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1. INTRODUCTION

The aim of this paper is to present a mathematical study of the se-
mantics of a variety of language concepts in the area of concurrency. We
shall be concerned with three fundamental notions in this field: parallel
composition, synchronization, and communication, and we shall develop a
general framework in which definitions and properties of these notions can
be discussed in a systematic way.

The emphasis in the paper is on definitions - rather than on pragmatic
use — of language concepts. We shall use the methodology of denotational
semantics. "Denotational’ should be contrasted here with "operétional":
The key idea of the former approach is that expressions in a programming
language denote values in mathematical domains equipped with an appropriate
structure, whereas in the latter the operations as prescribed by the lan-
guage constructs are modelled by steps performed by some suitable abstract
machine,

In the denotational semantics of sequential programming concepts, a
central role is played by the notion of (state-~transforming) function. Let
us use I, with elements o, for the set of states. For the present purposes,
it suffices to define a state as a mapping from program variables x,y,...
to values such as 0,1,... . The denotational meaning of a simple command
such as the assignment statement x := x+1 is a function ¢: I =+ I, defined
by ¢ (o) = o', where o' (x) = o(x)+1, and ¢'(y) = o(y) for all y # x. Also,
the meaning of a composite command, formed by sequential composition '";",
such as x := x+1; y := x+y is obtained by forming the function composition
¢2°¢l, where ¢l and ¢2 are the meanings of the statements x := x+! and

y := x+y, respectively. When we admit nondeterminacy, the situation changes
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somewhat in that the meaning of a statement is now a function from states
to sets of states with a certain structure. Using P for "power set of", we
now use functions ¢: I =+ P(L). Here as well, composition is easy to define:
¢°0, = ro.{o'|o" € 4)1(0") for some o" € ¢2(c)}, and no essential extension
of the traditional view of a statement having a state transformation as its
meaning is necessary. A fundamental change in this view is needed, however,
for the denotational treatment of parallel composition. Let Sl {l 82 denote
parallel execution of S1 and SZ: Statements Sl and S2 - in the example al-
lowed to share their variables — are executed by arbitrary interleaving of
the constituent elementary actions of S1 and 52. Consider, for example, a
simple program (x): (AI;AZ) Il (BI;BZ), with A,,B, elementary actions (such
as x := x+l), and let ¢i,¢i be the respective meanings of Ai’Bi' Now what
happens if we take the ¢i,wi simply as functions: L - I? We form the com-
positions ¢ = ¢2°¢1, L DALY and try to define a resulting function merge
(¢,¥) . Here we are stuck, since having formed the compesitions ¢,¥, we no
longer have available their respective operands ¢i,¢i. (Remember that what
we want as resulting function is the union of the (six) possibilities

LEN PR PR ¢2°¢2°¢1°¢1,...,\."204)1°¢2°¢1.) In an operational approach, the
problem does not arise in this form: A trace is kept of the computation,
e.g. in the form of the (set of the) sequence(s) of elementary actions
generated while executing the program, and the meaning of 5, Il SZ is simply
the shuffle (in the language theoretic sense) of the traces corresponding
to S! and S,. (Other operational approaches are also possible, see e.g.
[31,49 1. However, they all involve suitably structured sequences of elemen-
tary steps.) This preserving of intermediate information in order to be able
to describe the final result of interleaving is crucial for a proper treat-
ment of parallellism, and is in fact what we shall do as well in our deno-—
tational approach. The basic idea is to extend the notion of function to
that of process. Here "process" is a generic term, referring to a variety
of mathematical objects which have one important property in common, viz.
that they are constituted in some way from (possibly infinite) sets of
(possibly infinite) sequences. For the example language comsidered above,
the corresponding notion of process is an extension of that of state—trans—
forming function in that it is still a function but now includes the infor-—
mation on how it was built up from the - possibly infinite - sequences of
its elementary components. In this introduction we shall not be more pre-—
cise about the notion of process. What we do underline is that in our

theory a process is a semantic rather than a syntactic notion: it is a
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feature of the mathematical model rather than of the program text

Section 2 of the paper presents the notion of process in some detail.
A rigorous treatment of this requires some mathematical machinery involving
tools from metric topology. A fundamental role is played by equations for
domains of processes. Such equations are solved essentially by completion
techniques - reminiscent of the way Cantor comstructed the real numbers
from the rationals. Next, the central operations upon processes are defined.
We consider the convenience in formulating these definitions as an important
accomplishment of the theory of processes. Processes are finite or infinite.
Defining the operations for the finite cases requires specific attention;
the infinite ones are each time obtained in a standard way by continuity
arguments. Some of the more tedious mathematical arguments are relegated
to the appendices; in section 2 we concentrate on those results which are
necessary for an understanding of the central sections of our paper. For
the reader who wants to skip all mathematical details we provide a brief
summary of the relevant results at the end of the section. Sections 3 to 8
constitute the applied part of the paper. In these, it is shown how a rigo-
rous and concise semantics can be designed for certain central notions in
concurrency, by an appropriate synthesis of the use of processes with that
of more traditional ideas of denotational semantics. Section 3 concentrates
on flow of control: It considers a simple language with elementary actions,
sequential composition and nondeterministic choice, and iteration or recur-
sicn. Adding parallel composition ("“ ") to this requires for its semantics
a rather simple process domain, the so-called uniform processes. Iteration
and recursion are dealt with in a relatively straightforward way by certain
limit constructions. We already mention that an appeal to Banach's fixed
point theorem will replace the familiar least fixed point approach of de-
notational semantics based on complete partially ordered sets. The section
also discusses how the yZeld of a uniform process p can be derived from the
set of all paths in p.

In section 4 we add synchronization to the language(s) of section 3.
Synchronization restricts the set of all possible interleavings of se-
quences of elementary actions, and a general mechanism to model this is
studied. Section 5 refines the theory by introducing the notion of state -
suppressed in sections 3 and 4 - and assignments, and discusses the required
extensions to the notions of processes and their yields. Processes are no
longer uniform, but depend on the state as an argument, and the previous

definitions have to be modified accordingly. As special feature we mention
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that unbounded nondeterminacy can be dealt with without any additional
measures. Section 6 combines the ideas of sectioms 4 and 5, in that synchro-
nization is now considered for non-uniform processes. Among the topics
studied are deadlock, and synchronization through guards in guarded commands.
Section 7 extends synchronization to comminication: At points of synchro-
nization in the parallel execution values are passed from one process to
another. A further extension of the notion of process is needed to deal with
this. Two major examples of languages with communication are treated:
Hoare's Communicating Sequential Processes ([341), and Milner's Calculus for
Communicating Systems ([44]). In section 8 we finally discuss some miscel-
laneous notioms in concurrency, without providing a full treatment as was
done in the preceding sections. In the appendices a number of mathematical
details omitted in section 2 are filled in.

A few words on the emphasis on denotational in the title of our paper
are in order. Our arguments for the claim that our approach is denotational
are twofold: (i) the systematic use of mathematical models which are used
as range for the valuation mappings assigning meaning to the various
programming constructs, (ii) the systematic way of adhering to the composi-
tionality principle, allowing homomorphic valuations. However, we are aware
of the fact that we have to pay a price for this. The mathematical model
contains various notions which, though denotational in style, are operational
in spirit. These include the "history" feature of the notion of process
itself, and the use of socalled silent moves in dealing with synchronization
and recursion.

There is a vast amount of literature on concurrency, and a good part
of these papers involve some discussion of the operational semantics of the
notion(s) in concurrency. Our understanding of concurrency has been profound-
ly influenced by the work of R. Milner, starting with [42], continued in
papers such as [30,40,43), and culminating in [44]. Though the latter work
is primarily operational in spirit, there is still a lot in it which recalls
its author's denotational period. Also, for an intuitive understanding of
the central notions in cdncurrency it is an invaluable source. The various
notions of process to be studied below will be introduced as solutions of
domain equations. The introduction of equations of this type is due to
D.Scott - dating back to perhaps the most famous equation for reflexive
domains: D = D + D - and has been treated extensively in, e.g., [54] or,
more recently, in [55]. A very nice textbook on denotational semantics in

general and domain equations in particular is Stoy [57]. (A more introduc—
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tory text on denotational semantics is Gordon [28]; many advanced topics

are treated in Milne & Strachey [41].) Scott's theory did not include non-
determinacy or concurrency, and an extension of his theory dealing with
these concepts was proposed by Plotkin ([48]), later simplified somewhat by
Smyth ([56]; c.f. also [39]). The first time we saw a domain equation inten—
ded to be used for modelling concurrency was in Bekic [12]. In the work of
Plotkin and Smyth, domain equations are solved by category-theoretic methods
which may be somewhat demanding for the uninitiated reader. We prefer to use
other tools, viz. those of metric topology. The use of these has been advo-
cated in recent years by M. Nivat and his colleagues, and applied succes-
fully in a variety of applications having to do with infinite words or
infinite trees modelling infinite computations and the semantics of recursive
program schemes with nondeterminacy [5,6,45,46]. The mathematical foundations
of our work - as described in section 2 - owes a considerable debt to the
work of Nivat's school - though the specific way we use topological comple-
tion techniques to solve equations seems to be new.

Our own first venture into the realm of (infinite) processes was
De Bakker [9]. Lacking in that paper was a sound mathematical basis for the
notion of process. The present topological treatment was first described in
De Bakker & Zucker [11], reporting on research which was started during a
most enjoyable stay of the first author at Bar-Ilan University and the
Weizmann Institute during the summer of 1981.

Further references to the literature - in particular concerned with the
various concepts in concurrency we shall encounter in these notes - will be
given as we go along.

A preliminary version of this paper was used as lecture notes for the
Fourth Advanced Course on Foundations of Computer Science, Amsterdam, June
1982. We are indebted to the students of this course for various questions
and comments, We also acknowledge the suggestions of the referee, and
discussions with J.A, Bergstra, J.W. Klop, R. Kuiper, L. Lamport,
J.J.Ch.Meyer, and G. Plotkin.

2. PROCESSES

In this section we show how processes p can be introduced as elements
of domains P which are obtained as solutions of domain equations of the
form (*): P = T(P). The techniques used to solve (*) are taken from metric

topology. A variety of equations (*) is considered, determining a variety
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of process domains of increasing complexity. Furthermore, a number of opera-
tions upon processes are defined, viz. composition (pl°p2), union (p]upz),
and merge (p1“ p2), and various properties of these operations are presented.
A few of the proofs of the supporting mathematical facts are not contained

in this section but can be found in the appendix. A brief summary of the
relevant results is given at the end of the section.

We begin by recalling a few basic facts from metric topology. We assume
known the notions of metric space, Cauchy sequence (CS) in a metric space,
isometry (distance-preserving bijection), limits and closed sets, completeness
of a metric space, and the theorem stating that each metric space (M,d) canbe
completed to (i.e., isometrically embedded in) a complete metric space. Throughout
our paper, we shall only consider spaces (M,d) such that the metric d has
values in the interval [0,1].

These notions are sufficient to solve the first domain equation for
processes. This equation is very simple, and introduced only for the sake
of illustrating the method used in solving such equations. Let A be any set.

We consider the equation
(2.1) P = {py} U (A%P)

where Py is the nil process, and "x" is the usual cartesian product. In-

tuitively, it is not difficult to see that the (greatest) solution set P
should consist of Py» all finite sequences of the form <a1,<a2,...,<an,p0?
...>>, for n 2 1, together with all infinite sequences <@p,<ay; 003> The
role of the nil process Py may be somewhat unusual in this equation, in that
it replaces the more familiar empty sequence. However, it will remain with
us all through the paper, and we ask the reader to exercise some patience

in trying to appreciate its use.

We now obtain the solution of (2.1) in a more rigorous manner:

DEFINITION 2.1. Let (Pn,dn), n=0,1,..., be a collection of metric spaces
defined inductively by: PO = {po}, do(p',p") = 0 (since

A " P Py v = "w = -
P'sP "s 0 P p' Pgs Ppyy = {pgt v (A<, 4
G (PToP") = 0 if p' = p" =py, d L (p',P") = 1 if p' = py, p" # Py o P’ #Ppy»
p" = Py- Otherwise, p' = <al’pl>’ " = <a2,p2> for some a],az € A, PsPy €
Pn’ and we put

is given by:
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1, if a # a,

v " = =
ey (152" = 4y (capopy>,<a,005%)

[
o

| .
7 4,(ppopy)s if 2

It is not difficult to verify that dn is indeed a metric on Pn' As

. df df.
next step, we define Pw = Un P,and d = Un dn' E.g., take

p' = <al’<a2’<a3’p0>>>’ ?H = <a]’<a2’<a3’<34’?0>>>>' Then d(p',p")
clim(p',p“) (any m 2 4)]= 7 dpo1(f8p5%24,p>>,<a,,<a,,<3, ,p(>>>) = ... =
g dn-3(Po><3oP07) =g *1 =

[}

—

.

|

DEFINITION 2.2.
a. P =U P, d=U d
b. (P,d) is the completion of (Pw,d).

Standard properties of the completion technique yield that we may take
P as consisting of Pw together with all limit points p = limn P» with
<pn>n a Cauchy sequence such that P € Pn' It is now straightforward to

show that
LEMMA 2.3. P satisfies (2.1).
Proof. Let P'qg’

in the following manner. First we consider ¢. If p = Pys we take ¢(p) = Py

{po} u (AXP). We define isometries ¢: P -~ P', y: P' » P

clearly, ¢(p) € P' in that case. Otherwise, p = limn P, with P, 2 Ccs (if
P € Pn’ for some n 2 1, p is identified with a CS which is eventually comn—
stant), and we may assume without lack of generality that P, = <a,qn>, for
some a and all n, such that Q> is also a CS. Now let q = 1imn 9 we take
¢(p) = <a,q>. We leave the definition of ¢, and verification that ¢,y are

indeed isometries to the reader. [J

The trouble taken to solve (2.1) may seen somewhat inordinate. It was
done this way to familiarize the reader with this style of argument - which
will pay off later - rather than for the solution of this problem in its
own right.

Processes p which are elements of sets P as defined (e.g.) by equation

(2.1) have a degree, written as deg(p), and defined in

DEFINITION 2.4. deg(p,) = 0, deg(p) = n if p e P \P

deg(p) = =, otherwise.

n-1° for some n 2 1, and
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For processes p,q in P as defined in (2.1) we now give the definition

of their composition peq:

DEFINITION 2.5. peq is defined (by induction on deg(q))
a. popo = p, pe<a,q'> = <a,peq'> if deg(<a,q'>) < =

b. p011mi 4 = llmi(pﬂqi), for a9 finite

Example: <a,<a,,py>> ° <ag,pp> = <a3,<al,<a2,p0>>>. We see that composition

is (almost) concatenation in reverse order.

LEMMA 2.6.

a. If <q;>; s a CS then so are <peq>; (this justifies definition 2.5b)
and <q;°p>; - .

b. "o" is continuous in both arguments, t.e., (1:i.mi pi)°q = llmi (pi°q),
and pollmi 4 = 11mi (poqi), for all P;-4; such that <p;>;»<q;>; are CS.

c. "o" is associative

Proof. This lemma being a special case of later results, we omit its

proof. [

We now turn to the solution of a more interesting equation. The re-
sulting processes are not simply (finite or infinite) sequences, but -
roughly, a precise statement follows - sets of such sequences. We want to

solve
(2.2) P = {po} U PC(AXP)

where P(-) denotes all subsets of (+), and Pc(-) all closed subsets of (-)
(closed with respect to the metric to be introduced in a moment). Before
going into the mathematical details, we consider a few simple examples.
Possible elements of P are Py» {<a1,p0>,<az,p0>},{<al,{<a2,p0>}>,<al,
{<a3,p0>}>},{<a],{<a2,p0> <a3,p0>}>}, or {<a,{<a,{<a,...>}>}>}. In pictures,
these processes may be represented by

©

Py
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We see that these processes closely resemble (unordered) trees. How-
ever, as essential difference we have that "nodes" in a process have a set
—rather than a multiset -~ of successors: A tree j{l\? has no corresponding
process.

The topological treatment of the solution of (2.2) requires some pre-

parations. Firstly, we extend distances d as follows:

DEFINITION 2.7. Let (M,d) be a metric space and let X,Y be subsets of M.
We define

a. d(x,¥) = inf d(x,y)
yeY
b. d(X,Y) = max(sup d(x,Y), sup d(y,X))

xeX yeY

(By convention, inf ¢ =1, sup ¢ = 0.)

Remark. The distance d(X,Y) is the Hausdorff distance between sets. It

should be distinguished from d'(X,Y) = inf d(x,y), which does not

xeX,yeY
determine a metric.

For the Hausdorff distance we have

LEMMA 2.8. Let (M,d) be a metric space, and let Pc(M> be the collection of
all closed subsets of M. Then (PC(M),d) 18 a metric space.

Proof. See [19] or [22]. O

Remark. Given a metric space (M,d), d is said to be an ultrametric on M if
it satisfies the "strong triangle inequality" Vx,y,z € M[d(x,2z) < max

(d(x,y),d(y,2z))]. It is easy to see that if d is an ultrametric on M, then
so is the induced Hausdorff metric on Pc(M)' It will follow (as can easily
be shown) that every process domain P c&nsidered in this article will have

an ultrametric with, moreover, max {d(p,q)lp,q e P} = 1.

An important technical result which plays a central role in the theory

developed below is the following theorem of Hahn [29](cf.also [221):

Q

THEOREM 2.9. If (M,d) <s complete then so is (PC(M),d). Also, for <X >
CS in PC(M), we have that

{ = = 11 <x > in M}.
lim Xn x| x l;m X, X € Xn’ x> a (o }
n
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Proof. See Appendix A.

We now proceed with the conmstruction solving (2.2). We introduce
metric spaces (Pn’dn)’ extending the techniques as applied before with sets

and their (Hausdorff) distances:

DEFINITION 2.10. The collection of metric spaces (Pn’dn)’ n=20,1,..., is

defined by By = {p,}, dj(»',p") =0, B, = {py} u P(axP ), d ., (p",p") is

as before for p' = Py of p" = Py- Otherwise, p' = X ¢ A X P> p" = Y_C_AXPn,
and we take dn+|(X’Y) as the Hausdorff distance induced by the distance be-
tween points dnﬂ(x,y), where (as before), for x = <a;5P >, ¥ = <2,,P,>
1, if a, # a
1 2
x,y) = .

dn+l }d( ), if = a
n'P12Pg/s 11 3 2

Example. Take a, # a?. Then dz({<al,{<a2,p0>,<a3,p0>}>},{<al,{<32,P0>}>,
<al,{<a3,p0>}>}) =3 -
As before, we take P = U P ,d=U_ d, and (P,d) is defined as the
w n n n n

completion of (Pm’d) . We have

THEOREM 2.11, P = {po} U PC(AXP), where Pc(-) stands for all subsets of
(*) which are closed with respect to the metric d.

The proof needs a definition and a lemma.

DEFINITION 2.12.

a. Let p ¢ Pm' We define p(n), n=0,1,..., by: If p = 1 then p(n) = Py>
n =0,1,... . Otherwise, p(o) = Pp» p(nH) = {<a,q(n)> [ <a,q> € p}.
b. Let p € P\Pw. Then p = 11'.m:.L Pis P € Pi’ <p;>; a CS. We then put
@ ;Y@
P = lim; p; .

c. For X ¢ A x P we put X(nH) (n

= {<a,p )> ! <a,p> € X}, n =0,1,...

LEMMA 2.13.

a. For each p, p = 11'.111n P

(n)

b. For X ¢ A x P, <X(n)>n i8 a CS and limn X(n) = X, where X is the closure
of X. Hence, for X closed, X = limn X(n)

Proof. We only prove part b. Clearly, for m < n, d(X(n),X(m)) < 1/2m, and
(n)

we see that <X' “> is a CS. We now show that X ¢ lim X(n) . Let <a,p> € X.

(n) (n)

Then <a,p> = <a,limn p > = 11'.111n <a,p’ "> ¢ 11'.mn x(®) . Each X(n) is closed
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in Pn+l (all subsets of each Pn are closed, since distances between points

are at least 1/2" and so there are no non-trivial CS in Pn); hence, 1imn X(n)

exists and is closed. From this and X ¢ 1imn X(n) it follows that X c 1imn

X(n) (n)

. Conversely, let p ¢ limn X

(n) - o = 13
P, € X > <p > 2 CS. Hence, P, = 4 for some q, € X. Then p = 11mn 9>

i.e., p belongs to the closure X of X.

. By theorem 2.9, p = limn P> where

We now prove theorem 2.11. Similarly to what we did in the proof of
lemma 2.3, we show that P satisfies (2.2) by establishing an isometry
between the spaces P and P'QS' {po} U PC(AXP). We define two bijections
¢: P~ P', y: P' > P, as follows:

(1) 1f p = Py» then ¢ (p) = Py- Otherwise, p = limn P> P € Pn’ P>, @
Cs, P, # Py for n sufficiently large. For these n, by the definitiom
of Pn we have that Py is a subset of A x Pn_],hence closed in A x P
thus, P’ is a CS of closed sets in A x P. We now take for ¢(p) the
closed subset of A x P which equals 1imn P-

(i1) 1If p' = P, then y(p') = Py- Otherwise, take p' = X ¢ PC(AXP). By Lemma
2.13b, X = limn X(n . For each n > 0, put Pn = X(n)e Pn' Since
<X(n)>n is a CS in P', “Pp’n is a CS in P. So we define y(p') = limnpn.

We leave it to the reader to verify that ¢,y are the required isometric

mappings. This concludes the proof of theorem 2.11. [

We proceed with the introduction of the operations "o", "u", "|I' for
processes p in P solving (2.2). By the preceding theory we know that for
each process p, either p is Pys OT P is finite and p = X ¢ PC(AXP), or p is

(1) e P.

infinite and p = limi p(l), <p(l)>i a CS, with p i i=0,1,...

DEFINITION 2.14. Let X,Y ¢ P_(AxP) with deg(X), deg(Y) < =.

a. (composition) P°P, = P» poX = {pex | x ¢ X}, pe<a,q> = <a,peq>, and
po limi q(l) = limi (peq . ).
b. (union) p, U p=p U pPp, =P, XU Y is the set-theoretic union of the
0 0 () G s ® (K
two sets X,Y. Also, (11mip Y u (11mi q )= llmk (p uq ).
o Georg) pllzg = pollp = v X = iyl y e W V¥ x W,
X” <a,p> = <a,X|| p>,<a,p>“ X = <a,p|| X>, and (limi P * )ll(limj q Py =

lim_ ™ «®).
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Bzample. p, || p, ¥ < ,{<a,y,p> P>} || {<ay, {<a,,py> 1>} =
{<a1,{<a2,p0>}|! p,>} U {<a3,p1|| {<a,,pp>1>} =
{<al,{<a2,p2>} u {<a3,{<a2,p0>}” {<a4’P0>}>}>’

<a3,{<a4,p >} u {<ﬁ’{<az’p0>}” {<34,p0>}>}>} =,
{<a {<a2,{<33,{<a4,p0>}>}>
<ay,{<ay, {<a,,pp> P> <a4,{<az,P0>}>}>}>
<33,...>}.
(The reader should compare this with the (language-theoretic) shuffle of
two words aa, and ay3,, yielding a set of six words {a]a2a3a4,a 333,53,
...,a3a4ala2}.)

The foilowing picture describes the result:

Definition 2.14 is justified in

LEMMA 2.15.
a. For finite q,q',d(peq,peq') < d(q,q")
b. For finite Qs if <q > s a CS then so 18 <pe°q 2o
(Hence, the defzmtwn peq = 11m (p°q< )) is well-formed)
e. Part a holds for all q,q'
d. If q *d then p°q, > P°q (o™ is continuous in its second argument)
e. For finite p,q,p',q', d(pup',quq') < max(d(p,q),d(p',q"))
f. For finite L if <P <47, @re CS, then so is <P Uq,>
(Hence, the definition puq = 11m (p(n> (n ))zs weZZ—fbrmed)
g. Part f holds for all p,p',q,q"
h. If P, > P4, >4 then P,Udq, TP Ud ("u" Zs continuous in both argu-
ments)
i. For finite p,q,q',p", d(p|l @,p'|l 4") < max(d(p,p"),d(q,q"))
i-£. Similarly to £-h for ||
m. "o" is continuous in its first argument

n. "o, "y","|| " are associative, "u" and "|| " are commutative.
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Proof. See Appendix B. [J

We continue with the consideration of domain equations which determine

more complex processes. Calling processes in (2.2) uniform, we consider the

non-uniform processes defined in
(2.3) P = {po} u (A~ PC(BXP))

Processes p are now (either Py or) fumetions, such that for each a, p(a) is
a closed set {...,<bi,pi>,...}i€I, where the index set I depends on
a: I = I(a). The solution of (2.3) is very similar to the ones given above.

A nev element is the distance between functions. We give

DEFINITION 2.16. The collection of spaces (Pn’dn)’ n=0,1,..., is defined

nl = {po} u (A~ P(BXPn)),
(p',p") is as before for p' = P or p" =p

as follows: P0 and d0 are as before. P

dn+l
sup

0" Otherwise, dn+1(p',p") =
ach dn+1(p'(a),p"(a)), where the distance between the sets p'(a),p"(a)
is the usual Hausdorff distance induced by the distance between points

dn+1(<b],p1>,<b2,p2>) given by

1, if b] # b,
dn+1(<b1spl>,<b2,P2>) =
i d (pspy), if by =b,.

As before, dn determines a metric on Pn’ Pw is defined as Un Pn’

d = Un dn’ and (P,d) is the completion of (Pw’d)' We have
THEOREM 2.17. P = {po} u (A~ PC(BXP)).

Proof. By appropriately adapting the proof of theorem 2.11. For example, we
treat the isometry ¢: P + P', where P'qg' {po} u (A~ PC(BXP)). Let

p = limn P> <p > 2 CS in P. We indicate how to obtain ¢(p) as a function
in (A > PC(BXP)). Take any a € A. Since P’ is a CS, so is <pn(a)>n. As
CS of closed sets, <pn(a)>n has as limit a closed set, say Xa’ where

X < B x P. Now put ¢(p) = Aa.Xa. We have to check (i)¢ is well defined,
a =

i.e., if (p=) 11mn 12

i.e., ¢(p) = ¢(q) = p
We treat only (ii). Assume that, for all a, limn pn(a) = limn qn(a). To

1imn q.s then 1imn pn(a) = 1imn qn(a), (ii) ¢ is 1-1,

q, (iii) ¢ is onto, and (iv) ¢ preserves distances.
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show p = q, i.e., 1imn P, = limn q- Since .<pn>n, <qn>n are CS, we have
VedNVm,n = N [d(pm,pn) < ef2, d(qm,qn) < e/2]. Thus, (*) Vm,n = N

vald(p (a),p (a)) < €/2], (**) Vm,n 2 N Va[d(q_m(a),qn(a)) < €/2]. Letting
m > ® in (%), (**) we have pm(a) + p(a), qm(a) -+ q(a) . Thus

vn 2 N Va[d(pn(a),p(a)) < ef2, d(qn(a), q(a)) < €/2]. From this, since
p(a) = q(a), we obtain Vn 2 N [d(pn(a),qn(a)) < €]. Taking sup over all a
we get Vn 2 N [d(pn,qn) < ¢]. By a standard argument then d(p,q) < €. Since

this holds for any € we conclude that p = q. [
The operations "o","u","|| " can be extended to non-uniform processes.

DEFINITION 2.18. We only consider processes of finite nonzero degree, the

treatment of the remaining cases being the usual one.

a. (composition) pera.X = Aa.(peX), where peX = {pex | x € X}, and
pe<b,q> = <b,peq>

b. (union) (Aa.X) u (Aa.Y) = ia.(XuY)

c. (merge) (Aa.X)| (Aa.Y) = ra.({x]| (Aa.Y) | x e X} u{Ca.X) ||y | y e YD
where <b,p>| (Aa.Y) = <b,p” Aa.Y>, and (Aa.X)|| <b,q> = <b, (Aa.X)|| ¢>

Remark. Observe the difference between clauses b and ¢, in that we do not
put (Aa.X) || (Aa.Y) = ra.(X|| ¥) (with X|| Y defined appropriately).

In other words, though we have, for p,q # Py> that p u g = Aa.(p(a)uq(a)),
for p|| q we do not have p|l ¢ = Aa.(p(a)|| q(a)) but, instead, pl| q =

ra. (@ ]la) v el at@)).

Operations "o","u" and "|| " for non-uniform processes satisfy the

natural extension of Lemma 2.15:

LEMMA 2.19. As Lemma 2.15, but now for the operations as given in defini-

tion 2.18.
Proof. Left to the reader.
The last equation in the list of domain equations is
(2.4) P ={py} u (A>P ((BxR) U (C~>P))).
We only give the definition of the metric spaces (Pn’dn)’ leaving elabora-

tion of the details concerning the isometries necessary to establish (2.4)

to the reader. We have
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DEFINITION 2.20. The metric spaces (Pn’dn)’ n =0,1,..., are defined by:

- 1 "
Py»d, are as before, P ., {po} u (A »> P((BXPH) U (C»Pn))), dn+1(p ,p™
is as before for p' = py or p" = p,. Otherwise, d_  (p',p") =

sup (p'(a),p"(a)), where dn+1(X,Y) is the Hausdorff distance between

achA dn+l
sets induced by the distance between points dn+1(x,y), where dn+1(<b,p>,

re.p') =1 =4d (Ae.p',<b,p>), dn+1(<b],pl>,<b2,p2>) is as usual, and

n+l
dn+l(Ac.pl,Ac.p2) = sup__. dn(pl,pz).

The operations for p € P, with P solving (2.4) are given in

DEFINITION 2.21. We only consider processes of finite nonzero degree.

a. pera.X = 2a.(p°X), peX = {pox|xeX}, po<b,q> = <b,poq>, poic.p' =
Ae.(pep’)

b. u: Omitted.

c. (Aa.X) | (ra.v) = ra.(Ix]] (ra.y) | xeX}u{(Aa.X) || y| yeY}), where <b,p>|| Aa.Y
= <b,p|| 2a.Y> and similarly for (Aa.X) || <b,p>, Oic.p" || (a.y) =
Ac.(p']|ka.Y), and similarly for (Aa.X)||(Ac.p').

As the last lemma of this section we claim
LEMMA 2.22. The operations "o","u","|| " have the usual properties.

Proof. Omitted. [J

Having arrived at the end of this section, we summarize the main re-

sults:

1. Process domains P are obtained as solutions of equations of the form

a. P = {po} u (AxP)

b. P = {po} u PC(AXP), where Pc(-) stands for all closed subsets of (-)
c. P = {po} U (A+PC(BXP)) (idem)

d. P = {po} u (a=P_((BxP) u (C-P))) (idem)

2. Processes p are either nil (po), or finite and of finite degree deg(p),
or infinite and (topological) limit of a sequence <p(1)>l @

(1)

. with p :

finite. (For the definitions of the p see point 5 below.)

3. Operations upon processes are composition ("o"), union ("u") and merge
("]| ™). They are defined as follows (u,|| only for process domains solving

b,c,d above; X,Y are always finite elements of Pc(~)):
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3.1. peq is defined by induction on deg(q):
P°py = P» PoX = {pex|x € X}, pe<a,q> = <a,p°g>, pera.X = Aa.(peX),

1 (1) (i))
pe<b,q> = <b,peq>, poic.q = Ac.peqg, p° 1mi q

= 11mi (peq
3.2. p u q is defined by
PUPy=pyup=p, XU Y is the set-theoretic union of X and Y,

i i . k k
(Aa.X) u (Aa.X) ra. (XuY), (limi‘p(l)) U (limj q(J)) = 11mk (p( )Uq( ))

1]

3.3. p|| ¢ is defined by induction on deg(p) + deg(q):
pllog = ppll o = ps X[l ¥ = txll Y| x e X} v X[yl y <
(a.X) || (a.Y) = ra. (x| 2a.¥| x € X} v {xa.X||y|l y e YD,
<a,p>|| Y = <a,p|| ¥>, Y|l <a,p> = <a,¥[ p>,
‘b,IP” (Aa.Y) = <b,p|| Aa.Y>, and similarly for (Aa.Y) H <b,p>
(Ac.q) ” (Aa.Y) = )\c.(q|| (Aa.Y)), and similarly for (ra.Y) “ (Ae.q),
(Lim; N (Linm, P - lim @™ | ¢®).

4. The above operations are continuous and satisfy the usual properties
such as commutativity (u,| ), associativity (e,u,||), etc.

5. With respect to each of the equations a to d, pén)

=p., 0 =0,1,...,
0
0
p( )

and, for p # Py> =Pp-
Moreover, for n = 0,1,...,

(For a) p(n+1) = <a,q(n)>, where p = <a,q>
(For b) p(n+l) = {<a,q(n)>| <a,q> € p!}

(For ¢) p(nﬂ) = )\a.{<b,q(n)>| <b,q> € p(a)}
(For d) p(n+1) = Aa.({<b,q(n)>l <b,q> € p(a)} u

{xc.q(n)l rc.q e p(@d).
3. FLOW OF CONTROL: MERGE WITH ITERATION OR RECURSION

In this section we introduce the first two of the series of languages
studied in sections 3-8. Both languages have elementary actions, sequential
composition, nondeterministic choice and (arbitrary, i.e. not synchronized)
merge. Language LO has moreover iteration (f), and language L] has recursion.
We shall use A, with typical elements a, for the class of elementary (atomic)
actions. In later refinements of the theory, actions a will be replaced by
assignment statements. Throughout the paper, we use a self-explanatory

variant of BNF for syntactic definitions.
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DEFINITION 3.1. The language L0 (regular flow of control + merge) with ele-
ments S, is defined by

*
§ 11 = a |skip |S,;S,ls, v s,Is,lls,[s -

For the definition of the semantics of L0 we use a domain of uniform proces-
ses PO. We assume that its constituent set A is a (possibly infinite) al-
phabet such that for each elementary action a € A there is a corresponding

a € A. Let, moreover, € be the empty word (with respect to the alphabet A).

We give

DEFINITION 3.2. The domain PO is given as solution of
PO = {po} u PC((AU{E})XPO).

Remark. Properly speaking, this requires adaptation of the definitions of
section 2 for uniform processes with the convention that a ¢ A u {e}, to-
gether with natural definitions such as: a; = a, if a, and a, are both
€, or denote the same element of A.

We now define the semantics of L0 by providing a mapping M: LO - PO.
Thus, M determines for each language element S a corresponding process p.
(Mappings such as M are often called valuations in denotational semantics.
They serve to associate meaning - mathematical objects - to the syntactic
constructs in a certain class (here LO), and in this way embody the heart

of a denotational semantics definition.)

DEFINITION 3.3. The valuation M: L0 + P is defined by

0
a. M(a) = {<a,p0>}, where a corresponds to a , M(skip) = {<e,p0>}
b. M(S 35,) = M(S,)oM(S)), M(S,uS,) = M(S)) v M(S,), M(51|| $,) = M(sl)i[ M(s,)
c. M(8") = limi P;» where (p0 =Py and)

P-

iv1 = (piOM(S)) U {<e,p0>}.

Remarks.

1. Since the elementary actions are left unspecified, there is not much we
can do with them in the semantic definition. Therefore, we simply map
them onto some corresponding elementary process.

2. The simplicity of clause b is a reward of our preparatory work in section

2. Operations upon (uniform) processes "°","U","H " have become available,
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and they can be used directly to model the corresponding syntactic com-
position rules.
3. In order to understand the definition of S*, recall the equivalence
s¥ = S;S* u skip. Now define a mapping T: PO - PO by putting
T= lp.((pOM(S))U{<€,pO>}). Here {<e,p0>} is the dummy process, i.e.,
the semantic equivalent of the syntactic skip action. It follows from
general properties of the operations "eo","u" (see Appendix B) that the map-
ping T is contracting, viz. that, for all p',p", d(T(p"),T(p")) < 3d(p’',p")
(this uses that M(S) # P for all S). By a classical result in metric topol-
ogy (the Banach fixed point theorem) we may then conclude that the sequence
pO,T(pO),Tz(pO),... is a Cauchy sequence which converges to a limit p‘
satisfying p = T(p). (In fact, this limit is independent of the starting

process pg, and yields the unique fixed point of T.)

Examples
1. M(E4;ig) = M(EQ)°M(31) = {<a2,p0>}°{<al,P0>} = {<al,{<az,P0>}>}-
2. M((a 33 || (ag38))) = {<aps{<a,p> 1o} {<ag, {<a,,p> > = .. =

{<al’{<32’{<a3’{<34’P0>}>}>’ ‘

<a3,{<a2,{<a4,p0>}>,<a4,{<a2,p0>}>}>}>,

<a3,...>}

(Cf. the example after definition 2.14). .
. M(gf) =p = limi p;s where p. . = (pi°{<a,po>}) u {<€apo>}-

Hence, p = {<E,p0>,

<a,{<g,p0>,
<a,{<e,p0>,
<@,...

. k., . .
In a picture, M(a ) is described by
a
a , €
a ///\\E
* . . . . .

We observe that a means executing a zero or more times, including in-
finite repetition of a.

We next turn to the recursive case. We shall employ the notation of

the p-calculus for recursion (see, e.g. [10,32]), For the reader who has
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not seen this before, the following explanation may help: Think of a

parameterless recursive procedure Q in some Algol-like language. Q has a
declaration of the form, say, Q « ...Q...Q..., where ...Q...Q... is the
procedure body with two recursive calls of Q. We note that the procedure
variable Q is bound in this declaration (systematically renaming it would
make no difference). A call of Q in the main program corresponds in the no-
tation of the u-calculus to the statement p&l...£...E...7], where the bound
variable £ is from some alphabet of procedure variables X. In this way,

procedure declarations disappear, and inmner calls are taken care of by the

bound variable mechanism.

DEFINITION 3.4. Let X, with elements &, be the set of procedure variables.
The language L1 (general recursion with merge) is defined by: Let S ¢ Ll.
Then

S ::= a | skip | 8,38, | S, v s, I 5, I s, | £ | uelsl.

For the semantics of L1 we take process domain P, equal to P,. In order

1 0°
to handle the variables £, we introduce an environment E, with elements n,
defined by E = X » Pl’ and we define the meaning of a statement S ¢ L] with
respect to E. In other words, we take M: L1 - (E+P]); its definition is

given in
DEFINITION 3.5.
a. M(a)(n) = {<a,p0>}, M(skip) (n) = {<e,py*}
b. M(8,38,) (n) = M(S,) (n)eM(5 ) (n)
M(Slusz)(n) = M(Sl)(n) U M(Sz)(”)
M(s, Il s) () = M(s ) (n) || M(s,) (n)
c. M(&) (M) = n(&)
M(uglsD) (n) = lim, p;» where (p0 = py and)
Py = (<e,M(8) (nlp, /ED)>}.

Remarks.

1. Clauses a and b are exactly as in definition 3.3, apart from the extra
argument n which is just carried along.

2. In the definition of the meaning of the p-construct we observe a compli-
cation. The reader who is familiar with the treatment of (sequential)
recursive procedures in denotational semantics would probably have ex—

pected the definition Piyp = M(S)(n{pi/i}). (Note that this specializes
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to the previous treatment of iteration by taking s* = uglss;g u skipl.)
This may work as well, but we have not been able to prove that, defining
the mapping T' = Ap.M(S)(n{p/g}), the sequence <T'1(p0)‘>i is a CS for
arbitrary S e Ll’ (Bergstra & Klop [13] prove that <T’l(a:.1)>i is a CS for
each q. However, the resulting limit depends, in general, omn ¢, and the
problem remains which q to choose.) Therefore, we have introduced an
extra step in defining T = )\p.{<e,M(S)(n{p/§%)>}. This indeed ensures
that T is contracting and, as before, 1imi Tl(po) exists and equals the
unique fixed point of T. Operationally, the e-step may be seen as re-
flecting the action of procedure entry. By way of example we obtain that
MGELED) (n) = {<e,{<e,{<e,...>}>}>} (an infinite sequence of empty steps).

C.f. also the discussion in [17].
In definitions 3.3 and 3.5 we have shown how to associate a process p

with statements S ¢ L0 or S ¢ Ll‘ In case one is interested only in the set
of all possible sequences of elementary actions determined by executing S -
rather than in its meaning p = M(S) as a whole; note that a process contains
more information than the set of its constituent paths - we apply a new
(unary) operation upon process p, determining its yZeld p+. For this, we

need the auxiliary definition of path of a process:

DEFINITION 3.6. Let p € PO’ and let a,a; Avu {e}. A path for p is a
(finite or infinite) sequence (%): <al,p1>,<a2,p2>,...,<ai,pi>,... such

that

(1) <3]’Pl> € p and <ai+l’pi+]

(ii) sequence (*) is either infinite or, when finite, terminates with

> € pgs i=1,2,...,

<a_,p > (n21), with P, = Pg-

Remark. Note that, by this definition, P, has no paths. Moreover, note that
we do not allow a finite path terminating in <a ,p > with P, = @ (the emp-

ty set is also a process!)

o df. w o, ® ., o .
Now let A =" A" U A, i.e., A is the set of all finite (possibly

empty) and infinite sequences of elements in A. Also, let "-" denote con—

catenation of words over A. We put

+ . . . .
DEFINITION 3.7. p < Am is defined to consist of all words w e A” such that
either w = ajrasr.e..ea, where <a1,p1>,<az,p2>,...,<an,pn> is a finite path
for p, or w = aptayte.etazt..., where <a],pl>,<a2,p2>,...,<ai,pi>,... is

an infinite path for p.
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Remark. Remember that a; € Au {e}. Thus, the a; occurring in the above

equations for w may disappear in the resulting concatenation in case a. = .
i

+ +
ECCCUZIZZQS. po = ¢’ {<€’p0>} = {E}, {<al,{<€,{<a2,po>}>}>}+= {a] .5-32} =
fagaphileayslaaypp>y<ay, (cag,p> 1) = (<a, (<a,,py>5 <ay,p, 121
= {ajay,a,a,}.

From the last example we conclude that, for P, # P,, we may have that

+_+ . df. + +
P, Py- We may define Py~ p, = P; = P,, and study properties of this

equivalence relation. (A more refined equivalence relation is Milner's ob-
servation equivalence, cf.[44].)

Finally, one may use the yield operation in the semantics of languages
such as LO or LI’ by investigating the mapping M" defined by M+(S) = M(S)+.
This mapping obtains the sequences of elementary actions prescribed by the
execution of S. For example, M+((S];SZ) u (SI;SB)) = M+(Sl;(SZUSB))’ where-—
as M differs on these two arguments. For languages such as LO’LI’ considera—
tion of the yield M(S)+ is probably not very fruitful. Later (section 5)
we shall encounter languages where the role of the yield operation is more

important.
4. SYNCHRONIZATION

We add a synchronization construct to the language LO - leaving to the
reader a similar extension of Ll' This section owes much to the pioneering
studies of Milner on the nature of synchronization [40,42,43,44].

We introduce the language L2 as an extension of LO by adding a class
of synchronization commands C,C. Synchronization commands always appear in
pairs such that C corresponds to C (and C to C). Before trying to explain

their meaning, we first give the syntax for LZ'

DEFINITION 4.1. The language L,, with elements S, is defined by

22

- *
s ::= a |skip | c[C[s ;58,[8, v 8,18,1] 8,18 [s\c.

In order to obtain some understanding for the meaning of these syn—
chronization commands, let us take S' = SI;C;SZ’ s" = S3;E;SA, and let us
consider (S']| S")\C. Its intended meaning is that the merge of S' and s"

is synchronized by the pair C,E such that, instead of the full merge of
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8,38, with §.38,, we only retain (51“ SS); (52” 34)- The role of the re-
striction operation S\C may be phrased roughly as deleting from the execu~
tion of S all execution sequences which contain C and C in a way where syn-

chronization failed. In an example such as S' = 3 iCza,, S" = §3;C;§4, one

such failing sequence is, e.g., il;C;52;33;C;§4‘

For the definition of the semantics of L2 we introduce the domain P2

as given by the equation
(4.1) P, = {po} u Pc((AuFU{e})XPZ)

Here, as before, for each a ¢ L?_ there is a corresponding a € A. Moreover,
for c,E € L2 there are corresponding elements Y& in T. An arbitrary ele-

ment of the set A UT u {e} will in the sequel be denoted by B.

Remark. Processes in P2 are close to Milnmer's synchronization trees. An
important difference, however, is our use of sets rather than multisets,
for the collection of "successors" of the '"nodes" in a process.

We now give

DEFINITION 4.2. The valuation M: L2 + P, is given by

2

a. M(a) = {<a,p0>}, where a corresponds to
M(c)
M@ = {<§,p0>}, where y corresponds to

b. M(S;38,) = M(s,)eM(S))
M(Slusz) = M(Sl> v M(Sz)
(s, || §,) = M(Sl)H M(s,); for "|| " see def. 4.3
M(S\C) = M(S)\y; for "\" see def. 4.3

c. M(S*) = ].imi P;» where (p0 = p, and)

a
{<Y,p0>}, where y corresponds to C
c

P4 = (p;oM(8)) u {<e,py>}.

This definition assumes a refined definition of the merge operation "|| "

between processes, and a (new) definition of p\y. These are provided in

DEFINITION 4.3.

a. Let leup2 be a notation for the merge of two uniform processes - over
the set A U T U {e} ~ as defined in section 2. We define p || p, - for
P,>P, of finite nonzero degree - by: x| Y= (XHUY) u {<e,p']| p">

|<y,p'> € X, <y,p"> € Y, for corresponding v,y and arbitrary p',p"}.
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b. py\y = py
X\y = {<B,p"\y> | <B,p"> € X, 8 # v,¥}, deg(X) < =
(tim, p vy = tim, ().

Note how the restriction operation p\y deletes from process p all pairs
<y,p'> or <;,p'> which are element of p or one of its subprocesses.

As an example of definition 4.2, 4.3 we consider the programs S'” s"
and (S'||S")\C, where S' = 54;0;32 and S" = 33;6;34. We obtain
for M(S]"SZ) the process depicted in

Here the leaves marked by(Dcontain trees which disappear as the result of

the \C operation. Thus, all failing attempts at synchronization are deleted,
and the result only contains a; -steps with two e~steps interspersed.

We conclude with a few words on the yield operation in this case. For
P € Py, p+ deterTinesma set of (finite or infinite) paths over the alphabet
AUT. In case p < A, one might call p proper. E.g., for p such that
p

This expresses that unsuccesful attempts at synchronization do not contri-

M(s\C), where synchronization in S only uses C,C, we expect that p+ < A”.

+ . - . - + . .
bute to p , since there is no contribution to p from paths in p termina-

ting in the empty process (cf. the remark following definition 3.6).

5. STATES AND ASSIGNMENT

Until now, our languages contained only elementary actions the meaning
of which was left unspecified. We next introduce the notion of state, extend
the syntax of our languages with assignment and tests, and discuss the cor-
responding extension for the processes used in their semantics. First we
present some preliminary definitions, introducing simple expressions, tests,

and their meanings with respect to some state.
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DEFINITION 5.1.
a. Let Var, with elements x,y,... be the class of simple variables. Let V
d 1 de Var ~ V.
be some domain of values (Z might be an example) and let
Let W = {tt,ff} be the set of truth-values.
b. letveV, eI, xe Var. We define the variant notation, turning state

o into a state o{v/x}, by putting

[v, if x =
ol{v/x}(y) =

10(;7_) if x #y.

M
<

¢. We introduce the classes Exp, with elements s,t, of expresstions and Test,
with elements b, of logieal expressions. We assume given valuations
V: Exp + (I+V) and W: Test » (TW).
(The precise nature of Exp and Test does not concern us here; all we re-
quire is that their evaluation always terminates. In a specific instance,
taking, e.g., Z for V, one might think of expressions such as x+(y*z),

and tests such as x > y+z.)

We continue with the definition of the syntax of language L3. It ex-—

tends LO with assigmment and tests. Synchronization will reappear in section

6 (this postponement is only for reasons of presentation).

DEFINITION 5.2. The language L3, with elements S, is defined by
S ::= x := s|skip| b]S];SZIS1 USZISIHSZ|S*! x = ?

Remarks.

. s s . . * .
1. The intuitive meaning of X 1= 8, Sle’S];SZ’ S, usS S HS S should

1 2> 71 2’

be clear.

2. A test statement b may succeed or fail, depending on whether the test b
evaluates to tt or ff in the current state. More familiar constructions
such as if b then S else S £i or while b do S od are expressed in L
by (b;s )U(‘)b S ) or (b; 8)* ."b » respectively.

3. x :=? is the mndom assigrment, introduced not so much because it is
our favorite language concept, but rather to illustrate that semantics
using processes can deal with it without any technical problems (con-

trary to the situation in traditional denotational semantics, cf.
[4,7,10,201).
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For the semantics of L3 we introduce the class of processes P3. This
involves an essential extension of the processes as considered upto now,

in that a process p(#po) is now a function depending on I.

DEFINITION 5.3. The class of process P, is defined as solution of the domain

3
equation

(5.1) Py o= {po} u (z »-PC(ZxP3)).

We observe that (5.1) is an equation for a domain of non-uniform processes
of the type considered in section 2, equation (2.3). By the general

theory as: developed there, operations P1°Pys Py U Py Pl“ p, are again
meaningful (the latter, for the moment, without the synchronization refine-
ment) .

We define the valuation M :L3 - P3 in

DEFINITION 5.4. The semantics of L3 is given by
a. M(x:=s) = lc.{<0{V(s)(U)/§_,po>}, M(skip) = Ac.{<0,p0>}
b. M(®) = Xo. if W(b) (o) then {<o,po>} else § fi
c. M(s35,) = M(S,)°M(s)), M(s,US,) = M(S)) U M(S,), M(sllt 5, = M(s))
||M(s2).
d. M(S*) = 1imi P;» where (po =Py and)
Piy = (p;oM(8)) U ro.{<a,p >}
e. M(x:=7) = Ao.{<c{v/§},p0> | v e V).

Remarks.
1. Note how the dummy process, previously represented by {<E,po>}, is now

replaced by Ao.{<0,p0>}.

2. Note that, in clause e, the set X = {<c{v/§},po>‘v e V} is a subset of
P3 { df. {po} u (& » P(Zx{po})); that X is closed requires no more argu-—
>
ment than the observation that all subsets of each of P3 X (where
td

P3,0 = {po}, P3,k+l = {po} u (Z ~ Pc(sz3,k))’ fo;_% > 0) are (trivially)
closed: distances between points are at least 1/2 (for k21), and no
nontrivial CS exists in P3,k' Thus, we see how unbounded nondeterminacy
fits smoothly into our theory. It should be remarked, however, that the
continuity problems caused by unbounded nondeterminacy in classical
denotational semantics are now transferred to the same problem for the

yield function (to be defined in definition 5.6).
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Examples.
1. M(x:=0; y:=x+1) = Ac.{<c{0/§},x3.{<5{v(§+1)(5)/gj,p0>}>}
2. M((x:=03y:=x+1) [ x:=1) =
Ao.{<0{0/x},35.{<a{V (x+1) (0) /y},p > 1>} 2a. {<o{1/x},py>} =...=
Ao {<o{1/x},25.{<0{0/x},)5. {<a{V(x+1) (B) [y},py>}>>,
<o{0/x},35. {<0{1/x},A0. (<3 {V(x+1) (0) /y},p > }>}>,
<0{0/x},30. {<a {V (x+1) (o) /y},X0.{<a{1/x},p,>}>1>}.
3. M((x=y);z:=l U (x#y);z:=2) =
Ao. (if o(x)= o(y) then {<o,h0.{<5{1/2},p,>}>} else @ fi v
if o(x) #0(y) them {<0,A0.{<o{2/z},p>}>} else # £i)

Contrary to the situation in the previous sections, it is now of some
importance to study the notion of yield for p € P3. We need the following

definitions:

DEFINITION 5.5 (paths for <o,p>).

A (finite or infinite) sequence <cl,p|>,<02,p2>,..., is a path for <o,p>
whenever

{i) <01,pl>= <o,p>, and <°i+1’Pi+1> € pi(o'i), i=1,2,...

(ii) the sequence is either infinite or, when finite, terminates with

<0,sP > B2 1, such that P, = Py

The yield of a non-uniform process p may intuitively be understood as
follows: Supply p with an argument o. The pair <o,p> determines the set of
all paths for <o,p>. Terminating paths have leaves o which are included in
the output set, nonterminating paths are reflected by the appearance of L
in the output set. Here L is the undefined state corresponding to nontermi-
nating computations. Its role is fundamental in traditional denotational

semantics, but rather less so in our theory.

DEFINITION 5.6. For p ¢ P3

we define p+: I + P(zu{i}) by putting p; = \o.0,
+ . .
and, for p # Py p+ = )\0.(<o,p>)+, where <o,p> 1is given by

<cr,p>+ = {o | there exists a path for <o,p> terminating with <E,p0>}
U (if <o,p> has infinite paths then {1} else @ fi).
Example. Consider the processes P, = M(_}E:=0;1:=§+l) and P, = 7M((3{_:=0 3y i=x+1)
I x:=1) discussed in the example following definition 5.4. First consider Py~
The pair <g,p,>has as (only) path the sequence <G,P 7, <c{0/_>5},)\c_1.{;{(/(_}_<_+1)(5)/
Z}’P0>}>’<°{0/§}{V(§+l)(U{O/E)/l}’l’(f: and we see that p;' = Ao:{o{0/x}{1/y}}.
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For p; we obtain in a similar fashion p; = Xo.{o{0/x}{1/y},0{1/x}{2/y},
ol1/yH1/x}}.

We now consider what happens when we extend L3 with recursion. We only
supply the pertinent definitions which should be sufficient for the reader

who has understood Ll:

DEFINITION S.Z_(recursion).

a. (syntax) Let S € L4. We define (omitting x := ? for simplicity):

S :i=x = slblsl;szls]uszlslllszlglug[s].

b. Let P44£' Pa, and let E = X Pys with n € E. We define
M: L4 - (E*P4) by
M(x:=s)(n) = XU-{<0{V(S)(0)/§},PO>},
M(b) (n) = ro. if W(b) (o) then {<0,P0>} else ¢ fi
M(SI;SZ)(H) = M(Sz)(n)°M(S])(n),...,
M(g) (n) = n(&),
M@uglsH () = limi P> where (po =7 and)
Pis = Ao.{<0,M(S)(n{pi/E})>}-
Thus, apart from the use of Ao.{<0,...>} instead of {<e,...>} - as we
saw in definition 3.5 - the definitions are a straightforward continuation

of the preceding theory.

6. STATES, ASSIGNMENT AND SYNCHRONIZATION

We now extend the language L3 introduced in the previous section with
synchronization commands. We proceed in two stages: Firstly, we add to L3
commands C,C as considered previously in section 4. Secondly, we further ex-
tend L3 with guarded commands and, in particular, with guards establishing

synchronization. (For simplicity, we return to L3 rather than extending L4')

DEFINITION 6.1 (L3 with synchronization). The language L5 with elements S,
is defined by

§ 1:= x := s|skip|b|s,;5,[5,u8,[8, || 5,]8™[c|C]
s\1c|3\2clA.
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We observe two restriction operations \l and \2. The former is the direct
counterpart of the \ - operation in the uniform case (section 4); the latter
is aimed at modelling deadlock.In our interpretation, this occurs in & situa-
tion where a failing attempt at synchronization has no alternative. This
phenomenon is then signalled by the appearance of the dead process in the
result. The statement A is the gbort statement. We assume from now on that

I contains the special dead state 6.

Next, we introduce the process domain PS:

DEFINITION 6.2. Process domain P_ satisfies the equation

5

PS = {po} U (Z+Pc((2ur)XP5))

We define the semantics of L5 in

DEFINITION 6.3. The valuation M: LS > Py is given by
M(x:=s) = Ao. if 0 = § then {<6,p0>} else {<G{V(s)(c)[§}>,po>} fi
_ M(skip) = Ao. {<c,p0>}
M(b) = Xo. if o = § then {<5,p0>} else if W(b) (o) then {<o,p0>} else § fi fi
M(s158,) = M(S,)0 M(S)),M(s,us,) = M(S IUMC(S,),
(s [I's,) = M(s)[|M(s,), with "||" defined below
M(s*) = 1imi p;» with (pg = py and)
Piy = (pj° M(S)) v do.{<a,py>} )
M(C) = Xo.if o = & then {<5,P0>} else {<Y,p0>} fi, and similarly for M(C)
M(S\iC) = M(S)\i Y, with \i to be defined below, i = 1,2
M) = Xc.{<6,p0>}

The definitions of "||", "\i" are given in

DEFINITION 6.4. Let B range over I u I'. We only give the definitions for
p>q of finite nonzero degree:
a. (Aa.X) ||(ho.Y) =
Ao.({x || xo.Y [xeX}u{do.Y|| y|yeYIul<o,p' | q' >|<y,p'>eX,<y,q >e¥});
here <B,p'>{| Xo.Y = <B,p"|| Xo.¥>, Xo.X|| <B,q'> = <B,r0.X [|q'>
Ao.{<B,p"\ v >| <B,p'> €p(0),B #v,Y}
2oL 1<8,p"\,¥ >| <B,0"> € p(0),8 £ v, 71 x)
u(if (p(o) # @) A (X=f) then {<6,py>} else 9 £1)

b. o p\;y
P\,Y

]

We see that in S\]C, failed attempts at synchronization through C,C are not

signalled (pairs <y,p'>, <¥,p"> are simply deleted), whereas in S\2C the
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failed attempts at synchronization are signalled when they are without alter—
natives (i.e. in case the set X, obtained from p(c) by deleting pairs

<y,p'>, <y,p">, equals §).

Examples

1. We determine M(S), where §

W

(§:=0;C;§:=1)||(Z;=2;6;g:=3)\2C.
Let M(§:=ll[y:=3)d£'p. Then M(S) = (omitting dead states for simplicity)
Ao.{<0{0/x},15.{<5{2/y}, AG. {<5,p>}>}>,
<o{2/y},15.{<5{0/x},15.{<5,p>}>1>}
Here the 10.{<0,...>} terms result from the synchronization of the
<y,p'>,<y,p"> terms; also, all pairs <Ys...>,<¥,...> are deleted by the re—
striction operation (no dead states are introduced ; \l and \2 are indis-
tinguishable in this example). Cf. also the example after definition 4.3.
df.
2. Let P, =
d
P2
Then p \|y = p;\,v = Ac.{<cl,lo.{<o3,p0>}>}
3°P07}s
ro.{<0 | ,A0.{<6,p>}>,<0q,p >}

Ac.{<01,XE.{<Y:P£>,<U3,pO>}>},

[

Ao.{<ol,Ac.{<y,pé>}>,<03,p0>}

Py\,Y = Ac.{<02,A3.¢ >,<0

t

Py\,Y

We see that in process Py its subprocess XE.{<Y,pé>} has no alternatives for
synchronization through y; hence, deadlock is signalled as the result of
restriction.
3. Consider the program S = ((C U(§:=1))|1 E)\ZC
Let o, = o{1/x}. We obtain for M(S) - again ignoring dead states:
(Ac.{<v.p0>,<ol,p0>z][xc.{<y,p0>z)\zz =
A0-{<0,p0>,<Y,13-{<Y,p0>}>,<cl,Ac.{<v,po>}>,

YAT{<v,p >, < 0,, P> PR,y =
>‘°'{<°;PO>:<01 ’)\G-{<6 ’p0>}>}
We see that S amounts to either the skip statement, or setting x to 1 after
which deadlock occurs.

We conclude this part with a few words on p+ for p € PS’ Let, as usual,
B range over I u I'. We say that a (finite or infinite) sequence
(*): <Bl,pl>,<82,p2>,... is a path for <o,p> whenever
(1) <Bl’Pl> = <c,p>,8i € I and <Bi+1’pi+1> € pi(Bi), i=1,2,..., and
(ii) the sequence (*) is either infinite or, when finite, terminates in

<Bn,pn> w1t2 P, = Ppp or Bn e T. .
We now define p : I - P(Xul'u{i}) by putting Py = A\¢.® and, for

P # Py» p+ = Xo.(<0,p>+), where <c,p>+ is given by
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{Bnl there exists some terminating path for <o,p> with <B,,p,>

= <gn,po> or <Bn,pn> = <Y,pn>}
U (if <o,p> has an infinite path then {1} else § £fi)
Note that the definition of p+ assumes the possibility of y-leaves in the
process tree. Normally, this will only occur as the result of some error,
since suitable use of the \i operations will have deleted all ocurrences of

any y from processes p obtained as meaning M(S) of some S € L5'

We now turn to the consideration of guarded commands and, in particular,

of synchronization through guards. We introduce L6 in
DEFINITION 6.5 (L5 with guarded commands). The language L6 is defined by

Si=x =58 |...] 8] (... as in definition 6.1)

do b>s,0...0b > s od]

ifb*s O0...0b >s fi
if by3¢> s, 0...0b 5¢ + S fi]

do b,35¢,> 8 0...0b 3¢ +S od

The constructs if ... fi and do ... od with simple tests as guards
are as in Dijkstra [20]; the comstructs bi 3C; > Si (synchronization through
guards) are a simple case of Hoare's CSP (see next section). The meaning of
the first two constructs is easy to define: We take P6 = PS’ and define

M: L6 > P¢ by (omitting the clauses which are as in definition 6.3):

DEFINITION 6.6.

a- M(if b, +s, 0...0b > s _£i) =
M(bl;S1 u...ubn;sn u*lblA...A"Ibn; A)

b. M(do b, +s, [...0b > S_od) =

*
M((b],S1 Uoe Ubn;Sn) ;("I:b1 A...Ajbn))

Remarks

1. Note how, for the if ... fi command, if all guards fail A is executed;
abortion is thus modelled - just as deadlock - by delivering the dead
state

2. Definition 6.6b expresses that do ... od is equivalent to
y_h_i_l_e_ bl v...vbn ggbl;sl Usu U bn;sn od

3. For a remark on a possible different interpretation of bi - Si in guarded

commands see remark 8.2.

The definition of the other two cases is more involved:
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DEFINITION 6.7.

M(_i._f_b];cl > 8, D...Dbn;cn—> Snﬁ) =

ro. if 0 = & then {<6,p0>} else
(if W(b])(c) then {<Y1, M(Sl) >} else § £fi u... u
if W(b ) (o) then {<y , MS ) >} else # fi v
if WC151 A...Ajbn)(c) then {<6,p0>} else ¢ fi).ii

Definition 6.7 is perhaps best understood by discussing an example. We use
a slight variation on the official syntax, by allowing an if ... fi comstruct
with both b;C and b-type of guards. Also, the guard true ; C is abbreviated
to C. Let

s, = (if C - skip DO true - x:=I £i|,§;=2)\2c
S2 = (if true > C [ true - x:=| ££||5:=2)\2C

We show that the deadlock behaviour of these two cases differs. In fact, put-
ting 0] = 0{1/5}, 02 = 0{2[§}1 p€ = XO.{<G,pO>},
P, = Ao. {<0],p0>}, Py = lc.{<02,p0>} (and ignoring the case ¢ = § for sim-

plicity), we obtain

M(s)) = (Ao.{<vsp >5<0,p >} || P) N\, ¥
M(Sz) = (Xo.{<0,X€.{<Y,PO>}>,<0,pl>}||pz)\z Y

Hence,

[

M(s)) Ao-{<v,p€|LP2> <o, p |l P>,
<02’ AU°{<YQPE>3<E’P}>}>}\2 Y

AO-{<G,AE-{<Y:PO>}” P2>,<U,P]” P2>’

M(Sz)
<02,A5.{<§,X5.{<y,p0>}>,<§,pl>}>}\2 Y

]

Aci.{<0,A5.{<y,p2>,<oz,AE.{<y,p0>}>}>,<g,p] Il p,>s
<02,X;.{<§,X6.{<Y,po>}>,<§,p]>}>}\2 %

Thus,

M(Sl)

)‘U'{<°spl ” P2> 3 <02’ )\E-{<E:P1>}>}

(M<Sl) shows no deadlock)

M(s,) = ro.{<a, )\6=. {<32, A5 {<8,p,>}>1>, <o, p || Py
<02,Ao.{<6, XE.{<6,p0>}>, <3,p]>}>}

(M(Sz) has two possibilities of deadlock)
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short for skip (or,equiva-

Some pictures may clarify the situation. Let s be

lently, for true). S1 may be pictured as

C s
I
s §C=1
and 82 as
s s
I
C x:=1

In the first resulting picture, the two branches labelled by C both have an
alternative. In the second resulting picture, there are two C — branches
without alternative which are turned into dead branches by \2 C.

We conclude this section with the definiton of the semantics of the

construct (*): do b C1 > S] 0...0 bn; Cn - Sn od. Defining the meaning of

5
(*) turns out to belfairly involved - at least, we have not been able to come
up with a simpler treatment. The problem we have is best explained by com-
paring statements do b ~ S od and do C +~ S od. For the former we have the
equivalent construct (b;S)*;"lb - iterate b;S as long as b is true - and for
the latter we would like to be able to write ,by analogy, something like
(C;S)*; “IC. This is not well-defined in L6' However, it suggests the fol-
lowing approach for dealing with (*): Introduce, besides synchronization ele-
ments y,Y € T also elements ly, Ty in a set . The function of Tl or Tl is,
roughly, to express commitment not to use the possibility of a Y,y synchroni-
zation - and, instead, deliver the equivalent of a skip —statement. We (once
more) redefine "|| ". The essence of the new definition consists in
(i) <W,...> encountering some <y,...> gives no contribution to the result,
and (ii) remaining occurrences of Tly in the result are turned into skip steps
by the restriction operation \2. By way of example we consider the merge of
the following two sets (returning for a moment to the uniform case for easier

notation):
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(6.1) {avspp> < opg>d || Loy, py> L <Bipg> N, v

We want the outcome of (6.1) to consist of the following parts:

(i) <y,...> and <¥,...> ,to be deleted by Ny Y

(ii) <e,(p]” p2)\2 Y>, achieved as a result of succesful synchronization
between <y,p;) and <¥,p,>

(iii) <“|Y,{<6,p0>}>,<B,{<Y,p]>, <W,py>}> as intermediate result, turned by
the redefined \2 into
<e, (<8, py>}>, <B,l<e,pph>

(iv) no pairs as result of the merge of <'Ty,po> with <§,p2>

Formally , the various parts of the definition are collected in

DEFINITION 6.8.

a. Pé = {po} u (Z—>PC((Z ulT uTr) XP(')))

b. For p,q ¢ Pé we defined p ||q (for p=Xc.X,q = A¢.Y of finite non-zero
degree) as follows: Let B range over . ul yII.
(2a.X) || (ho.Y) =
do.({x|[20X) [x e X} u {(A0.X|| y) |y €Y} u{<o,p'|| p">|
<Y,p'> € X, <Y,p"> € Y})
where  <8,p>|| Ac.Y = <g,p|| ro.¥'>

Y,if B¢ T

v =
where Y {Y\{<S',p'>|8 =Ty and B' = Y for some yeT'} if B ¢ T

and similarly for ()\o.X)H <B,p>

o P\, Y = A0 {< B, p'\,v>[<B',p"> € p(0), B # v,7} (d£'xl) u
{<o,p™\, v>|< Ty,p"> € p(0) or < Ty,p"> € p(0)} (d-f-'xz) v
if (X1=¢) A (X2=¢) A p(o) # @ then {<<S,p0>} else ¢ fi

d. M(do b];Cl+SlD...D bn;Cn - Sn od) = limi p; , where (p0=po and)

Pjy; = X0. if 0 = & then {<§,p>} else
{<Yk ’Pi OM(Sk)>’<—1‘Yk’qK0\{k}>I k € Kc} u
E KO = ¢ then {<0’,p0>} else Q -f‘i
where K = {k|l <k sn, W(b,) (o) = tt}
1 = Po

Ggr = Xo.{< Ty, > Qe (k'} >|k'e K'}, K'c{l,...,n}, K'# 0.

Clause d of the definition combines a number of ideas. Firstly, the itera-

tion aspect is best understood by comparing it with a similarly structured
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definition of the simple do ... od construct S' =do b, > §, 0...0 LI
od. For this we can take M(s') = limi Pss where (p0=p0 and)
Py = Ag. if o = § then {<<S,p0>} else ({pi OM(Sk)[k € Kc} u (if KU=¢ then

{<o,py>} else @ £i)fi, where K= {k| | < k <n, W(b)(0) = tt}. Secondly,
it contains synchronization elements Yy prefixed to P; °M(Sk) similarly to
the use of Yy prefixing M(Sk) in definition 6.7. Thirdly, the

<_lyk R qKo\{k} > parts are based on the ideas on the use of Tly's discussed
above. For Ko = {1,2:3} we obtain for < '"Iyl, SKU \{]}> the following pair:
<'|y1, ro.{ < "Iyz, ro.{< '173,p0>} >, <1 g Xo. {<'1¥2 ,p0>}>}>.

The reason for the accumulation of the "ka, is that only if all synchroni-
zation through Y T for which the corresponding bk' is true — fails should
skip be the outcome of M(S). The last part of clause d ensures that if all

bk are false, M(S) equals skip.

Example. We determine M(S), for

S=1{doC>a; od | €52 vapl),C,

where we have returned to the uniform case for simplicity. We obtain, succes-
sively, for M(S):

(Qim ;)| {27, {< ay,pp> 1>5<a3,p5> 1)

lim, ((p.

i+l ” {< ;’{<‘32,P0>}>9 < a3>po>})\2Y)

Lim,  ((<{y,p;ed<app>}> s Uy ,pg>} || 1<y, {<ay,pg>}>,<a3,p0> D\, v)
lim, {<e, {<a;,p;>} | {<ay,py>1\, v>, < €, {<ag,p>1>,<ay, {<e,pp> 1>}

Lim,,, {<e, (<ap,{<y,...>¢ W,y HI {<ay,pg> 1N, Y2,
<ayi<a;,pi\, v>1>1>,
<€, {<a3,p0>}>,<a3,{<g,po>}>}

{<e, {<al, {<e,{<a2,p0>}>,<a2,{<g,po>}>}>,
<a,, f<al,{<6,p0>}->}>,
<e, {<a3,p0>}>, <a3,{<g,p0>}>}

(where in the final process we have dropped the limi>l—prefix, since it is
independent of i). )
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7. COMMUNICATION: CSP AND CCS

In this section we define the semantics of two languages where commu-
nication is a central concept, viz. Hoare's Communicating Sequential Pro-
cesses (CSP) L33], and Milner's Calculus for Communicating Systems (CCS)
[44].

We begin with CSP, and use the follow&ng syntax for a somewhat ab-

stracted version of it:

DEFINITION 7.1 (a version of CSP). The language L7, with elements S, is de-
fined by

S ::=x = s|skip|b|s s, |5, us,|s, Il s,ls"crx[cts[s\cla.

To clarify the correspondence between L7 and CSP, we consider a number

of constructs in the syntax of CSP proper:

[Pz::...P !s...]. This corresponds in L, o {..c2x..0)|

(...Cls...)\C. We see firstly that "|| " in L, and CSP correspond.
Furthermore, communication over the "channel" P] <> P2 (using the matching
pair P2?§ occurring in Pl and Plls occurring in P2) is mirrored by the
pair of communication commands C?x, Cls. (In general, there will be one
pair C?...,C!... for each channel Pi > Pj; at the ..., varying arguments
may appear.) Moreover, a restriction construct S\C - with the same mean-
ing as the S\ZC construct of section 6 - is used. In general, there will
be as many restrictions ((S\C)\C')... as there are channels C,C',... in
the program.

2. Full CSP has constructs of the form b;C?x or b;C!S appearing as guards in
if...fi or do...od commands. The treatment of these requires a combination
;; tﬂ;_techniques described in the previous section with those for commu-

nication described below. We leave it to the reader to work out the details

of this.
We have made no attempt at modelling the distributed termination con-

vention of CSP.

For the definition of the semantics of L7 we need a new class of pro-
cesses. The set V is used - as before - for the set of values to be assigned
to the variables x, y of the program, as well as for the values communicated

over the channels C.
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DEFINITION 7.2. The domain P7 is defined by the equation
Poo= {pybu (2~ Pc((EuF)X(P7u(V><P7)U(V—>P7))))

We observe in Pc(-) an extension of the definition as used for PS:

PC((ZUI‘)XPS) is replaced by PC((ZUF)X(P7U(VXP7) U (V+P7))). The domain we now
consider is a variation on the process domain of the general format as dis-
cussed in section 2, equation (2.4). We leave the details of the necessary
modifications of the underlying mathematics to the reader. We shall use w
for a typical element of the set V+P7. As before, we assume that I contains
a dead state §, and that for each pair C?, C! in the language there is a
corresponding pair v,y in T.

The semantics of L7 is described in

DEFINITION 7.3. The valuation M: L; + P, is given by

a. M(§:=s),...,M(S*) are as in definition 5.4. In particular,
M(S1 I 8,) = M(S]) | M(SZ)' For processes p,,p, in P7, P, Il p, will be re-
defined below.

b. M(C?x) = Ao.{<y,\v.ho.{<o{v/x},p >}>}
Mcls) = Ac.{<§,<V(S)(0),pO>>}
c. M(S\C) = M(S)\y

d. M(8) = ro.{<8,p,>}.

Clause b is the crucial one; it should be understood with respect to the

new definition of "|| " contained in

DEFINITION 7 .4.
a. p” q is defined as usual for p or q equal Py oF of infinite degree.
Otherwise, p = \0.X,q = A\0.Y, and we put
(10.X) || (A.¥) = ro. ({(x]| (Ao.1)) |xeXI{(QAo.X) || )|y e Y} U
{<ao,p’ ” p">[<Y,1r>eX,<§,<v,p">>€Y,n(v) =p'h.
Let B be a typical element of £ U T, and m of V P7. We put
<B,p>|| A0.Y = <B,p|| A0.Y>,<B,<v,p>>|| Ao.¥ =.<B,<v,p|| Ao.¥>>,<B,m>|| Ao.Y =
= <B.)\w.ﬂ(w)>|| A0.Y = <B,\w. (TT(W)H A0.Y)>, and similarly for
)\G.XH <g,p>, etc.
b. p\y = p\zy, with \2 as in definition 6.4,

The heart of the definition is the third term on the right-hand side

of the formula for (A0.X)|| (A0.Y). Here the value v is transmitted between
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P =20.X = 26.{u.. <Y, T>,...} and q = A0.Y = A0.{...,<y,<v,p'>>,...},
determining as possible candidate for continuation in the process (p| q)
when applied to o, the process p'l|| p", with p' = 7(v): At the synchronization
point corresponding to the pair <y,;>, the value v is supplied to the func—
tion v determining process p' = m(v) as part of the continuation p‘” p".
Let us apply definitions 7.3, 7.4 to the simple example S = (C?EH ciHNC.
We obtain M(S) = M((C?x|| C'1D\C) = p\y, where p = M((C?x|| C'1). By defini-
tion 7.3, we obtain for p: p = Xd.{<y,Av.kg.{<5{v[§},p0>}>} | AG.{<¥,
<l,p0>>} = (by def. 7.4)

Ao.(<y,...>,<§,...>,<c,[Av.kS.{<E{<v/§_},p0>}](1)H P>} =
ko.(...,<0,A0.{<G{l/ﬁ},p0>}>). Applying the definition of \y to this re-

sults in deletion of the..., and we obtain as final result for
M(S): Ao.{<o,A5.{<5{l[5},p0>}>} which is, indeed, a (somewhat elaborate)
way of setting x to 1.

Definition 7.4 owes a lot to the ideas of Milner [40,44]. Also, it is
close to the approach to CSP semantics as described in [24]. The main dif-
ference lies in our use of processes as underlying mathematical structure
rather than a denotational system with power domains (as in [40]) or with
infinite trees (as in [ 24]). From the variety of operational approaches to
CSP semantics we mention [18,25,34,49,53]. Applications of semantics to
proof theory (in proving the soundness of a proof system) are studied in
f1], cf. also [2].

We close our treatment of CSP with a few words on the definition of yield
for p € P_. In fact, the same definitions both for a path for <o,p> and for
p+ can be7used as in section 6. Observe, however, that this implies that
only pairs Bir1oPiel
whereas pairs <v,p> or functions m do not appear in any path.

We now turn to the definition of Milner's CCS. Contrary to the pre-

> € pi(Bi) (for Bi € ) contribute to such paths,

vious languages, CCS is an expression based language. Synchronization and
communication are very similar to CSP, but there is no notion of assigmment
or sequential composition as we had previously. Also, CCS features recur-
sion rather than iteration. In the syntax we shall give for L8 we have in-
troduced a deviation from CCS in that we have separated A-abstraction
(Ax<...) from synchronization (<c,...>,<£,...>); in CCS, these notions are
combined in the notation ax-... or ave... . We first give a simple version

of 18’ where recursive declarations are parameterless:
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DEFINITION 7.5 (a version of CCS). The language 18’ with elements s,... is
defined by

s = n_i_l_|<e,s>|<c,s>|<€,s>Is]uszls]|| szls\clglui[slhx.s

where s in ugls] is restricted as stated below.

Remarks.

1. In the construct <e,s>, e is a simple expression, defined for example by
e 1:= _;_:_If(el,...,en), for f an n-ary function symbol. We assume that
evaluation of e always terminates, delivering a value v € V.

2. Expressions s replace statements S; synchronization prefixes <c,...>,
<<_:,...> replace commands C,(_J as used above.

3. CCS's construct ox. B is written as <c,Ax.s >, with Sp the construct in

L8 corresponding to B.

4. We have not taken the trouble to incorporate the relabelling feature of
CCS.

5. The recursive construct pils] corresponds to a "call" of some b defined
by b « B in CCS. Moreover, the s in ugls] is - for the moment - assumed

to be of ground type (i.e., not of the form ix.s').
The process domain for L8 is introduced in

DEFINITION 7.6. The process domain P,

s is defined by

Py = {po} u Pc((I‘uVU{e})x(Pgu(v->1>8))),

For the semantics of LS we need a class of environments E = El X E2,
where El = Van » Vv, E2 =X~ P7. (X is the set of variables £ used in re-
cursive definitions.) Thus, taking n = DNy € E, nl(x) = v and nz(E) =p
are meaningful equations. As before,  is the valuation for simple expres-—

sions e, yielding results V(e) (nl) =v.

DEFINITION 7.7. The valuation M: L8 - (E—*PS) is defined by
a. M(@il)(n) = Py

b. M(<e,s>)(n)
c. M(<c,s>) (n)

<c,s8>.

]

{<V(e)(n1),M(S)(n)>}

{<y,M(s) (n)>}, where Y corresponds to c,

]

and similarly for
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[}

d. M(sjusy) (m) = M(s ) (n) u M(s) (), M(slllsz)(n)
with "|| " to be defined below

e. M(s\c) (n) = M(s) (m)\y

f. MEE)Y () = no(e) sM(uglsl) (n) = 1%m p;» where (po
{<e,M(s) (nip, /£}) >}

g. MOAx.s) (n) = {dv.M(s) (n{v/x})}.

M(s ) () || M(s,) (),

L}

g and) Py, =

Here p\y is as p\lY in definition 6.4 (in order to use \2, we would have
to extend T with a dead symbol §). Furthermore, the definition of "[| " is

very similar to the one used in the CSP definition, as can be seen from
DEFINITION 7.8. For X,Y € Pc(-) of finite nonzero degree we put

X[ Y = {x|| Y|x e X} u {X||y]ly e ¥} u

{<e,p" || p">|<y,m> € X,<y,{<v,p">}> €Y, where n(v) = p'}.

Here <B,p>” Y = <B,p||Y>, n|IY = (waG) | Y = Av.(ﬂ(v)|fY), etc.

Example. For constructs bl,b2 in CCS defined by b] = ux.x+1.b1, and

b2 <a y+3.b2, we have as corresponding 138, € L8: s, = pEl<c,ix.<x+1,8>>1,

1

m

s ugl<c,<y+3,£>>]1, and for p: = M(si)(n) we obtain

2 . . i
p, = lim pfl), where p(l+]) = {<e,{<y,{xv.{<v+1,P§1)>}}>}>}
i . . - .
Py = lim Pél)’ where P§1+]) = {<€,{<7,{<ﬂ1(Y)+3:P§1)>}>}>}' Also, it can

i 2
be shown that (pln P,)\Y = lim q(l)

q(i+1)

, where

= (<e, {<e, {<n, )+, ¢ Py

Remarks.
1. The use of <e,...> in the process theory corresponds to the unobservable

action 1T of CCS.

2. Processes p in P, are quite close to communication trees (Ch.6 of [44]).

Important differfnces are

(i) the collection of successors of a node in a communication tree is
a multiset rather than a set

(ii) the "mathematical sophistication we do not want to be bothered with"
(a quotation from [ 44] referring to the case of infinite trees) is -
if our attempts have been successful - present in our theory.

3. Recursive behaviour expressions with parameters - of the form b(x) « B
in CCS - can be dealt with very similarly to the above treatment of
ugls]. Without going into details, something along the following lines

will have to be done: The syntax of L8 is extended with the clause
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n

ables £ - are now supposed to be typed as in, e.g., the typed lambda-

calculus. We drop the requirement that s in ngls] be of ground type, and

adapt the choice of Py ~ for the zero element of the CS converging to

the meaning of uils] - replacing it by )\v-..r.u-ckv.po, where n is such

that the type of & is 2 5 v(n20). ) )
4. The use of the <e,...> prefix in defimition 7.7 f could be avoided if we

were to adopt Milmer's requirement that "no behaviour may call itself
recursively without passing a guard". Syntactically, this would amount
to the requirement that, in a recursive construct u&lsl, £ occurs in s
only within subterms of the form <¢,...E...> or <E, ce&...> Or
<e,...E...>. In this way, the contraction property of T' = Ap.M(s) (n{p/E})
is guaranteed. In our treatment, the same result is obtained by using
the CS of iterates Ti(po) for T of the form T = Ap.{<e,M(s) (n{p/E})>}.
(As remarked already in section 3, we are not sure that this'precaution
is indeed necessary, but we do not know how to prove that <’I‘1(p0)>i is

a CS without it.)

This concludes our discussion of CCS semantics. We close with a remark .
on p+ for p € Pg. Analogously to what we did in previous sections (3.4),
we can define p+ over the alphabet V u T - where, just as we did for CSP,
paths are defined such that constituents = of p do not contribute to its
paths. Also, we may again put p ~ q « p+ = q+, and investigate propertie

of '~

8. MISCELLANEQOUS NOTIONS IN CONCURRENCY

There is an astounding variety of notions in concurrency, and only a
few of them have been investigated in the preceding sections. In this sec—
tion we briefly comment upon some additional topics. In most cases we pro-—
vide some suggestions on how the theory of processes could be linked to the

notion concerned. Sometimes, we provide no more than some pointers to prob-
lems still to be dealt with.

1. Critical sections. Let us extend the language L3 (section 5) with the

construct [S]. Thus, as syntax for L3 we have

S ::= x := s|skip|b]8,35,[5 us, |s || s,|s*|[s3.
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Here [S] has as intended meaning that execution of § is not interruptible
(S is "locked".) Using P, as in section 5, we put M([S]) = Xo.
{<c',p0>lc' € M(S)+(0)}, where p+ is the (usual) yield of p. This expresses
that S is, by [...], turned into an elementary action execution of which
cannot be merged at intermediate stages with execution of some parallel
statement. Note that ¢' in M(S)+(0) may equal 1L; strictly speaking, this
requires appropriate adaptation of the definition of I and of P3.
2. Guarded commands. In section 6 we encountered a guarded command such
as if b - 8, 0 b, > 8, fi, to be modelled by

(b];Sl) u (bZ;SZ) u (’b1;7b2;A). This correspondence implies the following:
Suppose that, e.g., in state ¢ it turns out that b‘ is true, and Sl is
selected for execution. Before starting execution of Sl’ an interleaving
action of some parallel S' may have changed ¢ to o' for which b1 is no
longer true, and we see that we cannot be sure that the first action of S1
is executed with b‘ true, even though the "branch" bl;S] was chosen since
b1 was true for o. A different interpretation of a guarded command is pos-—
sible - and may even be the intended one - viz. one in which the first ele-
mentary action of $, is taken immediately after it was selected on the basis
of bl being true. Let us write b = S for a construct which, contrary to
b;S, allows no interleaving actions between b and the first action of S. In~
cluding this construct in L3 requires an extension of M with the clause
M(b=8) = Xo. if W(b)(c) then M(S)(o) else @ fi.

(The reader should contrast this with M(b;S) = M(S)M(b) =

Ao. if W(b) (o) then {<o,M(S)>} else ¢ £i.)

3. Await statement [47 ]. Consider the await statement (x): await b then S.
Operationally, when execution reaches (*), if b is true then S is executed
as in divisible action, if b is false execution waits. Combining the ideas

of 1,2 above, we can model (*) by b = [S].
4. Indivisible parameter passing. Extend L3 with the clause
S = ... [ (Kﬁ.s)(t)
where (XE.S)(t) is equivalent to x := t;S, but allows no concurrent action

at the ";". We can deal with this by putting M((Ax.S)(t)) =
= do. M(8) (a{V(t) (o) /x}).
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5. Histories on channels. Extend L5 with
§ ::= ... | read (x,C) | write (s,C).

Here Cl’ ...,Cn are channels (as before), but now may contain sequences of
values. States are now pairs <o,p>, 0 as usual, p = CETRTRL each p; @
- possibly infinite - sequence of values, the current contents of channel
Ci' Let e(pi) test whether the sequence s is empty, and let pif be the
last element of pi. Also, pi+ denotes pi with its last element deleted.

The central clauses in the definition are

M(read(x,C,)) =

Aop. if e(p) then @ else {<<o{p,#/x},p, +>,pp>} £
M(write (S’Ck)) =

A0p.{<<0,V(s)(0) 0, >,py>}.

Here = denotes concatenation (of sequences over v Vm), and in the p-
component we have not mentioned the channels which are not referred to

(and remain unchanged). Observe that reading from an empty channel results
in an empty output. As usual, this captures the operational notion of
waiting. ‘

6. Linking channels. Let p,q be processes in the domain P =

{po} U PC((AUI'U{E})XP). Previously, synchronization of p,q was achieved
through matching pairs v,y occurring in p and q respectively. Such matching
can also be "programmed" by using the notation (pH q)[v:8] which expresses
that § (in this paragraph standing for some element of T rather than for the

dead state) now acts as y, i.e., we define

el @Ly:s] = el © ("” " as in section 3) u

{<e,p"|l a'> | <v,p"> € p, <5,q'> ¢ q}.

An operation such as (p|| q)[y:8] is reminiscent of the use of channel link-
ing in Back & Mannila [8]. Also, it resembles the use of equalities

c;-a = cj.b in [52], which in a similar manner establish linking between
"ports'" of processes PsPys-- 5P occurring in their com...moc construct
(albeit that their definition of "|| " differs from the one used throughout

our paper).
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7. Logic. Let o be a some formula of, e.g., predicate or temporal logic
([50]). We can distinguish a variety of ways of interpreting o in process p.
Let, e.g., p € P,. We may choose a(po) = tt or a(po) = ff,

a(x), a(<0,po>) = a(o),

a(ro.X) = kc.u(xi, a(X) = AxeX a(x) or a(X) = VxeX
and, for p # py» @(<0,p>)= d(0) Vv a(p(0)), or a(<o,p>) = a(o) A a(p(o)).
E.g., the combination of definitions a(X) = AxeX o(x) with

a(<o,p>) = a(o) V a(p(o)) states that a(p) is true in o whenever a is true
in at least one node along each path for <o,p>. The implications of these
definitions for the model theory of temporal logic deserve further study.

We also would like to know whether the results of Emerson & Clarke [19]

can be applied in the context of processes.

8. ADA rendez—~vous, distributed processes, data flow. These notions are men—
tioned here for the sake of completeness. We have no semantic definitions
for them at the moment of writing this. For the ADA rendez-vous this should
not be too difficult, because of its close connection with CSP(cf.[26]). For
pP((15,27]) and data flow ([14,16,23,35,36,37,38,51,58]) we need further
study.

9. Fairness. There is a well-known correspondence between fairness and un-
bounded nondeterminacy (see,e.g., Apt & Olderog [3]). Since our processes
allow a smooth treatment of the latter, the question arises as to their role
for defining the former. We know how to do this, and we hope to describe

it in a future publication (which is not along the lines of the approach

sketched in the remark in [11]).

This concludes our discussion of some miscellaneous topics in concur-

rency, and brings us to the end of this paper.
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APPENDIX A. HAHN's THEOREM

Since the proof of Hahn's theorem (theorem 2.9) is not easily accessible,

we present the proof in this appendix. We repeat the theorem as

THEOREM A (= theorem 2.9). If (M,d) is a complete metric space, then so is
(PC(M),d), where PC(M) denotes the collection of all closed subsets of M,
and the distance d for sets is the Hausdorff distance. Moreover, we have,
for <Xn>n a CS of closed sets,

lim_ X - x 4% {x | x=1im x, <x > a CS in M such that x_ ¢ X }.
nn n'n n n n n

Proof. Clearly, we may assume that Xn # ¢ for almost all n. We show that (i)
X is closed, and (ii) d(Xn,X) -+ 0.
Ad(i). Let V%o be a CS in X with VY- We show that y ¢ X. Let, for each

n, <x. >, be a CS such that x, e X.,and x, _ + y_. Consider the diagonal

i,n i i,n- i i,n n
sequence <x_ > , X € X . Then <x
n,n n’ “n,n n ,

by the definition of X, we have that y € X.

> 1is a CS, with x + y. Therefore
n'n ’ n,n y ’

Ad(ii). The proof of this fact is more involved. We have to show that
Ve3dNvn > N [d(Xn,X)<e], i.e.,

(A1) VedNvn > Wx_ ¢ X [d(x_,X)<e]
n n n

(A2) VedNvn > NVx € XEd(x,Xn) <g]
or, equivalently,

(A3) VYe3NVn 2 N‘v’xn € Xnﬂx € X[d(xn,x) <g]

(A4) VYedNvn > NWx ¢ X3x_ e X [d(x_,x)<e].
n n n

We first prove (A3). Choose €. Then (*): INVm,n = N[d(X ,X )<e/2].
m’“n

Now take any m 2 N, and any X € Xm' We show how to find x € X such that

d(xm,x) < €. There exists a sequence

m=No<N]<N2<--~

such that (**): n,n' 2 N = d(X ,X ) < €/2k+]. Now define a sequence <x_>
n° n nn

as follows: For n < NO’ X is arbitrary. For n = NO’ X = xNO (=xm) .
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For N, < n

A

: take any x such that d(xN ’xn) < e/2 (by (%))

N
For N, <n £ N

,¢ take any x such that d(le,xn) < elh (by (*x))

1

A

k+
For Nk <n Nk+1: take any X, such that d(xNk,xn) < g/2 (by (*%))

Then <x > is a CS, since for, say, N <n < N +1° and any m 2 n,d(xm,xn) <

k k
d(x_, Y+d( ,X 4.+ d( x )
MO W Nerg m
< a/Zk+l + x-:/?_k+2 + ... < E/Zk.

So, by completeness of (M,d), X X for some x. Thus, x ¢ X. Furthermore,
we have Vn > m, d(xm,xn) <e/2+ e/t +... (by similar reasoning) < e. Hence,
d(xm,x) < €. Altogether, we have proved (A3). We now prove (A4). Choose

some €. As before, there exists N such that Vm,n 2 N[d(Xm,Xn) < e/2]. Let

x € X and m 2 N. We show that d(x,Xm) < £. There exists a CS <xn>n such that
X, + x. We have, for m = N, d(Xn,Xm) < eg/2, so d(xn,Xm) < g/2 for all n = N.

Hence (since X, > X) d(x,Xm) < €/2 < ¢, which proves (4A4). [
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APPENDIX B

In this appendix, we present a detailed proof of lemma 2.15. The main
part consists in the justification of the definitions of peq,puq and pl|q,
as provided in theorems B7,B12,Bl4 and Bl6 and their corollaries. Prelimi-
nary to these theorems there are some general lemmas on the Hausdorff dis-
tance. Throughout the Appendix lhs and rhs stand for left-hand side and
right-hand side, respectively.

Up to lemma B5 we assume X,Y,... are subsets of an arbitrary metric

space (M,d), and assume, moreover:

Al

xeX, x'eX',ye¥, y' €Y.

LEMMA Bl. Given £ >0 d(X,X') < £ ¢f and only if:

(B1) vx3x' d(x,x') < £, and
(B2) vx'3x d(x,x') < £
Procf. d(X,X') < £

e Vx d(x,X") € £ and Vx' d(X,x") < £
<> (Bl) and (B2). [
We often use a special case of this:

COROLLARY B2. Suppose there are surjections f: Y + X, £': Y+X' such that
Vy d(£(y),£'(y)) < L. Then d(X,X") < L.

Proof., Clear from lemma Bl. [

LEMMA B3. If

(83) Yy3xvx'3y'[d(y,y') < d(x,x')]
(B4) Vy'3x'Vedyld(y,y') < d(x,x")]
then d(Y,Y') < d(X,X")

Proof . (B3) implies, successively,
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Vy3xvx'd(y,Y') < d(x,x")
Vy3axd(y,Y') < d(x,X")
Vyd(y,Y') < d(X,X")

Supyd(Y.Y') < d(X,X")

Similarly, (B4) implies supy,d(Y,y') < d(X,X'). The desired result now fol-

lows by taking the maximum of the lhs of the last 2 inequalities. [
Actually, we only need lemma B3 in the special case of

COROLLARY B4. Suppose there are surjections f: X ~ Y and £': X' + ¥' such
that Yx,x'[d(£(x),f'(x")) < d(x,x")]. Then d(Y,Y') < d(X,X").

Proof. Clear from lemma B3. []
LEMMA BS5.

d(XuY,Y'uY') < max(d(X,X"),dY,¥")).

Proof. d(x,X'uY') < d(x,X') € d(X,X') < rhs.

Hence, supxd(x,X'UY') < rhs.

Similarly, supyd(Y,X'UY') < rhs
supx.d(XuY,x') < rhs
< rhs.

supy,d(XuY,y')

Now take the maximum of the lhs of the last 4 lines. [J

From now on we consider uniform processes, solving equation (2.2).
(See definition 2.10.) We let x,y,... range over elements of AxP, and define

deg(<a,p>) = deg(p).
We give one more lemma.
LEMMA B6. For finite p,p',q,q':

if d(q,q') = d(p,p")

then d(<a,q>,<a',q"'>) < d(<a,p>,<a’',p'>).

Proof, Clear. 0O
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THEOREM B7. For finite q,q':

(B5) d(peq,peq’) < d(g,9")

Proof. We prove (BS5) simultaneously with
(B6) d(pox,pex') < d(x,x")

by induction on n, where n = max(deg(q) ,deg(q')) in de case of (B5), and
n = nax(deg(x),deg(x')) in the case of (B6),

If q = Py OF q' = P then (B5) is clear. Otherwhise (cf.defimition
2.14a)

lhs of (B5) = d({pex|xeq},{pex'|x"eq'}) < d(q,q")

by the induction hypothesis for (B6) and corollary B4 (taking f(x) = pox and

f'(x") = pex"). This proves (B5) for the given n. Now (B6) follows for the
same n:

d(P°<a,q>’P°<3',Q'>) = d(<asp°q>’<a‘ ’poq'>)
< d(<a,q>,<a’,q">)
by (B5) and lemma B6. [

COROLLARY B8. For finite a0 if <9 78 a CS, then so is <P°q > -

Proof. Clear from theorem B7. [J

We observe that corollary B8 justifies the definition peq =

. (n)
11mn(p°q ).

COROLLARY B9. Theorem B7 holds for all q,q'.

Proof. For all n, d(poq(n),poq'<n)) < d(q(n),q'(n)), by theorem B7. Now
ths + d(peg,p°q'), rhs + d(q,q'), and we see that d(peq,peq') < d(q,q"). O

COROLLARY B10. Corollary B8 holds for all q .
—_— n

Proof. Clear from corollary B9. [J
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A more interesting consequence is (for all sequences <qn>n):
COROLLARY Bll1. If 4, > 4 then P°q  ~ peq.
Proof. d(peq ,peq) < d(q ,q) + 0. O
Note. Corollary Bll states that "o" is continuous in its second argument.

THEOREM B12. For finite p,p',q,q’,
d(pug,p'uq’) < max(d(p,p'),d(q,q")).

Proof. If any of p,p',q,q' equals Pgs the result is clear. Otherwise it fol-

lows immediately from lemma B5. [J]
Again, we have the corollaries

COROLLARY BI3.

a. For finite P >4 if <Pp7n> <97, are CS the;z §;o 7és)<pnuqn>n.
(This justifies the definition puq = 1imn(p P ug'™y

b. Theorem B12 holds for all p,p',q,q'.

c. Part a holds for all L

d. If p, + P,q, > q then p la, ~ puq (for all p,q).
Thus, "U" is jointly continuous in both arguments.

Proof. We only prove
b. For all n, d(p(n) Uq(n) ,P'(n) Uql(n)) < max(d(p(n) ,P'(n)),d(q(n)QQ' (1’1))).
Now let n + o,

d. d(p uq,,puq) < max(d(p, ,p),d(q ,q)) + 0. [

THEOREM Bl4. For finite p,p',q,q',

(B7) d(p|| q,p" |l @') < max (d(p,p'),d(q,q")).

Proof. We first prove a special case of (B7), namely with q = q':

(B8) dp|l ¢5p' || @) < d(p,p").

This is proved simultaneously with
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(B9) dlplly,p'lly) = d(p,p")

(B10) d(x]| q,x"{| @) = d(x,x")

by induction on n, where n = max(deg(p),deg(p'))+deg(q) in (B8),
n = max(deg(p),deg(p'))+deg(y) in (B9), and
n = max(deg (x),deg(x'))+deg(q) in (B10).

Now if any of p,p',q equals Py» then (B8) is clear. Otherwise (cf.defini-

tion 2.14c):

lhs of (B8) = d({p||y|yeq} uix]|| q|x ep},

{p" [l ylyeq} uix"|| q|x" €p'})

A

max(dl ’dZ)

by lemma B5, where

="
I

;= dpllylyeal, {p']] y]yead)

[=9
i

5 = dx]| qfxep}, {x'[| q|x'ep' D).

Now d, < d(p,p' )by the induction hypothesis for (B9) and corollary B2
(taking £(y) = plly, £'(y) = p'|ly and £ = d(p,p')). Also d2 < d(p,p') by
the induction hypothesis for (B10) and corollary B4 (taking f(x) = x|l q and
f'(x") = x'” q). This proves (B8) for the given n. Now (B9) and (B10) follow
for the same n. For (B9):

d(pll <a,q>,p"|| <a,q>)

d(<a,p|| ¢>,<a,p"|| ¢>)

L[}

taoll 40| @

"

dd(p,p") by (B7)

<d(p,p"),

and for (B10):
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d(<a,p>|| g,<a",p">|| @)

]

d(<a,pll g>,<a'p" | @)

IA

d(<a,p>,<a’,p'>)
by (B7) and lemma B6.

Thus we have proved (B8). Similarly (by a symmetrical argument) we can

prove (for finite p,q,q'):
(B11) dpll aspll @") < d(a.q".

Finally, from (B10) and (B11), and the strong triangle inequality (see the

remark after lemma 2.8) we obtain

A

dell a,p'l| ¢") < max(d(p|| ¢,p" || @,d'|| a,p'|l a'))

IA

max(d(p,p"),d(q,q")). O

As before, we have the corollaries

COROLLARY BIS5.

a. For finite p ,q , ©f <p > ,<q > are CS then so is <p, |l Q> -
(This justifies the definition pl|q = 1imn(p<n)||q(n)).)

b. Theorem Bl4 holds for all p,p',q,q'.

c. Part a holds for all P >4 -

d. If p + p,q, ~q then p |l q  ~ pll q (for all p,q).
Thus, "|| " <s jointly continuous in both arguments.

Proof. Clear. [

Now the properties of lemma 2.15 q, i.e., associativity of "o","u","|",

commentativity of "u","||", are easily proved. E.g., for associativity of

"0"

» prove (peq)or = po(qor) first for finite r by induction on deg(r), and

then for all r by taking r = 1imn r(n), and using corollary Bll.
We conclude this appendix with a proof that "e" is jointly continuous in

both arguments (as yet, we only proved continuity in its second argument).
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THEOREM B16. For finite q,

(812) d(peq,p'eq) < d(p,p")-

Proof. We prove (B12) simultaneously with
(813) d(pey,p'ey) < d(p,p")s

by induction on deg(q) (in (B12)) and deg(y) (in (B13)). If q = p, then (B12)

is clear. Otherwise

d(poq,p'oq) = d({pey|ye al,{p'eylyea})

< d(p,p")
by the induction hypothesis for (B13) and corollary B2. As for (B13):

d(po<a,q>,p'c<a,q>)

= d(<a,peg>,<a,p'°q>)

Yd(peq,p'oq)

A

$d(p,p") by (B12)

A

d(p,p"). O
Finally, we obtain the corollaries.

COROLLARY B17.
a. Theorem B16 holds for all q.
b. If p + p then p °q > peq
c. Ijt' P, ”P and a > a then P °d, > P°q
(t.e., "o" is jointly continuous in both arguments).
Proof. We prov 1 .
T prove only part c. We have d(pnoqn,poq) < max(d(pn°qn,Pn°CI) s

d(p °q,p°q) < max(d(qn’Q),d(Dn;P)) + 0, by the strong triangle inequality and
corollaries B9 and Bl7. [J



