process. Thus, the output of the steepest descent algorithm is 
the optimal parent intensity measure. 

We defined the parent and daughter processes on the same space D, but our approach 
is equally valid if the parent process is defined on some bounded E ~ D, a modification 
that is especially useful whenever edge effects are a concern. Also, the criterion (2) may 
be replaced by other objective functionals. Additional analysis is necessary in this case to 
verify that the conditions for the asymptotic results outlined in § 3 hold; see Molchanov 
& Zuyev (2000a) for details. 

In contrast to partition or mixture methods, when we model the cluster centres by a 
point process the number of cluster centres need not be set in advance nor be decided by 
ad hoe thresholding as in hierarchical clustering. Instead, the total mass of the intensity 
function has to be constrained. Since the objective functional ( 4) is convex, a global 
optimum is reached, rather than the locally optimal partitions produced by hierarchical 
or partition-based techniques. Asymptotically, the optimal intensity is a power of the 
daughter density, so that its peaks and valleys coincide with those of the density. As usual, 
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if one were to estimate the density by kernel estimation (Silverman, 1986) the choice of 
bandwidth would affect the result. 

It should be noted that our model assumptions are verv mild indeed. Alternativelv, a 
parametric Markov point process model could be employed, allowing estimation of-the 
model parameters, the posterior parent intensity measure and cluster labels. However, the 
computational cost is higher than for our steepest descent algorithm, relying on methods 
based on Monte Carlo or coupling from the past methods~ see Baddeley & van Lieshout 
(2001 ), van Lieshout (1995, 2000) and van Lieshout & Baddeley ( 1995) or J. Lund's 1999 
Ph.D. thesis from the Royal Veterinary and Agricultural University in Copenhagen for 
the special case where clusters consist of at most a single point. A similar remark can be 
made about Bayesian mixture models with a random number of components such as 
those dealt with in Richardson & Green ( 1997) and Stephens (2000). 

Finally, the optimal measure p* can be used as input to a subsequent more detailed 
analysis. For instance, the spatial Markov model approach requires a reference Poisson 
point process, and p* would be a more natural candidate for its intensity measure than 
the usual noninformative choice of Lebesgue measure. 
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APPENDIX 

The objectil'e function and the gradient 
The objectice jimction. Here we compute the expectation of 

F(fl) = L p2(y, TI )v(dy) 

if IT is an inhomogeneous Poisson process on D with intensity measure 11(.), and v(.) denotes a 
finite measure on D. For ( 3 ), v(.) assigns equal mass 1 to each data point y1, for j = 1, ... , m. Recall 
that p( y, TI ) is set to the diameter u of D if IT is empty. Then 

Eµ{p 2(y,fl)}= f 2 
prµ{p 2(y,IT)>t}dt= f 2 

prµ{flllB112(y)=0}dt 

= f" exp[-p{B,12(_r)nD}] dt 

and so 

f(p) = Eµf(fl) = L f2 

exp[ - µ{B,12(y) n D}] dr v(dy). 

The gradient. The directional derivative (8) off(µ) can be written as 

-L f 2 
exp[-µ{B,t12(y) n D}]rJ{B,u(y) n D} dt v(dy). 
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To express it as an integral with respect to 17(.), note that, for h(t) =_exp[ -µ{Bi 112(y) n D}], 

1"2 
h( t)17 {Br112(y) n D} dt = i"2 

h(t) j , 17(dz) dt = j 17(dz) 1:2 

h( t) dt. Jo o leD:p(:,y).;;i11- JD p-(z.y) 

Therefore, the gradient of f(Jl) is given by 

l J.,2 

gµ(z) = - exp[ -µ{Br112(y) n D}] dt v(dy). 
D p2(:.y) 
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