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Abstract. We consider a long-range version of self-avoiding walk in dimension d > 2(α ∧ 2), where d denotes dimension and α

the power-law decay exponent of the coupling function. Under appropriate scaling we prove convergence to Brownian motion for
α ≥ 2, and to α-stable Lévy motion for α < 2. This complements results by Slade [J. Phys. A 21 (1988) L417–L420], who proves
convergence to Brownian motion for nearest-neighbor self-avoiding walk in high dimension.

Résumé. Nous considérons un modèle à longue portée de la marche aléatoire auto-évitante en dimension d > 2(α ∧ 2), où d est
la dimension et α l’exposant de décroissance polynomiale de la fonction de couplage. Après un rééchelonnage approprié, nous
démontrons la convergence vers un mouvement brownien pour α ≥ 2 et vers un processus de Lévy α-stable pour α < 2. Ce résultat
complète celui de Slade [J. Phys. A 21 (1988) L417–L420] qui démontre la convergence vers le mouvement brownien pour une
marche auto-évitante à plus proche voisin en grande dimension.
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1. Introduction and results

1.1. The model

We study self-avoiding walk on the hypercubic lattice Zd . We consider Zd as a complete graph, i.e., the graph with
vertex set Zd and corresponding edge set Zd × Zd . We assign each (undirected) bond {x, y} a weight D(x − y),
where D is a probability distribution specified in Section 1.1 below. If D(x − y) = 0, then we can omit the bond
{x, y}.

Two-point function
For every lattice site x ∈ Zd , we denote by

Wn(x) =
{
(w0, . . . ,wn) | w0 = 0,wn = x,wi ∈ Zd ,1≤ i ≤ n− 1

}
(1.1)

the set of n-step walks from the origin 0 to x. We call such a walk w ∈ Wn(x) self-avoiding if wi '= wj for i '= j with
i, j ∈ {0, . . . , n}. We define c0(x) = δ0,x and, for n≥ 1,

cn(x) :=
∑

w∈Wn(x)

n∏

i=1

D(wi −wi−1)1{w is self-avoiding}, (1.2)
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where D is specified below. We refer to D as the step distribution, having in mind a random walker taking steps that
are distributed according to D. Without loss of generality we assume here that D(0) = 0.

The self-avoiding walk measure is the measure Qn on the set of n-step walks Wn = ⋃
x∈Zd Wn(x) = {0}× Zdn

defined by

Qn(w) := 1
cn

n∏

i=1

D(wi −wi−1)1{w is self-avoiding}, (1.3)

where cn = ∑
x∈Zd cn(x).

We consider the Green’s function Gz(x), x ∈ Zd , defined by

Gz(x) =
∞∑

n=0

cn(x)zn. (1.4)

We further introduce the susceptibility as

χ(z) :=
∑

x∈Zd

Gz(x) (1.5)

and define zc , the critical value of z, as the radius of convergence of the power series (1.5), i.e.

zc := sup
{
z | χ(z) <∞

}
. (1.6)

The main part of our analysis is based on Fourier space analysis. Unless specified otherwise, k will always denote
an arbitrary element from the Fourier dual of the discrete lattice, which is the torus [−π,π)d . The Fourier transform
of a function f : Zd →C is defined by f̂ (k) = ∑

x∈Zd f (x)eik·x .

The step distribution D

Let h be a non-negative bounded function on Rd which is almost everywhere continuous, and symmetric under the
lattice symmetries of reflection in coordinate hyperplanes and rotations by ninety degrees. Furthermore, we require h

to decay as |x|−d−α as |x| →∞, where α > 0 is a parameter of the model. In particular, there exists a positive
constant ch such that

h(x)∼ ch|x|−d−α whenever |x|→∞, (1.7)

where ∼ denotes asymptotic equivalence, i.e., f (x) ∼ g(x) if f (x)/g(x) → 1. For α ≤ 2 we make the stronger
assumption that h is completely rotation invariant on Rd (that is, not only by angles of 90 degrees as above). Conse-
quently,

∑
x∈Zd h(x/L) <∞ for all L, with x/L = (x1/L, . . . , xd/L).

We then consider D of the form

D(x) = h(x/L)∑
y∈Zd h(y/L)

, x ∈ Zd , (1.8)

where L is a spread-out parameter (to be chosen large later on). We note that the κ th moment
∑

x∈Zd |x|κD(x) does
not exist if κ ≥ α, but exists and equals O(Lκ) if κ < α.

During the paper we shall make frequent use of the Landau symbols O and o. We denote f = O(g) if |f/g| is
uniformly bounded. The bounding constant may depend on d , α, h, but not on n, k, z, u, ε (these quantities are
introduced later on). It may further depend on L unless there is an explicit L-dependence in g (like in the previous
paragraph). By o(1) we denote terms that vanish as n→∞ (except for the Appendix, where the limit |k|→ 0 is
considered).

Lemma 1.1 (Properties of D). The step distribution D satisfies the following properties:
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(i) there is a constant C such that, for all L≥ 1,

‖D‖∞ ≤ CL−d; (1.9)

(ii) there is a constants c > 0 such that

1− D̂(k) > c, if ‖k‖∞ ≥ L−1, (1.10)

1− D̂(k) < 2− c, k ∈ [−π,π)d ; (1.11)

(iii) there is a constant vα > 0 such that, as |k|→ 0,

1− D̂(k)∼
{

vα|k|α∧2, if α '= 2,

v2|k|2 log
(
1/|k|

)
, if α = 2.

(1.12)

Chen and Sakai ([4], Proposition 1.1) show that D satisfies conditions (1.9)–(1.11). We prove in the Appendix that
also (1.12) holds. It follows from formula (1.7) in [4] that vα ≤O(Lα∧2).

An example of h satisfying all of the above is

h(x) =
(
|x|∨ 1

)−d−α
, (1.13)

in which case D has the form

D(x) = (|x/L|∨ 1)−d−α
∑

y∈Zd (|y/L|∨ 1)−d−α , x ∈ Zd . (1.14)

1.2. Weak convergence of the end-to-end displacement

For α ∈ (0,∞), we write

kn :=
{

k(vαn)−1/(α∧2), if α '= 2,

k
(
v2n log

√
n
)−1/2

, if α = 2,
(1.15)

so that

lim
n→∞n

[
1− D̂(kn)

]
= |k|α∧2. (1.16)

Theorem 1.2 (Weak convergence of end-to-end displacement). Assume that D is of the form (1.8), where the
spread-out parameter L is sufficiently large. Then self-avoiding walk in dimension d > dc = 2(α ∧ 2) satisfies

ĉn(kn)

ĉn(0)
→ exp

{
−Kα|k|α∧2} as n→∞, (1.17)

where

Kα =
(

1 +
∑

x∈Zd

∞∑

n=2

nπn(x)zc
n−1

)−1

×
{

1, if α ≤ 2,
1 + (2dzcvα)−1 ∑

x∈Zd

∑∞
n=2 |x|2πn(x)zc

n, if α > 2. (1.18)

The quantities πn(x) appearing in (1.18) are known as lace expansion coefficients. We do not perform the lace ex-
pansion in this paper. References to the derivation of the lace expansion and various bounds on these lace expansion
coefficients are given later on. Under the conditions of Theorem 1.2, (2.21) and (2.58) below imply that both sums
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appearing in (1.18) are finite. However, the quantities πn(x) are given in terms of an alternating sum, cf. (2.22), and
their sign is not known. Nevertheless, both sums appearing in (1.18) can be made smaller than 1 by taking L large
enough, as proven in [11] for α > 2, and for α ≤ 2 it follows the lines of ([14], Section 6.2.2) in combination with [9].
Consequently, Kα ∈ (0,∞).

1.3. Mean-r displacement

The mean-r displacement is defined as

ξ (r)(n) :=
(∑

x∈Zd |x|r cn(x)

cn

)1/r

, (1.19)

where we recall cn = ∑
x∈Zd cn(x) = ĉn(0). For r = 2 this is the mean-square displacement, and already well under-

stood. For example, van der Hofstad and Slade [11] prove the following rather general version.

Theorem 1.3 (Mean-square displacement ([11], Theorem 1.1.b)). Consider self-avoiding walk with step distribu-
tion D given in Section 1.1 with α > 2. Then there exist constants C > 0 and δ > 0 (both depending on d,α, h,L)
such that, as n→∞,

1
cn

∑

x∈Zd

|x|2cn(x) = Cn
(
1 + O

(
n−δ

))
. (1.20)

The proof of Theorem 1.3 is also based on lace expansion. In the sequel we prove a complementary result for r < 2.
To this end, we write f . g if there are uniform positive constants with cg ≤ f ≤ Cg.

Theorem 1.4 (Mean-r displacement). Under the assumptions of Theorem 1.2, for any r < α ∧ 2,

ξ (r)(n).
{

n1/(α∧2), if α '= 2,

(n logn)1/2, if α = 2,
(1.21)

as n→∞.

Recently, Chen and Sakai [3] found the proof that (1.21) holds for all r ∈ (0,α), for long-range self-avoiding walk
and long-range oriented percolation.

1.4. Convergence to Brownian motion and α-stable processes

In order to deal with the cases α = 2 and α '= 2 simultaneously, we write

fα(n) =
{

(vαn)−1/(α∧2), if α '= 2,(
v2n log

√
n
)−1/2

, if α = 2,
(1.22)

such that, for example, kn = fα(n)k, cf. (1.15). Given an n-step self-avoiding walk w, define

Xn(t) = (2dKα)−1/(α∧2)fα(n)w
(
/nt0

)
, t ∈ [0,1]. (1.23)

We aim to identify the scaling limit of Xn, and the appropriate space to study the limit is the space of Rd -valued
càdlàg-functions D([0,1],Rd) equipped with the Skorokhod topology.

For α ∈ (0,2], W(α) denotes the standard α-stable Lévy measure, normalized such that
∫

eik·B(α)(t) dW(α) = e−|k|α t/(2d), (1.24)

where B(α) is a (càdlàg version of) standard symmetric α-stable Lévy motion (in the sense of ([15], Definition 3.1.3)).
Note that W(2) is the Wiener measure, and B(2) is Brownian motion. By 〈·〉n we denote expectation with respect to
the self-avoiding walk measure Qn in (1.3).
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Theorem 1.5 (Weak convergence to α-stable processes and Brownian motion). Under the assumptions in Theo-
rem 1.2,

lim
n→∞

〈
f (Xn)

〉
n

=
∫

f dW(α∧2) (1.25)

for every bounded continuous function f :D([0,1],Rd)→ R. That is to say, Xn converges in distribution to an α-
stable Lévy motion for α < 2, and to Brownian motion for α ≥ 2. Equivalently, Qn converges weakly to W(α∧2).

In order to prove convergence in distribution as a process, we need two properties: (i) the convergence of finite-
dimensional distributions, and (ii) tightness of the family {Xn}. We shall now consider the former.

Convergence of finite-dimensional distributions means for every N = 1,2,3, . . . , any 0 < t1 < · · · < tN ≤ 1, and
any bounded continuous function g : RdN →R,

lim
n→∞

〈
g
(
Xn(t1), . . . ,Xn(tN )

)〉
n

=
∫

g
(
B(α∧2)(t1), . . . ,B

(α∧2)(tN )
)

dW(α∧2). (1.26)

Convergence of characteristic functions determines convergence in distribution, it is therefore sufficient to consider
functions g of the form

g(x1, . . . , xN) = exp
{
ik · (x1, . . . , xN)

}
, (1.27)

where k = (k(1), . . . , k(N)) ∈RdN and xi ∈Rd , i = 1, . . . ,N . We rather use the equivalent form

g(x1, . . . , xN) = exp
{
ik · (x1, x2 − x1, . . . , xN − xN−1)

}
, (1.28)

which better fits in our setting.
For n = (n(1), . . . , n(N)) ∈NN , with n(1) < · · · < n(N), we define

ĉ(N)
n (k) :=

∑

x1,x2,...,xn(N)

exp

{

i
N∑

j=1

k(j) · (xn(j) − xn(j−1) )

}

×
n(N)∏

i=1

D(xi − xi−1)1{(0,x1,x2,...,xn(N) )is self-avoiding} (1.29)

as the N -dimensional version of the Fourier transform of (1.2), with n(0) = 0. An alternative representation is

ĉ(N)
n (k) =

∑

w∈W
n(N)

eik·(w(n)W(w)1{w is self-avoiding}, (1.30)

where W(w) = ∏|w|
i=1 D(wi −wi−1) is the weight of the walk w (|w| denotes the length) and

k ·(w(n) =
N∑

j=1

k(j) · (wn(j) −wn(j−1) ).

We fix a sequence bn diverging to infinity slowly enough such that

fα(n)α∧1bn = o(1), (1.31)

for example, bn = logn.
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Theorem 1.6 (Finite-dimensional distributions). Let N be a positive integer, k(1), . . . , k(N) ∈Rd , 0 = t (0) < t(1) <
· · · < t(N) ∈ [0,1], and g = (gn) a sequence of real numbers satisfying 0≤ gn ≤ bn/n. Denote

kn =
(
k(1)
n , . . . , k(N)

n

)
= fα(n)

(
k(1), . . . , k(N)

)
,

nT =
(⌊

nt(1)
⌋
, . . . ,

⌊
nt(N−1)

⌋
, /nT 0

)

with T = t (N)(1− gn). Under the conditions of Theorem 1.2,

lim
n→∞

ĉ(N)
nT (kn)

ĉnT (0)
= exp

{

−Kα

N∑

j=1

∣∣k(j)
∣∣α∧2(

t (j) − t (j−1)
)
}

(1.32)

holds uniformly in g.

The presence of the sequence gn might appear unclear at this point, it is there for a technical reason: The proof of
Theorem 1.6 is carried out by induction over N and some flexibility is needed in the endpoint.

Let us emphasize that (1.32) has indeed the required form. Let k(1), . . . , k(N) ∈ Rd and 0 = t (0) < t(1) < · · · <
t(N) ∈ [0,1] be given. We apply Theorem 1.6 with N + 1 and gn ≡ 0, where k(N+1) = 0 and T = t (N+1) = 1, so that
nT = (/nt(1)0, . . . , /nt(N)0, n). Then

〈
exp

{
ik ·(Xn(nT)

}〉
n

=
〈
exp

{
i(2dKα)−1/(α∧2)kn ·(ω(nT)

}〉
n

= ĉ(N)
nT ((2dKα)−1/(α∧2)kn)

ĉn(0)
,

and this converges to

exp

{

− 1
2d

N∑

j=1

∣∣k(j)
∣∣α∧2(

t (j) − t (j−1)
)
}

as n→∞, as we aim to show for (1.26). Thus the finite-dimensional distributions of (long-range) self-avoiding walk
converge to those of an α-stable Lévy motion, which proves that this is the only possible scaling limit.

1.5. Discussion and related work

Long-range self-avoiding walk has rarely been studied. Klein and Yang [19] show that the endpoint of a weakly self-
avoiding walk jumping m lattice sites along the coordinate axes with probability proportional to 1/m2, is Cauchy
distributed. A similar result for strictly self-avoiding walk is obtained by Cheng [6].

In a previous paper [9] it is shown that long-range self-avoiding walk exhibits mean-field behavior above dimension
dc = 2(α ∧ 2). More specifically, it is shown that under the conditions of Theorem 1.2, the Fourier transform of the
critical two-point function satisfies Ĝzc (k) = (1 + O(β))/(1 − D̂(k)), where β = O(L−d) is an arbitrarily small
quantity. Hence, on the level of Fourier transforms, the critical two-point functions of long-range self-avoiding walk
and long-range simple random walk are very close. Indeed, the results in [9] suggest that the two models behave
similarly for d > dc, and we confirm this in a rather strong form by showing that both objects have the same scaling
limit.

Chen and Sakai [5] prove an analogue of Theorem 1.2 for oriented percolation, and in fact our method of proving
Theorem 1.2 is very much inspired by the method in [5]. The bounds on the diagrams are different for the two different
models, but the general strategy works equally well with either model. In particular, the spatial fractional derivatives
as in (2.30) are used for the first time in [5].

Slade [16,17] proves convergence of the nearest-neighbor self-avoiding walk to Brownian motion in sufficiently
high dimension, using a finite-memory cut-off. Hara and Slade [8] provide an alternative argument by using fractional
derivative estimates. An account of the latter approach is contained in Section 6.6 of the monograph [14]. All of these
proofs use the lace expansion, which was introduced by Brydges and Spencer [2] to study weakly self-avoiding walk.
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2. The scaling limit of the endpoint: Proof of Theorem 1.2

2.1. Overview of proof

The lace expansion obtains an expansion of the form

cn+1(x) = (D ∗ cn)(x) +
n+1∑

m=2

(πm ∗ cn+1−m)(x) (2.1)

for suitable coefficients πm(x), see, e.g., ([10], Section 2.2.1) or ([18], Section 3) for a derivation of the lace expansion.
We multiply (2.1) by zn+1 and sum over n≥ 0. By letting

Πz(x) =
∞∑

m=2

πm(x)zm (2.2)

for z≤ zc , and recalling Gz(x) = ∑∞
n=0 cn(x)zn, this yields

Gz(x) = δ0,x + z(D ∗Gz)(x) + (Gz ∗Πz)(x). (2.3)

We proceed by proving Theorem 1.2 subject to certain bounds on the lace expansion coefficients πn(x) to be
formulated below. A Fourier transformation of (2.3) yields

Ĝz(k) = 1 + zD̂(k)Ĝz(k) + Ĝz(k)Π̂z(k), k ∈ [−π,π)d , (2.4)

and this can be solved for Ĝz(k) as

Ĝz(k)−1 = 1− zD̂(k)− Π̂z(k), k ∈ [−π,π)d . (2.5)

Since zc is characterized by Ĝzc (0)−1 = 0, one has Π̂zc (0) = 1− zc , and hence

Ĝz(k)−1 = (zc − z)D̂(k) +
(
Π̂zc (k)− Π̂z(k)

)
+ zc

(
1− D̂(k)

)
+

(
Π̂zc (0)− Π̂zc (k)

)
. (2.6)

If we let

A(k) := D̂(k) + ∂zΠ̂z(k)|z=zc , (2.7)

B(k) := 1− D̂(k) + 1
zc

(
Π̂zc (0)− Π̂zc (k)

)
, (2.8)

Ez(k) := Π̂zc (k)− Π̂z(k)

zc − z
− ∂zΠ̂z(k)|z=zc , (2.9)

then

zcĜz(k) = 1
[1− z/zc](A(k) + Ez(k)) + B(k)

= 1
[1− z/zc]A(k) + B(k)

−Θz(k), (2.10)

where

Θz(k) = [1− z/zc]Ez(k)

([1− z/zc](A(k) + Ez(k)) + B(k))([1− z/zc]A(k) + B(k))
. (2.11)



Long-range self-avoiding walk converges to α-stable processes 27

If Ĝz(k)−1 is understood as a function of z, then A(k) denotes the linear contribution, Ez(k) denotes the higher
order contribution (which will turn out to be asymptotically negligible), and B(k) denotes the constant term. The
denominators in (2.10)–(2.11) are positive for z < zc , cf. (2.74)–(2.75) below.

For the first term in (2.10) we write

1
[1− z/zc]A(k) + B(k)

= 1
A(k) + B(k)

∞∑

n=0

(
z

zc

)n( A(k)

A(k) + B(k)

)n

, (2.12)

and the geometric sum converges whenever z < zc(A(k) + B(k))/A(k); the latter term approximates zc as |k|→ 0.
For z < zc , we can write Θz(k) as a power series,

Θz(k) =
∞∑

n=0

θn(k)zn. (2.13)

Since Ĝz(k) = ∑∞
n=0 ĉn(k)zn and B(0) = 0, we thus obtained

ĉn(k) = 1
zc

(
z−n
c

A(k) + B(k)

(
A(k)

A(k) + B(k)

)n

− θn(k)

)
, ĉn(0) = 1

zc

(
z−n
c

A(0)
− θn(0)

)
. (2.14)

In Section 2.3 we prove the following bound on the error term θn.

Lemma 2.1. Under the conditions of Theorem 1.2, |θn(k)| ≤ O(z−n
c n−ε) for all ε ∈ (0, ( d

α∧2 − 2) ∧ 1) uniformly in
k ∈ [−π,π)d .

Equation (2.14) and Lemma 2.1 imply the following corollary.

Corollary 2.2. Under the conditions of Theorem 1.2,

ĉn(0) =Ξz−n
c

(
1 + O

(
n−ε

))
, (2.15)

where ε ∈ (0, (d/(α ∧ 2)− 2)∧ 1) and

Ξ =
[
zcA(0)

]−1 =
[

zc +
∑

x∈Zd

∞∑

m=2

mπm(x)zm
c

]−1

∈ (0,∞). (2.16)

By (2.14) and Lemma 2.1, for ε ∈ (0, ( d
α∧2 − 2)∧ 1) an all k ∈Rd such that kn ∈ [−π,π)d ,

ĉn(kn)

ĉn(0)
=

(
1 + O

(
n−ε

)) A(0)

A(kn) + B(kn)

(
A(kn)

A(kn) + B(kn)

)n

+ O
(
n−ε

)

=
(
1 + O

(
n−ε

)) A(0)

A(kn) + B(kn)

×
(

1 + −n(1− D̂(kn))(A(kn) + B(kn))
−1B(kn)(1− D̂(kn))

−1

n

)n

+ O
(
n−ε

)
. (2.17)

As n→∞, we have that n(1− D̂(kn))→ |k|α∧2 by (1.16),

A(kn)→A(0) = 1 +
∑

x∈Zd

∞∑

m=2

mπm(x)zm−1
c .
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The convergence

lim
n→∞

B(kn)

1− D̂(kn)
=

{
1, if α ≤ 2,

1 + (2dzcvα)−1 ∑
x∈Zd |x|2Πzc (x), if α > 2 (2.18)

follows directly from the following proposition.

Proposition 2.3. Under the conditions of Theorem 1.2,

lim
|k|→0

Π̂zc (0)− Π̂zc (k)

1− D̂(k)
=

{
0, if α ≤ 2,

(2dvα)−1 ∑
x∈Zd |x|2Πzc (x), if α > 2.

(2.19)

If a sequence hn converges to a limit h, then (1 + hn/n)n converges to eh. The above estimates imply

lim
n→∞−n

(
1− D̂(kn)

)(
A(kn) + B(kn)

)−1
B(kn)

(
1− D̂(kn)

)−1 =−Kα|k|α∧2

and

lim
n→∞

A(0)

A(kn) + B(kn)
= 1.

We thus have proved Theorem 1.2 subject to Lemma 2.1 and Proposition 2.3. We want to emphasize that the bounds
on the lace expansion coefficients πn(x) enter the calculation only through (2.19) and the error bound in Lemma 2.1.

2.2. Bounding the lace expansion coefficients

In this section we prove an estimate on moments of the lace expansion coefficients πn(x). This estimate is used to
prove Proposition 2.3. Let us begin by stating the moment estimate.

Lemma 2.4 (Finite moments of the lace expansion coefficients). For α > 0, d > 2(α ∧ 2) and L sufficiently large,
we let

δ

{
∈

(
0, (α ∧ 2)∧

(
d − 2(α ∧ 2)

))
, if α '= 2,

= 0, if α = 2.
(2.20)

Then, for any z≤ zc,

∑

x∈Zd

∞∑

n=0

|x|(α∧2)+δ
∣∣πn(x)

∣∣zn <∞. (2.21)

The fact that the ((α ∧ 2) + δ)th moment of Πzc (x) exists is the key to the proof of (2.19). Interestingly, there is
a crossover between the phases α < 2 and α > 2, with α = 2 playing a special role. A version of Lemma 2.4 in the
setting of oriented percolation is contained in ([5], Proposition 3.1).

Before we start with the proof of Lemma 2.4, we shall review some basic facts about structure and convergence of
quantities related to πn(x) introduced in (2.1)–(2.2). Our main reference for that is the monograph by Slade [18], who
gives a detailed account of the lace expansion for self-avoiding walk. Other references are [10,14]. We shall also need
results from [9], where a long-range version of the step distribution is considered. For n ≥ 2, N ≥ 1, x ∈ Zd , there
exist quantities πN

n (x)≥ 0 such that

πn(x) =
∞∑

N=1

(−1)NπN
n (x). (2.22)
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A combination of Theorem 4.1 with Lemma 5.10 (both references to Slade [18]), together with β = O(L−d) ([9],
Proposition 2.2) shows

∑

x∈Zd

∞∑

n=2

πN
n (x)zn

c < O
(
L−d

)N
, (2.23)

where the constant in the O-term is uniform for all N . Consequently, (2.23) is summable in N ≥ 1 provided that L is
sufficiently large, and hence

Π̂zc (k)≤
∑

x∈Zd

∞∑

n=2

∣∣πn(x)
∣∣zn

c <∞. (2.24)

Lemma 2.4 implies Proposition 2.3, as we will show now.

Proof of Proposition 2.3 subject to Lemma 2.4. We first prove the assertion for α ≤ 2, and afterwards consider
α > 2.

For α ≤ 2, we choose δ ≥ 0 satisfying (2.20) and such that α + δ ≤ 2. Then we use 0≤ 1− cos(k · x)≤ |k · x|α+δ

to estimate

∣∣Π̂zc (0)− Π̂zc (k)
∣∣ ≤

∑

x∈Zd

∞∑

n=2

[
1− cos(k · x)

]∣∣πn(x)
∣∣zn

c

≤
∑

x∈Zd

∞∑

n=2

|k · x|α+δ
∣∣πn(x)

∣∣zn
c

≤ |k|α|k|δ
∑

x∈Zd

∞∑

n=2

|x|α+δ
∣∣πn(x)

∣∣zn
c . (2.25)

We use (1.12) and Lemma 2.4 to bound further

|Π̂zc (0)− Π̂zc (k)|
1− D̂(k)

=
{

O
(
|k|δ

)
, if α < 2,

O
(
1/ log

(
1/|k|

))
, if α = 2,

(2.26)

which proves (2.19) for α ≤ 2.
For α > 2, we fix δ ∈ (0,2∧ (d − 4)). We apply the Taylor expansion

1− cos(k · x) = 1
2
(k · x)2 + O

(
|k · x|2+δ

)
, (2.27)

together with spatial symmetry of the model and Lemma 2.4 to obtain

Π̂zc (0)− Π̂zc (k) =
∑

x∈Zd

∞∑

n=2

[
1− cos(k · x)

]
πn(x)zn

c

= |k|2
2d

∑

x∈Zd

∞∑

n=2

|x|2πn(x)zn
c + O

(
|k|2+δ

)
. (2.28)

Equation (2.19) for α > 2 now follows from (2.28) and (1.12). !

In the remainder of the section we prove Lemma 2.4. A key point in the proof is the use of a new form of (spatial)
fractional derivative, first applied by Chen and Sakai [5] in the context of oriented percolation.
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Proof of Lemma 2.4. For t > 0, ζ ∈ (0,2), we let

K ′
ζ :=

∫ ∞

0

1− cos(v)

v1+ζ
dv ∈ (0,∞), (2.29)

yielding

tζ = 1
K ′

ζ

∫ ∞

0

1− cos(ut)

u1+ζ
du. (2.30)

For α > 0 and d > 2(α ∧ 2), we choose δ as in (2.20). For x ∈ Zd we write x = (x1, . . . , xd). Then by reflection
and rotation symmetry of πn(x),

∑

x∈Zd

∞∑

n=0

|x|(α∧2)+δ
∣∣πn(x)

∣∣zn ≤ d((α∧2)+δ)/2+1
∑

x∈Zd

∞∑

n=0

|x1|(α∧2)+δ
∞∑

N=2

π (N)
n (x)zn

c , (2.31)

cf. ([5], Lemma 4.1). We now apply (2.30) with ζ = δ1, δ2, given by

δ1 ∈
(
δ, (α ∧ 2)∧

(
d − 2(α ∧ 2)

))
, (2.32)

δ2 = (α ∧ 2) + δ − δ1. (2.33)

This yields

O(1)

∫ ∞

0

du

u1+δ1

∫ ∞

0

dv

v1+δ2

∑

x∈Zd

∞∑

n=0

∞∑

N=2

[
1− cos(ux1)

][
1− cos(vx1)

]
π (N)

n (x)zn
c (2.34)

as an upper bound of (2.31). We write the double integral appearing in (2.34) as the sum of four terms, I1 +I2 +I3 +I4,
where

I1 =
∞∑

N=2

∫ 1

0

du

u1+δ1

∫ 1

0

dv

v1+δ2

∑

x∈Zd

∞∑

n=0

[
1− cos(

⇀
u · x)

][
1− cos(

⇀
v · x)

]
π (N)

n (x)zn
c (2.35)

with
⇀
u = (u,0, . . . ,0) ∈Rd,

⇀
v = (v,0, . . . ,0) ∈Rd, (2.36)

and I2, I3, I4 are defined similarly:

I2 =
∫ 1

0
du

∫ ∞

1
dv · · · , I3 =

∫ ∞

1
du

∫ 1

0
dv · · · , I4 =

∫ ∞

1
du

∫ ∞

1
dv · · · . (2.37)

We now show that I1, . . . , I4 are all finite, which implies (2.21). The bound I4 <∞ simply follows from 1− cos t ≤ 2
and (2.24). In order to prove the bounds I1, I2, I3 <∞ we need the particular structure of the π

(N)
n (x)-terms.

To this end, we define

G̃z(x) = z(D ∗Gz)(x), x ∈ Zd , (2.38)

and

B̃(z) = sup
x∈Zd

(Gz ∗ G̃z)(x). (2.39)

In ([18], Theorem 4.1) it is shown that for z≥ 0, N ≥ 1,
∑

x∈Zd

[
1− cos(k · x)

]
Π1

z (x) = 0 (2.40)
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and

∑

x∈Zd

[
1− cos(k · x)

]
ΠN

z (x)≤ N

2
(N + 1)

(
sup
x

[
1− cos(k · x)

]
Gz(x)

)
B̃(z)N−1, N ≥ 2. (2.41)

These bounds are called diagrammatic estimates, because the lace expansion coefficients πN
z (x) are expressed in terms

of diagrams, whose structure is heavily used in the derivation of the above bounds. The composition of the diagrams
and their decomposition into two-point functions as in (2.40)–(2.41) is described in detail in ([18], Sections 3 and 4).
It is clear that a slight modification of this procedure proves the bound

∑

x∈Zd

∞∑

n=0

[
1− cos(

⇀
v · x)

][
1− cos(

⇀
u · x)

]
π (N)

n (x)zn

≤O
(
N4)B̃(z)N−2

(
sup
x

[
1− cos(

⇀
v · x)

]
Gz(x)

)

×
(

sup
y

∑

x∈Zd

[
1− cos(

⇀
u · x)

]
Gz(x)Gz(y − x)

)
. (2.42)

Given (2.42), it remains to show the following three bounds:

B̃(zc) = sup
x∈Zd

(Gzc ∗ G̃zc )(x)≤O
(
L−d

)
, (2.43)

sup
x

[
1− cos(

⇀
v · x)

]
Gzc(x)≤O

(
vα∧2), (2.44)

sup
y

∑

x∈Zd

[
1− cos(

⇀
u · x)

]
Gzc(x)Gzc (y − x)≤O

(
u(d−2(α∧2))∧(α∧2)

)
. (2.45)

Suppose (2.43)–(2.45) were true, then

∑

x∈Zd

∞∑

n=0

[
1− cos(

⇀
u · x)

][
1− cos(

⇀
v · x)

]
π (N)

n (x)zc
n

≤O
(
N4)O

(
L−d

)N−2O
(
vα∧2)O

(
u(d−2(α∧2))∧(α∧2)

)
. (2.46)

Since δ1 < (α ∧ 2) ∧ (d − 2(α ∧ 2)) and δ2 < α ∧ 2, we obtain that I1 is finite for L sufficiently large, as desired.
Similarly, it follows that I2 and I3 are finite. It remains to prove (2.43)–(2.45), and we use results from [9] to prove it.

We introduce the quantity

λz := 1− 1

Ĝz(0)
= 1− 1

χ(z)
∈ [0,1]. (2.47)

Then λz satisfies the equality

Ĝz(0) = Ĉλz (0), (2.48)

where Ĉλz (k) = [1− λzD̂(k)]−1 is the Fourier transform of the simple random walk Green’s function. This definition
is motivated by the intuition that Ĝz(k) and Ĉλz (k) are comparable in size and, moreover, the discretized second
derivative

(kĜz(l) := Ĝz(l − k) + Ĝz(l + k)− 2Ĝ(l) (2.49)
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is bounded by

Uλz (k, l) := 200Ĉλz (k)−1{Ĉλz (l − k)Ĉλz (l) + Ĉλz (l)Ĉλz (l + k) + Ĉλz (l − k)Ĉλz (l + k)
}
. (2.50)

To make this more precise, we consider the function f : [0, zc]→R, defined by

f := f1 ∨ f2 ∨ f3 (2.51)

with

f1(z) := z, f2(z) := sup
k∈[−π,π)d

Ĝz(k)

Ĉλz (k)
, (2.52)

and

f3(z) := sup
k,l∈[−π,π)d

|(kĜz(l)|
Uλz (k, l)

. (2.53)

It is an important result in [9] that, under the conditions of Theorem 1.2, the function f is uniformly bounded on
[0, zc), cf. ([9], Propositions 2.5 and 2.6). In fact, it is shown that f (z)≤ 1 + O(L−d), but for our need it suffices to
have f uniformly bounded. Since the bound is uniform, we can conclude that even f (zc) <∞.

Indeed, (2.43) follows by standard methods from ([9], Proposition 2.2), see, e.g., ([18], formula (5.28) in conjunc-
tion with Lemma 5.10). Furthermore, (2.44) is proven in ([9], Lemma B.5) in the context of the Ising model, but
applies verbatim to self-avoiding walk. It remains to prove (2.45). Since

sup
y

∑

x∈Zd

[
1− cos(

⇀
u · x)

]
Gzc(x)Gzc (y − x)

= sup
y

∫

[−π,π)d
e−il·y

(
Ĝzc (l)−

1
2

(
Ĝzc (l −

⇀
u) + Ĝzc (l + ⇀

u)
))

Ĝzc (l)
dl

(2π)d

≤
∫

[−π,π)d

∣∣∣∣
1
2
(⇀

u
Ĝzc (l)

∣∣∣∣Ĝzc (l)
dl

(2π)d
, (2.54)

our bounds f2(zc)≤K and f3(zc)≤K , together with λzc = 1, imply that

sup
y

∑

x∈Zd

[
1− cos(

⇀
u · x)

]
Gzc(x)Gzc (y − x)

≤ 100K2Ĉ1(
⇀
u)−1

∫

[−π,π)d

(
Ĉ1(l −

⇀
u)Ĉ1(l + ⇀

u) + Ĉ1(l −
⇀
u)Ĉ1(l) + Ĉ1(l)Ĉ1(l + ⇀

u)
)
Ĉ1(l)

dl

(2π)d

= O(1)
[
1− D̂(

⇀
u)

] ∫

[−π,π)d

(
1

[1− D̂(l −⇀
u)][1− D̂(l + ⇀

u)][1− D̂(l)]

+ 1

[1− D̂(l −⇀
u)][1− D̂(l)]2

+ 1

[1− D̂(l + ⇀
u)][1− D̂(l)]2

)
dl

(2π)d
. (2.55)

Chen and Sakai show that the integral term on the right-hand side of (2.55) is bounded above by O(u(d−3(α∧2))∧0),

cf. ([5], formula (4.30)). Furthermore, 1 − D̂(
⇀
u) ≤ O(uα∧2) by (1.12). The combination of the above inequalities

implies (2.45), and hence the claim follows. !
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2.3. Error bounds

The proof of Lemma 2.1 is the final piece in the proof of Theorem 1.2. Our proof of Lemma 2.1 makes use of the
following lemma.

Lemma 2.5. Consider a function g given by the power series g(z) = ∑∞
n=0 anz

n, with zc as radius of convergence.

(i) If |g(z)|≤O(|zc − z|−b) for some b ≥ 1, then |an|≤O(z−n
c log(n)) if b = 1, or |an|≤O(z−n

c nb−1) if b > 1.
(ii) If |g′(z)|≤O(|zc − z|−b) for some b > 1, then |an|≤O(z−n

c nb−2).

The proof of assertion (i) is contained in ([7], Lemma 3.2), and (ii) is a direct consequence of (i) since (i) implies
that |nan|≤O(z−n

c nb−1). Lemma 2.5 is the key to the proof of Lemma 2.1.

Proof of Lemma 2.1. We recall

Θz(k) =
∞∑

n=0

θn(k)zn, (2.56)

where

Θz(k) = [1− z/zc]Ez(k)

([1− z/zc](A(k) + Ez(k)) + B(k))([1− z/zc]A(k) + B(k))
. (2.57)

We fix ε ∈ (0, (d(α ∧ 2)−1 − 2) ∧ 1) and aim to prove |θn(k)| ≤ O(z−n
c n−ε), where the constant in the O-term is

uniform for k ∈ [−π,π)d . By Lemma 2.5 it is sufficient to show |∂zΘz(k)|≤O(|zc − z|−(2−ε)).
Before bounding ∂zΘz(k), we consider derivatives of Π̂z(k) (the Fourier transform of Πz(x) introduced in (2.2)).

The first derivative of ∂zΠ̂z(k) is converging absolutely for z≤ zc , i.e.,

∑

x∈Zd

∞∑

n=2

n
∣∣πn(x)

∣∣zn−1
c <∞, (2.58)

cf. ([14], Theorem 6.2.9) for a proof in the finite-range setting, and again [9] for the extension to long-range systems.
Moreover, we claim that

∑

x∈Zd

∞∑

n=2

n(n− 1)ε
∣∣πn(x)

∣∣zn−1
c <∞ (2.59)

for ε ∈ (0, (d(α ∧ 2)−1 − 2)∧ 1). The bound (2.59) can be proved by considering temporal fractional derivatives, as
introduced in ([14], Section 6.3). In particular, the proof of ([14], Theorem 6.4.2) shows

sup
x∈Zd

∞∑

n=2

n(n− 1)εcn(x)zn−1
c ≤O(1)

∫

[−π,π)d

∑

n≥2

n(n− 1)εD̂(k)n−2 dk

(2π)d
(2.60)

(see the first displayed identity on p. 196 of [14]). On the one hand, (1.10) and (1.12) imply that there exists some
constant c1 > 0 such that 1− D̂(k)≥ c1|k|α∧2 for all k ∈ [−π,π)d , whence D̂(k) = 1− (1− D̂(k))≤ e−(1−D̂(k)) ≤
e−c1|k|α∧2

. On the other hand, −D̂(k)≤ 1− c2 for a positive constant c2, by (1.11). Together these bounds yield
∫

[−π,π)d
D̂(k)n−2 dk

(2π)d
≤

∫

k∈[−π,π)d : D̂(k)≥0
e−c1(n−2)|k|α∧2 dk

(2π)d
+

∫

k∈[−π,π)d : D̂(k)<0
(1− c2)

n−2 dk

(2π)d

≤ O
(
n−d/(α∧2)

)
+ (1− c2)

n−2 ≤O
(
n−d/(α∧2)

)
. (2.61)
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Hence the right-hand side of (2.60) is less than or equal to
∑

n≥2

n(n− 1)εO
(
n−d/(α∧2)

)
, (2.62)

and this is finite if 1 + ε− d/(α ∧ 2) <−1. Furthermore, the proof of ([14], Corollary 6.4.3) shows that

∑

x∈Zd

∞∑

n=2

n(n− 1)ε
∣∣πn(x)

∣∣zn−1
c ≤O(1)

(

sup
x∈Zd

∞∑

n=2

n(n− 1)εcn(x)zn−1
c

)

(2.63)

under the conditions of Theorem 1.2. This proves (2.59).
We now prove that

Ez(k)≤O
(
|zc − z|ε

)
(2.64)

by considering the power series representation of Π̂z(k) in (2.9):

Ez(k) = 1
zc − z

∑

x

∑

n≥2

eik·xπn(x)
(
zn
c − zn

)
−

∑

x

∑

n≥2

eik·xπn(x)nzn−1
c . (2.65)

Since

zn
c − zn

zc − z
=

n−1∑

l=0

zlz(n−1)−l
c , (2.66)

one has

Ez(k) =
∑

x

∑

n≥2

eik·xπn(x)

n−1∑

l=1

(
zl − zl

c

)
z(n−1)−l
c . (2.67)

For every ζ, ε ∈ (0,1) and n≥ 2,

∣∣1− ζ n−1∣∣ =
∣∣∣∣
(
1− ζ n−1)1−ε

(
1− ζ n−1

1− ζ

)ε

(1− ζ )ε
∣∣∣∣

≤
∣∣∣∣∣

n−2∑

l=0

ζ l

∣∣∣∣∣

ε

(1− ζ )ε ≤ (n− 1)ε(1− ζ )ε. (2.68)

Applying this for ζ = z/zc , we obtain for z < zc and 0 < l < n,

∣∣zl − zl
c

∣∣z(n−1)−l
c =

∣∣∣∣1−
(

z

zc

)l∣∣∣∣z
n−1
c ≤

∣∣∣∣1−
(

z

zc

)n−1∣∣∣∣z
n−1
c ≤

∣∣∣∣1−
z

zc

∣∣∣∣
ε

(n− 1)εzn−1
c . (2.69)

Insertion into (2.67) yields
∣∣Ez(k)

∣∣≤ (zc − z)ε
∑

x

∑

n≥2

n(n− 1)ε
∣∣πn(x)

∣∣zn−1
c ≤O

(
|zc − z|ε

)
, (2.70)

where the last bound uses (2.59). We further differentiate (2.9) to get

∂zEz(k) = (zc − z)∂z(Π̂zc (k)− Π̂z(k)) + (Π̂zc (k)− Π̂z(k))

(zc − z)2

= 1
zc − z

(
Π̂zc (k)− Π̂z(k)

zc − z
− ∂zΠ̂z(k)

)
. (2.71)
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A calculation similar to (2.65)–(2.70) shows

∣∣∂zEz(k)
∣∣≤

∣∣∣∣
Ez(k)

zc − z

∣∣∣∣ + 1
zc − z

∣∣∣∣
∑

x

∑

n≥2

eik·xπn(x)n
(
zn−1
c − zn−1)

∣∣∣∣≤O
(
|zc − z|ε−1). (2.72)

We write D1 and D2 for the two factors in the denominator in (2.57). Then

z2
c∂zΘz(k) = zc

D1D2

(
(zc − z)∂zEz(k)−Ez(k)

)

− zc − z

(D1D2)2 Ez(k)
((
−A(k)−Ez(k) + (zc − z)∂zEz(k)

)
D2 −D1A(k)

)
. (2.73)

The D1- and D2-term in the numerator in the second line of (2.73) can be canceled with the denominator, so that D1
and D2 appear only in the denominator. It is therefore sufficient to give lower bounds on them. Indeed, there is a
constant c > 0 such that

|D1| =
∣∣zcĜz(k)

∣∣−1 ≥ z−1
c χ(z)≥ c(zc − z), (2.74)

where the last bound follows from ([9], formula (1.24) and Theorem 1.3). Furthermore, there are constants c′,C > 0
such that

|D2|≥ |D1|−
∣∣Ez(k)(zc − z)

∣∣≥ c(zc − z)−C(zc − z)1+ε ≥ c′(zc − z), (2.75)

by (2.67) and (2.74). The lower bounds on D1 and D2, together with the bounds on Ez(k) and ∂zEz(k) in (2.64)
and (2.72), prove that (2.73) is uniformly bounded for all z≤ zc , and in particular

∣∣∂zΘz(k)
∣∣≤O

(
|zc − z|−(2−ε)). (2.76)

Finally, assertion (ii) in Lemma 2.5 implies
∣∣θn(k)

∣∣≤O
(
z−n
c n−ε

)
(2.77)

for all ε ∈ (0, (d(α ∧ 2)−1 − 2)∧ 1), uniformly in k. !

3. The mean-r displacement: Proof of Theorem 1.4

Proof of Theorem 1.4. We start the proof by noting that the reflection and rotation symmetry of cn implies

1
cn

∑

x∈Zd

|x|r cn(x).
∑

x∈Zd

|x1|r
cn(x)

cn
, (3.1)

where x1 denotes the first component of the vector x ∈ Zd . Recalling (1.22), it is therefore sufficient to prove

∑

x∈Zd

|x1|r
cn(x)

cn
. fα(n)−r . (3.2)

The upper and lower bound in (3.2) are proved separately, by different methods. We start with the former.
Our proof of the upper bound uses methods similar to those developed in Section 2.2, and again a key ingredient is

the equality in (2.30). Again, we denote by
⇀
u the vector

⇀
u = (u,0, . . . ,0) ∈Rd . We consider the generating function

of the left-hand side of (3.2),

Hz,r :=
∑

x∈Zd

∞∑

n=0

|x1|rcn(x)zn, (3.3)
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and claim that Hz,r ≤ O(1)(zc − z)−1−r/(α∧2) for α '= 2 and Hz,r ≤ O(1)(zc − z)−1−r/2 log(zc − z)−1/2 for α = 2.
Indeed, by (2.30),

Hz,r =
∑

x∈Zd

∞∑

n=0

∫ ∞

0

du

u1+r

[
1− cos(

⇀
u · x)

]
cn(x)zn

≤
∫ (zc−z)1/(α∧2)

0

du

u1+r

(
Ĝz(0)− Ĝz(

⇀
u)

)
+

∫ ∞

(zc−z)1/(α∧2)

du

u1+r
2Ĝz(0), (3.4)

where in the last integral we bounded 1− cos t ≤ 2. The generating function Ĝz(k) near the critical threshold zc is
known to be bounded by O(zc − z)−1, cf. ([9], Theorem 1.1) (the ansatz in (2.10) leads to the same bound). Hence
the second integral in (3.4) is bounded above by

∫ ∞

(zc−z)1/(α∧2)
2Ĝz(0)

du

u1+r
≤ O(1)

zc − z

∫ ∞

(zc−z)1/(α∧2)

du

u1+r
= O(1)

(zc − z)1+r/(α∧2)
. (3.5)

The first integral on the right of (3.4) can be expressed as

∫ (zc−z)1/(α∧2)

0

du

u1+r
Ĝz(0)Ĝ(

⇀
u)

(
z
(
1− D̂(

⇀
u)

)
+

(
Π̂z(0)− Π̂z(

⇀
u)

))
. (3.6)

The proof of Proposition 2.3 might be extended straightforwardly to show

Π̂z(0)− Π̂z(
⇀
u) = Cα

(
1− D̂(

⇀
u)

)
+ o(1)

(
1− D̂(

⇀
u)

)

for a certain constant Cα ≥ 0 (with Cα = 0 if α ≤ 2), and the o(1)-term vanishes as u→ 0. Consequently, (3.6) is
bounded above by

O(1)

(zc − z)2

∫ (zc−z)1/(α∧2)

0

1− D̂(
⇀
u)

u1+r
du. (3.7)

Suppose for now that α '= 2, then 1− D̂(
⇀
u)≤O(uα∧2) by (1.12), and (3.7) becomes

O(1)

(zc − z)2

∫ (zc−z)1/(α∧2)

0
u(α∧2)−(1+r) du = O(1)

(zc − z)1+r/(α∧2)
. (3.8)

Consequently, Hz,r ≤ (zc − z)−1−r/(α∧2), and Lemma 2.5(i) may be applied to deduce
∑

x∈Zd

|x1|rcn(x)≤ nr/(α∧2)z−n
c .

An application of Corollary 2.2 then finishes the proof of the upper bound in (3.2).
If on the other hand α = 2, then (1.12) and (3.7) obtain

Hz,r ≤
O(1)

(zc − z)1+r/2 log(zc − z)−1/2. (3.9)

We then apply the following version of Lemma 2.5(i) (which may be proved along the same lines as Lemma 2.5): If∑
n a(n)zn ≤ (zc − z)−b log(zc − z)−1/2 for some b > 1, then |a(n)|≤ O(1)nb logn1/2. Together with Corollary 2.2

this obtains

∑

x∈Zd

|x1|r
cn(x)

cn
≤ nr/2 log

√
n for α = 2.
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Finally, we complement the proof of the theorem by showing the lower bound in (3.2). It follows from Theorem 1.2
that

lim
n→∞1− ĉn(

⇀
un)

ĉn(0)
= 1− exp

{
−Kα|u|α∧2}, (3.10)

and the limit is strictly positive as long as u '= 0. Hence there exists a positive constant b = b(d,α,L) such that for
u = 1 and all n ∈N,

b ≤ 1− ĉn(
⇀
un)

ĉn(0)
=

∑

x∈Zd

[
1− cos

(
ufα(n)x1

)]cn(x)

cn
≤

∑

x∈Zd

fα(n)r |x1|r
cn(x)

cn
, (3.11)

where we used 1− cos t ≤ |t |r for r ≤ α ∧ 2 in the last bound. This implies the lower bound in (3.2), and proves the
theorem. !

4. Convergence of finite-dimensional distributions: Proof of Theorem 1.6

Proof of Theorem 1.6. The proof is via induction over N , and is very much inspired by the proof of ([14], Theo-
rem 6.6.2), where finite-range models were considered. The flexibility in the last argument of nT is needed to perform
the induction step. We shall further write nt(j) and nT instead of /nt(j)0 and /nT 0 for brevity.

To initialize the induction we consider the case N = 1. Since ĉ(1)
nT(kn) = ĉnT (k

(1)
n ), the assertion for N = 1 is a

minor generalization of Theorem 1.2. In fact, if we replace n by nT , then instead of (1.16) we have

nT
[
1− D̂(kn)

]
= nt(1)(1− gn)

[
1− D̂

(
fα

(
t (1)n

)
k
(
t (1)

)1/(α∧2))]→ |k|α∧2t (1) as n→∞. (4.1)

With an appropriate change in (2.17) we obtain (1.32) for N = 1 from Theorem 1.2.
To advance the induction we prove (1.32) assuming that it holds when N is replaced by N − 1. For an n-step walk

w ∈ Wn and 0≤ a ≤ b ≤ n it will be convenient to write

K[a,b](w) := 1{(wa,...,wb) is self-avoiding}. (4.2)

We further consider the quantity J[a,b](w) that arises in the algebraic derivation of the lace expansion as in ([18],
Section 3.2). For our needs it suffices to know that

∑

w∈Wn(x)

W(w)J[0,n](w) = πn(x) (4.3)

and, for any integers 0≤m≤ n and w ∈ Wn,

K[0,n](w) =
∑

I6m

K[0,I1](w)J[I1,I2](w)K[I2,n](w), (4.4)

where the sum is over all intervals I = [I1, I2] of integers with either 0≤ I1 < m < I2 ≤ n or I1 = m = I2. We refer
to ([18], formula (3.13)) for (4.3), and to ([14], Lemma 5.2.5) for (4.4). By (1.30) and (4.4),

ĉ(N)
nT (kn) =

∑

I6nt(N−1)

∑

w∈WnT

eikn·(w(nT)W(w)K[0,I1](w)J[I1,I2](w)K[I2,nT ](w). (4.5)

Let
≤
c (N) and

>
c (N) denote the contributions towards (4.5) corresponding to intervals I with length |I | = I2− I1 ≤ bn

and |I | > bn, respectively. It will turn out that the latter contribution is negligible. We take n sufficiently large so that
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(nt(N−1) − nt(N−2))∨ (nt(N) − nt(N−1))≥ bn and

≤
c (N)

nT (kn) =
∑

I6nt(N−1)

|I |≤bn

ĉ(N−1)

(nt(1),...,nt(N−2),I1)

(
k(1)
n , . . . , k(N−1)

n

)
× ĉnT−I2

(
k(N)
n

)

×
∑

w∈W|I |

exp
{
ik(N−1)

n · wnt(N−1)−I1
+ ik(N)

n · (wI2−I1 −wnt(N−1)−I1
)
}
W(w)J[0,|I |](w). (4.6)

We use ey = 1 + O(|y|α∧1) and (4.3) to see that the second line in (4.6) is equal to
∑

x

(
1 + O

(∣∣fα(n)x
∣∣α∧1))

π|I |(x). (4.7)

By the induction hypothesis,

ĉ(N−1)

(nt(1),...,nt(N−2),I1)

(
k(1)
n , . . . , k(N−1)

n

)

= ĉI1(0)

(

exp

{

−Kα

N−1∑

j=1

∣∣k(j)
∣∣α∧2(

t (j) − t (j−1)
)
}

+ o(1)

)

(4.8)

and

ĉnT−I2

(
k(N)
n

)
= ĉnT−I2(0)

(
exp

{
−Kα

∣∣k(N)
∣∣α∧2(

t (N) − t (N−1)
)}

+ o(1)
)
, (4.9)

where the error terms are uniform in |I |≤ bn.
Substituting (4.7)–(4.9) into (4.6) yields

≤
c (N)

nT (kn) = exp

{

−Kα

N∑

j=1

∣∣k(j)
∣∣α∧2(

t (j) − t (j−1)
)
}
≤
c (N)

nT (0) +Θ + o(1), (4.10)

where

|Θ|≤
∑

I6nt(N−1)

|I |≤bn

ĉI1(0)ĉnT−I2(0)
∑

x

O
(∣∣fα(n)x

∣∣α∧1)
π|I |(x). (4.11)

In (4.11) there are precisely m− 1 ways to choose the interval I 6 nt(N−1) of length |I | = m. We further bound

|Θ|
ĉnT (0)

≤
bn∑

m=1

m
∑

x

O
(∣∣fα(n)x

∣∣α∧1)
πm(x)zm

c

≤ O
(∣∣fα(n)

∣∣α∧1
bn

) ∞∑

m=1

∑

x

|x|α∧2∣∣πm(x)
∣∣zm

c = o(1), (4.12)

where Corollary 2.2 is used in the first inequality, m ≤ bn in the second, and the last estimate uses (1.31) and

Lemma 2.4. Recalling ĉ(N)
nT (k) =≤c (N)

nT (k)+ >
c (N)

nT (k),

≤
c (N)

nT (kn)

ĉnT (0)
= exp

{

−Kα

N∑

j=1

∣∣k(j)
∣∣α∧2(

t (j) − t (j−1)
)
}(

1−
>
c (N)

nT (0)

ĉnT (0)

)
+ |Θ|

ĉnT (0)

+
>
c

(N)

nT (kn)

ĉnT (0)
, (4.13)
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and it suffices to show
>
c (N)

nT (kn)/ĉnT (0) = o(1) as n →∞. By bounding |eikn·(w(nT)| ≤ 1 in (4.5), and using
again (4.3) and Corollary 2.2,

>
c (N)

nT (kn)

ĉnT (0)
≤O(1)

∞∑

m=bn+1

m
∑

x

∣∣πm(x)
∣∣zm

c , (4.14)

which vanishes as n→∞ by (2.58) and the fact that bn →∞ as n→∞. We have completed the advancement
of the induction, and all error terms occurring are uniform in sequences g = (gn) that satisfy 0 ≤ gn ≤ bn/n. This
proves (1.32) for all N ≥ 1. !

5. Tightness

In this section we prove tightness of the sequence Xn, the missing piece for the proof of Theorem 1.5. Indeed, tightness
is implied by Theorem 1.4 and the following tightness criterion.

Proposition 5.1 (Tightness criterion [1]). The sequence {Xn} is tight in D([0,1],Rd) if the limiting process X has
a.s. no discontinuity at t = 1 and there exist constants C > 0, r > 0 and a > 1 such that for 0≤ t1 < t2 < t3 ≤ 1 and
for all n,

〈∣∣Xn(t2)−Xn(t1)
∣∣r ∣∣Xn(t3)−Xn(t2)

∣∣r 〉
n
≤ C|t3 − t1|a. (5.1)

This proposition is a slight modification of Billingsley ([1], Theorem 15.6), where (15.21) is replaced by the
stronger moment condition on the bottom of page 128 (both references to Billingsley [1]).

Corollary 5.2 (Tightness). The sequence {Xn} in (1.23) is tight in D([0,1],Rd).

Proof. We first remark that α-stable Lèvy motion indeed has a version without jumps at fixed times, and hence no dis-
continuity at t = 1 occurs, see e.g. ([12], Theorem 13.1). Fix r = 3

4 (α ∧ 2) (in fact, any choice r ∈ ((α ∧ 2)/2,α ∧ 2)
is possible). Again we write nt for /nt0, for brevity. The left-hand side of (5.1) can be written as

fα(n)2r

cn(2dKα)2r/(α∧2)

∑

w∈Wn

∣∣w(nt2)−w(nt1)
∣∣r ∣∣w(nt3)−w(nt2)

∣∣rW(w)K[0,n](w), (5.2)

where K[0,n](w) was defined in (4.2). Since

K[0,n](w)≤K[0,nt1](w)K[nt1,nt2](w)K[nt2,nt3](w)K[nt3,n](w) (5.3)

and, by Corollary 2.2,

c−1
n ≤O(1)c−1

nt1
c−1
nt2−nt1

c−1
nt3−nt2

c−1
n−nt3

, (5.4)

we can bound (5.2) from above by
〈∣∣Xn(t2)−Xn(t1)

∣∣r ∣∣Xn(t3)−Xn(t2)
∣∣r 〉

n

≤O(1)fα(n)2r 1
cnt2−nt1

∑

w∈Wnt2−nt1

∣∣w(nt2 − nt1)
∣∣r 1

cnt3−nt2

∑

w∈Wnt3−nt2

∣∣w(nt3 − nt2)
∣∣r

= O(1)fα(n)2r
(
ξ (r)(nt2 − nt1)

)r(
ξ (r)(nt3 − nt2)

)r
. (5.5)

By Theorem 1.4 and (1.22),

(
ξ (r)

(
nt∗ − nt∗

))r ≤O(1)fα(n)−r
(
t∗ − t∗

)r/(α∧2) (5.6)
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for any 0≤ t∗ < t∗ ≤ 1, so that
〈∣∣Xn(t2)−Xn(t1)

∣∣r ∣∣Xn(t3)−Xn(t2)
∣∣r 〉

n
≤O(1)(t3 − t1)

2r/(α∧2) = O(1)(t3 − t1)
3/2. (5.7)

This proves tightness of the sequence {Xn}. !

Proof of Theorem 1.5. The convergence in distribution in Theorem 1.5 is implied by convergence of finite dimen-
sional distributions and tightness of the sequence Xn, see e.g. [1], Theorem 15.1. Hence, Theorem 1.6 and Corol-
lary 5.2 imply Theorem 1.5. !

Appendix: Asymptotics of the step distribution

Proof of (1.12). We consider separately the cases α > 2 and α ≤ 2.
Case α > 2. We expand

eik·x = exp

{

i
d∑

j=1

kjxj

}

= 1 + i
d∑

j=1

kjxj −
1
2

d∑

j,3=1

kj k3xjx3 + O
(
|k · x|2+ε

)

for 0 < ε < (α − 2)∧ 1. By reflection symmetry,
∑

x∈Zd

∑

1≤j≤d

kj xjD(x) = 0 and
∑

x∈Zd

∑

1≤j<n≤d

kj k3xjx3D(x) = 0.

Furthermore, as D is symmetric under rotations by ninety degree,

∑

x∈Zd

x2
1D(x) =

∑

x∈Zd

x2
2D(x) = · · · = 1

d

∑

x∈Zd

|x|2D(x),

so that

D̂(k) =
∑

x∈Zd

eik·xD(x) = 1− |k|2
2d

∑

x∈Zd

|x|2D(x) + O
(
|k|2+ε

) ∑

x∈Zd

|x|2+εD(x). (A.1)

Setting
∑

x∈Zd |x|2D(x) = 2dvα proves the claim.
Case α ≤ 2. The case α ≤ 2 requires a more elaborate calculation. This part of the proof is adapted from Koralov

and Sinai ([13], Lemma 10.18), who consider the one-dimensional continuous case. To this end, we write f = o(g) if
f/g vanishes as |k|→ 0. We can write D(x) as

D(x) = c
1 + g(x)

|x|d+α
, (A.2)

where c is a positive constant and g is a bounded function on Rd obeying g(x)→ 0 as |x|→ 0. By our assumption,
g is rotation invariant for |x| > M . We might limit ourselves to the case |k|≤ 1/M and split the sum defining D̂(k) as

D̂(k) =
∑

|x|≤M

eik·xD(x) +
∑

M<|x|≤1/|k|
eik·xD(x) +

∑

1/|k|<|x|
eik·xD(x). (A.3)

Denote by S1, S2 and S3 the three sums on the right-hand side of (A.3). A calculation similar to (A.1) shows

S1 =
∑

|x|≤M

D(x) + O
(
|k|2

)
=

∑

|x|≤M

D(x) +
{

o
(
|k|α

)
, if α < 2,

o
(
|k|2 log 1

|k|
)
, if α = 2.

(A.4)
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For S3 we substitute x by y/|k| yielding

S3 = |k|d+α
∑

y∈|k|Zd

|y|>1

c
1 + g(y/|k|)

|y|d+α
eiek ·y, (A.5)

where ek = k/|k| is the unit vector in direction k. By rotation invariance of g and Riemann sum approximation we
obtain

S3 = |k|α
(∫

|y|≥1
c

1 + g(y/|k|)
|y|d+α

eiy1 dy + o(1)

)
, (A.6)

with y1 being the first coordinate of the vector y and the error term o(1) vanishing as |k|→∞. Finally, the dominated
convergence (as |k|→∞) obtains

S3 = |k|αc

∫

|y|≥1

eiy1

|y|d+α
dy + o

(
|k|α

)
. (A.7)

Since D is symmetric, the sum defining S2 can be split as

S2 =
∑

M<|x|≤1/|k|

(
eik·x − 1− ik · x

)
D(x) +

∑

M<|x|
D(x)−

∑

1/|k|<|x|
D(x). (A.8)

Consider first the last sum. As before, we substitute x by y/|k|, use Riemann sum approximation and finally dominated
convergence to obtain

∑

1/|k|<|x|
D(x) = |k|α+d

∑

y∈|k|Zd

|y|>1

c
1 + g(y/|k|)

|y|d+α
= |k|αc

∫

|y|≥1

eiy1

|y|d+α
dy + o

(
|k|α

)
. (A.9)

The second sum on the right of (A.8), together with the complementary sum in (A.4), obtains the summand 1 on the
left of (1.12). It remains to understand the first sum on the right-hand side of (A.8). We treat this term with the same
recipe as above yielding

∑

M<|x|≤1/|k|

(
eik·x − 1− ik · x

)
D(x)

= |k|αc

∫

|k|M≤|y|≤1

1 + g(y/|k|)
|y|d+α

(
y2

1 + O
(
|y1|2+ε

))
dy + o

(
|k|α

)
. (A.10)

For α < 2 the integral is uniformly bounded in k, and hence the dominated convergence theorem can be used one
more time to obtain the desired asymptotics. However, if α = 2 then the dominating contribution towards (A.10) is

|k|2
∫

|k|M≤|y|≤1

y2
1

|y|d+α
dy = |k|2

d

∫

|k|M≤|y|≤1

1
|y|d dy = const |k|2

(
log

1
|k| + log

1
M

)
. (A.11)

Summarizing our calculations, we obtain

D̂(k) =
∑

x∈Zd

D(x)− vα|k|α + o
(
|k|α

)
= 1− vα|k|α + o

(
|k|α

)
(A.12)

for α < 2, and

D̂(k) = 1− vα|k|2 log
1
|k| + o

(
|k|2 log

1
|k|

)
(A.13)

for α = 2, where vα is composed of the various integrals arising during the proof. !
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