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ABSTRACT
This paper presents a multi-player multi-issue negotiation
model to solve a resource allocation problem. We design
a multilateral negotiation protocol, by which rational play-
ers bid sequentially in consecutive rounds till a deadline.
Every player’s bid is a combination of all resource alloca-
tions for himself. In this framework, we perform a thorough
theoretical analysis of the negotiation with complete infor-
mation, which is a preliminary for the more complex incom-
plete information case. We show that, under a complete
information setting, we can derive the negotiation strategies
that form a subgame perfect equilibrium outcome. We also
show that when a discount factor exists, an agreement will
be reached immediately at the end of the first negotiation
round. By making trade-offs between issues, the utility that
every player gets in the equilibrium outcome is maximized
and the solution is Pareto optimal.

1. INTRODUCTION
With the rapid development of multi-agent systems, au-

tomated negotiation has been widely used to solve coordina-
tion and cooperation problems in complex systems. In this
paper, we propose a solution when multiple players allocate
multiple resources amongst themselves through negotiation.
In contrast to most previous work on two-player multi-issue
negotiation [6] or multi-player single-issue negotiation [2, 9,
16], the negotiation model presented in this work is a multi-
player multi-issue strategic negotiation model. It is also
different from the model of multiple bilateral negotiation
between more than two players [8]; it is a multilateral nego-
tiation that always includes all players in one negotiation.
Thus, the negotiation model proposed by us is more general
and applies to multi-issue negotiation between more than
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two players in the real world.
We design a negotiation protocol when each player bids

a combination of desirable allocations only for himself not
for all players. Compared to Rubinstein’s alternating-offer
bargaining [14], in which one player’s proposal includes al-
locations for all players, this model applies to many real
negotiation scenarios and the equilibrium solution applies
to those scenarios directly. Fatima et al [6] study different
approaches to multi-issue negotiation and conclude that the
package approach, when all issues are bundled and negoti-
ated concurrently, is the optimal way for multi-issue nego-
tiation. In our work, we extend this concurrent multi-issue
negotiation model from two players to multiple players, in
a model where we allow all players to bid combinations for
all resource allocations. The model presented in this paper
tackles several problems introduced by multi-player negoti-
ation. It shows the bidding order problem in the negotiation
between more than two players and provides a simple way to
solve it. The change from bidding allocations for all players
to bidding allocations for each player himself increases the
opportunities of learning under incomplete information en-
vironments. Although we just analyze the negotiation with
complete information in this paper, the proposed model is a
fundamental result of automated negotiation studied. This
paper is an important step towards the incomplete informa-
tion case and provides a benchmark for multi-player multi-
issue negotiation.

We briefly describe the negotiation model here and present
the full details in the next sections. We study solutions
with n ≥ 2 players to allocate m ≥ 2 resources amongst
themselves through negotiation, which takes place round by
round under a time constraint, a negotiation deadline. All
players have to reach an allocation agreement, otherwise no
resource will be allocated. Different from the two-player
negotiation that a player’s allocation determines his oppo-
nent’s allocation indirectly, in the n-player negotiation, even
if one player’s allocation is determined separately, the rest
of the players still need to negotiate allocations of the is-
sues left. Because every player’s focus is his own desirable
allocation, instead of one player’s proposal for all players’
allocations [2], we let n players make bids/responses sequen-
tially in each round and let every player’s bid be a combina-
tion of all resource allocations only for himself. By making



trade-offs between allocations of different resources, the out-
come utility that every player gets can be maximized while
the utilities that his opponents get are kept, so it is easier
to reach an allocation agreement than negotiating resources
separately. We set the negotiation under a complete in-
formation environment, in which all information is common
knowledge, and develop equilibrium strategies of the players.
The outcome formed by those strategies is a subgame per-
fect equilibrium (SPE) [15]. Given another time constraint,
a discount factor that decreasing the utilities of bids dur-
ing the negotiation, an agreement can be reached immedi-
ately at the end of the first round. Further, the solution is
Pareto optimal when each player benevolently select the bid
amongst multiple bids that would introduce the same utility
to him.

The rest of the paper is organized as follows. Section 2 de-
scribes the negotiation model including the problem model,
the negotiation protocol and utility functions. Section 3
proposes the equilibrium strategies formally and proves sev-
eral properties of the outcome. A simple example of the
equilibrium strategies is also given. Section 4 gives a brief
summary of related work. And finally, Section 5 presents
the conclusions and future work.

2. THE NEGOTIATION MODEL
Suppose a complex task requires a finite set of n ≥ 2

players to perform, given a finite set of m ≥ 2 divisible re-
sources. The task is divided into n subtasks, each of which
is allocated to one player. We assume every player needs a
combination of all types of resources to perform his subtask.
Hence, a player’s allocation is a combination of every re-
source allocated to him. Every player’s allocation can only
be implemented if all players agree with it. To solve the
problem of resource allocation, we propose a solution when
n players allocate m resources amongst themselves through
multilateral negotiation. For the sake of simplicity, we in-
terpret an amount xk as an allocation percentage of the kth

resource where xk ∈ (0, 1) and 1 ≤ k ≤ m. We denote the
complete set of the total amounts of resources by a vector
1 in which every element is 1. In the rest of this paper,
we use the term issue to indicate the amount of a resource
negotiated by the players.

2.1 The Negotiation Protocol
In this section, we impose a negotiation protocol that de-

scribes how players can act and interact during the nego-
tiation. We let the negotiation take place round by round
r ∈ N, in which the players can take actions. There are
two common time constraints, a negotiation deadline γ ∈ N
and a constant discount factor δ ∈ (0, 1). If the players can-
not reach an allocation agreement on all issues in any round
r ≤ γ, the negotiation fails and all players get nothing. We
let disagreement denote this outcome, which is the worst
outcome of this negotiation. Given an allocation agreement
at a subsequent moment, the utility that a player gets is
decreased by the discount δ.

We let n players take actions sequentially in consecu-
tive rounds till the deadline γ. Different from Rubinstein’s
alternating-offer bargaining [14], in each round r ≤ γ, we
let each player bid one desirable combination of the m is-
sues for himself sequentially, given the bidding order of the
current round r. In this work, the negotiation protocol re-
quires the bidding orders of all rounds to be pre-specified

and fixed during the whole negotiation, but the way to gen-
erate the bidding orders can be various. A given player
is represented by a different bidder in each of the rounds,
provided that those bidders all share the same preference
and information of the original player. For instance, in
the case of three players 1, 2 and 3, the bidding orders can
be 〈(1, 2, 3), (2, 3, 1), (3, 1, 2), . . .〉, in which player 1 is repre-
sented by the first bidder, the third bidder and the second
bidder in rounds 1, 2 and 3 respectively. We let bidder i ∈ N
represent the ith bidder in a round where 1 ≤ i ≤ n and let
N denote the set of bidders {1, . . . , n} of a round.

When it is a bidder’s turn to bid in round r ≤ γ, given
the bids of the previous bidders in the current round, the
bidder can either accept those previous bids and make his
own bid, or reject those bids and the chance of bidding.
At the beginning of every round r, the issues available for
bidders to bid are always the complete set of issues 1. The
issues cannot be bidden separately. The bidder either bids
a combination of all m issues or rejects to bid for any issue.
Therefore, the set of all possible bids is B = (0, 1)m and
bidder i’s bid is an m-vector xi ∈ B. An element1 xi,k ∈ xi

represents the kth issue of bid xi where 1 ≤ k ≤ m. We
let reject denote the action of rejection. Therefore, the set
of all possible actions of every bidder is A = B ∪ {reject}.
We let ai ∈ A denote bidder i’s action in a round and let
a ∈ An denote an action profile chosen by n bidders in the
round. We let x ∈ Bn denote a bid profile and define an
agreement to be:

x = (x1, . . . ,xn) subject to ∀k ∈ {1, . . . , m}
n∑

i=1

xi,k ≤ 1

(C)
Note that for the notational simplicity, we eliminate the time
indexes of the notations of bidder i, bid xi, the bid profile x,
action ai and the action profile a. In the rest of this work,
those notations are always bounded to the round that the
negotiation is taking place, unless specified otherwise.

Further, we make the following assumptions about the
players and the negotiation.

• Unanimity : only a unanimous agreement can be ac-
cepted and then be implemented.

• Rationality : every player will act in order to maximize
his own utility.

• Patience: all players are patient enough to stay in the
negotiation till the deadline γ, if no agreement has
been reached yet.

• Benevolence: when a player can choose between mul-
tiple outcomes which are indifferent to him but not to
his opponents, he will choose the one that is best for
his opponents as far as he knows.

In this work, we assume the negotiation takes place un-
der a complete information setting. The time constraints,
the above assumptions and the preferences of players are all
common knowledge. Given the definitions and assumptions
above, we propose the negotiation protocol.

• In each negotiation round r ≤ γ, from the first bidder
to the last bidder, every bidder i ∈ N takes an action
ai ∈ A sequentially.

1In this paper, we also use ∈ to represent the relation that
an element belongs to a vector.



• In round r < γ, given all previous bids (x1, . . . ,xi−1),
bidder i can either accept them and bid xi, or reject
them. If bidder i bids xi, then it is bidder i + 1’s turn
to choose his action/response. If bidder i chooses to
reject the previous bids, the current round r ends and
the negotiation passes on to round r + 1. Once bidder
n accepts all previous bids and bids xn and the bid
profile x satisfies the constraint (C), an agreement is
reached and the negotiation stops successfully.

• If no agreement is reached in any round r ≤ γ, the
negotiation stops unsuccessfully and the outcome is
disagreement.

2.2 Utility Functions
As defined in the last section, the outcome of the negoti-

ation is some agreement or disagreement. Each player’s
preference over the outcomes are represented by a utility
function, which is common knowledge in this game. In the
following, however, we define all functions on a player in a
specific round, which is represented by a bidder. We refer to
bidders representing the same player in different rounds the
same information. (Recall that the mapping of any player
and the bidders representing him is specified by the bidding
orders.)

Because of the discount factor δ, an agreement reached in
different rounds introduces different utilities to the players.
Hence, the utility depends on not only the action profile but
the time as well. We define the utility function ui : An×N →
R, where ui(a, r) represents the utility that bidder i ∈ N
would get in round r ∈ N, if the bidders all chose their
actions as specified in a ∈ An. Note that disagreement
only happens at the end of the negotiation deadline γ, when
(i) an action of reject exists in the action profile a, or (ii)
a is a bid profile x but does not satisfy the constraint (C).
An agreement may be reached in any round r ≤ γ, when
a is a bid profile x and the constraint (C) is satisfied. In
this situation, the utility of x for bidder i only depends on
his bid xi ∈ x; we define a general valuation function vi :
B → R to calculate the value. In this work, we assume the
valuation function to be a monotonically increasing function
of any element xi,k ∈ xi (1 ≤ k ≤ m). Formally, the utility
function is given by:

ui(a, r) =

 0 if r = γ and reject ∈ a
0 if r = γ, a = x and not (C)

δr−1 · vi(xi) if r ≤ γ, a = x and (C)
(1)

where xi ∈ a.
Note that the range of vi(xi) is R but not R+, which means

the value of a combination of allocations for bidder i can be
negative, so the utility of an action profile a for bidder i
can be negative, if a actually happens. However, because
the rational bidders prefer disagreement to the allocations
with a negative utility, that actions profile a cannot really
form an outcome of this game and disagreement is the
worst outcome of this game. We explain this point in order
to distinguish the problem in this work from the typical
problem of a cake partition. To reach an agreement, in which
his opponents accept allocations with zero utilities at the end
of the game, the bidding player still has to leave a minimum
amount of resources to them but not nothing. This point
makes the problem setting in this work relevant to more
scenarios in the real world.

3. THE NEGOTIATION STRATEGIES
In this section, we investigate the equilibrium strategies

of the players of the game and use the notion of subgame
perfect equilibrium [15], which induces a Nash equilibrium
in every subgame (round), to examine the solution formed
by those equilibrium strategies.

3.1 Description of Strategies
We analyze the equilibrium strategies to specify the op-

timal action of every bidder i ∈ N in any round r ≤ γ,
when it is his turn to bid, given the previous bids in round
r. Bidder i’ optimal action is to maximize the utility that he
would get when the game ends. Bidder i’s equilibrium strat-
egy is to try out all possible actions in A to find the one that
has the maximum utility. As specified by the utility func-
tion (1), any bid’s utility for bidder i is not only determined
by bidder i’s valuation but also determined by whether his
opponents accept it. Every bidder’s optimal action is the
one that maximizes his own utility with the consideration
of his opponents’ responses. Therefore, all bidders’ optimal
actions in a round are best responses to each other; the ac-
tion profile forms a Nash equilibrium [12]. When it is bidder
i’s turn to bid, we let hi = (x1, . . . ,xi−1) denote the profile
of previous bids in the current round and let H denote the
set of all possible profiles of bids in the game. We define the
optimal action function si : H × N → A, where si(hi, r) is
bidder i’s optimal action in round r, given previous bids hi

in round r. We let a∗i denote the optimal action of bidder i
in the current round r.

We let −i denote the set of all bidders other then i in a
round, so a combination of their actions can be represented
by a−i = ×j∈N−i aj . Given an action ai ∈ A, bidder i rea-
sons his opponents’ responses a−i first, and then calculates
the utility of the action profile a = (ai, a−i) for himself. The
utility function (1) only gives the utilities of an action profile
a ∈ An for every player, when a forms either the outcome
of an agreement or disagreement in round γ. However,
when a cannot form an agreement in the current round
r < γ and the negotiation passes on to the next round r+1,
the utilities of a for the players have not been specified. We
define the utility of an action profile a for bidder i ∈ N in
round r ≤ γ to be equal to the utility that the player repre-
sented by bidder i in round r would get in the next round
r+1, if a cannot form an agreement in the current round r.
Apparently, if a player chooses to reject the previous bids,
the utility of reject in round r just equals to the utility that
the player would get in round r + 1.

When it is bidder i’s turn to bid in round r ≤ γ, bidder i
needs to reason the utility that he would get in round r +1.
The result is also the utility of reject in round r and will
be compared to the utility of any possible bid for him to
determine his optimal action. To calculate the utility of any
bid xi ∈ B, bidder i needs to reason the best response of each
of the remaining bidders j > i in round r to his possible bid
xi. The best response is bidder j’s optimal action derived
from (i) the previous bids (x1, . . . ,xi−1), (ii) the possible
bid xi of bidder i and (iii) the reasoned optimal action of
bidder j′ where i < j′ < j. The reasoning also requires
the information of the utilities that all players would get
in the next round r + 1. Eventually, bidder i in round r
does the reasoning from bidder i + 1 to bidder n in round
r, continues it from the first bidder to the last bidder in
round r + 1, and lasts it till the last bidder in round γ. It is



a recursive procedure with a base case that all players will
get zero utilities after round γ, if no agreement has been
reached.

3.2 Formal Definition of Strategies
Given the description above, we formally define the op-

timal function and present the negotiation strategies. We
develop some notations first. As the presentation of the
strategies is concerned with the consecutive rounds, we let
r and r + 1 denote the current round and the next round
respectively. We use a letter and the letter with a tilde to
denote a bidder of round r and a bidder of round r + 1
respectively, which represent the same original player. For
instance, bidders i and ı̃ denote the ith and ı̃th bidders in
rounds r and r + 1 respectively; they have the same utility
function as they represent the same player.

Formally, given the previous bids hi = (x1, . . . ,xi−1), the
optimal action function is defined by:

si(hi, r) ∈ argmax
ai∈A

wi(ai, hi, r)

where

wi(ai, hi, r) =

 0 if r > γ
ui(x, r) if r ≤ γ, a = x and (C)

wı̃(a
∗
ı̃ , hı̃, r + 1) otherwise

where

a = (hi, ai, a
∗
i+1, . . . , a

∗
n)

a∗i+1 = si+1(hi+1, r), hi+1 = (hi, ai)

∀j ∈ {i + 2, . . . , n}
{
a∗j = sj(hj , r), hj = (hj−1, a

∗
j−1)

}
∀̃ ∈ N

{
a∗̃ = s̃(h̃, r + 1), h̃ = (h̃−1, a

∗
̃−1)

}
. (2)

In any state of any round r, when it is bidder i’s turn to bid,
he uses the above optimal function to calculate the optimal
bid/response, given the previous bids in the current round
r.

We let Sr
i denote the equilibrium strategy of a player when

he is represented by bidder i ∈ N in round r ≤ γ, let Sr

denote the equilibrium strategies in round r where Sr =
(Sr

1 , . . . , Sr
n), and let S = (S1, . . . , Sγ) denote the strategy

profile of the players of this game.

Proposition 1. The equilibrium strategy of bidder i ∈ N
in round r ≤ γ is Sr

i , which is given by Algorithm 1. The
strategy profile S = (S1, . . . , Sγ) induces a subgame perfect
equilibrium of the game. If an agreement exists in this game,
it will be reached immediately at the end of round 1.

Algorithm 1 Sr
i (i ∈ N, r ≤ γ)

Input: previous actions hi = (x1, . . . ,xi−1)
Output: optimal action a∗i
a∗i = si(hi, r)
if a∗i = xi ∈ B then

bid xi

else
reject hi

end if

Proof. We argue that the strategy profile S forms a sub-
game perfect equilibrium, so we need to show that S induces
a Nash equilibrium in every subgame (round). We are go-
ing to prove that the optimal action of any bidder i ∈ N
in any round r ≤ γ given by the equilibrium strategy Sr

i is
the best response to the optimal actions of his opponents −i
given by the equilibrium strategies Sr

−i. We give a proof by
contradiction.

In any round r, when it is bidder i’s turn to bid, his op-
timal action is a∗i = Sr

i , given the previous bids induced by
the equilibrium strategies. We let a∗−i denote action profile
induced by the equilibrium strategies Sr

−i, given a∗i . Sup-
pose any other strategy used by bidder i is to choose another
action a′i ∈ A where ui((a

′
i, a

′
−i), r) > ui((a

∗
i , a∗−i), r), when

all players other than i adhere to Sr
−i which induces the

action profile a′−i, given a′i.
When the profile of optimal actions a∗ = (a∗i , a∗−i) can

form an agreement in round r, the utility ui(a
∗, r) has been

maximized in Equation (2) while the utility uj(a
∗, r) is no

less than the utility that bidder j would get in round r + 1
where j ∈ N . Because all utility functions are monotonically
increasing, if the action profile a′ = (a′i, a

′
−i) is a profile of

bids and increases the utility for bidder i, a′ either violates
the constraint (C) or lets at least one of other bidders get a
utility less than the utility that he would get in round r+1, if
a′ is really implemented. Hence, the action profile a′ cannot
form an agreement in round r, which is the same as the sit-
uation that reject ∈ a′. In both situations, the utility that
bidder i can get by taking action a′i in round r equals to the
utility that he would get in round r + 1, which is no more
than the utility ui(a

∗, r). There is a contradiction. Because
the utility function defined in this work is completely gen-
eral, it is possible that no agreement exists in the game. For
any action profile, every player gets the same utility, zero, so
there is also a contradiction. Therefore, the optimal action
a∗i is bidder i’s best action/response to his opponents’ ac-
tions induced by the equilibrium strategies. The equilibrium
strategies Sr induces a Nash equilibrium in round r and the
strategy profile S induces Nash equilibrium in every round
r ≤ γ, which is a subgame perfect equilibrium.

When the strategy profile S can form an agreement x
in round r ≤ γ, then every bidder i ∈ N gets a utility
ui(x, r), which is no less than the utility that he would get
in the next round r + 1. The bid profile x can also be an
agreement in round r + 1. Because of the discount factor δ,
at least one bidder i in round r has ui(x, r) > uı̃(x, r + 1)
and any other bidder j in round r has uj(x, r) ≥ ũ(x, r+1).
Under the assumption of benevolence, an agreement reached
earlier is always preferred by all players. Thus, an agreement
will be reached immediately at the end of round 1 and the
negotiation stops.

In the optimal action function (2), it is possible that bidder
i ∈ N has multiple bids that have the same maximum util-
ity, which are indifference to bidder i but not to bidder j > i.
There may be an opportunity to increase the outcome util-
ity for bidder j without decreasing the outcome utility for
bidder i. Therefore, under the assumption of benevolence,
if bidder i has multiple bids that have the same maximum
utility, we let bidder i choose the one that is best for bid-
der i + 1. If bidder i still has more than one bid that is
best for bidder i + 1, we let bidder i choose the one that is
best for bidder i + 2, etc. This selection will last until bid-
der i has only one optimal bid left or bidder n has already



been considered by bidder i. We call this as the completely
benevolent selection.

Proposition 2. The equilibrium outcome is a Pareto op-
timal solution of the game if every player chooses his optimal
action with the completely benevolent selection.

Proof. We argue that the equilibrium outcome is Pareto
optimal, so we need to prove that no other outcome can in-
crease the outcome utility for any player without decreasing
the outcome utilities for any other player, when every player
chooses his optimal action with the completely benevolent
selection. We give proof by contradiction.

When the equilibrium strategies S can reach an agree-
ment x at the end of round 1. Suppose bidder i ∈ N has
another bid x′i that the bid profile x′ = (x′i,x

′
−i) also forms

an agreement in that round where ui(x
′, 1) > ui(x, 1) and

uj(x
′, 1) ≥ uj(x, 1) (j ∈ N− i). Because all utility functions

are monotonically increasing and ui(x, 1) has been maxi-
mized in Equation (2) with the completely benevolent selec-
tion, the bid profile x′ either violates the constraint (C) so
that x′ is not an agreement or lets at least one bidder j get
uj(x

′, 1) < uj(x, 1). There is a contradiction. Therefore,
the equilibrium outcome x is a Pareto optimal.

When no agreement can be reached by using the equilib-
rium strategies S, every player gets zero utility. It is impos-
sible to increase the utility of any player without rejections
from other players Therefore, the equilibrium outcome in-
troduced by S is a Pareto optimal solution of the game.

Proposition 3. The negotiation mechanism is individu-
ally rational.

Proof. Because whether the outcome is an agreement
or disagreement, every player gets a utility no less than
zero, which is also the utility for every player if he does not
participate the game, the negotiation mechanism is individ-
ually rational.

3.3 A Simple Example
In this section, we use a simple example to illustrate the

negotiation model and equilibrium strategies. Suppose three
students need to share an office. They all prefer to have the
office only to themselves. They therefore decide to time-
share the office, but they agree to allow the others to leave
their stuff (books, etc.) behind in the cupboard. Each of
the students would like to have the office as long as possible.
Let therefore the first issue be the part of the working day
a student has on his own. They also like to get as much
space in the cupboard as possible. Let the second issue thus
be the part of the cupboard they are entitled to. The dean
overheard them discussing and said: “you should take turns
in making proposals to each other, but if you haven’t reached
an agreement before noon, I’ll give the room to someone else.
Determine the order of the terms by drawing straws.”

Given the above case, we let three players, 1, 2 and 3,
denote the students and let the shares of time and cup-
board be the first issue and the second issue respectively.
We let xi,k denote the ith player’s proposal for the kth issue
and let xi,k ∈ {0.1, . . . , 0.9} for simplicity reasons where
i = 1, 2, 3 and k = 1, 2. We assume that there are at
most three negotiation rounds and the bidding orders are
〈(1, 2, 3), (2, 3, 1), (3, 1, 2), . . .〉 given in Section 2. We de-
fine the following valuation functions for an agreement x =
(x1,x2,x3) for each of the players:

v1(x1) = 8× x1,1 + 2× x1,2 − 1.5

Table 1: Example of 3-player 2-issue Negotiation
round 1 x1

i u1
i

i = 1 (0.2, 0.1) 0.3 > 0.24
i = 2 (0.7, 0.2) 3.2 > 2.16
i = 3 (0.1, 0.7) 3.8 > 3.6

round 2 x2
i u2

i

i = 2 (0.7, 0.1) 2.16 > 0.128
i = 3 (0.1, 0.8) 3.6 > 3.584
i = 1 (0.2, 0.1) 0.24 > 0.192

round γ xγ
i uγ

i

i = 3 (0.7, 0.7) 3.584 > 0
i = 1 (0.2, 0.1) 0.192 > 0
i = 2 (0.1, 0.2) 0.128 > 0

v2(x2) = 5× x2,1 + 5× x2,2 − 1.3

v3(x3) = 3× x3,1 + 7× x3,2 − 1.4

These valuation functions are part of the utility function of
each player i, as defined in Equation (1). We set the discount
factor to δ = 0.8. The optimal bid of every player in every
round according to the equilibrium strategy is given in Table
1 below. This table shows that in each round, the three bids
form an agreement, and that every player’s utility is at least
as high as his utility in the next round. Unless one or more
players submit bids other than their equilibrium strategies,
the negotiation will stop at the end of the first round.

As a final example, suppose that player 3 bids (0.8, 0.8)
in the last round, deviating from its equilibrium strategy.
In that case, either player 1 or player 2 will not receive
enough of the issues to obtain a positive utility. Therefore,
no agreement will be reached and every player will get zero
utility.

4. RELATED WORK
In this section, we discuss some related work of multi-

player and/or multi-issue negotiation with complete infor-
mation. The best known negotiation model is the alternating-
offer bargaining game [14]. Basically, in a two-player game,
one player proposes a partition of a single issue to the other
player. The opponent can accept the proposal or make a
counter-proposal or quit the negotiation. The negotiation
continues until reaching an agreement or a finite deadline.
St̊ahl identifies the optimal strategies for rational players
with perfect information in such a game with a finite time
horizon [17]. Rubinstein identifies a unique SPE, which is
reached immediately, in a perfect information setting with
an infinite time horizon [14]. The St̊ahl-Rubinstein model
[14], two-player single-issue bargaining, has been extended
into two directions, either the negotiation between more
than two players or the multi-issue negotiation. The model
of n-player single-issue negotiation has been investigated in
[2, 9, 16]. One proposer is chosen by a pre-specified order in
each stage of a multi-stage game; he proposes a partition of
one issue for all players and other players then respond se-
quentially. If players have time preferences with a common
constant discount factor, there is a unique allocation of a
pie amongst three players, which tends to an equal partition
as players become more patient [9]. It is possible to obtain
an equilibrium similar to the unique SPE of the two-player
game by limiting the strategies available to players to his-



tory independent strategies [16]. Some other work addresses
the multiple players game by modifying the structure of the
game. For instance, players are engaged in a series of bilat-
eral negotiation [8] and any player that reaches a satisfactory
agreement may “exit” the game [4, 11]. Two-player multi-
issue negotiation has been studied in two ways. Multiple
issues are negotiated one by one, so the role of a negotiation
agenda has been studied by various work [1, 3, 5, 7, 10]. Al-
ternatively, multiple issues can be treated as one package. A
comparison between the package approach and the sequen-
tial approach is made in [6] and the former shows a better
outcome as it introduces the opportunity of trade-offs.

The model built in this work includes both many players
and many issues. We let each player bid only for himself
sequentially; every bid is searched in an inherently infinite
set of bids. The game is multilateral and all issues are ne-
gotiated as one package. Both a common deadline and a
common constant discount factor are set; players are not
permitted to exit. A model of many player and multidi-
mensional issue spaces has been studied in [13]. In that
work, according to a pre-specified vector of “access proba-
bilities”, one proposer is selected in each negotiation round.
The solution is a limit of equilibrium outcomes, as the num-
ber of negotiation rounds increases without bound. Their
model let n players form multiple admissible coalitions. If
an admissible coalition has the proposer and his proposal is
accepted by all members in that coalition, the proposal will
be imposed to all n players. The model is more practical,
especially in political field. Compared to it, our model is
more general and can be directly used on n equal players.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a general multi-player

multi-issue multilateral negotiation protocol. Given two time
constraints, the deadline and the discount factor, we pro-
posed equilibrium strategies under a complete information
setting. Given these strategies, an agreement can be reached
immediately at the end of the first round, if it exists, and the
solution is a subgame perfect equilibrium. By making trade-
offs between issues, every player’s utility in the equilibrium
outcome is maximized and the solution is Pareto optimal.
To our knowledge, this is one of the first papers to study,
from a game theoretic perspective, the case of multi-issue
negotiation with multiple players. This case introduces a
new level of complexity to deriving subgame perfect equilib-
rium strategies, in comparison to bilateral bargaining. The
result of this work can be widely and directly used to solve
allocation problems of resources, tasks, etc.

With the technique developed in this paper, we are cur-
rently developing a solution for the incomplete information
cases, in which the optimal actions of players are concerned
with their beliefs about types of each other. This is a com-
plex problem as those beliefs will change due to ongoing
new bidding information. In our work, we not only update
players’ beliefs during the real negotiation (similar to earlier
work on (bilateral) negotiation with incomplete information
[6]), but also take such updates into account when the play-
ers reason about their optimal actions.

Besides the incomplete information case, there are several
other interesting directions for extending this work. It will
be interesting to study a model where different players have
different deadlines and discount factors also. If the bidding
order of each round cannot be determined before the ne-

gotiation, the equilibrium strategies will be quite different.
Finally, we can try relaxing the constraint of monotonicity
and study the model with more general utility functions.
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