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Abstract— In most real-world settings, a transportation plan
requires modifications during execution. A thorough evaluation
of transportation planning methods thus requires testing and
comparison in a dynamic environment. We give conditions on a
simulation environment that follow from this requirement, and
propose a multi-agent simulator meeting these conditions. In
addition, we propose a new measure that captures robustness
in such dynamic settings. The multi-agent simulator and the
robustness measure are then used to compare three different
transportation methods (two multi-agent planners and one
online optimization approach) in settings with release time
uncertainty and truck breakdown incidents.

I. INTRODUCTION

In order for multi-agent transportation planning methods
to gain ground, it is necessary to compare the agent-based
planning results to other well known algorithms on realistic
benchmark instances. When considering instances in which
all relevant planning information is known in advance, the
evaluation procedure is simple: each instance is given to each
planning method, which in turn computes a plan, and the
resulting plans are then evaluated using a predefined cost
measure. In contrast, in dynamic or uncertain instances, when
new information is revealed to the planning method only
after an initial plan has been produced, the evaluation is not
so straightforward. Instead of evaluating only a single plan,
one must examine a series of plan versions, produced in
response to the dynamic events. In this paper, we propose
an evaluation method that does not directly measure the
produced plans, but rather the simulated traces of the trucks
executing the plans.

The goal of this paper is tripartite. First, we propose a
framework, based on the traces of truck movements, allow-
ing for the comparison of fundamentally different planning
approaches on dynamic data. Second, we introduce a new
measure of robustness to capture the merits of the planning
approaches in dynamic settings relative to static settings.
Third, we demonstrate the value of our framework and
robustness measure by comparing distributed agent-based
and centralized optimization-based planning systems for a
transportation problem with uncertain release times and truck
breakdowns.

II. RELATED WORK

Biennially, OR/MS Today, the membership publication
of the Institute for Operations Research and Management
Science, publishes a review of vehicle routing software. The
main attraction of this review is a series of charts directly
comparing the features of each package. In 2010, 15 out
of the 23 surveyed packages provide real-time re-routing
capabilities, while 22 of the 23 provide daily route planning
support; all 23 packages provide route plan analysis [1].
What is obscured by this chart is how these route planning
differences translate into real-world plan performance. To
ascertain that, one must dig deeper into the literature.

Doing this, one finds that when considering on-line, real-
time, or dynamic vehicle routing problems, three planning
mechanisms tend to emerge: on-line optimization methods
(reactive methods, dependent on mathematical program-
ming techniques, working on a rolling-horizon framework),
stochastic programming or look-ahead methods (methods
dependent on the incorporation of forecasting likely in-
stance characteristics), and heuristic or metaheuristic meth-
ods (methods that try to exploit problem structure for fast
computation times) [2], [3]. The fact that these three dis-
tinct areas are so readily discernable belies the reality that
most planning mechanism evaluations are performed in an
inter-domain rather than intra-domain manner. Comparing
heuristic/metaheuristic approaches to on-line optimization is,
however, necessary if these approaches, such as multi-agent
systems, are to enter the mainstream.

On-line optimization techniques for dynamic vehicle rout-
ing problems work by breaking the full time-span of the
instance into multiple planning horizons or decision epochs.
Then at each epoch the existing plan is either revised by
heuristic methods or fully re-optimized via the use of a math-
ematical program. In this domain, [4] demonstrate the superi-
ority of an exact mixed integer programming formulation of
the PDPTW. They compare their reoptimization approaches
to three heuristic approaches (a simple round robin assign-
ment, an insertion heuristic, and a reordering approach).
This comparison reveals that the reoptimization approaches
systematically outperform the heuristic approaches by about
10% in terms of cost. This line of work is continued by [5]
by examining a hybrid rule-based heuristic and optimization



approach. These results are interesting as they utilize empty-
travel and cost related metrics recorded for each truck at
each decision epoch to compare planning approaches across
two methodologies — on-line optimization and heuristics.
In many ways our work is an extension of this paper,
with one major difference, the heuristics they considered
were designed to make decisions similar to the optimization
approach, but faster and at a (possibly) lower quality. Our
heuristic approaches are agent-based, with the agents rep-
resenting a structural decomposition of the vehicle routing
problem into trucks and jobs.

Given this very different heuristic mechanism, we can no
longer compare empty-travel and cost metrics recorded for
each truck only at decision epochs as in [4]. We must now
consider full traces of truck activity across the full time range
of the instance in order to make a fair comparison of planning
methodologies. The idea of comparing the spatial-temporal
traces of vehicles to ascertain the quality of a routing policy
is not new in the field of transportation [6]. It is, however,
more commonly used when considering personal vehicle
routing as opposed to freight vehicle routing. While the
truck trace provides a powerful tool for deriving new metrics
with which to compare plans, the simulator responsible for
executing those plans should also be carefully designed.

The simulation framework presented in this paper is an
extension of an earlier on-line optimization and agent-based
comparison [7]. In that work, the researchers recognized
the need for a time-based simulation, but the two planning
approaches were coded to run on separate simulators. While
the use of distinct time-based simulators had no adverse
impact on the results, it did have a detrimental impact on the
ability to easily compare additional planning methods. Given
this realization, we continue this article with a description of
the requirements for any planning comparison framework.

III. REQUIREMENTS FOR THE TESTBED

To provide a fair comparison of transportation planning
algorithms, any framework for comparison must accommo-
date certain requirements. We document the most essential
of these requirements in the following three subsections.

A. Capability to consider unforeseen events
Our main goal is to evaluate transportation planning

methods for problem instances with uncertainty. This means
that in any instance, at the start of the planning horizon,
there are events that must remain unknown to all planning
methods until a specified point in time. For example, these
dynamic or uncertain events may be defined in the instance
data deterministically (e.g. at 3pm truck X breaks down
completely), but the planning methods, should not know
about these events before their occurrence (e.g. before 3pm).
Thus, the simulation must be structured to ensure that from
the point of view of the planning method, the problem
instances contain uncertainty.

B. Capability to accommodate different computation times
Different transportation planning methods have different

run-time requirements. When solving dynamic transportation
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Fig. 1. Evaluating a planner by measuring execution of simulated trucks

problems, the run-time of a planning method can severely
influence the speed at which unforeseen changes can be dealt
with. Algorithms with a long run time can potentially miss
their chance to respond adequately to a given incident. To
be able to make realistic conclusions about the behavior of
planning systems in the real-world, it is thus essential to sim-
ulate the effect of long run times. Therefore, we propose not
using event-based simulations, because in such simulations
there is usually no direct relation between computation time
and simulated time, since simulated time is usually moved
forward only after all computation related to an event has
been completed.

C. Capability to separate planning and execution

To ensure a fair comparison of transportation planning
algorithms, an evaluation method should use the same
component to generate execution traces for each planning
algorithm. This suggests that the planning and execution
components should be separated (code-wise). This struc-
ture gives researchers flexibility by allowing reuse of the
execution component (truck movement simulator) for each
planning method. In turn, this lowers the development effort
required to conduct the experiments and prevents drawing
false conclusions from anomalies caused by different pro-
gramming errors in the different execution codes.

To summarize, being able to include dynamic events
during execution, explicitly consider the computation time
needed by the planning methods, and reuse the same plan-
execution component are, in our opinion, the essential
properties of a fair evaluation method for transportation
planning methods. In the following, we briefly describe the
comparison framework that was developed to meet these
requirements and obtain the results presented in this paper.

IV. SIMULATION TESTBED

Our framework for comparing different planning methods
consists of a planning component, a simulation component, a
communication server, and a judge. We begin by describing
the planning component, which implements the planning
methods under evaluation, and the simulation component,
which produces the execution traces. In Figure 1, the plan-
ning component consists of agents cooperating to produce
transportation plans. In reality, the planning component can
use any type of internal plan generating mechanism (e.g.



agents, mathematical programming, hybrid systems). The
only requirement of the planning component is that it must
compute plans, and it must send those plans to the simulation
component via the communication server.

The simulation component executes those plans by sim-
ulating trucks driving between the job locations as dictated
by the plans. It is important that the location coordinates
are interpreted in the same way by the planning component
and the simulation component. In principle, the coordinates
could be numbers relative to a planar coordinate system
and the travel distances could be based on an Euclidean
travel metric. Alternatively, the coordinates can refer to
geographical coordinates (i.e. latitude and longitude) and the
travel distances can be derived from the actual road network.
In our realization, we used the latter mechanism.

In addition to these spatial considerations, the planning
and simulation components should also have the same sense
of time, as discussed in the previous section. This is im-
portant, because the simulation executes truck movements,
and thereby generates traces in parallel with the planning
component that calculates new plans. As a consequence,
the evaluation framework does not assume that either the
computation of new plans or the communication of those
plans are instantaneous. The longer the computation and
communication of the new plans take, the more time is spent
with the simulated trucks executing outdated plans.

The planning and simulation components communicate via
the communication server, therefore monitoring the messages
is trivial; it only requires listening to the communication
server. The execution events and traces circle in Figure 1
represents a component saving all messages, allowing several
measurements of a given planning method. The sequence of
position update messages from the simulation component,
for example, reveal the simulation traces and provide the
ultimate means for evaluation. This saved execution log is
subsequently processed by our last component, the judge.

The judge can perform various computations on the saved
logs to derive measurements of the execution. For a given ex-
ecution log and problem instance, the judge can compute, for
example, the time (or distance) spent traveling empty by the
trucks, the time spent idle by the trucks, and the aggregated
time of lateness in arriving to delivery locations. The power
of the judge rests in its ability to accommodate a host of
performance measures as required for each experiment. One
common evaluation criterion is the measure corresponding to
the objective function explicitly used by the planning method
— the judge can easily accommodate this need.

To demonstrate the power of this framework for comparing
transportation planning methods in dynamic settings, we
present the results of a comparison made between a multi-
agent planning system and an on-line optimization planning
system. The dynamic events that occur during execution are
the revelation of job release times and truck breakdowns.

V. EXPERIMENT SETUP

In the following subsections, we first present the problem
instances that were used in our experiments. We then define

two measures — a traditional cost measure and an alterna-
tive, so called robustness measure. These form the basis of
our comparison between the transportation planning methods
described at the end of this section.

A. Problem instances

The problem instances used in this study are derived from
the real-world data published in [8]. There, a set of 33
instances were defined as static instances (denoted as R0).
Each static instance contains 65 truckload (container) orders
and 40 trucks. Container orders are defined by three locations
(pick up, delivery and return) and three time windows, one
for each location. In the static instances, every order is
available for transport at the beginning of the day, 6am,
and must be transported before 6pm. To add uncertainty
to these static instances, dynamic release times were added
to different subsets of the orders; thus creating release-time
uncertainty instances (Rx). These orders were then, no longer
available at the beginning of the day, but rather at a point in
time dictated by their release-time. In total, four release-time
uncertainty scenarios were defined based on the percentage
of dynamic orders in the instances. These were the R25,
R50, R75, and R100 scenarios, where respectively 25%, 50%,
75%, and 100% of the jobs were dynamic.

In this paper, we extend the previously defined uncertainty
scenarios with a new source of uncertainty: truck break-
downs. To model truck-breakdown uncertainty, we assigned
breakdown times to randomly selected trucks in the static
(R0) instances. In the instances, the points in time at which
trucks breakdown were randomly generated according to a
uniform distribution over the full day (6am to 6pm). With
this method, we prepared three different truck-breakdown
scenarios, with three (B3), five (B5), and ten (B10) trucks
breaking down each day.

Truck-breakdown uncertainty is a natural extension to the
previously defined release-time uncertainty. While in release-
time uncertainty cases the planners have to solve problems
with an increasing number of jobs, here the change manifests
itself in a decreasing number of resources that can be used
to deliver a constant number of containers. Comparing the
performance of plans with such uncertain instances requires
unique evaluation criteria and methods — the topic of the
next subsection.

B. Evaluation criteria

We define two evaluation criteria that can be computed
from the execution traces. The first is a classical cost
measure that is used (partly) as a minimization criterion
by the planning methods. The second is a novel measure
characterizing the robustness of the planning methods in the
face of uncertainty.

The total cost of transportation for instance i, c(i), is
computed from the execution traces as the sum of the time
that the trucks were traveling empty (te(i)), plus the sum of
the rejection penalties for all orders that were not transported
(p(i)), plus the sum of the time the trucks were late as



compared to the designated time-windows (tl(i)):

c(i) = te(i) + p(i) + tl(i). (1)

As all elements of the total cost are in the time domain, the
cost is defined in seconds.

As stated previously, the sum of the time all trucks in
instance i spent traveling empty is denoted by te(i). For
one truck, empty travel is the time spent traveling from the
return of a container to the pick up of the next container.
The rejection penalty (p(i)) is defined as the sum of the
rejection penalties of all non-transported orders in instance
i. The rejection penalty of one order is the loaded time of
the order, that is the time spent traveling between the pick
up and the return of the container. The sum of all lateness
that occurred in instance i is denoted by tl(i). Lateness is
defined as the difference of the delivery time and the end
time of the customer time window; this takes a non-zero
value for an order only if it was delivered after the end of
the time window at the customer location.

From the cost of all instances in scenario S, the average
cost of the scenario is denoted by c(S). While this cost
measure is defined for any scenario, static (R0) or dynamic
(e.g. R100 or B10), the robustness measure is only defined for
dynamic scenarios. This measure expresses the degradation
that the given planning method suffers from the uncertainty
present in the instances of scenario S. To appreciate this
measure, note that any dynamic instance j was generated
from a static instance i by adding uncertainty as defined by
scenario S. Accordingly, the robustness of a given planning
method for an instance j is defined as the ratio of its total
cost for instance i in the static scenario R0 and the total cost
of the corresponding instance j in the dynamic scenario S:

r(j) = min

(
1,

c(i)

c(j)

)
(2)

In this measure, the min() function ensures that if the
cost of a method for a dynamic instance is lower than in the
corresponding static instance, its robustness is maximized at
1. The average robustness on a set of instances S is then
denoted by r(S).

These two measures, c() and r() describe two different
properties of a method. The cost measure, c(), reveals how
efficient the method is on the instances of a scenario. The
robustness measure, r(), tells us how fragile this efficiency
is. It defines the (normalized) reduction in performance under
uncertainty. Clearly, these measures are strongly related,
which is illustrated by the following proposition.

Proposition 1: Given a dynamic instance j and the related
static instance i, if method B is more robust than method A
on j, then the total costs of B for j are less than A, or the
total costs of A for i are less than B (or both).

Proof: To arrive at a contradiction, assume that B is
more robust than A on j, the costs of B for j are at least
as high as A, and the costs of A for i are at least as high as
B. Denote the costs of method X on instance k by cX(k).

TABLE I
THE RELATION BETWEEN ROBUSTNESS AND COST IN CASES WITH A

HIGHER COST FOR DYNAMIC INSTANCES (j)

static instance i uncertain instance j robustness

cA(i) = cB(i) cA(j) = cB(j) rA(j) = rB(j)

cA(i) < cB(i) cA(j) < cB(j) any

cA(i) ≤ cB(i) cA(j) > cB(j) rA(j) < rB(j)

cA(i) > cB(i) cA(j) > cB(j) any

cA(i) > cB(i) cA(j) ≤ cB(j) rA(j) > rB(j)

Then this assumption implies that

min

(
cB(i)

cB(j)
, 1

)
> min

(
cA(i)

cA(j)
, 1

)
(3)

cB(j) ≥ cA(j), and (4)
cA(i) ≥ cB(i). (5)

Dividing the left hand side of 5 by the right hand side of
(4), and the right hand side of (5) by the left hand side of
(4), we obtain

cA(i)

cA(j)
≥ cB(i)

cB(j)
. (6)

There are two cases. If cB(i) ≥ cB(j) then with (5) and
(4) cA(i) ≥ cA(j). Thus both methods have a robustness
value of 1, contradicting that B is more robust than A.

If cB(i) < cB(j) then cB(i)
cB(j)

< 1 and thus from (3) it

follows that cB(i)
cB(j)

> cA(i)
cA(j)

. This contradicts Equation (6).
Proposition 1 highlights the underlying dependency be-

tween the cost and the robustness measures for a certain
subset of the cases. Table I shows how robustness depends on
the relation of the cost measures of the two methods on the
same instances when both have a higher cost on a dynamic
instance j than on the related static instance i (which is most
common). When Proposition 1 can be applied, then there is a
clear winner. In the other cases, however, robustness depends
on the actual cost values of the compared methods.

C. The planning methods

Three planning methods are compared in this paper, two
distributed agent-based methods and one centralized opti-
mization. All three methods are fundamentally related to the
same algorithms as those published in [7]. The common goal
of the methods is to minimize empty travel time plus the
rejection penalty, while all three strictly disallow lateness.

The two agent algorithms employ various heuristics to
compute and adapt plans in any given situation. Both use
the classical insertion heuristic, order exchange and order
relocation heuristics. The difference between the two is that
one of the agent systems uses a modified insertion heuristic
extended to consider order replacement. This allows already
committed orders to be released in favor of a new, “better”
(i.e less cost) order. The simpler agent algorithm using the
original insertion algorithm is called insertion-relocation-
exchange (ire), while the one using the modified insertion
algorithm is called substitution-relocation-exchange (sre).



TABLE II
PARAMETERS OF THE EXPERIMENTS

Benchmark settings
number of trucks 40
number of orders 65
pick-up and delivery time 1 hour
return time half an hour
delivery time-window length 2 hours
time-window start points uniform from [8am,5pm]
start time 6am
simulation speed 6 times real time
variable release times
variable number of truck breakdowns

Parameters of the agent approaches
reallocation frequency 1 per 1 hour per job
exchange frequency 1 try per 1 hour per truck

Parameters of central optimization
M value ensures timing constraints 9000
decision horizon 30 seconds real time

(except the first decisions that are unlimited)

The on-line optimization approach, extensively docu-
mented in [7]–[9], is based on the mixed-integer program-
ming model of [4].

A summary of the parameters used to set up the experi-
ments is provided in Table II. The elements typeset in italics
were varied throughout the experiments, the rest remained
fixed.

VI. SIMULATION RESULTS

The simulation results presented in this section were ob-
tained by utilizing the three transportation planning methods
and an off-line (a posteriori) method as part of the proposed
evaluation framework running the described problem in-
stances. A portion of these results (the cost measure compar-
isons of the on-line optimization and the sre agent method on
the release-time uncertainty scenarios) was already published
in [7]. Nevertheless, for the sake of completeness, we discuss
the results of all three methods on both uncertainty types in
terms of both cost efficiency and robustness.

Fig. ?? repeats the earlier findings of [7] regarding the
total cost of the different methods across the range of release-
time uncertainty scenarios. While in the static instances the
on-line optimization clearly outperforms the agent solutions,
there is a point beyond which the advantage of the on-line
optimization disappears in the face of uncertainty. When
more than 50% of the jobs are dynamic, the agent solutions
start to take the lead.

In earlier work, when service time uncertainties were
also examined, it appeared that this trend holds across all
uncertainty types. However, the truck-breakdown scenarios,
introduced in this paper, break this trend. An increase in
breakdown events seems to have an equal effect on all
three planning methods. The on-line optimization method
maintains its advantage against the agent-based methods even
when 25% of the trucks breakdown, which can be seen in
Figure ??.

The final two figures depict the robustness results of the
algorithms on the different scenarios. In the case of release-
time uncertainty (Fig. ??), the robustness of the on-line
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Fig. 2. Cost-measure results on the release-time, and truck-breakdown
uncertainty scenarios.

optimization method is consequently lower than that of the
agent methods, indicating that on-line optimization is more
susceptible to performance loss (in terms of cost) than the
agent methods. The most robust method, with a robustness
value close to one, is the a posteriori optimal method. The
fact that its robustness is less than one means that each
instance becomes more difficult as release-time uncertainty
increases; even optimal results taken by solving the cases,
assuming an end-of-the-day perspective with all relevant
information known, are worse than in the static case.

Thus far, the main trend observable in the results is
that the method which is better cost-wise, is also better in
terms of robustness. However, the truck-breakdown scenarios
do not follow this trend (see Fig. ??). Although the on-
line optimization has consistently lower transportation-cost
results on these scenarios, it still proves to be less robust
than the agent methods.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we argued that any evaluation of transporta-
tion planning methods should be able to simulate unforeseen
events, take care of the consequences of (long) computation
times in a realistic manner, and separate planning and execu-
tion to be able to compare completely different methods in a
consistent way. We provided a detailed description of a com-
parison framework that meets these requirements through the
use of planning, simulation, and judge components.

For static planning approaches, a cost function is usually
minimized and the emergent value is used to compare
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Fig. 3. Robustness-measure results on the release-time, and truck-
breakdown uncertainty scenarios.

different methods. However in a dynamic setting, in addition
to cost minimization, the effect of unforeseen events on these
costs is also an important measure. This paper provided such
a measure for robustness.

Both the simulator and the robustness measure are il-
lustrated by comparing three state of the art transportation
planning methods: one using a centralized on-line optimiza-
tion technique and two variants of multi-agent planners. The
comparisons are done on a set of known benchmarks with
release time uncertainty, and a new set of benchmarks with
truck breakdown uncertainty.

From these experiments we conclude that the simulator
is able to provide a fair comparison between very different
types of planning methods, and that the robustness mea-
sure adequately captures the effect of uncertainty on such
planning methods. Additionally, the experiments provided
a surprising result regarding the effect of random truck
breakdowns. In previous work multi-agent systems were
shown to be more efficient than the centralized optimization
approach under high uncertainty levels; this is not the case
when considering random truck breakdowns. In cases where
this is the only cause of uncertainty, online optimization
significantly outperforms, in terms of cost, both of the two
state-of-the-art multi-agent planning approaches. However,
these multi-agent approaches appear to be slightly more
robust; the relative increase in costs is a bit smaller, probably
because of the slack in the initial plans without uncertainty.

The results presented here not only highlight the strengths
and weaknesses of three different transportation planning

systems, but they also elucidate the strengths and weaknesses
of our proposed simulation framework. Specifically, while
the recommended component based structure provides a
plug-and-play feel, actually making the planning system-
simulator connection is still labor intensive. Any labor in-
tensive process can, in turn, become an error prone process.
Future versions of the dynamic simulation framework should
be streamlined. One mechanism to streamline the framework
is the development of a web-based simulation service.

Aside from ameliorating the simulation framework, there
is also future work for our transportation scenarios. Specif-
ically, we plan to consider travel time uncertainty. We seek
to model travel time uncertainty that stems not only from
road way disturbances, but from the driver’s behavior — e.g.
the selection of routes other than the geographically shortest
route. As an extension of this change in the scenarios, we
would also like to consider multi-agent and optimization
planning methods that can take the stochastic nature of travel
time explicitly into account.

In addition to travel time considerations, transportation
planning in the real-world includes other, tacit forms of
uncertainty. To capture the value of a planning method in
the real-world, comparisons between a dispatcher (human)
planned route and those derived from an automated planning
system, would be extremely valuable.

We believe that the simulation environment put forward
in this paper, as well as the robustness measure presented,
as demonstrated on three planning approaches, support per-
forming such future experiments.
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