
PROCESSES AND THE DENOTATIONAL 

SEMANTICS OF CONCURRENCY 

J.W. de Bakker & JJ. Zucker 
Mathematisch Centrum, Amsterdam/SUN Y at Buffalo, USA 

I . INTRODUCTION 

45 

The aim of this paper is to present a mathematical study of the se

mantics of a variety of language concepts in the area of conaUX'renay. We 

shall be concerned with three fundamental notions in this field: parallel 

corrrposition, synchroni?.ation, and communication, and we shall develop a 

general framework in which definitions and properties of these notions can 

be discussed in a systematic way. 

The emphasis in the paper is on definitions - rather than on pragmatic 

use - of language concepts. We shall use the methodology of dbnotationaZ 

semantics. "Denotational" should be contrasted here with "operational": 

The key idea of the former approach is that expressions in a programming 

language denote values in mathematical domains equipped with an appropriate 

structure, whereas in the latter the operations as prescribed by the lan

guage constructs are modelled by steps performed by some suitable abstract 

machine. 

In the denotational semantics of sequential programming concepts, a 

central role is played by the notion of (state-transforming) function. Let 

us use 2:, with elements a, for the set of states. For the present purposes, 

it suffices to define a state as a mapping from program variables x,y, ... 

to values such as O, I, ... , The denotational meaning of a simple connnand 

such as the assignment statement x := x+l is a function cji: L + E, defined 

by qi (cr) =a', where a' (x) = cr(x)+l, and a' (y) = cr(y) for all y t x. Also, 

the meaning of a composite command, formed by sequential composition ";", 

such as x := x+l; y ·= x+y is obtained by forming the function composition 

cp 2aq, 1 , where cp 1 and <Pz are the meanings of the statements x := x+l and 

y := x+y, respectively. When we admit nondeterminacy, the situation changes 



46 

somewhat in that the meaning of a statement is now a function from states 

to sets of states with a certain structure. Using P for "power set of", we 

now use functions q,: E + P(E). Here as well, composition is easy to define: 

q, 1°q, 2 = /..cr.{cr'lcr' € q, 1(cr") for some cr" € q, 2(cr)}, and no essential extension 

of the traditional view of a statement having a state transformation as its 

meaning is necessary. A fundamental change in this view is needed, however, 

for the denotational treatment of parailel composition. Let SI II s2 denote 

parallel execution of s1 and s2: Statements s1 and s2 - in the example al

lowed to share their variables - are executed by arbitrary interleaving of 

the constituent elementary actions of s1 and s2. Consider, for example, a 

simple program (*): (A 1 ;A2) l\ (B 1 ;B 2), with Ai,Bi elementary actions (such 

as x := x+I), and let q,. ,I)!. be the respective meanings of A. ,B .. Now what 
l 1 l. 1 

happens if we take the q,.,l)J. simply as functions: E + E? We form the com-
1 1 

positions $ .p 2oq, 1, >1• = w2oljl 1 and try to define a resulting function rrer>ge 

(<j>,ljl). Here we are stuck, since having formed the compositions <ji,ljl, we no 

longer have available their respective operands <jl, ,ljl •• (Remember that what 
1 l 

we want as resulting function is the union of the (six) possibilities 

<P 2°q, 1°w2°w 1, q, 2°w 2°q, 1°1jl 1, .••• ~• 2 °\jll ocp 2oq, 1.) In an operational approach, the 

problem does not arise in this form: A trace is kept of the computation, 

e.g. in the form of the (set of the) sequence(s) of elementary actions 

generated while executing the program, and the meaning of s1 11 s2 is simply 

the shuffle (in the language theoretic sense) of the traces corresponding 

to s1 and s2• (Other operational approaches are also possible, see e.g. 

[31,49]. However, they all involve suitably structured sequences of elemen

tary steps.) This preserving of intermediate information in order to be able 

to describe the final result of interleaving is crucial for a proper treat

ment of parallellism, and is in fact what we shall do as well in our deno

tational approach. The basic idea is to extend the notion of function to 

that of process. Here "process" is a generic term, referring to a variety 

of mathematical objects which have one important property in common, viz. 

that they are constituted in some way from (possibly infinite) sets of 

(possibly infinite) sequences. For the example language considered above, 

the corresponding notion of process is an extension of that of state-trans

forming function in that it is still a function but now includes the infor

mation on how it was built up from the - possibly infinite - sequences of 

its elementary components. In this introduction we shall not be more pre

cise about the notion of process. What we do unilerline is that in our 

theory a process is a semantic rather than a syntactic notion: it is a 



47 

feature of the mathematical model rather than of the program text 

Section 2 of the paper presents the notion of process in some detail. 

A rigorous treatment of this requires some mathematical machinery involving 

tools from metric topology. A fundamental role is played by equations for 

domains of processes. Such equations are solved essentially by completion 

techniques - reminiscent of the way Cantor constructed the real numbers 

from the rationals. Next, the central operations upon processes are defined. 

We consider the convenience in formulating these definitions as an important 

accomplishment of the theory of processes. Processes are finite or infinite. 

Defining the operations for the finite cases requires specific attention; 

the infinite ones are each time obtained in a standard way by continuity 

arguments. Some of the more tedious mathematical arguments are relegated 

to the appendices; in section 2 we concentrate on those results which are 

necessary for an understanding of the central sections of our paper. For 

the reader who wants to skip aU mathematical details we provide a brief 

summary of the relevant results at the end of the section. Sections 3 to 8 

constitute the applied part of the paper. In these, it is shown how a rigo

rous and concise semantics can be designed for certain central notions in 

concurrency, by an appropriate synthesis of the use of processes with that 

of more traditional ideas of denotational semantics. Section 3 concentrates 

on flow of control: It considers a simple language with elementary actions, 

sequential composition and nondeterministic choice, and iteration or recur

sion. Adding parallel composition ("II ") to this requires for its semantics 

a rather simple process domain, the so-called unifo'l"T/1 processes. Iteration 

and recursion are dealt with in a relatively straightforward way by certain 

limit constructions. We already mention that an appeal to Banach's fixed 

point theorem will replace the familiar least fixed point approach of de

notational semantics based on complete partially ordered sets. The section 

also discusses how the yieid of a uniform process p can be derived from the 

set of all paths in p. 

In section 4 we add synchronization to the language(s) of section 3. 

Synchronization restricts the set of all possible interleavings of se

quences of elementary actions, and a general mechanism to model this is 

studied. Section 5 refines the theory by introducing the notion of state -

suppressed in sections 3 and 4 - and assignments, and discusses the required 

extensions to the notions of processes and their yields. Processes are no 

longer uniform, but depend on the state as an argument, and the previous 

definitions have to be modified accordingly. As special feature we mention 



48 

that unbounded nondetenninacy can be dealt with without any additional 

measures. Section 6 combines the ideas of sections 4 and 5, in that synchro

nization is now considered for non-uniform processes. Among the topics 

studied are deadlock, and synchronization through guards in guarded commands. 

Section 7 extends synchronization to corrvminication: At points of synchro

nization in the parallel execution values are passed from one process to 

another. A further extension of the notion of process is needed to deal with 

this. Two major examples of languages with communication are treated: 

Hoare's Communicating Sequential Processes ([34]), and Milner's Calculus for 

Communicating Systems ([44]). In section 8 we finally discuss some miscel

laneous notions in concurrency, without providing a full treatment as was 

done in the preceding sections. In the appendices a number of mathematical 

details omitted in section 2 are filled in. 

A few words on the emphasis on denotational in the title of our paper 

are in order. Our arguments for the claim that our approach is denotational 

are twofold: (i) the systematic use of mathematical models which are used 

as range for the valuation mappings assigning meaning to the various 

progrannning constructs, (ii) the systematic way of adhering to the composi

tionality principle, allowing homomorphic valuations. However, we are aware 

of the fact that we have to pay a price for this. The mathematical model 

contains various notions which, though denotational in style, are operational 

in spirit. These include the "history" feature of the notion of process 

itself. and the use of socalled silent moves in dealing with synchronization 

and recursion. 

There is a vast amount of literature on concurrency, and a good part 

of these papers involve some discussion of the operational semantics of the 

notion(s) in concurrency. Our understanding of concurrency has been profound

ly influenced by the work of R. Milner, starting with [42], continued in 

papers such as [30,40,43], and culminating in [44]. Though the latter work 

is primarily operational in spirit, there is still a lot in it which recalls 

its author's denotational period. Also, for an intuitive understanding of 

the central notions in concurrency it is an invaluable source. The various 

notions of process to be studied below will be introduced as solutions of 

domain equations. The introduction of equations of this type is due to 

D.Scott - dating back to perhaps the most famous equation for reflexive 

domains: D = D + D - and has been treated extensively in, e.g., [S4] or, 

more recently, in [SS]. A very nice textbook on denotational semantics in 

g:neral and domain equations in particular is Stoy [57]. (A more introduc-



49 

tory text on denotational semantics is Gordon [28]; many advanced topics 
are treated in Milne & Strachey [41].) Scott's theory did not include non
determinacy or concurrency, and an extension of his theory dealing with 
these concepts was proposed by Plotkin ([48]), later simplified somewhat by 
Smyth ([56]; c.f. also [39]). The first time we saw a domain equation inten
ded to be used for modelling concurrency was in Bekic [12], In the work of 
Plotkin and Smyth, domain equations are solved by category-theoretic methods 
which may be somewhat demanding for the uninitiated reader. We prefer to use 
other tools, viz. those of metric topology. The use of these has been advo
cated in recent years by M. Nivat and his colleagues, and applied succes
fully in a variety of applications having to do with infinite words or 
infinite trees modelling infinite computations and the semantics of recursive 
program schemes with nondeterminacy [5,6,45,46]. The mathematical foundations 
of our work - as described in section 2 - owes a considerable debt to the 
work of Nivat's school - though the specific way we use topological comple
tion techniques to solve equations seems to be new. 

Our own first venture into the realm of (infinite) processes was 
De Bakker [9]. Lacking in that paper was a sound mathematical basis for the 
notion of process. The present topological treatment was first described in 
De Bakker & Zucker [ll], reporting on research which was started during a 
most enjoyable stay of the first author at Bar-Ilan University and the 
Weizmann Institute during the sunnner of 1981. 

Further references to the literature - in particular concerned with the 
various concepts in concurrency we shall encounter in these notes - will be 
given as we go along. 

A preliminary version of this paper was used as lecture notes for the 
Fourth Advanced Course on Foundations of Computer Science, Amsterdam, June 
1982. We are indebted to the students of this course for various questions 
and comments. We also acknowledge the suggestions of the referee, and 
discussions with J.A. Bergstra, J.W. Klop, R. Kuiper, L. Lamport, 
J.J.Ch.Meyer, and G. Plotkin. 

2. PROCESSES 

In this section we show how processes p can be introduced as elements 
of domains p which are obtained as solutions of domain equations of the 
form(*): p = T(P). The techniques used to solve(*) are taken from metric 
topology. A variety of equations (*) is considered, determining a variety 



50 

of process domains of increasing complexity. Furthermore, a number of opera

tions upon processes are defined, viz. composition (p 1°p2), union (p 1up 2), 

and merge (p 1 II p2), and various properties of these operations are presented. 

A few of the proofs of the supporting mathematical facts are not contained 

in this section but can be found in the appendix. A brief summary of the 

relevant results is given at the end of the section. 

We begin by recalling a few basic facts from metric topology. We assume 

known the notions of metric space, Cauchy sequence (CS) in a metric space, 

isometry (distance-preserving bijection), limits and closed sets, completeness 

of a metric space, and the theorem stating that each metric space (M,d) can be 

completed to (i.e. isometrically embedded in) a complete metric space. Throughout 

our paper, we shall only consider spaces (M,d) such that the metric d has 

values in the interval [0,1]. 

These notions are sufficient to solve the first domain equation for 

processes. This equation is very simple, and introduced only for the sake 

of illustrating the method used in solving such equations. Let A be any set. 

We consider the equation 

(2. I) 

where p0 is the nil process, and "x" is the usual cartesian product. In

tuitively, it is not difficult to see that the (greatest) solution set p 

should consist of p0, all finite sequences of the form <a 1 ,<a2, ... ,<an,pO.> 

.•• >>, for n ~ l, together with all infinite sequences <a 1 ,<a2 , ••• >>. The 

role of the nil process Po may be somewhat unusual in this equation, in that 

it replaces the more familiar empty sequence. However, it will remain with 

us all through the paper, and we ask the reader to exercise some patience 

in trying to appreciate its use. 

We now obtain the solution of (2.1) in a more rigorous manner: 

DEFINITION 2.1. Let (Pn,dn)' n = 0,1, ..• , be a collection of metric spaces 

defined inductively by: PO = {p0}, d0 (p' ,p") = 0 (since 

P',p"EP0 -p'=p" ) P {} (AP) d . P0 ' n+I = Po u x n , n+I 1s given by: 

dn+l(p',p") = 0 if p' p" =Po• dn+l(p',p") = l if p' =Po' p" f Po orp' fpo, 

p" - p Othe · p' -= <a p > p" = <a p > f A - 0 . rwise, 1, 1 , 2 , 2 orsomea1,a2 E ,p1,p2 E 

Pn, and we put 



51 

It is not difficult to verify that d is indeed a metric on P • As 
n n 

next step, we define P dJ. U Pn and d <!_f. U d • E.g., take 
w n n n 

p' = <a 1,<a2,<a3,p0>>>, p" = <a 1,<a2,<a3,<a4 ,p0>>>>. Then d(p',p") = 
I . 

~m(p',p") (any m ~ 4) != 2 dmjl(<a2,<a3,p0»,<a2,<a3,<a4,p0»>) = ••• 
8 dm-3(po,<a4,p0>) = 8 * 1 = 8" 

DEFINITION 2. 2. 

a. Pw = Un Pn, d = Un dn 

b. (P,d) is the aompletion of (Pw,d). 

Standard properties of the completion technique yield that we may take 

p as consisting of Pw together with all limit points p = limn pn' with 

<pn>n a Cauchy sequence such that pn € Pn. It is now straightforward to 

show that 

LEMMA 2.3. P satisfies (2.1). 

Proof. Let P' dJ. {p0} u (AxP). We define isometries <j>: P..,. P', lji: P'..,. P 

in the following manner. First we consider <j>. If p = p0, we take <l>(p) = p0 ; 

clearly, <l>(p) € P' in that case. Otherwise, p = lim p with <p > a CS (if n n n n 
p E Pn' for ~omen~ I, p is identified with a CS which is eventually con-

stant), and we may assume without lack of generality that p = <a,q >, for 
n n 

some a and all n, such that <q > is also a CS. Now let q = lim q . we take 
n n n n 

<j>(p) = <a,q>. We leave the definition of lji, and verification that <1>,w are 

indeed isometries to the reader. 0 

The trouble taken to solve (2.1) may seen somewhat inordinate. It was 

done this way to familiarize the reader with this style of argument - which 

will pay off later - rather than for the solution of this problem in its 

own right. 

Processes p which are elements of sets P as defined (e.g.) by equation 

(2.I) have a deg~ee, written as deg(p), and defined in 

DEFINITION 2.4. deg(p0 ) = 0, deg(p) = n if p E Pn\Pn-l' for some n ~ I, and 
deg(p) = ~. otherwise. 



52 

For processes p,q in Pas defined in (2.1) we now give the definition 

of their aonrposition poq: 

DEFINITION 2.5. poq is defined (by induction on deg(q)) 

a. pop0 = p, po<a,q'> = <a,poq'> if deg(<a,q'>) < "' 

b. polimi qi= limi(peqi)' for qi finite 

Example: <a 1 ,<a2,p0>> o <a3,p0> = <a3,<a1 ,<a2,p0>>>. We see that composition 

is (almost) concatenation in reverse order. 

LEMMA 2.6. 

a. If <qi>i is a CS then so are <poqi>i (this justifies definition 2.Sb) 

and <q. op>.• 
]_ ]_ 

b. "o" is aontinuous in both arguments, i.e., (lim. p.) 0 q = lim. (p. 0 q), 
]_ l. l. l. 

and p 0 limi qi= limi (poqi)' for all pi,qi suah that <pi>i,<qi>i are CS. 

c. "0 11 is assoaiative 

Proof. This lelllllla being a special case of later results, we omit its 

proof. D 

We now turn to the solution of a more interesting equation. The re

sulting processes are not simply (finite or infinite) sequences, but -

roughly, a precise statement follows - sets of such sequences. ·we want to 

solve 

(2. 2) 

where P(•) denotes all subsets of (•), and P (•) all alosed subsets of (•) 
c 

(closed with respect to the metric to be introduced in a moment). Before 

going into the mathematical details, we consider a few simple examples. 

Possible elements of P are p0 , {<a 1,p0>,<a2,p0>},{<a1,{<a 2,p0>}>,<a 1, 

{<a3,p0>}>},{<a1,{<a2,p0> <a3,p0>}>}, or {<a,{<a,{<a, •.• >}>}>}. In pictures, 

these processes may be represented by 

0 

Po la 
la 
la 



53 

We see that these processes closely resemble (unordered) trees. How

ever, as essential difference we have that "nodes" in a process have a set 

- rather than a mul tiset - of successors: A tree ~ has no corresponding 

process. 

The topological treatment of the solution of (2.2) requires some pre

parations. Firstly, we extend distances d as follows: 

DEFINITION 2.7. Let (M,d) be a metric space and let X,Y be subsets of M. 

We define 

a. d(x,Y) inf d(x,y) 
yeY 

b. d(X,Y) = max(sup d(x,Y), sup d(y,X)) 
X€X yeY 

(By convention, inf ~ = I, sup~= 0.) 

Remark. The distance d(X,Y) is the Hausdorff distance between sets. It 

should be distinguished from d'(X,Y) = inf X y d(x,y), which does not 
X€ ,y€ 

determine a metric. 

For the Hausdorff distance we have 

LEMMA 2.8. Let (M,d) be a metric space, and let P (M) be the aollection of 
c 

all closed subsets of M. Then (Pc(M),d) is a metr>ia space. 

Proof. See [19] or [22]. D 

Remark. Given a metric space (M,d), dis said to be an ultrametr>ic on M if 

it satisfies the "strong triangle inequality" Vx,y,z € M [ d(x,z) s max 

{d(x,y),d(y,z))]. It is easy to see that if dis an ultrametric on M, then 

so is the induced Hausdorff metric on P~(M). It will follow (as can easily 

be shown) that every process domain P considered in this article will have 

an ultrametric with, moreover, max {d(p,q)\p,q € P} =I. 

An important technical result which plays a central role in the theory 

developed below is the following theorem of Hahn [29]{cf.also [22]): 

THEOREM 2.9. If (M,d) is complete then so is (Pc(M),d). Also, for <Xn>n a 

CS in P (M), we ha:ve that 
c 

lim X 
n n 

{x I x lim xn' 
n 

x € Xn' <x > a CS in M}. 
n nn 



54 

Proof. See Appendix A. 

We now proceed with the construction solving (2.2). We introduce 

metric spaces (Pn,dn), extending the techniques as applied before with sets 

and their (Hausdorff) distances: 

DEFINITION 2.10. The collection of metric spaces (P ,d ), n = 0,1, •.. ,is 
n n 

defined by p0 = {p0}, d0(p' ,p") = o, pn+I = {p0} u P(AxPn), dn+I (p' ,p") is 

as before for p' = p0 or p" = p0 • Otherwise, p' = X ~Ax Pn' p" = YsAxPn' 

and we take d (X,Y) as the Hausdorff distance induced by the distance be-
n+I 

tween points dn+l(x,y), where (as before), for x = <a 1,p 1>, y = <a2,p 2> 

t, if a 1 1' a 2 
dn+l{x,y) = . 

! dn(pl,p2)' if al = a2 

Example. Take a2 f a3 . Then d2({<a 1,{<a2,p0>,<a3,p0>}>},{<a1,{<a2 ,p0>}>, 

<al,{<a3,p0>}>}) = ~ • 

As before, we take Pw = Un Pn' d 

completion of (Pw,d). We have 

Un dn' and {P,d) is defined as the 

THEOREM 2.11, P = {p0} u P (AxP), where P (·)stands for all subsets of 
c c 

(•) ~hich are closed with respect to the metric d. 

The proof needs a definition and a lemma. 

DEFINITION 2.12. 

a. Let p E P. We define p(n), n = 0,1, ••• , by: If p = p then p(n) = p0 , 
w . (0) (n+I) {n) 0 

n = 0,1,... Otherwise, p = p0 , p = {<a,q > J <a,q> E p}. 

b. Let p € P\P . Then p = limi pi' pi € Pi' <pi> 1. a CS. We then put 
{n) w (n) 

p = lim. p. • 
1 1 (n+l) ( ) 

c. For X s Ax P we put X = {<a,p n > J <a,p> € X}, n 0,1, ... 

LEMMA 2.13. 

a. For each p, p = lim p(n) 
n 

b. For X ~Ax P, <x(n)>n is a CS and limn X(n) = X, where x is the closure 

of X. Hence, for X closed, X = lim xCn) 
n 

Proof. We only prove part b. Clearly, for m < n, d(X(n) ,X(m)) ~ 1/2m, and 
h X(n) . {n) 

we see t at < > is a CS. We now show that X s lim X • Let <a,p> € X. 

Then <a,p> = <a,limn P(n)> =limn <a,p{n)> € limn x(~). Each X(n) is closed 



55 

in Pn+I (all subsets of each Pn are closed, since distances between points 
are at least l/2n and so there are no non-trivial CS in P ); hence, lim X(n) 

( n _ n 
exists and is closed. From this and X ~ lim X n) it follows that X c lim n - n 
x(n). Conversely, let p E lim x(n). By theorem 2.9, p = limn pn' where 

( ) n ( n) 
pn E X n , <pn>n a CS. Hence, pn = qn for some qn E X. Then p =limn qn' 
i.e., p belongs to the closure X of X. 

We now prove theorem 2.11. Similarly to what we did in the proof of 

lemma 2.3, we show that P satisfies (2.2) by establishing an isometry 

between the spaces P and P' dJ. {p0 } u Pc(AxP). We define two bijections 

~: P + P', w: P' + P, as follows: 

(i) If p = p0 , then ~(p) = p0 . Otherwise, p = lim p , p E P , <p > a n n n n n n 
CS, pn f Po for n sufficiently large. For these n, by the definition 
of Pn we have that pn is a subset of Ax Pn_ 1,hence closed in Ax P; 

thus, <pn>n is a CS of closed sets in Ax P. We now take for ~(p) the 

closed subset of Ax P which·equals limn Pn• 

(ii) If p' =Po then w(p') =Po· Otherwise, take p' = X E Pc(AxP). By Lemma 
2.13b, X = lim X(n). For each n > 0, put P = X(n)E P . Since 

n n n 
<X(n)>n is a CS in P', <pn>n is a CS in P. So we define w(p') = limnpn. 

We leave it to the reader to verify that ~.w are the required isometric 

mappings. This concludes the proof of theorem 2.11. D 

We proceed with the introduction of the operations " 0 ", "u", "lr' for 

processes pin P solving (2.2). By the preceding theory we know that for 

each process p, either p is p0 , or p is finite and p = X E P (AxP), or p is 
1 . (i) (i) 'th (i) 'cOI infinite and p = imi p , <p >i a CS, wi p E Pi, i = , , ... · 

DEFINITION 2. 14. 

a. (composition) 
l' (i) po imi q 

Let X,Y E P (AxP) with deg(X), deg(Y) < ~. 
c 

pop = p, poX = {pox I x E X}, po<a,q> = <a,poq>, and 
0 (') 

lim. (poq i ) • 
i 

b. (union) p0 u p = p u p0 = p, X u Y is the set-theoretic union of the 
two sets X,Y. Also, (lim.p(i)) u (lim. q(j))= lim. (p(k) u q(k». 

i .1 K. 

c. (merge) Pil p = p II p = p, x\IY = {XllYI y E Y} u {xii YI x EX}, 
0 0 (') (') xii <a,p> = <a,xll p>,<a,p> II X = ~a,pj\ X>, and (limi p 1 

) II (limj q J ) 

u~ <P<k> 11 q<k>). 



56 

Example. Pill Pz dJ. {<al,{<a2,p0>}>}11 {<a3,{<a4,p0>}>} 

{<al ,{<a2,pO>}JI Pz>} u {<a3•P1 II {<a4,p0>}>} = 

{<al,{<a2,p2>} u {<a3,{<a2,p0>}11 {<a4,p0>}>}>, 

<a3,{<a4,pl>} u {<i;,{<a2,p0>}11 {<a4,p0>}>}>} 

{<a1,{<a2,{<a3,{<a4•Po>}>}>, 

<a3,{<a2,{<a4,Po>}>,<a4,{<a2,po>}>}>}>, 

<a3' ••• >}. 

(The reader should compare this with the (language-theoretic) slruffle of 

two words a 1a2 and a 3a4 , yielding a set of six words {a 1a2a3a4 ,a 1a 3a2a4 , 

• •. ,a3a4ala2}.) 

The following picture describes the result: 

Definition 2.14 is justified in 

LEMMA 2.15. 

a. For finite q,q',d(poq,poq') ~ d(q,q') 

b. For finite q , if <q > is a CS then so is <p 0 q > 
n nn nn 

(Hence, the definition p0 q = lim (poq(n)) is welZ-formed) 
n 

a. Part a hoZds for aZZ q,q' 

d. If q + q then poq + p 0 q (" 0 " is aontinuous in its second argument) 
n n 

e. For finite p,q,p' ,q', d(pup',quq') ~ max(d(p,q),d(p',q')) 

f, For finite p ,q, if <p > , <q > are CS, then so is <p uq > 
nn nn nn nnn 

(Hence, the definition puq = lim (p(n}uq(n))is well-formed) 
n 

g. Part f hoZds for aZl p,p',q,q' 

b.· If pn + p, q + q then p u q + p u q ("u" is continuous in both argu-
n n n 

ments) 

i. For finite p,q,q',p', d(pll q,p'll q') ~ max(d(p,p'),d(q,q')) 

j-R.. Similarly to f-h fo!' II 
m. 11011 is continuous in its fi!'st argwnent 

n. " 0 ","u","ll" are associative, "u" and "II" are co111111Utative. 



57 

PI>oof. See Appendix B. D 

We continue with the consideration of domain equations which determine 

more complex processes. Calling processes in (2.2) uniform, we consider the 

non-uniform processes defined in 

(2. 3) 

Processes p are now (either p0 or) furuJtions, such that for each a, p(a) is 

a closed set { ••• ,<b.,p.>, ••• }. , where the index set I depends on 
l. l. I.EI 

a: I= I(a). 1he solution of (2.3) is very similar to the ones given above. 

A new element is the distance between functions. We give 

DEFINITION 2.16. 1he collection of spaces (Pn,dn)' n = 0,1, ••. , is defined 

as follows: P0 and d0 are as before. Pn+l = {p0 } u (A+ P(BxPn)), 

dn+l (p' ,p") is as before for p' = p0 or p" = p0 • Otherwise, dn+l (p' ,p") 

supac:A dn+l(p'(a),p"(a)), where the distance between the sets p'(a),p"(a) 

is the usual Hausdorff distance induced by the distance between points 

dn+l(<b 1,p 1>,<b 2,p2>) given by 

As before, dn determines a metric on Pn' Pw is defined as Un Pn' 

d = U d, and (P,d) is the completion of (P ,d).We have 
n n w 

Pl>oof. By appropriately adapting the proof of theorem 2.11. For example, we 

treat the isometry lj>: P + P', where P' dJ. {p0 } u (A+ Pc(BxP)). Let 

p = lim p , <p > a CS in P. We indicate how to obtain lj>(p) as a function 
n n n n 

in (A+ P (BxP)). Take any a EA. Since <p > is a CS, so is <pn(a)>n. As c n n 
CS of closed sets, <p (a)> has as limit a closed set, say X , where n n a 
x c B x P. Now put lj>(p) = Aa.Xa. We have to check (i)lj> is well defined, 
a-

i.e., if (p=) limn pn =limn qn' then limn pn(a) =limn qn(a), (ii) 4> is 1-1, 

i.e., lj>(p) = lj>(q),. p = q, (iii) 4> is onto, and (iv) 4> preserves distances. 

We treat only (ii). Assume that, for all a, lim p (a)= lim q (a). To n n n n 



58 

show p = q, i.e. lim p = lim q • Since <p > , <q > are CS, we have 
' n n n n nn nn 

'v'c::3NVm,n:?: N [d(p ,p ) < c./2, d(o ,q ) < c./2]. Thus, (*) 'v'm,n :?: N 
m n 1n n 

'v'a[d(p (a),p (a)) < c./2], (**) 'v'm,n:?: N 'v'a[d(o (a),q (a)) < c./2]. Letting 
m n ill n 

m + oo in(*), (**)we have pm(a) + p(a), ~(a)+ q(a). Thus 

'v'n:?: N 'v'a[d(p (a),p(a)) s c./2, d(q (a), q(a)) s c./2]. From this, since 
n n 

p(a) = q(a), we obtain Vn:?: N [d(p (a),q (a)) s c.]. Taking sup over all a 
n n 

we get Vn ~ N [d(p ,q ) s c.]. By a standard argument then d(p,q) s E. Since 
n n 

this holds for any E we conclude that p = q. D 

The operations 11 0 11 , "u"," JI " can be extended to non-uniform processes. 

DEFINITION 2.18. We only consider processes of finite nonzero degree, the 

treatment of the remaining cases being the usual one. 

a. (composition) poAa.X = Aa.(poX), where p 0 X = {p 0 x I x € X}, and 

po<b,q> = <b,poq> 

b. (union) (Aa.X) u (Aa.Y) = Aa.(XuY) 

c. (merge) (Aa.X)i! (Aa.Y) = Aa.({xJI (h.Y) I x EX} u {l/.a.X) II y I y € Y}) 

where <b,p>JI (Aa.Y) = <b,plJ Aa.Y>, and (Aa.X)JI <b,q> = <b,(Aa.X)ll q> 

Remark. Observe the difference between clauses b and c, in that we do not 

put (Aa.X) II (Aa.Y) = Aa. (XII Y) (with xii y defined appropriately). 

In other words, though we have, for p,q f p0 , that p u q = Aa.(p(a)uq(a)), 

for Pil q we do not have plJ q = Aa.(p(a) II q(a)) but, instead, Pll q = 

A.a.((p(a)IJq) u <Pll q(a))). 

Operations 11 0 11 ,"u" and "II" for non-uniform processes satisfy the 

natural extension of Lennna 2.15: 

LEMMA 2.19. As Lemma 2.15, but now for the operations as given in defini

tion 2.18. 

Proof. Left to the reader. 

The last equation in the list of domain equations is 

(2.4) 

We only give the definition of the metric spaces (Pn,dn), leaving elabora

tion of the details concerning the isometries necessary to establish (2.4) 

to the reader. We have 



59 

DEFINITION 2.20. The metric spaces (P ,d ), n = 0,1, ... , are defined by: n n 
P d are as before, P = {p0} u (A-+ P((BxP ) u (C-+P ))) , d (p' p") 0' 0 n+ I n n n+ I ' 
is as before for p' = Po or p" = p0 . Otherwise, dn+ 1 (p', p") = 
sup A d 1 (p' (a) , p" (a)) , where d 1 (X, Y) is the Hausdorff distance between aE n+ n+ 
sets induced by the distance between points dn+I (x,y), where dn+l(<b,p>, 

Ac.p') =I= dn+l(Ac.p',<b,p>), dn+l(<b 1,p 1>,<b 2,p 2>) is as usual, and 

dn+l(Ac.pl,Ac.p2) = supcEC dn(pl,p2). 

The operations for p E P, with P solving (2.4) are given in 

DEFINITION 2.21. We only consider processes of finite nonzero degree. 

a. poAa.X 

Ac.(pop') 

b. u: Omitted. 

Aa.(poX), poX = {poxlxEX}, po<b,q> = <b,poq>, po).c.p' = 

c. (Aa.X) II (Aa.Y) = Aa.({xll (Aa.Y) I XEX}u{(Aa.X) II YI yEY}), where <b,p>!I >.a.Y 

= <b,pll >.a.Y> and similarly for (Aa.X) II <b,p>, (>.c.p') JI (Aa.Y) = 

Ac.(p'll >.a.Y), and similarly for (>.a.X)ll (>.c.p'). 

As the last lemma of this section we claim 

LEMMA 2.22. The operations " 0 ","u","ll" have the usual properties. 

Proof. Omitted. D 

Having arrived at the. end of this section, we summarize the main re

sults: 

I. Process domains Pare obtained as solutions of equations of the form 

a. p {po} u (AxP) 

b. p {po} u P (AxP), where P (•) stands for all closed subsets of (·) c c 
c. p {po} u (A-+P (BxP)) (idem) c 
d. p {po} u (A-+P c ( (BxP) u (C-+P))) (idem) 

2. Processes pare either nil (p0), or finite and of finite degree deg(p), 
(i) . (i) or infinite and (topological) limit of a sequence <p >. with p 

finite. (For the definitions of the p(i) see point 5 bel~w.) 
3. Operations upon processes are composition (" 0 "), union ("u") and merge 

C"ll "). They are defined as follows (u, II only for process domains solving 

b,c,d above; X,Y are always finite elements of Pc(·)): 



60 

3.1. poq is defined by induction on deg(q): 
p, poX = {pox!x EX}, po<a,q> = <a,poq>, p 0 Aa.X = f.a.(p 0 X), 

popO = ' i · q(i) lim (poq (i» po<b,q> = <b,poq>, pof.c.q = AC.poq, po imi i 

3.2. p u q is defined by 
p u p = p u p p, X u Y is the set-theoretic 

0 0 . (i) . 
(Aa.X) u (Aa.X) =f.a.(XuY), (limi·p ) u (limj 

union of X and Y, 
(j)) l" ( (k) (k)) q = i~ p uq 

3.3. P!I q is defined by induction on deg(p) + deg(q): 

P II Po = Po II P = p, x II Y = {x II YI x E X} u {XII YI Y E Y}. 

(Aa.X) II (:\a.Y) = Aa.({xll Aa.YI x E X} u {Aa.Xll YI Y E Y}), 

<a,p>ll Y = <a,p\I Y>, YIJ <a,p> = <a,Yll p>, 

<b,p>ll (Xa.Y) = <b,plJ l.a.Y>, and similarly for (;l,a.Y) II <b,p> 

(A.c.q)ll (l,a.Y) = Ac.(qlj (:\a.Y)), and similarly for (/..a.Y)JI (k.q), 
(lim. p (i)) II (lim. q (j» = lim. (p (k) II q (k». 

l J K 

4. The above operations are continuous and satisfy the usual properties 

such as commutativity (u, II), associativity ( 0 ,U, II), etc. 

5. With respect to each of the equations a to d, p6n) = p0 , n = 0, I,···, 
(0) 

and, for p + p0, p = Po· 

Moreover, for n = 0,1, •.. , 

(For a) p(n+l) = <a,q(n)>, where p = <a,q> 

(For b) 

(For c) 

(For d) 

(n+l) 
p 

(n+l) 
p 

(n+l) 
p 

{<a,q(n)>I <a,q> E p} 

Aa.{<b,q(n)>I <b,q> E p(a)} 

Xa.({<b,q(n)>J <b,q> E p(a)} u 

{Ac.q(n)I Ac.q E p(a)}). 

3. FLOW OF CONTROL: MERGE WITH ITERATION OR RECURSION 

In this section we introduce the first two of the series of languages 

studied in sections 3-8. Both languages have elementary actions, sequential 

composition, nondeterministic choice and (arbitrary, i.e. not synchronized) 

merge. Language L0 has moreover iteration(*), and language L1 has recursion. 

We shall use !::_, with typical elements ~· for the class of elementary (~tomic) 

actions. In later refinements of the theory, actions~ will be replaced by 

assignment statements. Throughout the paper, we use a self-explanatory 

variant of BNF for syntactic definitions. 



61 

DEFINITION 3.1. The language L0 (regular flow of control+ merge) with ele

ments S, is defined by 

For the definition of the semantics of L0 we use a domain of uniform proces

ses P0 . We assume that its constituent set A is a (possibly infinite) al

phabet such that for each elementary action a E A there is a corresponding 

a E A. Let, moreover, £ be the empty word (with respect to the alphabet A). 

We give 

DEFINITION 3.2. The domain PO is given as solution of 

Rema.rk. Properly speaking, this requires adaptation of the definitions of 

section 2 for uniform processes with the convention that a E A u {s}, to

gether with natural definitions such as: .al = a 2 if a 1 and a 2 are both 

£, or denote the same element of A. 

We now define the semantics of L0 by providing a mapping M: L0 + P0 . 

Thus, M determines for each language element S a corresponding process p. 

(Mappings such as Mare often called valuations in denotational semantics. 

They serve to associate meaning - mathematical objects - to the syntactic 

constructs in a certain class (here L0), and in this way embody the heart 

of a denotational semantics definition.) 

DEFINITION 3.3. The valuation M: L0 + P0 is defined by 

a. MC~ = {<a,p0>}, where a corresponds to~ , M(skip) = {<s,p0>} 

b. M(S 1 ;S 2) = M(S 2) oM(S 1), M(S 1us 2) = M(S 1) U MCS 2), M(S 1 II S2) = MCS 1) II M(S 2) 

* c. M(S ) = limi pi' where (p0 =Po and) 

pi+! = (pioM(S)) u {<c,p0>}. 

Remarks. 
l. Since the elementary actions are left unspecified, there is not much we 

can do with them in the semantic definition. Therefore, we simply map 

them onto some corresponding elementary process. 

2. The simplicity of clause b is a reward of our preparatory work in section 

2. Operations upon (uniform) processes " 0 ","u","ll" have become available, 



62 

and they can be used directly to model the corresponding syntactic com

position rules. 

3. In order to understand the definition of s*, recall the equivalence 

s* = S;s* u skip. Now define a mapping T: P0 ~ P0 by putting 

T = Ap.((poM(S))u{<e:,p0>}). Here {<e:,p0>} is the dummy process, i.e., 

the semantic equivalent of the syntactic skip action. It follows from 

general properties of the operations 11 0 11 ,"u" (see Appendix B) that the map

ping T is contracting, viz. that, for all p',p", d(T(p'),T(p")) ~ ~d(p',p") 

{this uses that M(S) ~ Po for all S). By a classical result in metric topol

ogy (the Banach fixed point theorem) we may then conclude that the sequence 

p0,T(p0),T2(p0), ..• is a Cauchy sequence which converges to a limit p 

satisfying p = T(p). (In fact, this limit is independent of the starting 

process p0 , and yields the unique fixed point of T.) 

ExampZ.es 

I. M(3!_1;~2) = M(~2)oM(~l) = {<a2,pO>}o{<al,pO>} = {<al,{<a2,p0>}>}. 

·2 · M«~,;~2)11 (~3;~)) = {<al,{<az,po>}>}li {<a3,{<a4,p0>}>} = ••• = 

{<al,{<a2,{<a3,{<a4,Po>}>}>, . 

<a3,{<a2,{<a4,Po>}>,<a4,{<a2,Po>}>}>}>, 

<a3' ••• >} 

(Cf. the example after definition 2. 14). 

3. Mc~*) = p = limi pi' where Pi+! = (pio{<a,p0>}) u {<e:,p0>}. 

Hence, p = {<e:,p0>, 

<a,{<e:,po>, 

<a,{<e:,pO>' 

<a, ••• 

In a picture, M(~*) is described by 

We observe that a* means executing ~ zero or more times, including in

finite repetition of a. 

We next turn to the recursive case. We shall employ the notation of 

the µ-calculus for recursion (see, e.g. ['J0,32)). For the reader who has 



63 

not seen this before, the following explanation may help: Think of a 

parameterless recursive procedure Q in some Algol-like language. Q has a 

declaration of the form, say, Q <= ••• Q ••• Q ••• , where •.. Q ••• Q •• , is the 

procedure body with two recursive calls of Q. We note that the procedure 

variable Q is bound in this declaration (systematically renaming it would 

make no difference). A call of Q in the main program corresponds in the no

tation of the µ-calculus to the statementµ~[ ... ~ ... ~ ... ·], where the bound 

variable ~ is from some alphabet of procedure variables X. In this way, 

procedure declarations disappear, and inner calls are taken care of by the 

bound variable mechanism. 

DEFINITION 3.4. Let X, with elements ~. be the set of procedure variables. 

The language L1 (general recursion with merge) is defined by: Let SE L1• 

Then 

For the semantics of L1 we take pro.cess domain P1 equal to P0 • In order 

to handle the variables ~. we introduce an envirorunent E, with elements n, 
defined by E = X + P1 , and we define the meaning of a statement SE L1 with 

respect to E. In other words, we take M: L1 + (E+P 1); its definition is 

given in 

DEFINITION 3. 5. 

a. M(~)(n) = {<a,p0>}, M(skip)(n) = {<E,p0>} 

b. M(S 1 ;s2)(n) = M(s 2)(n)oM(S 1)(n) 

M(s 1us 2)(n) = M(S 1)(n) u M(s 2)(n) 

M<s 1 II s 2)(n) = M(S 1)(n) II MCs 2)(n) 

c. M(O (n) = n<O 

M(µ~[S])(n) = limi pi, where (p0 =Po and) 

Pi+! = {<£,M(S)(n{pi/~})>}. 

Remarks. 

I. Clauses a and bare exactly as in definition 3.3, apart from the extra 

argument n which is just carried along. 

2. In the definition of the meaning of the µ-construct we observe a compli

cation. The reader who is familiar with the treatment of (sequential) 

recursive procedures in denotational semantics would probably have ex

pected the definition p. 1 = M(S)(n{p./~}). (Note that this specializes 
i+ l 



64 

to the previous treatment of iteration by taking s* = µ!;[ s; s u skip J • ) 

This may work as well, but we have not been able to prove that, defining 
i 

the mapping T' = Ap.M(S)(n{p/s}), the sequence <T' (p0~>i is a CS for 

arbitrary SE L • (Bergstra & Klop [13] prove that <T' 1 (q)>. is a CS for 
I i 

each q. However, the resulting limit depends, in general, on q, and the 

problem remains which q to choose.) Therefore, we have introduced an 

extra step in defining T = Ap.{<e,M(S)(q{p/0)>}. This indeed ensures 

that T is contracting and, as before, limi Ti(p0) exists and equals the 

unique fixed point of T. Operationally, the e-step may be seen as re

flecting the action of procedure entry. By way of example we obtain that 

M(µs[sJ)(n) = {<e,{<e,{<e:, •.. >}>}>} (an infinite sequence of empty steps). 

C.f. also the discussion in [17]. 

In definitions 3.3 and 3.5 we have shown how to associate a process p 

with statements SE L0 or SE L1 • In case one is interested only in the set 

of all possible sequences of elementary actions determined by executing S -

rather than in its meaning p = M(S) as a whole; note that a process contains 

more information than the set of its constituent paths - we apply a new 

(unary) _operation upon process p, determining its yieZd p +. For this, we 

need the auxiliary definition of path of a process: 

DEFINITION 3.6. Let p E P0 , and let a,ai EA u {e:}. A path for p is a 

(finite or infinite) sequence (*): <a 1,p 1>,<a2 ,p 2>, ... ,<ai,pi>, ... such 

that 

( i) d . <a 1 ,p 1> E pan <ai+l'Pi+I> E pi' i = 1,2, .•. , 

(ii) sequence (*) is either infinite or, when finite, terminates with 

<an,pn> (n~I), with pn = p0 . 

Rema:rk. Note that, by this definition, p0 has no paths. Moreover, note that 

we do not allow a finite path terminating in <an,pn> with pn = ~ (the emp

ty set is also a process'.) 

N 1 Aoo df. * W , Aoo • 
ow et = A u A, i.e., is the set of all finite (possibly 

empty) and infinite sequences of elements in A. Also, let "·" denote con

catenation of words over A. We put 

DEFINITION 3.7. p+ ~ A00 is defined to consist of all words w E Aw such that 

either w = a 1•a2• ••• •an' where <a 1,p 1>,<a2,p2>, ••. ,<an,pn> is a finite path 

for p, or w = a 1·a2• ••• •ai· ... , where <a1,p 1>,<a2,p2>, .•• ,<ai,pi>, •.. is 

an infinite path for p. 



65 

Remark. Remember that ai EA u {£}. Thus, the ai occurring in the above 

equations for w may disappear in the resulting concatenation in case a. e:. 
l. 

From the last example we conclude that, for p f p , we may have that 
+ + . df. + + I 2 

P1 Pz· We may define P1 ~ Pz ... p 1 = p2 , and study properties of this 

equivalence relation. (A more refined equivalence relation is Milner's ob

servation equivalence, cf,[44].) 

Finally, one may use the yield operation in the semantics of languages 

such as L0 or L 1, by investigating the mapping M+ defined by M+(S) = M(S)+. 

This mapping obtains the sequences of elementary actions prescribed by the 
+ + 

execution of S. For example, M ((S 1;s 2) u (s 1;s3)) = M (S 1;(s2us 3)), where-

as M differs on these two arguments. For languages such as L0 ,L 1, considera-
+ 

tion of the yield M(S) is probably not very fruitful. Later (section 5) 

we shall encounter languages where the role of the yield operation is more 

important. 

4. SYNCHRONIZATION 

We add a synchronization construct to the language L0 - leaving to the 

reader a similar extension of L1• This section owes much to the pioneering 

studies of Milner on the nature of synchronization [40,42,43,44]. 

We introduce the language L2 as an extension of L0 by adding a class 

of synchronization commands C,C. Synchronization commands always appear in 

pairs such that C corresponds to C (and C to C). Before trying to explain 

their meaning, we first give the syntax for L2. 

DEFINITION 4.1. The language L2, with elements S, is defined by 

In order to obtain some understanding for the meaning of these syn

chronization commands, let us take S' = s1 ;C;S 2, S" = s3 ;C;S4 , and let us 

consider (S' II S")\C. Its intended meaning is that the merge of S' and S" 

is synchronized by the pair C,C such that, instead of the full merge of 



66 

s1 ;S2 with s3 ;s4 , we only retain (S 1 Ii s 3); Cs 2 1\ s4). The role of the re

striction operation S\C may be phrased roughly as deleting from the execu

tion of S all execution sequences which contain C and C in a way where syn

chronization failed. In an example such as S' = !i ;C ;.'.'!_2 , S" = .'.'!_3 ;C ;~, one 

such failing sequence is, e.g., ~1 ;C;~2 ;~3 ;C;~. 

For the definition of the semantics of L2 we introduce the domain P 2 

as given by the equation 

(4. I) 

Here, as before, for each~€ L2 there is a corresponding a € A. Moreover, 

for C,C E L2 there are corresponding elements y,y in r. An arbitrary ele

ment of the set A u r u {E} will in the sequel be denoted by S. 

Remark. Processes in P2 are close to Milner's synchronization trees. An 

important difference, however, is our use of sets rather than multisets, 

for the collection of "successors" of the "nodes" in a process. 

We now give 

DEFINITION 4.2. The valuation M: L2 + P2 is given by 

a. M(~ {<a,p0>}, where a corresponds to ~ 

M(C) {<y,p0>}, where y corresponds to C 

M(C) {<y,p0>}, where y corresponds to C 

b. M(s 1;s2) = M(s 2)oM(S 1) 

M(s 1us 2) = M(S 1) u M(s2) 

M(S 1 II s2) = M(S 1) \\ MCS 2); for "II " see def. 4 .3 

M(S\C) = M(S)\y; for "\" see def. 4.3 

c. Mes*) = limi pi, where (p0 Po and) 

Pi+!= (pi 0 M(S)) u {<E,po>}. 

This definition assumes a refined definition of the merge operation "ii " 
between processes, and a (new) definition of p\y. These are provided in 

DEFINITION 4.3. 

a. Let P1lluP2 be a notation for the merge of two uniform processes - over 

the set A u r u {f;} - as defined in section 2. We define p 1 II p2 - for 

p1,p2 of finit'.: nonzero degree - by: xii Y= Cxl\uY) u {<e:,p' \Ip"> 
\<y,p'> € X, <y,p"> e: Y, for corresponding y,y and arbitrary p' ,p"}. 



b. Po\y =Po 
X\y = {<S,p'\y> 

(lim. p(i))\y = 
l. 

I <13,p'> € X, 8 # y,y}, 

lim. (p (i\y). 
l. 

deg(X) < oo 

Note how the restriction operation p\y deletes from process p all pairs 

<y,p'> or <y,p'> which are element of p or one of its subprocesses. 

As an example of definition 4 .2, 4. 3 we consider the programs S' II S" 

and (S' JI S")\C, where S' = ~1 ;C;~2 and S" :: ~3 ;c;~. We obtain 
for M(S 111 s2) the process depicted in 

67 

Here the leaves marked byc:::>contain trees which disappear as the result of 

the \C operation. Thus, all failing attempts at synchronization are deleted, 

and the result only contains ai -steps with two e-steps interspersed. 

We conclude with a few words on the yield operation in thi~ case. For 
+ . 

P € P2, p determines a set of (finite or infinite) paths over the alphabet 
+ "' Au r. In case p ~A , one might call p proper. E.g., for p such that 

p M(S\C), where synchronization in S only uses c,C, we expect that p+ EA~ 

This expresses that unsuccesful attempts at synchronization do not contri

bute top+, since there is no contribution top+ from paths in p termina

ting in the empty process (cf. the remark following definition 3.6). 

5. STATES AND ASSIGNMENT 

Until now, our languages contained only elementary actions the meaning 

of which was left unspecified. We next introduce the notion of state, extend 

the syntax of our languages with assignment and tests, and discuss the cor

responding extension for the processes used in their semantics. First we 

present some preliminary definitions, introducing simple expressions, tests, 

and their meanings with respect to some state. 



68 

DEFINITION 5. I. 

a. Let Vall., with elements !.•I.•··· be the class of simple variables. Let V 

be some domain of values (?l might be an example) and let Ldf Va.Ji.+ V. 

Let W {tt,ff} be the set of truth-values. 

b. Let v € V, a E I, ! E VaJL. We define the variant notation, turning state 

a into a state cr{v/!}, by putting 

{

v, if ! - z 

a(i) if ! ~ y_. 

c. We introduce the classes Exp, with elements s,t, of expressions and Te.J.>t, 

with elements b, of logical expressions. We assume given valuations 

V: Exp+ (I+V) and W: Teot + (I->W). 

(The precise nature of Exp and Te.J.>t does not concern us here; all we re

quire is that their evaluation always terminates. In a specific instance, 

taking, e.g., 7l for V, one might think of expressions such as x+(y*z), 

arid tests such as x > y+z.) 

We continue with the definition of the syntax of language L3 . It ex

tends L0 with assignment and tests. Synchronization will reappear in section 

6 (this postponement is only for reasons of presentation), 

DEFINITION 5.2. The language L3, with elements S, is defined by 

Rema:r>ks. 

I. The intuitive meaning of.! := s, skip,s 1 ;s2, s 1 u ·s2, s 1 II s2 , s* should 

be clear. 

2. A test statement b may succeed or fail, depending on whether the test b 

evaluates to tt or ff in the current state. More familiar constructions 

such as if b then s1 else s 2 fi or ~ b do s od are expressed in L3 
by (b;S 1)u(...,b;S2) or (b;s)*;b, respectively. 

3 • .! := ? is the random assignment, introduced not so much because it is 

our favorite language concept, but rather to illustrate that semantics 

using processes can deal with it without any technical problems (con

trary to the situation in traditional denotational semantics, cf. 
[4,7,10,20]). 



For the semantics of L3 we introduce the class of processes P3 • This 

involves an essential extension of the processes as considered upto now, 

in that a process p(#p0) is now a function depending on Z. 

69 

DEFINITION 5.3. The class of process P3 is defined as solution of the domain 

equation 

(5. I) 

We observe that (5.1) is an equation for a domain of non-uniform processes 

of the type considered in section 2, equation (2.3). By the general 

theory as, developed there, operations p 1°p2 , p 1 u p2 , p 1 11 p2 are again 

meaningful (the latter, for the moment, without the synchronization refine

ment). 

We define the valuation /.! : L3 -+ P 3 in 

DEFINITION 5.4. The semantics of L3 is given by 

a._M(~:=s) = Aa.{<a{V(s)(a)/~ ,p0>}, M(skip) = Aa.{<a,p0>} 

b. M(b) = Aa. if W(b)(a) then {<a,p0>} else~ fi 

c. M(S 1;s 2) =M(s 2) 0 M(S 1), M(s 1us 2) =M(S 1) u M(s 2), M(s 1 11 s 2) 

II M(S2). 

d. Mes*) = limi pi, where (p0 = Po and) 

p. I= (p.oM(S)) u Aa.{<a,p0>} 
i+ 1. 

e. M(x:=?) = Aa.{<a{v/~},p0 > I v E V}. 

Remarks. 

I. Note how the dlllllllly process, previously represented by {<E,p0>}, is now 

replaced by Aa.{<a,p0>}. 

2. Note that, in clause e, the set X = {<cr{v/~},p0>1v E V} is a subset of 

P3 , 1 d£. {p0} u (E-+ P(Ex{p0})); that X is closed requires no more argu

ment than the observation that all subsets of each of P3 ,k (where 

P3, 0 = {p0}, P3 ,k+l = {p0} u (E-+ Pc(ExP3 ,k)), fo~-~ ~ O) are (trivially) 

closed: distances between points are at least 1/2 (for k~I), and no 

nontrivial CS exists in P3 ,k. Thus, we see how unbounded nondeterminacy 

fits smoothly into our theory. It should be remarked, however, that the 

continuity problems caused by unbounded nondeterminacy in classical 

denotational semantics are now transferred to the same problem for the 

yield function (to be defined in definition 5.6). 



70 

&corrples. 

I. M(~:=O; r:=~+I) = AO.{<a{O/~},Ao.{<cr{V(~+l)(o)/x_},po>}>} 
2. M((x:=O;z:=~+I) II .!:=I) = 

Aa.{<a{of~},;\.a.{<a{v~+1><a>Jz},p0 >}>}\\ ;\.a. {<cr{1/~_},p0 >} - ••• -

Aa.{<a{1/~},;\.a.{<a{o/~},Acr.{<cr{V(~+1) (a)/i},p0>}>}>, 

<a{o/~},;\.a.{<0{1/~},Aa.{<cr{V<~+1) (a)/_z},p0>}>}>, 

<a{o/~},;\.a.{<a{V<~+1)(a)/x_},;\.a.{<a{1/~},p0 >}>}>}. 
3. M((~=x) ;!:=! u (~#y) ;~:=2) = 

Aa.(if cr(~)= a<x) ~ {<a,Acr.{<cr{l/~},p 0>}>} else 0 fi u 

if a(_~) ~O(}'.) ~ {<a,Ao.{<cr{2h_},p0>}>} else 0 fi) 

Contrary to the situation in the previous sections, it is now of some 

importance to study the notion of yield for p E P3 . We need the following 

definitions: 

DEFINITION 5.5 (paths for <a,p>). 

A (finite or infinite) sequence <a 1,p 1>,<a 2,p2>, ... , is a path for <a,p> 

whenever 

(i) <al'pl>= <a,p>, and <ai+l'Pi+I> E pi(cri), i = 1,2, ..• 

(ii) the sequence is either infinite or, when finite, terminates with 

<crn,pn>' n ~ I, such that pn = p0 . 

The yield of a non-uniform process p may intuitively be understood as 

follows: Supply p with an argument a. The pair <cr,p> determines the set of 

all paths for <a,p>. Terminating paths have leaves a which are included in 

the output set, nonterminating paths are reflected by the appearance of l 

in the output set. Here l is the undefined state corresponding to nontermi

nating computations. Its role is fundamental in traditional denotational 

semantics, but rather less so in our theory. 

DEFINITION 5.6. For p E P3 we define p+: L + P(Lu{1}) by putting p~ 
and, for p # p0, p+ ;\.cr.(<a,p>)+, where <cr,p>+ is given by 

+ <cr,p> {cr I there exists a path for <cr,p> terminating with <cr,p0>} 

u (if <a,p> has infinite paths then {1} else 0 fi). 

Example. Consider the processes p 1 = M~:=O;.z:=~+I) and p2 = M((~:=O;z:=.!+l) 

\J ~:=I) discussed in the example following definition 5.4. First consider p1 . 

The pair <cr,p 1>hasas (only) path the sequence<c,p 1>, <cr{O/~},;\.cr.{~{V(~+l)(o)/ 

x_},p0 >}>,<cr{O/~}{V(!+l)(cr{O/~/r},p0>, and we see that p7 = ;\.cr;{cr{O/~}{I/x_}}. 



For p; we obtain in a similar fashion p; 

cr{ 1 /z_}{ I/~}}. 

71 

We now consider what happens when we extend L3 with recursion. We only 
supply the pertinent definitions which should be sufficient for the reader 

who has understood L1: 

DEFINITION 5.7 (recursion). 
a (syntax) Let SE L4 . We define (omitting~·=? for simplicity): 

b. Let p4 dJ. p3 , and let E = X-+ P4 , with n EE. We define 

M: L4 -+ (E-+P4) by 

M(~:=s)(n) = \cr.{<cr{V(s)(cr)/~},p0>}, 
M(b)(n) = \cr. if W(b)(cr) then {<cr,p0>} else~ fi 

M(s 1 ;S 2) (n) = M(s 2) (n) 0 M(S 1) (n), .. ., 

M(t;)(n) = n(U, 

M(µ~[S])(n) = limi pi, where (p0 =Po and) 

Pi+l = \cr.{<cr,M(S)(n{pi/~})>}. 

Thus, apart from the use of \cr.{<cr, ... >} instead of {<t, .•. >} - as we 
saw in definition 3.5 - the definitions are a straightforward continuation 

of the preceding theory. 

6. STATES, ASSIGNMENT AND SYNCHRONIZATION 

We now extend the language L3 introduced in the previous section with 
synchronization commands. We proceed in two stages: Firstly, we add to L3 
commands C,C as considered previously in section 4. Secondly, we further ex
tend L3 with guarded aommands and, in particular, with guards establishing 
synchronization. (For simplicity, we return to L3 rather than extending L4 .) 

DEFINITION 6.1 (L3 with synchronization). The language L5 with elements S, 
is defined by 

s ::= ~ := sJskiplblS 1;s21s 1us 2 1s 1 II s2 Js*Jclcl 
s\ 1cJs\2cJti. 



72 

We observe two restriction operations \ 1 and \ 2• The former is the direct 

counterpart of the \ - operation in the uniform case (section 4); the latter 

is aimed at modelling deadlock.In our interpretation, this occurs in a situa

tion where a failing attempt at synchronization has no alternative. This 

phenomenon is then signalled by the appearance of the dead process in the 

result. The statement ~ is the abort statement. We assume from now on that 

E contains the special dead state o. 

Next, we introduce the process domain P5 : 

DEFINITION 6.2. Process domain PS satisfies the equation 

We define the semantics of L5 in 

DEFINITION 6.3. The valuation M: LS ~ PS is given by 

M(~:=s) = AO. if o = o then {<o,p0>} else {<cr{V(s) (cr)/~}>, p0>} fi 

M(skip) = Ao. {<o,p0>} 

M(b) = >..cr. if cr = o then {<o,p0>} else if W(b)(cr) then {<o,p0>} else 0 fi fi 

M(S 1;S2) = M(s 2)o M(S 1),M(s 1us2) = M(s 1)uM(s2), 

M(s 111 s2) = M(S 1)ilMCs2), with "II" defined below 

M(s*) = limi pi' with (p0 = p0 and) 

Pi+! = (pi 0 M(S)) u >..cr.{<cr,p0>} 

M(C) =>..a.if o = o then {<o,p0>} else {<y,p0>} fi, and similarly for M(C) 
M(S\.C) = M(S)\. y, with\. to be defined below, i = 1,2 

]. l l 

M(~) = >..cr.{<o,p0>} 

The definitions of "II", "\." are given in 
]. 

DEFINITION 6.4. Let (3 range over E u r. We only give the definitions for 

p,q of finite nonzero degree: 

a. (>..o.X) IJC>..o.Y) = 

>..o.({x 11>..o.Y jxEX}u{>..cr.YIJ YIYEY}u{<o,p' llq' >l<y,p'>EX,<y,q'>EY}); 

here <S,p'>il >..o.Y = <(3,p'JJ >..cr.Y>, >..cr.Xil <(3,q'> = <(3,>..o.x ljq'> 

b. p\ly >..o.{<(3,p'\1y >I <(3,p'> Ep(o),(3 ;!y,y} 

p\2y = >..o.{<S,p'\2y >J <(3,p'> Ep(o),S ;'y,y}(d~.X) 

u(if (p(cr) r 0) A (X=0) then { <o,p0>} else 0 fi) 

We see that in S\ 1C, failed attempts at synchronization through C,C are not 

signalled (pairs <y,p'>, <y,p"> are simply deleted), whereas in S\2c the 



73 

failed attempts at synchronization are signalled when they are without alter

natives (i.e. in case the set X, obtained from p(o) by deleting pairs 

<y,p'>, <y,p">, equals 0). 

Examples 

I. We determine M(S), where S = Ce:=O;C;e:=I) JI (~:=2;C;i:=3)\ 2C. 
Let M(e:=I JJ J::=3)d£.p. Then M(S) = (omitting dead states for simplicity) 

>-o.{<o{O/e},J\cr.{<cr{Z/i}, >-a. {<o,p>}>}>, 

<0{2/l},>-a.{<cr{o/e},>-cr.{<cr,p>}>}>} 

Here the >-cr.{<cr, ... >} terms result from the synchronization of the 

<y,p'>,<y,p"> terms; also, all pairs <y, ... >,<y, •.• > are deleted by the re

striction operation (no dead states are introduced ; \ 1 and \ 2 are indis

tinguishable in this example). Cf. also the example after definition 4.3. 

2. Let pd£. >-o.{<o 1 ,Acr.{<y,p2>,<o3 ,p0>}>}, 
ldf. 

p2 = >-o.{<o 1,Acr.{<y,p2>}>,<o3,p0>} 

Then P1\1Y P1\2Y = Ao.{<o),Acr.{<03,Po>}>} 

p2\ 1y Ao.{<o2 ,Acr.0 >,<o3 ,p0>}, 

p2\ 2y Ao.f<o 1,>-cr.f<o,p0>}>,<o3 ,p0>} 

We see that in process Pz its subprocess Acr.{<y,p2>} has no alternatives for 

synchronization through y; hence, deadlock is signalled as the result of 

restriction. 

3. Consider the program S = ((C u(e:=l)) \1 C)\2c 

Let o1 = o{I/~}. We obtain for M(S) - again ignoring dead states: 

c>-o.{<y,p 0>,<o 1,p0>}\J >-cr.{<y,p0>})\ 2y 

>-o.{<o,p0>,<y,>-cr.{<y,p0>}>,<o 1,Acr.{<y,p0>}>, 

<y,Acr.{<y,po>,< ~1•Po>}>}\2Y = 
Ao.{<a,p0>,<o 1,>-cr.{<8,p0>}>} 

We see that S amounts to either the skip statement, or setting e to I after 

which deadlock occurs. 
+ We conclude this part with a few words on p for p E P5 . Let, as usual, 

8 range over E u r. We say that a (finite or infinite) sequence 

(*): <8 1,p 1>,<82 ,p2>, ... is a path for <o,p> whenever 

(i) <S 1,p 1> = <o,p>,Si EE and <Si+l'Pi+l> E pi(Bi)' i 1,2, •.• , and 
(ii) the sequence (*) is either infinite or, when finite, terminates in 

<Bn,pn> with pn = p0 or Sn E r. 
We now define p+: E + P(Euru{L}) by putting p~ = Ao.0 and, for 

.J. + ( +) + . . b P ~ p0, p = J\a. <a,p> , where <o,p> is given y 



74 

{Snl there exists some terminating path for <o,p> with <Sn,pn> 

= <S ,p > or <S ,p > = <y,p >} 
n O n n n 

u (if <o,p> has an infinite path then {~} else 0 fi) 

Note that the definition of p+ assumes the possibility of y-leaves in the 

process tree. Normally, this will only occur as the result of some error, 

since suitable use of the \. operations will have deleted all ocurrences of 
l 

any y from processes p obtained as meaning M(S) of some S E LS. 

We now turn to the consideration of guarded commands and, in particular, 

of synchronization through guards. We introduce L6 in 

DEFINITION 6. 5 (LS with guarded commands). The language L.6 is defined by 

S : = !: : = s I ... I LI I (. . . as in definition 6 . I ) 

if b-+ s O ... Ob-+ s fi jdo b1-+s 1o ... Ob + s odj 
- I I n n- - n n-
if b1 ;ci"-.. s 1 0 •.• O bn ;Cn-+ Sn fi j 

do b1 ;C 1+ s1 0 ... 0 bn ;Cn +Sn od 

The constructs if ••. fi and do ••. od with simple tests as guards 

are as in Dijkstra [20]; the constructs bi ;Ci +Si (synchronization through 

guards) are a simple case of Hoare's CSP (see next section). The meaning of 

the first two constructs is easy to define: We take P6 =PS, and define 

M: L6 -+ P6 by (omitting the clauses which are as in definition 6.3): 

DEFINITION 6. 6. 

a. M(if bl-+SI o ... Ob + s fi) 
- n n-

M(b1 ;S 1 u ... ubn;Sn u '1b 1t. ••• Xlbn; 6) 

b. M(do b 1-+ s1 0 ... Ob -+ s od) = 
- n n-

M((b1;s1 u .•. ubn;Sn)*;nb 1 A •.. Albn)) 

Remarks 

I. Note how, for the if .•• fi command, if all guards fail LI is executed; 

abortion is thus modelled - just as deadlock - by delivering the dead 

state 

2. Definition 6.6b expresses that do ... od is equivalent to 

~ b1 'L .• Vbn do b1;s 1 u ... u bn; Sn od 

3. For a remark on a possible different interpretation of bi -+ Si in guarded 

commands see remark 8.2. 

The definition of the other two cases is more involved: 



DEFINITION 6. 7. 

M( if bl;c, +SI o ... Ob ;C + s fi) = - n n n-
AO. if a = o then {<o,p0>} else 

(if W(b 1)(o) then {<y 1, M(S 1) >}else 0 fi u .•. u 

if W(b )(o) then {<y , M(S) >}else 0 fi u -n --n n ---
if W(-,b 1 A ••. Albn)(o) then {<o,p0>} else 0 fi) fi 

75 

Definition 6.7 is perhaps best understood by discussing an example. We use 
a slight variation on the official syntax, by allowing an if ... fi construct 
with both b;C and b-type of guards. Also, the guard true ; C is abbreviated 
to C. Let 

s 1 _ (if C + skip D true -> x:=l fi II ~:=2) \ 2C 

s2 - (if true + c D true + x:=l fi II ~:=2) \2C 

We show that the deadlock behaviour of these two cases differs. In fact, put
ting o 1 = o{l/~}, o2 = o{2/~}, pe: = Ao.{<o,p0>}, 

p1 =AO. {<o 1,p0>}, p2 = Ao.{<o 2,p0>} (and ignoring the case a o for sim-

plicity), we obtain 

Hence, 

Thus, 

(Ao.{<y,pe:>,<o,p1>}llP2)\2 y 
(Ao.{<o,Ao.{<y,po>}>,<o,pl>} II P2)\2 Y 

AO.{<y,pe:ll P2> ,<a, Pt II P2» 

<o2 , Aa.{<y,pe:>,<cr,p 1>}>}\2 y 

Aa.{<a,Acr.{<y,po>}ll P2»<a,p1 II P2» 
<o2 ,Ao.{<o,Acr.{<y,p 0>}>,<a,p 1>}>}\ 2 Y 

Aa.{<o,Acr.{<y,p2>,<o2 ,Acr.{<y,p0>}>}>,<o,p 1 II p2>, 

<a2 ,Aa.{<o,Acr.{<y,p0>}>,<a,p 1>}>}\2 y 

Mcs 1) = Ao.{<a,p 1 II p2>, <o2, Acr.{<cr,p 1>}>} 

(M(S 1) shows no deadlock) 

M(s 2) Aa.{<a, Aa. {<a2 , Ao. {<o,p0>}>}>, <a, p1 II p2>, 

<o2 ,Aa.{<a, Acr. {<o,p0>}>, <o ,p 1>}>} 

(M(S2) has two possibilities of deadlock) 



76 

· 1 'f the s;tuat;on. Let s be short for skip (or,equiva-Some pictures may c ar1 y L L 

lently, for true). s 1 may be pictured as 

c 

II 
s llx:=2 

x:=I 

s/\ 
c [ l~:=l II c 

x:=2 C 

In the first resulting picture, the two branches labelled by C both have an 

alternative. In the second resulting picture, there are two C - branches 

without alternative which are turned into dead branches by \ 2 C. 

We conclude this section with the definiton of the semantics of the 

construct (*): do b1 ; c1 + s1 D ••• O bn; Cn-+ Sn od. Defining the meaning of 

(*) turns out to be fairly involved - at least, we have not been able to come 

up with a simpler treatment. The problem we have is best explained by com

paring statements do b -+ S od and do C -+ S od. For the former we have the 

equivalent construct (b;s)*;lb - iterate b;S as long as b is true - and for 

the latter we would like to be able to write ,by analogy, something like 

(C;S)*; IC. This is not well-defined in L6 • However, it suggests the fol

lowing approach for dealing with (*): Introduce, besides synchronization ele

ments y,y E r also elements ly,ly in a set lr. The function of ly or ly is, 

roughly, to express cormnitment not to use the possibility of a y,y synchroni

zation - and, instead, deliver the equivalent of a skip -statement. We (once 

more) redefine "II ".·The essence of the new definition consists in 

(i) <ly, •.• > encountering some <y, ... > gives no contribution to the result, 

and (ii) remaining occurrences of ly in the result are turned into skip steps 

by the restriction operation \ 2 . By way of example we consider the merge of 

the following two sets (returning for a moment to the uniform case for easier 

notation): 



(6. I) 

We want the outcome of (6.1) to consist of the following parts: 

(i) <y, ... > and <y, ... > ,to be deleted by \ 2 y 

(ii) <E,(pill p2)\ 2 y>, achieved as a result of succesful synchronization 

between <y,p 1) and <y,p 2> 

77 

(iii) <ly,{<S,p0>}>,<S,{<y,p 1>, <ly,p0>}> as intermediate result, turned by 

the redefined \ 2 into 

<e:,{<S,po>}>, <S,{<E,po>}> 

(iv) no pairs as result of the merge of <ly,p0> with <y,p 2> 

Formally , the various parts of the definition are collected in 

DE FIN IT ION 6. 8. 

a. P(, = {p0 } u (l:: -+Pc ((i:; u r ulr) xP(,)) 

b. For p,q E P(, we defined p 11q (for P=Acr.X,q = Acr.Y of finite non-zero 

degree) as follows: Let S range over·l:: ur ulr. 
(Ao .X) 11 (Acr. Y) = 

Acr.({(xjl;>..cr.Y)lxEX} u {(Acr.XllY)lyEY} u{<cr,p'llP">I 

<y,p'> E x, <y,p"> E Y}) 

where <S,p>ll Acr.Y = <S,pll ;>..cr.Y'> 

where y, {y, if S i. I r 
= Y\{<S',p'>IS = ly and S' y for some y Er} if f3 E lr 

and similarly for (Acr.X) II <S,p> 

\ { , I - df c. P 2 Y =AO.< f3 , p'\2 y> < S',p'> E p(cr), B 1' y,y} ( ='X1) u 

{<o,p"\2 y>I< ly,p"> E p(o) or< JY,p"> E p(cr)} (d£·x2) u 

if (X 1=0) A (X2=0) A p(cr) 1' r/! then {<o,p0>} else r/! fi 

d. M( do b 1 ;c1 -+ s1 D .•• O bn;C0 -+ Sn od) = limi pi , where (p0=p 0 and) 

Pi+I = ;>..o. if o = o then {<o,p0>} else 

where K cr 

{<yk 'pi oM(Sk)>,< 'lyk,qKo\{k}>I k E Ko} U 

if K0 r/! ~ {<o,p0>} else 0 fi 

{kl I s k s n, W(bk) (o) = tt} 

qr/! Po 
qK' ;\.cr.{<'lyk', qK'\{k'} > lk'E K'}, K' .::_{l, •• .,n}, K' f. I:'). 

Clause d of the definition combines a number of ideas. Firstly, the itera

tion aspect is best understood by comparing it with a similarly structured 



78 

definition of the simple do ..• od construct S' ::: do b1 -+ s 1 D ..• O bn-+ Sn 

od. For this we can take M(S') = limi pi' where (p0=p0 and) 

p. 1 =AO. if a= 6 then {<o,p0>} else ({p. oM(Sk)lk EK} u (if K =0 then 
i+ - -- -- i a - o --

{ <o ,p0>} else 0 fi)fi, where K0 = {kl I s k s n, W(bk)(o) = tt}. Secondly, 

it contains synchronization elements yk prefixed to pi 0 M(Sk) similarly to 

the use of yk prefixing M(Sk) in definition 6.7. Thirdly, the 

<I yk , qK \ {k} > parts are based on the ideas on the use of ly 's discussed 
a 

above. For K0 = {1,2,3} we obtain for< ly 1, qK \{I}> the following pair: 
- - a 

<ly 1, AO.{<ly 2 , AO.{<ly3,p0>}>,<ly3 ,:i_o. {<ly2 ,p0 >}>}>. 

The reason for the accumulation of the lyk' is that only if all synchroni

zation through yk' - for which the corresponding bk' is true - fails should 

skip be the outcome of M(S). The last part of clause d ensures that if all 

bk are false, M(S) equals skip. 

Example. We determine M(S), for 

S ::: { do C -+ .a1 od 

where we have returned to the uniform case for simplicity. We obtain, succes

sively, for M(S): 

limi~I {<<:, {<al,{<y, .•. >,< ly,po>}ll {<a2,p0>}\2 y>, 

<a2,{<al,pi\2 y>}>}>, 

< e:, {<a3,p0> }>,<a3,{<<:,po> }>} 

{<<:, {<al' {<e,{<a2,po>}>,<a2,{<e:,po>}>}>, 

<a2, {<al,{<e:,po>}>}>, 

<e, {<a3,p0> }>, < a3,{<r;;-,p0> }>} 

(where in the final process we have dropped the limi~ 1 -prefix, since it is 

independent of i). 



79 

7. COMMUNICATION: CSP AND CCS 

In this section we define the semantics of two languages where commu
nication is a central concept, viz. Hoare's Communicating Sequential Pro
cesses (CSP) [33], and Milner's Calculus for Communicating Systems (CCS) 
[ 44]. 

We begin with CSP, and use the following syntax for a somewhat ab
stracted version of it: 

DEFINITION 7.1 (a version of CSP). The language L, with elements S, is de-
7 

fined by 

To clarify the correspondence between L7 and CSP, we consider a number 
of constructs in the syntax of CSP proper: 

I. {P 1:: ••• P 2 ?~···11P 2 :: ... P1!s ... ]. This corresponds in L7 to {( ..• C?~ .•• )ji 
( ... C~s ... )}\C. We see firstly that "II" in L7 and CSP correspond. 
Furthermore, communication over the "channel" P1 +-+ P2 (using the matching 
pair P 2?~ occurring in P1 and P1 '.s occurring in P2) is mirrored by the 

pair of communication commands C?~, C'.s. (In general, there w.ill be one 
pair C? .•. ,C'. ••. for each channel Pi +-+ Pj; at the ... , varying arguments 
may appear.) Moreover, a restriction construct S\C - with the same mean

ing as the S\2C construct of section 6 - is used. In general, there will 

be as many restrictions ((S\C)\C') ... as there are channels C,C', ..• in 
the program. 

2. Full CSP has constructs of the form b;C?~ or b;C!S appearing as guards in 
if ... fi or do •.. od commands. The treatment of these requires a combination 
of the techniques described in the previous section with those for commu
nication described below. We leave it to the reader to work out the details 

of this. 
We have made no attempt at modelling the distributed termination con-

vention of CSP. 

For the definition of the semantics of L7 we need a new class of pro
cesses. The set Vis used - as before - for the set of values to be assigned 

to the variables ~· z of the program, as well as for the values communicated 

over the channels C. 



80 

DEFINITION 7.2. The domain P7 is defined by the equation 

We observe in Pc(·) an extension of the definition as used for P5 : 

Pc((Z:ur)xP5) is replaced by Pc((I:ur)x(P7u(VxP7) L! (V+P7))). The domain we now 
consider is a variation on the process domain of the general format as dis
cussed in section 2, equation (2.4). We leave the details of the necessary 
modifications of the underlying mathematics to the reader. We shall use 11 
for a typical element of the set V+P7. As before, we assume that Z: contains 
a dead state o, and that for each pair C?, C! in the language there is a 

corresponding pair y, y in r. 
The semantics of L7 is described in 

DEFINITION 7.3. The valuation M: L7 + P7 is given by 

* a. M(~:=s), ..• ,M(S) are as in definition 5.4. In particular, 

M(s 1 ll s 2) = M(S 1)jJM(S2). For pi:ocesses p 1,p2 in P7 , p 1 11 Pz will be re

defined below. 

b. M(C?x) = Acr.{<y,Av.Acr.{<cr{v/x},p >}>} - 0 
M(C!s) = Acr.{<y,<V(s)(a),p0>>} 

c. M(S\C) = M(S)\y 

d. M(~) = Aa.{<a,p0>}. 

Clause b is the crucial one; it should be understood with respect to the 

new definition of 11 ii " contained in 

DEFINITION 7 • 4 • 

a. p ii q is defined 

Otherwise, p = 

(Aa .X) II (;\cr. Y) 

as usual for p or q equal p0 or of infinite degree. 

Aa.X,q = Aa.Y, and we put 
:\a.({(xll (:\a.Y))jxEX}u{((:\a.X)ll y)ly E Y} u 

{<a,p' JJ p">j<y,11>e:X,<y,<v,p">>e:Y,11(v) p I})• 

Let S be a typical element of Z: u r, and 11 of V + P7 • We put 
<S,p>ll :\a.Y = <S,plj :\cr.Y>,<S,<v,p»JJ ila.Y =.<S,<v,pJI !tcr.Y»,<S,11>IJ !tcr.Y 
= <S.!tw.11(w)>JI >.a.Y = <S,Aw.(11(w)I! >.a.Y)>, and similarly for 

:\cr.xJI <S,p>, etc. 

b. p\y = p\ 2y, with \ 2 as in definition 6.4. 

The heart of the definition is the third term on the right-hand side 
of the formula for (:\cr .X) II (Aa .Y) . Here the value v is transmitted between 



81 

p = >.o.X = >.a.{. .. ,<y,.rr>, ... } and q = "Ao.Y = "Aa.{. .. ,<y,<v,p">>, .•. }, 

de terroining as possible candidate for continuation in the process (p II q) 

when applied to a, the process p' II p", with p' = 7f (v) : At the synchronization 

point corresponding to the pair <y,y>, the value v is supplied to the func

tion 7f determining process p' rr(v) as part of the continuation p' II p". 

Let us apply definitions 7.3, 7.4 to the simple example S := (C?~ll C!J)\C. 

We obtain M(S) = M((C?~ll C!I)\C) = p\y, where p = M((C?~ll C!I). By defini

tion 7.3, we obtain for p: p = "Aa.{<y,>.v."Ao.{<o{v/2:},p0>}>}11 .:\o.{<y, 

<I,p0>>} = (by def. 7.4) 

,\a. (<y, ... >,<y, .•• >,<cr,Dv.J..o.{<cr{<v/~},p 0>}J(I) II p0>}) = 

,\a.( ... ,<cr,Ao.{<o{l/~},p0>}>). Applying the definition of \y to this re

sults in deletion of the ..• , and we obtain as final result for 

M(S): Ao.{<o,J..o.{<o{J/~},p0>}>} which is, indeed, a (somewhat elaborate) 

way of setting ~ to I. 

Definition 7.4 owes a lot to the ideas of Milner [40,44]. Also, it is 

close to the approach to CSP semantics as described in [24]. The main dif

ference lies in our use of processes as underlying mathematical structure 

rather than a denotational system with power domains (as in [~OJ) or with 

infinite trees (as in [24]). From the variety of operational approaches to 

CSP semantics we mention [JS,25,34,49,53]. Applications of semantics to 

proof theory (in proving the soundness of a proof system) --are st.udied in 

[!], cf. also [2]. 

We close our treatment of CSP with a few words on the definition of yield 

for p E P . In fact, the same definitions both for a path for <cr,p> and for 
+ 7 

p can be used as in section 6. Observe, however, that this implies that 

only pairs <B. 1 ,p. 1> E p.(B.) (for Si.EI:) contribute to such paths, 
i+ i+ l l 

whereas pairs <v,p> or functions rr do not appear in any path. 

We now turn to the definition of Milner's CCS. Contrary to the pre

vious languages, CCS is an expression based language. Synchronization and 

communication are very similar to CSP, but there is no notion of assignment 

or sequential composition as we had previously. Also, CCS features recur

sion rather than iteration. In the syntax we shall give for L8 we have in

troduced a deviation from CCS in that we have separated ;\-abstraction 

(Ax• ..• ) from synchronization (<c, .•• >,<c, ... >); in CCS, these notions are 

combined in the notation ax· ... or av• .... We first give a simple version 

of L8 , where recursive declarations are parameterless: 



82 

DEFINITION 7.5 (a version of CCS). The language L8, with elements s, ••. is 

defined by 

where s in µ~[s] is restricted as stated below. 

Rema.rks. 

!. In the construct <e,s>, e is a sirrrple expression, defined for example by 

e ::= ~lf(e 1 , ..• ,en)' for fan n-ary function symbol. We assume that 

evaluation of e always terminates, delivering a value v E V. 

2. Expressions s replace statements S; synchronization prefixes <c, ... >, 

<c, ••. > replace commands C,C as used above. 

3. CCS's construct (lX. B is written as <c,>.x.s3>, with sB the construct in 

L8 corresponding to B. 

4. We have not taken the trouble to incorporate the relabelling feature of 

ccs. 
5. The recursive construct µ~[s] corresponds to a "call" of some b defined 

by b • B in CCS. Moreover, the s in µ~[s] is - for the moment - assumed 

to be of ground type (i.e., not of the form Ax.s'). 

The process domain for L8 is introduced in 

DEFINITION 7.6. The process domain P8 is defined by 

For the semantics of L8 we need a class of environments E =El x E2, 

where E1 = Va!!.+ V, E2 = X + P7 . (X is the set of variables ~ used in re

cursive definitions.) Thus, taking n <n 1,n 2> EE, n 1(x) = v and n 2 (~) = p 

are meaningful equations. As before, V is the valuation for simple expres

sions e, yielding results V(e)(n 1) = v. 

DEFINITION 7.7. The valuation M: L + (E-+P) is defined by 8 8 
a. M(nil) (n) = Po 

b. M(<e,s>) (n) {<V(e)(n 1) ,M(s) (n)>} 

c. M(<c,s>) (n) {<y,M(s) (n)>}, where Y corresponds to c, and similarly for 
<c,s>. 



d. M(s 1us 2)(n) = M(s 1)(n) u M<s 2)(n), M(s 1 11 s 2)(n) = M(s 1)Cri)ll MCs 2)(n), 

with "II " to be defined below 

e. M(s\c)(n) = M(s)(n)\y 

f. M(~)(n) = n2(~)·M(µ~[s])(n) = ltm pi, where (p0 =Po and) Pi+I 
{<E,M(s)(n{p./~})>} l. 

g. M(Ax.s)(n) = {Av.M(s)(n{v/x})}. 

83 

Here p\y is as p\ 1y in definition 6.4 (in order to use \ 2 , we would have 

to extend r with a dead symbol cS) • Furthermore, the definition of "11 " is 

very similar to the one used in the CSP definition, as can be seen from 
DEFINITION 7.8. For X,Y E Pc(·) of finite nonzero degree we put 

x11 y = {xii Ylx E: X} u {XII YIY E: Y} u 

{<E,p' II p">l<y,11> E:X,<y,{<v,p">}> EY, where 11(v) p'}. 

Here <13,p>ll Y = <13,pll Y>, 1111 Y = (Av.11(v)) II Y = AV.(11(v) 11 Y), etc. 

Excunp~e. For constructs b 1,b 2 in CCS defined by b 1 • CY.x.x+J.b 1, and 

b2 ., a y+3.b 2, we have as corresponding s 1,s 2 E L 8: s 1 = µ~[<c,Ax.<x+l,~>>], 
s 2 - µ~[<c,<y+3,~>>], and for p. = M(s.)(n) we obtain 

P1 ltm p~i), where p~i+l) = {~E,{<y,fAv.{<v+l,p~i)>}}>}>} 
l. (") (.+I) t i) 

P2 ltm P2i, where p2i = {<(!{<y,{<n 1(y)+3,p 2 >}>}>}.Also, it can 

be shown that (p 1 II p2)\y = ltm.q i), where 
q(i+J) = {<E,{<E,{<n 1(y)+4, q(l.)>}>}>}. 

Remaroks. 

I. The use of <E, ..• >in the process theory corresponds to the unobservable 

action i: of CCS. 
2. Processes p in P8 are quite close to communication trees (Ch.6 of [44]). 

Important differences are 

(i) the collection of successors of a node in a communication tree is 

a multiset rather than a set 

(ii) the "mathematical sophistication we do not want to be bothered with" 

(a quotation from [44] referring to the case of infinite trees) is -

if our attempts have been successful - present in our theory. 

3. Recursive behaviour expressions with parameters - of the form b(x) • B 

in CCS - can be dealt with very similarly to the above treatment of 

µ~[s]. Without going into details, something along the following lines 

will have to be done: The syntax of L8 is extended with the clause 



84 

s ::=···I t;(s) .•. (s ). Moreover, the terms s - in particular the vari-
1 n 

ables ; - are now supposed to be typed as in, e.g., the typed lambda-

calculus. We drop the requirement that s in µE;[s] be of ground type, and 

adapt the choice of p0 - for the zero element of the CS converging to 

the meaning of µ~[s] - replacing it by ~-·Av.p0 , where n is such 

that the type of E; is Vn -~ V(n~O). nx 
4. The use of the <E, ... > prefix in definition 7.7 f could be avoided if we 

were to adopt Milner's requirement that "no behaviour may call itself 

recursively without passing a guard". Syntactically, this would amount 

to the requirement that, in a recursive construct µi;[s], E; occurs ins 

only within subterms of the form <c, .• . i; •• • > or <c, .• . i; •. . > or 

<e, ... i; ..• >. In this way, the contraction property of T' = Ap.M(s)(n{p/i;}) 

is guaranteed. In our treatment, the same result is obtained by using 

the CS of iterates Ti(p0) for T of the form T = Ap.{<c,M(s)(n{p/i;})>}. 

(As remarked already in section 3, we are not sure that this precaution 
is indeed necessary, but we do not know how to prove that <Ti(p0)>i is 

a CS without it.) 

This concludes our discussion of CCS semantics. We close with a remark 

on p+ for p € Pg. Analogously to what we did in previous sections (3.4), 
+ we can define p over the alphabet V u r - where, just as we did for CSP, 

paths are defined such that constituents n of p do not contribute to its 

paths. Also, we may again put p ~ q ~ p+ = q+, and investigate propertie 
Of H......,fl 

8. MISCELLANEOUS NOTIONS IN CONCURRENCY 

There is an astounding variety of notions in concurrency, and only a 

few of them have been investigated in the preceding sections. In this sec
tion we briefly comment upon some additional topics. In most cases we pro

vide some suggestions on how the theory of processes could be linked to the 

notion concerned. Sometimes, we provide no more than some pointers to prob
lems still to be dealt with. 

I. Critical sect·ions. Let us extend the language L ( t" S) · th h 3 sec ion wi t e 
construct [S]. Thus, as syntax for L we have 

3 



85 

Here [S] has as intended meaning that execution of S is not interruptible 

(S is "locked".) Using P3 as in section 5, we put M([S]) = AO· 

{<o',p0>Jo' E M(S)+(o)}, where p+ is the (usual) yield of p. This expresses 

that Sis, by [ ... ], turned into an elementary action execution of which 

cannot be merged at intermediate stages with execution of some parallel 

statement. Note that o' in M(S)+(o) may equal~; strictly speaking, this 

requires appropriate adaptation of the definition of rand of P3 . 

2. Guarded commands. In section 6 we encountered a guarded command such 

as if bi ~ sl 0 b2 ~ s2 fi, to be modelled by 

(b 1 ;S 1) u (b 2;s2) u (~b 1 ;7b 2 ;6). This correspondence implies the following: 

Suppose that, e.g., in state o it turns out that t 1 is true, and s1 is 

selected for execution. Before starting execution of s1, an interleaving 

action of some parallel S' may have changed o to o' for which b 1 is no 

longer true, and we see that we cannot be sure that the first action of SI 
is executed with bl true, even though the "branch" b 1;s 1 was chosen since 

bi was true for o. A different interpretation of a guarded command is pos-

sible - and may even be the intended one - viz. one in which the first ele

mentary action of s 1 is taken immediately after it was selected on the basis 

of b 1 being true. Let us write b,.. S for a construct which, contrary to 

b;S, allows no interleaving actions between b and the first action of S. In

cluding this construct in L3 requires an extension of M with the clause 

M([)QS) = ACJ. if W(b)(o) then M(S) (o) else 0 fi. 

(The reader should contrast this with M(b;S) = M(S) 0 M(b) = 

AO. if W(b)(o) then {<o,M(S)>} else~ fi.) 

3. Await statement [47 ]. Consider the await statement (*): await b then S. 

Operationally, when execution reaches (*), if bis true then Sis executed 

as in divisible action, if b is false execution waits. Combining the ideas 

of 1,2 above, we can model (*) by b,.. [S]. 

4. Indivisible parameter passing. Extend L3 with the clause 

s : := ... I (A~.S) (t) 

where (A~.S)(t) is equivalent to~:= t;S, but allows no concurrent action 

at the ";". We can deal with this by putting MC (A~.S) (t)) 

=Ao. M(S)(a{V(t)(o)/~}). 



86 

5. Histories on channels. Extend L5 with 

S : := • • . I read (~,Ck) I write (s, Ck). 

Here c 1, ... ,Cn are channels (as before), but now may contain sequences of 

values. States are now pairs <a,p>, a as usual, P = P1, ••• ,pn' each Pi a 

- possibly infinite - sequence of values, the current contents of channel 

ci. Let E(pi) test whether the sequence pi is 

last element of p .• Also, p.+ denotes p. with 
l l l 

The central clauses in the definition are 

M(read(~,~)) = 

empty, and let p.t be the 
]. 

its last element deleted. 

Aap. if E(pk) then~ else {<<a{pkt/~},pk+>,p0>} fi 

M(write (s,Ck)) : 

Aap.{<<a,V(s)(a) pk>,p0>}. 

Here denotes concatenation (of sequences over v* u ~), and in the p

component we have not mentioned the channels which are not referred to 

(and remain unchanged). Observe that reading from an empty channel results 

in an empty output. As usual, this captures the operational notion of 

waiting. 

6. Linking channels. Let p,q be processes in the domain P = 
{p0} u Pc((Auru{E})xP). Previously, synchronization of p,q was achieved 

through matching pairs y,y occurring in p and q respectively. Such matching 

can also be "programmed" by using the notation (p II q)[ y :o J which expresses 

that o (in this paragraph standing for some element of r rather than for the 

dead state) now acts as y, i.e., we define 

Cpl! q)[y:o] = (pll q) ("II" as in section 3) u 

{<E,p' ii q'> I <y,p'> € p, <o,q'> € q}. 

An operation such as (pJI q)[y:o] is reminiscent of the use of channel link

ing in Back & Mannila [8]. Also, it resembles the use of equalities 

ci.a = cj.b in [52], which in a similar manner establish linking between 
"ports" of processes · p,p 1 • • • • ,pn occurring in their ~·. ·~ construct 

(albeit that their definition of "II" differs from the one used throughout 
our paper). 



87 

7. Logia. Let a be a some formula of, e.g., predicate or temporal logic 

([ 50 ]) • We can distinguish a variety of ways of interpreting a in process p • 

Let, e.g., p E P3 . We may choose a(p0) = tt or a(p0) = ff, 

a(Acr.X) = AO.a(X), a(X) =A X a(x) or a(X) = V X a(x), a(<cr,p0>) = a(cr), 
XE XE 

and, for p f p0 , a(<cr,p>)= a(cr) v a(p(cr)), or a(<cr,p>) = a(o) A a(p(cr)). 

E.g., the combination of definitions a(X) =A X a(x) with 
XE 

a(<o,p>) = a(cr) v a(p(o)) states that a(p) is true in o whenever a is true 

in at least one node along each path for <cr,p>. The implications of these 

definitions for the model theory of temporal logic deserve further study. 
We also would like to know whether the results of Emerson & Clarke [19] 

can be applied in the context of processes. 

8. ADA rendez-vous, distributed processes, data flow. These notions are men

tioned here for the sake of completeness. We have no semantic definitions 

for them at the moment of writing this. For the ADA rendez-vous this should 

not be too difficult, because of its close connection with CSP(cf.[26]). For 

DP([I5,27]) and data flow ([14,16,23,35,36,37,38,51,58]) we need further 
study. 

9. Fairness. There is a well-known correspondence between fairness and un

bounded nondeterminacy (see,e.g., Apt & Olderog [3]). Since our processes 

allow a smooth treatment of the latter, the question arises as to their role 

for defining the former. We know how to do this, and we hope to describe 

it in a future publication (which is not along the lines of the approach 

sketched in the remark in [II]). 

This concludes our discussion of some miscellaneous topics in concur

rency, and brings us to the end of this paper. 

REFERENCES 

[I] APT, K.R., FoY'ITlal justification of a proof system for communicating se
quential processes, preprint, EUR, 1981. 

[2] APT, K.R., N. FRANCEZ & W.P. DE ROEVER, A proof system for communicating 
sequential processes, ACM TOPLAS, ~ (1980) 359-385. 

[3] APT, K.R. & E.R. OLDEROG, Proof rules dealing with fairness, Proc. 

Logic of Programs 1981 (D.Kozen, ed.), 1-9, Lecture Notes in 

Computer Science 131, Springer, 1982. 



88 

[4] APT, K.R. & G.D. PLOTKIN, A Cook's tou:t' of countable nondete!'lrlinism, 

Proc. 8th ICALP (S. Even & O. Kariv, eds), 479-494, Lecture 

Notes in Computer Science, 115, Springer, 1981. 

[5] ARNOLD, A. & M. NIVAT, Metric interpretations of infinite trees and 

semantics of nondete:r>ministia reaursive programs, Theoretical 

Computer Science,.!..!.. (1980) 181-206. 

[6] ARNOLD, A. & N. NIVAT, The metria spaae of infinite trees. Algebraic 

and topological properties, Fund. Inf. III, 4 (1980) 445-476. 

[7] BACK, R.J., Semantics of unbounded nondeterminism, Proc. 7th ICALP 

(J.W. de Bakker & J. van Leeuwen, eds), 52-63, Lecture Notes 

in Computer Science, 85, Springer, 1980. 

[8] BACK, R.J. & N. MANNILA, A refinement of Kahn's semantias to handle non

determinism and aomrrruniaation, preprint, University of Helsinki, 

1982. 

[9] DE BAKKER, J.W., Semantias of infinite proaesses usin.g generalized 

trees, Proc. 6th MFCS (J. Gruska, ed.), 240-252, Lecture Notes 

in Computer Science, 53, Springer, 1977. 

[IO] DE BAKKER, J .w •• Mathematiaal Theory of Program Correctness, Prentice

Hall International, 1980. 

r11J DE BAKKER, J.W. & J.I. ZUCKER, Denotational semantias of aonaurrenay, 

Proc. 14th ACM Symp. on Theory of Computing, pp. 153-158, 1982. 

[12) BEKIC, H., Towards a mathematiaal theory of processes, Tech. Report 

TR 25-125, IBM Lab., Vienna, 1971. 

[13]BERGSTRA, J.A. & J.W. KLOP, Fixed point semantics in process aZ;;ebras, 

Department of Computer Science Technical Report, Mathematisch 

Centrum, 1982. 

[14] BOUSSINOT, F., Prepositien de sbnantique.denotatiQnelle pour des re
sea:ux de p1'0aessus avea operateur de melange equitable, Theore

tical Computer Science,~ (1982), 173-206. 

[ISJ BRINCH-HANSEN, P., Distributed proaesses: a concurrent progra:mmin.g con

cept, Comm. ACM 3.!_ (1978), 934-941. 



[16] BROCK, J.D. & W.B. ACKERMANN, Scenarios: a modeZ of non-determinate 

computation, Proc. Formalization of Programming concepts 

(J. Diaz & I. Ramos, eds.), 252-259, Lecture Notes in Computer 

Science, 107, Springer, 1981. 

[17J DE BRUIN, A., On the existence of Cook semantics, Report IW 163/81, 

Mathematisch Centrum, 1981. 

89 

[ 18] COUSOT, P. & R. COUSOT, Semantic analysis of communicating sequential 

processes, Proc. 7th ICALP (J.W. de Bakker & J. van Leeuwen, eds.) 

119-133, Lecture Notes in Computer Science, 85, Springer, 1980. 

[ 19] DUGUNDJI, J., Topology, All.en & Bacon, 1966. 

[20] DIJKSTRA, E.W., A Discipline of Programming, Prentice-Hall, 1976. 

[21] EMERSON, E.A. & E.M. CLARKE, Characterizing correctness properties of 

paraZZel programs using fixpoints, Proc. 7th ICALP (J.W. de Bakker 

& J. van Leeuwen, eds.) 169-181, Lecture Notes in Computer 

Science, 85, Springer, 1980. 

[22] ENGELKING, R., General Topology, Polish Scientific Publishers, 1977. 

[23] FAUSTINI, A.A., An operational semantics for pure data flow, Proc. 

9th ICALP(M.Nielsen & E.M.Schmidt,eds.), 212-224, Lecture Notes 

Computer Science 140, Springer, 1982. 

[24] FRANCEZ, N., C.A.R. HOARE, D.J. LEHMANN & W.P. DE ROEVER, Semantics 

of nondeterminism, concurrency and corrorrunication, J. Comp. Syst. 

Sciences,_!! (1979), 290-308. 

[25] FRANCEZ, N., D.J. LEHMANN & A. PNUELI, Linear history semantics for 

distributed languages, Proc. 21st Syrop. Foundations of Computer 

Science, IEEE 1980, 143-151. 

[26] GERTH, R., A sound and complete Hoare axiomatization of the ADA-rendez

vous, Proc. 9th ICALP(M.Nielsen & E.M.Schmidt,eds,), 252-264, 

Lecture Notes in Computer Science 140, Springer, 1982. 

[27] GERTH, R., W.P. DE ROEVER & M. RONCKEN, Procedures and concurrency: a 

study in proof, Proc. Int. Syrop. on Programming (M. Dezani

Ciancaglini & U. Montanari, eds.), 132-163, Lecture Notes in 

Computer Science, 137, 1982. 

[28] GORDON, M., The Denotational Description of Programming Languages, 

Springer, 1979. 



90 

[29] HAHN, H., Reelle Furiktionen, Chelsea, 1948. 

[30 J HENNESSY, N, & R. MILNER, On obser>Ving nondeterrrrinism and eonou:r'renoy, 

Proc. 7th ICALP (J.W. de Bakker & J, van Leeuwen, eds.), 299-309, 

Lecture Notes in Computer Science, 85, 1980. 

[31] HENNESSY, M. & G.D. PLOTKIN, Full abstraction for a simple parallel 
v v 

prograJm1ing 'language, Proc. 8th MFCS (J. Becvar, ed.), 108-120, 

Lecture Notes in Computer Science, 74, 1979. 

[32] HITCHCOCK, P. & D. PARK, Induction rules and termination proofs, Proc. 

lst ICALP (M. Nivat, ed.), 225-251, North-Holland, 1973. 

[33] HOARE, C.A.R., Communicating sequential processes, Comm. ACM, 21 

(1978), 666-677. 

[34] HOARE, C.A.R., A mod.eZ for communicating sequential proaesses, Techni

cal Monograph PRG-22, Oxford University, 1981. 

[ 35] KAHN, G., The semantias of a simple language for parallel prograrrming, 

Proc. IFIP 74, North-Holland, 1974. 

[36] KAHN, G. & D.B. MACQUEEN, Coroutines and networks of parallel processes, 

Proc. IFIP 77, 993-998, North-Holland, 1977. 

[37] KELLER, R.M., Denotational models for parallel progrCl)7lS with indeter

minate operators, Formal Description of Programming Concepts 

(E.J. Neuhold, ed.), 337-366, North-Holland, 1978. 

[38] KOSINSKI, P.R., A straightforward denotationa.l semantias for non

dete-rminate data flow programs, Conf. Record 5th ACM Symp. Prin

ciples of Programming Languages, 1978, 214-221. 

[39] LEHMANN, D.J., Categories for fixed point semantics, Proc. 17th IEEE 

Symp. on Foundations of Computer Science, 122-126, 1976. 

[40] MILNE, G. & R. MILNER, Concurrent processes and their syntax, J. ACM, 

26 (1979), 302-321. 

[41 J MILNE, R. & c. STRACHEY, A Theory of Prograrrming Language Semantics, 

Chapmann & Hall, 1977. 

[42 J MILNER, R., P.roaesses; a mathematical model of computing agents, 

Proc. Logic Coll. 73, (Rose & Shepherdson, eds.), North-Holland, 

1973. 

[43] MILNER, R., Flaw gra:phs and flow algebras, J. ACM,~ (1979), 794-818. 



[44J MILNER, R., A Calculus for Communicating Systems, Lecture Notes in 

Computer Science, 92, 1980. 

[45 J NIVAT, M., Infinite UJords, infinite lrees, infinite computations, 

Foundations of Computer Science III. 2 (J.W. de Bakker & 
J. van Leeuwen, eds.) 3-52, Mathematical Centre Tracts, 109, 

l 979. 

[46_1 NIVAT, M., Synchronization of eoncun•ent processes, Formal Laru1uage 

7'heory (R.V. Book, ed.), 429-454, Academic Press, 1980. 

[47 J OWICKI, S. & D. GRIES, Verifying pwperties of parallel pY'ograms, an 

axiomatic approach, Comm. ACM, 19 (1976), 279-285. 

y l 

L48 J PLOTKIN, G.D., A poweY' domain constr•uction, SIAM J. on Comp., 5 (1976), 

452-487. 

L49J PLOTKIN, G.D., An oper>alicmal semantics for CSP, Proc. IFIP Working 

Conference on Formal Description of Programming Concepts II 

(D. Bjii!rner, ed.), North-Holland, to appear. 

[ 50 J PNUELI, A., The temporal logic of pr•ograms, Proc. 19 th Ann. Syrop. on 

Foundations of Comp. Science, IEEE, 46-57, 1977. 

[SI J PRATT, V.R., On the composition of processes, Proc. 9th ACM Symp. on 

Principles of Programming Languages, 213-223, 1982. 

[521 REM, M. & J.L.A. VAN DE SNEPSCHEUT, Some observations on paPtialZy 

ordered computations, Preprint, Eindhoven University of Tech

nology, 1981. 

[53 J ROUNDS, W .C. & S .D. BROOKES, PosHible futur>es, aeeeptances, PefuHaZ.s, 
and communicating processes, Proc. 22nd Symp. Foundations of 

Computer Science, IEEE, 140-149, 1981. 

[54 J SCOTT, D., Data types as lattices, SIAM J. on Comp.,~ (1976), 522-S87. 

[SS J SCOTT, D.S., !Jomu.irw j'or• denolalional ,icmotlie,;, Proe. Yth ICALP 

(M.Nielsen & E.M. Schmidt,cds), 577-613, Lecture Notes in Computer 

Science 140, Springer, 1982. 

[56J SMYTH, M.B., Power domains, J. Comp. Syst. Sciences, 16 (1978), 23-36. 

l57l STOY, J., Denotational Semantics: The Scott-Strachey App:t'Oach to Pro
gramming Language Theory, MIT Press, 1977. 

[ 58] WADGE, w., An extensional treatment of dataflow deadlock, Theoretical 

Computer Science, 13 (1981), 3-16. 



92 

APPENDIX A. HAHN's THEOREM 

Since the proof of Hahn's theorem (theorem 2.9) is not easily accessible, 

we present the proof in this appendix. We repeat the theorem as 

'lliEOREM A(= theorem 2.9). If (M,d) is a complete metric space, then so is 

(P (M),d), where P (M) denotes the collection of all closed subsets of M, 
c c 

and the distanced for sets is the Hausdorff distance. Moreover, we have, 

for <Xn>n a CS of closed sets, 

lim X = X d£. {x I x = lim x, <x > a CS in M such that x € X }. n n n n nn n n 

Proof. Clearly, we may assume that X + ~ for almost all n. We show that (i) 
n 

X is closed, and (ii) d(X ,X) + 0. 
n 

Ad(i). Let <y > be a CS in X with y + y. We show that y € X. Let, for each 
n n n 

n, <x. >. be a CS such that x. € x., and x. + y • Consider the diagonal i,n 1 i,n i i,n n 
sequence <x > , x E X • Then <x > is a CS, with x + y. Therefore, n,n n n,n n n,n n n,n 
by the definition of X, we have that y € X. 

Ad(ii). The proof of this fact is more involved. We have to show that 

Ve3NVn ~ N [d(X ,X)<e], i.e., 
n 

(Al) 

(A2) 

V&3NVn ~ NVx € X [d(x ,X)<E] 
n n n 

V&3NVn ~ ll'v'x e: X[d(x,X )<E] 
n 

or, equivalently, 

(A3) V&3NVn ~ NVx e: X 3x € X[d(x ,x)<E] 
n n n 

(A4) V&3NVn ~ NVx e: X3x e: X [d(x ,x)<e]. 
n n n 

We first prove (A3). Choose E. Then(*): 3NVm,n ~ N[d(X ,X )<E/2]. 
m n 

Now take any m ~ N, and any x € X • We show how to find x e: X such that m m 
d(xm,x) < E. There exists a sequence 

such that(**): n,n' ~ N .. d(X x ) /2k+I · -k n' n' < E • Now define a sequence 
as follows: For n < N0, xn is arbitrary. For n = N , x = x._ (=x ) • 

O n is0 m 

<x > 
n n 



93 

For NO < n s NI: take any x such that d(~ ,x ) < c./2 (by (*)) n 0 n 
For Nl < n s N2: take any x such that d(xN ,x ) < £/4 (by (**)) n I n 

For Nk < n s Nk+l: take any xn such that d(~ ,x ) < e:/2k+l (by ( **)) 
k n 

Then <xn>n is a CS, since for, say, Nk < n s Nk+l' and any m 2 n,d(xm,xn) s 
d(x ·~ )+d(~ ,xN )+ ••• + d(x;._1 ,x ) 

n k+ I k+ I k+2 ''k.+l m 

k 
+ . • • < £ /2 . 

So, by completeness of (M,d), xn + x for some x. Thus, x EX. Furthermore, 

we have Vn > m, d(x ,x) < £/2 + £/4 + ••. (by similar reasoning) <c.. Hence, m n 
d(xm,x) S £.Altogether, we have proved (A3). We now prove (A4). Choose 

some c.. As before, there exists N such that Vm,n 2 N[d(X ,X) < c./2]. Let m n 
x EX and m 2 N. We show that d(x,X) < £. There exists a CS <x > such that 

n n m 
xn + x. We have, for m 2 N, d(X ,X ) n m 
Hence (since xn + x) d(x,Xm) s £/2 < 

< £/2, so d(x ,X ) < £/2 for all n 2 N. 
n m 

c., which proves (A4). 0 



APPENDIX B 

In this appendix, we present a detailed proof of lemma 2.15. The main 

part consists in the justification of the definitions of p 0 q,puq and PI/ q, 

as provided in theorems B7,Bl2,Bl4 and B16 and their corollaries. Prelimi

nary to these theorems there are some general lemmas on the Hausdorf f dis

tance. Throughout the Appendix lhs and rhs stand for left-hand side and 

right-hand side, respectively. 

Up to lemma B5 we assume X,Y, .•. are subsets of an arbitrary metric 

space (M,d), and assume, moreover: 

x € x, x' € x•. y E y' y' E Y'. 

LEMMA Bl. Given l > 0 d(X,X') s l if and onZy if: 

(BI) Vx3x' d(x,x') s l , and 

(B2) Vx'3x d(x,x') s l 

Proof. d(X,X') s .f. 

...,. Vx d(x,X') s l and Vx' d(X,x') $ l 

...,. (BI) and (B2). D 

We often use a special case of this: 

COROLLARY B2. Suppose there are surjec:tions f: Y -+ X, f' : Y-+ X' such that 

Vy d(f(y),f'(y)) s l. Then d(X,X') s l. 

Proof. Clear from lemma BI. C 

LEMMA B3. If 

(B3) Vy3xVx'3y'[d(y,y') $ d(x,x')] 

(B4) Vy'3x'Vx3y[d(y,y') s d(x,x')] 

then d(Y,Y') s d(X,X') 

Proof. (B3) implies, successively, 



95 

Vy3xVx'd(y,Y') $ d(x,x') 

Vy3xd(y,Y') $ d(x,X') 

Vyd(y,Y') $ d(X,X') 

sup d(y,Y') $ d(X,X') y 

Similarly, (B4) implies sup ,d(Y,y') s d(X,X'). The desired result now foly 
lows by taking the maximum of the lhs of the last 2 inequalities. 0 

Actually, we only need lemma B3 in the special case of 

COROLLARY B4. Suppose there are surjections f: x + Y and f': X' + Y' such 

that Vx,x'[d(f(x),f'(x')) s d(x,x')J. Then d(Y,Y') s d(X,X'). 

Proof. Clear from lemma B3. 0 

LEMMA BS. 

d(XuY,Y'uY') s max(d(X,X'),dY,Y')). 

Proof. d(x,X'uY') s d(x,X') s d(X,X') s rhs. 

Hence, supxd(x,X'uY') s rhs. 

Similarly, sup d(Y,X'uY') s rhs 
y 

sup ,d(XuY,x') s rhs 
x 

sup ,d(XuY,y') s rhs. 
y 

Now take the maximum of the lhs of the last 4 lines. 0 

From now on we consider uniform processes, solving equation (2.2). 

(See definition 2.10.) We let x,y, ... range over elements of AxP, and define 

deg(<a,p>) = deg(p). 

We give one more lemma. 

LEMMA B6. For finite p,p',q,q': 

if d(q,q') $ d(p,p') 

then d(<a,q>,<a',q'>) s d(<a,p>,<a',p'>). 

Proof. Clear. 0 



96 

THEOREM B7. Fo:l' finite q,q': 

(BS) d(poq,poq') S d(q,q') 

P!'Oof. We prove (BS) simultaneously with 

(B6) d(pox,pox') S d(x,x') 

by induction on n, where n = max(deg(q) ,deg(q')) in de case of (B5), and 

n = nax(deg(x),deg(x')) in the case of (B6), 

If q = Po or q 1 = Po then (BS) is clear. Otherwhise ( cf.def inition 

2. 14a) 

lhs of (BS) d({pox!x€q},{pox'lx'€q'}) S d(q,q') 

by the induction hypothesis for (B6) and corollary B4 (taking f(x) = pox and 
f'(x'),. pox'). This proves (BS) for the given n. Now (B6) follows for the 

same n: 

d(po<a,q>,po<a',q'>) = d(<a,poq>,<a' ,poq'>) 

s d(<a,q>,<a',q'>) 

by (BS) and lemma B6. 0 

COROLLARY B8. For finite qn' if <qn> n is a CS, then so is <p 0 q0 > n. 

Proof. Clear from theorem B7. D 

We observe that corollary B8 justifies the definition poq 

COROLLARY B9. Theo:l'em B7 hoLds for aZl q,q'. 

Pt'oof. For all n, d(p 0 q<n>,poq 1 <n» :S d(q(n),q,(n», by theorem B7. Now 

lhs-> d(p 0 q,p 0 q'), rhs-> d(q,q'), and we see that d(poq,poq') :S d(q,q'). 0 

COROLLARY BIO. Corollary BS holds for aZL q • 
n 

P:t'oof. Clear frOlll corollary B9. D 



97 

A more interesting consequence is (for all sequences <qn>n): 

COROLLARY BI!. If qn + q then poqn + poq, 

Note. Corollary BI I states that "a" is continuous in its second argument. 

THEOREM B12. For finite p,p' ,q,q', 

d(puq,p'uq') ~ max(d(p,p') ,d(q,q')). 

PPoof. If any of p,p',q,q' equals p0 , the result is clear. Otherwise it fol
lows immediately from lemma B5. 0 

Again, we have the corollaries 

COROLLARY Bl3. 

a. For finite pn,qn, if <pn>n,<qn>n are CS then so is <pnuqn>n. 
(This justifies the definition puq = lim (p(n)uq(n)).) 

n 
b. Theorem Bl2 holds for all p,p',q,q'. 

c. Part a holds fop all p ,q . 
n n 

d. If p + p,qn + q then p uq + puq (for all p,q). n n n 
Thus, "u" is jointly continuous in both arguments. 

Proof. We only prove 
b F 11 de (n) (n) ,(n) u ,(n)) < max(d(p(n),p,(n)),d(q(n),q 1 (n))). . or a n, p uq ,p q -

Now let n + °"• 

THEOREM Bl4. For finite p,p',q,q', 

(B7) d(pll q,p' II q') ~ max (d(p,p') ,d(q,q')). 

Proof. We first prove a special case of (B7), namely with q q': 

(BS) d(pll q,p' II q) ~ d(p,p'). 

This is proved simultaneously with 



98 

(B9) d(pll y,p' II y) $ d(p,p') 

(BIO) d(xll q,x' II q) s d(x,x') 

by induction on n, where n = max(deg(p),deg(p'))+deg(q) in (B8), 
n = max(deg(p),deg(p'))+deg(y) in (B9), and 

n = max(deg(x),deg(x'))+deg(q) in (BIO). 

Now if any of p,p',q equals p0 , then (B8) is clear. Otherwise (cf.defini

tion 2. I 4c): 

lhs of (B8) = d({pll YIYEq} u{xll qlx E p}, 

by lemma B5, where 

di = d({pll YIY€q}, {p' II YIYEq}) 

d2 = d({xllqlxcp},{x'llqlx'Ep 1 }). 

Now d 1 s d(p,p' )by the induction hypothesis for (B9) and corollary B2 
(taking f(y) = PllY, f'(y) = p'IJy and l = d(p,p')). Also d 2 s d(p,p') by 

the induction hypothesis for (BI 0) and corollary B4 (taking f (x) = x II q and 
f'(x') = x'll q). This proves (B8) for the given n. Now (B9) and (BIO) follow 
for the same n. For (B9): 

d(pll <a,q>,p' II <a,q>) 

= d(<a,pll q>,<a,p' II q>) 

~d<pll q,p' II q) 

$ ~d(p,p') by (B7) 

Sd(p,p'), 

and for (BIO): 



99 

d(<a,p>ll q,<a' ,p'>ll q) 

d(<a,pll q>,<a' ,p' II q>) 

s d(<a,p>,<a',p'>) 

by (B7) and lemma B6. 

Thus we have proved (B8). Similarly (by a symmetrical argument) we can 

prove (for finite p,q,q'): 

(BI I) d(pll q,pll q') s d(q,q'). 

Finally, from (BlO) and (Bll), and the strong triangle inequality (see the 

remark after lemma 2.8) we obtain 

d(pll q,p'll q') s max(d(pll q,p'll q),d(p'll q,p'll q')) 

s max(d(p,p'),d(q,q')). 0 

As before, we have the corollaries 

COROLLARY BI 5. 

a. For finite p ,q , if <p > ,<q > are CS then so is <p II q > • n n nn nn n nn 
(This justifies the definition Pll q = lim (p(n)ll q(n)).) 

n 
b. Theorem Bl4 holds for all p,p',q,q'. 

c. Part a holds for all p ,q • n n 
d.Ifp +p,qn+qthenp liq +pllq (forallp,q). 

n n n 
Thus, 11 II 11 is jointly continuous in both arguments. 

Proof. Clear. 0 

Now the properties of lemma 2.15 q, i.e., associativity of " 0 ","u","ll", 

commentativity of "u 11 ,"ll 11 , are easily proved. E.g., for associativity of 
11011 , prove (p 0 q)or = po(qor) first for finite r by induction on deg(r), and 

then for all r by taking r = lim r(n), and using corollary BI!. 
n 

We conclude this appendix with a proof that "0 11 is jointly continuous in 

both arguments (as yet, we only proved continuity in its second argument). 



100 

THEOREM B l 6 • For finite q , 

(B12) d(poq,p 1 oq) :S: d(p,p'). 

Proof. We prove (Bl2) simultaneously with 

(Bl3) d(pay,p'•y) :s; d(p,p'), 

by induction on deg(q) (in (Bl2)) and deg(y) (in (Bl3)). If q 

is clear. Otherwise 

d(poq,p'•q) = d({p•ylyE q},{p'•Y!YE q}) 

::;; d(p,p') 

Po then (B 12) 

by the induction hypothesis for (B13) and corollary B2. As for (B13): 

d(p•<a,q>,p'•<a,q>) 

= d(<a,p•q>,<a,p'•q>) 

!d(poq,p'•q) 

::;; ld(p,p') by (B12) 

:s: d(p,p'). D 

Finally, we obtain the corollaries. 

COROLLARY BI 7 • 

a. Theorem Bl6 holds for all q. 

b. If p + p then p •q + p•q 
n n 

c. If p + p and q + q then p oq -+ poq 
n n n n 

(i.e., " 0 " is jointly continuous in both arguments). 

Proof. We prove only part c. We have d(p oq ,poq) ::;; max(d(p •q ,p •q), 
n n n n n 

d(pn•q,p•q) ::;; max(d(qn,q),d(pn,p)) -+ O, by the strong triangle inequality and 

corollaries B9 and Bl7. D 


