
INFORMATION AND CONTROL 54, 186-200 (1982)

The Completeness of the Algebraic Specification
Methods for Computable Data Types

J. A. BERGSTRA

Department of Computer Science, Mathematical Centre, Kruislaan 413,
I098SJ, Amsterdam, The Netherlands

J. V. TUCKER

Department of Computer Studies, University of Leeds, Leeds LS2 9JT, England

The following fundamental theorem about the adequacy of the algebraic
specification methods for data abstractions is proved. Let A be a data type with n
subtypes. Then A is computable if, and only if, A possesses an equational
specification, involving at most 3(n + I) hidden operators and 2(11 + I) axioms.
which defines it under initial and final algebra semantics simultaneously.

INTRODUCTION

Suppose you wish to define a data abstraction as a set of primitive
operators E whose behaviour satisfies a set of algebraic axioms E. Then
initial and final algebra semantics are two different, though natural, ways of
settling on a unique meaning for the specification (E, E). As its semantics,
they each assign to (E, E) a many-sorted algebra, unique up to isomorphism,
from the class ALG(E, E) of all algebras of signature E satisfying the
axioms in E. Seen from the syntax of the data type, initial algebra semantics
insists that two syntactic operator expressions t, t' over E are semantically
equivalent if, and only if, t = t' can be proved from the axioms E. While
final algebra semantics assumes t, t' to be semantically equivalent as long as
t = t' does not contradict the requirements in E. Here t, t' are called obser­
vationally or behaviourly equivalent as far as the axioms of E are concerned;
or-as one says in the terminology of logic-t = t' is consistent with E.

The two choices have been discussed in the literature on data abstraction
with varying degrees of precision and approval. For example, equivalent
forms of initial algebra semantics are clearly explained in early articles Zilles
(1974, 1975), Liskov and Zilles (1975), and Goguen et al. (1975). But
Guttag (1975), Guttag and Horning (1978) probably favour final algebra

186
0019-9958/82 $2.00
Copyright © 1982 by Academic Press, Inc.
AU rights of reproduction in any form reserved.

ALGEBRAIC SPECIFICATION METHODS 187

semantics: certainly Guttag and Horning (1978) contains a disclaimer about
initial semantics and an approximate description of the objectives of the final
algebra technique. An early rigorous account of final algebra semantics is
Wand (1979) and other exact treatments of this far less well-understood
alternative can be seen in Giarratana, Gimona, and Montanari (1976),
Hornung and Raulefs (1980), Kamin (1980), Kapur (1980), the Munich
Group, Broy et al. (1979) and Wirsing and Broy (1980), and our own
articles Bergstra and Tucker (l 980a, 1983).

Any evaluation of the methods depends on any number of specific
questions about data types, of course. And, regrettably, no properly
researched comparative study is yet available. The point of this paper is to
settle one basic question about the completeness or adequacy of the two
specification methods: Can algebraic specifications under initial and/or final
algebra semantics define all the data types one wants, at least in principle?
Recalling that a data type, or data abstraction, is modelled by a many-sorted
algebra, finitely generated by elements named in its signature, the following
theorem answers that in a fundamental theoretical sense one needs, and can
rely on, both:

THEOREM. Let A be an n-sorted algebra finitely generated by elements
named in its signature E. Then the following are equivalent:

(1) A is computable.

(2) A possesses an algebraic specification, involving at most 3(n + 1)
auxiliary operators and 2(n + 1) equations, which defines A under both its
initial and final algebra semantics.

That (2) implies (1) is a consequence of some straight-forward necessary
conditions on the specification methods while the statement that (1) implies
(2) is the hard-won answer to our adequacy question.

This paper belongs to a series of articles about the relative power of the
various algebraic specification methods for data abstractions (Bergstra and
Tucker (l 979a, b, l 980a-d, 1983)). In particular, it is a companion to
Bergstra and Tucker (1983), where we characterised a cosemicomputable
data type A of signature E as a structure possessing an algebraic
specification (L'0 , £ 0) using final algebra semantics. However, there we
required E 0 to contain conditional equations, our bounds on the size of E0

depended on the number of operators in L', and the arguments involved were
sufficiently complicated to authorise our working with single-sorted
structures only. The corresponding problem about semicomputable data
types and initial algebra semantics remains open, but from the proof of the
main theorem in Bergstra and Tucker (1983) one could extract a second
specification of the same size which defines A initially as long as A is

188 BERGSTRA AND TUCKER

computable. Thus, our new theorem sharpens the corollary in Bergstra and
Tucker (1983) in each of the four ways just mentioned and, more impor­
tantly. it has its own rather elegant proof which is significantly easier
without the overheads of the main theorem in Bergstra and Tucker
(1983).We think of our new theorem as a fundamental completeness theorem
for the algebraic specification methods.

Readers of this paper are assumed to be well versed in the informal issues
and technical foundations of the algebraic specification methods. For this
Goguen et al. (1978) is essential, and Thatcher et al. (1979a, b) is recom­
mended, but knowlege of our previous articles is not, strictly speaking, a
prerequisite. A very detailed account of final algebra semantics and of the
computability of data abstractions is contained in Bergstra and Tucker
(1983) and so in what follows only the proof of our theorem will receive a
generous exposition.

l. DATA TYPES AND THEIR SPECIFICATION

Here we record notation and the technical ideas about data types and their
specification which we shall need in proving our theorem. Let us repeat that
the reader is supposed to be familiar with the basic principles of the
algebraic specification method and to be used to working with the methods
in Goguen et al. (1978). First we comment on the algebra needed.

Semantically, a data type or data abstraction is identified with (the
isomorphism type of) a many-sorted algebra A finitely generated by elements
named in its signature E. Such structures are called minimal algebras
because they contain no proper subalgebras. Typically, the many-sorted
algebra A consists of a finite family A p···, An of (data) domains or (subtype)
components together with a finite collection of distinguished elements, and
operators of the form

where A;, µ E { 1, ... , n }. The signature E of A carries names for its domains,
called sorts, and notations for the constants and operators; we will use
numbers for sorts.

An algebra A is finite if each domain Ai is finite; and it is the unit algebra
if every domain A; is a singleton. We write the unit algebra as ~.

1.1. LEMMA. Let A and B be minimal algebras. Each homomorphism
A _, B is an epimorphism and if A and B are homomorphic images of one
another, then they are isomorphic.

ALGEBRAIC SPECIFICATION METHODS 189

If 9: A --+ B is a homomorphism, then the relation =$ defined in A by
a =rt> b if, and only if, 9(a) = 9(b) in B is a congruence. If 9 identifies all of
A, that is, the relation =rt> is A X A, then B ~ 11.

Next we turn to specifications and their semantics. A specification is a
pair (E, E) composed of a signature .E and a set of algebraic axioms E.

These axioms will always be equations over L or conditional equations over
E, the latter being formulae of the kind

where e 1 , ••• , ek, e are equations over E.
If A satisfies the axioms E we call A an £-algebra and write E I= A. A

second set of axioms E' is a refinement of E if A I= E' implies A I= E; and
we write this symbolically as E' I= E. If p is a formula provable in the
equational calculus or conditional equation calculus from E we write E r- p.

The starting point for an understanding of initial and final algebra
semantics is their description in terms of operator expressions over E, stated
in the Introduction, rather than their category-theoretic formulations which
give the semantics their names. In our proof, we shall use only the proof­
theoretic characterisation of initial algebra semantics and only the category­
theoretic definition of final algebra semantics. Since the latter semantics is
not well known we will look at it in relation to initial semantics from the
category theory point of view.

A specification (E, E) for a data type distinguishes the category
ALG*(.E, E) of all minimal algebras of signature E satisfying the axioms E

and all morphisms between them. And the semantics of a specification (E, E)

is designed so as to pick out some algebra from ALG*(E, E) as the unique

meaning . #'(E, E), where the uniqueness of . 4r(E, E) is measured up to
algebraic isomorphism. Given a data type semantics (modelled by an
algebra) A, a specification (E, E) can be said to correctly define the data
type when .J((E, E) ~A.

Seen from the category ALG*(E, E), initial algebra semantics for
algebraic specifications assigns as the meaning of (E, E) the initial algebra
I(E, E) in ALG*(E, E); this I(E, E) always exists and is unique up to
isomorphism. On the other hand, final algebra semantics would like to pick
out the final object from ALG*(.E, E) as the meaning of (E, E), but clearly
this final algebra is in all cases the unit algebra 11 E ALG*(E, E). (Notice 11
may not play an initial role in ALG*(E, E) because of the minimality
assumption.) Instead, final algebra semantics turns to the category
ALGJ'(E, E) which is simply ALG*(E, E) with the unit algebra removed.
Unfortunately, ALGri(E, E) need not always possess a final object F(E, E),

but when it does this object is unique. Because of this asymmetry, defining

190 BERGSTRA AND TUCKER

and using the final algebra semantics of algebraic specifications can be a
rather delicate matter when compared with the initial technique.

The equivalence of the category theory definitions and the logical
definitions is represented by this lemma.

1.2. LEMMA. Let (E, E) be a specification, and let t, t' be closed terms

over £. Then

(1) /(E, E) F= t = t' if, and only if, E 'r- t = t'.

And, assuming F(E, E) exists,

(2) F(E, E) F= t = t' if, and only if, t = t' is consistent with E in the
sense that there is some nonunit model A E ALG(I, E), where A F= t = t'.

Let T(E) be the algebra of all terms over £. Let T1(£, E) denote the
standard syntactic copy of I(E, E), made by factoring T(I) be the least £­
congruence. The corresponding construction TAI, E) for F(J;, E) can be
found in Bergstra and Tucker (1983), but we shall not be needing it. We can
now record the definitions governing the ways a specification characterises a
data abstraction.

Let E be a set of equations or conditional equations over the signature E
and let A be an algebra of signature E. The pair (£, E) is said to be an
equational or a conditional equation specification of the algebra A with
respect to (1) initial algebra semantics or (2) final algebra semantics if (1)
I(.E, E) 8:: A or (2) F(I, E) 8:: A. When the set of axioms E is finite we speak
of finite specifications with respect to these semantics.

Finally we must explain how we involve auxiliary or hidden functions in
the semantics of specifications. Let A be an algebra of signature EA and let E
be a signature E c EA. Then we mean by A IE the E-algebra whose domain is
that of A and whose constants and operators are those of A named in E: the
E-reduct of A; and by (A)J: the E-subalgebra of A generated by the constants
and operators of A named in E viz. the smallest E-subalgebra of A IE.

The following represents the two basic working definitions of specification
theory in this paper.

Algebraic Specifications with Hidden Operators

The specification (E, E) is said to be a finite equational or a conditional
equation hidden enrichment specification of the algebra A with respect to (1)
initial algebra semantics, or (2)final algebra semantics if EA c E, and Eis a
finite set of (conditional) equations over the (finite) signature J; such that

or
l(E, E) IEA = (I(E, E))l:A 8:: A

F(E, E) IJ:A = (F(J;, E) >l:A 8:: A.

(1)

(2)

ALGEBRAIC SPECIFICATION METHODS 191

In this paper, all specifications involving hidden operators are made to define
data types as described above.

2. COMPUTABLE DATA TYPES

A many-sorted algebra A is said to be effectively presented if
corresponding to its component data domains A 1 , ••• ,An there are mutually
recursive sets n I, .•• , n n of natural numbers and surjections al: n i--> Ai
(1 ~ i ~ n) such that for each operation a A= a~·µ of A there is a recursive
tracking function a°'= a~·µ which commutes the following diagram

wherein a.i., X ··· X a.i.k(x .. ,, ... , X.i.) = (a.1,(x ..), ... , a.1k(x.i.)).
Now A is computable (semicomputable or cosemicomputable) if, in

addition, the relations =a· defined on ni by
I

if, and only if, a1(x) = a1(y) in A 1

are all recursive (r.e. or co-r.e.) for 1 ~ i ~ n.
These three notions are the standard formal definitions of constructive

algebraic structures and they derive from the work of Rabin (1960) and, in
particular, Mal'cev (1961). Their special feature is that they make
computability into a finiteness condition of algebra: an isomorphism
invariant possessed of all finite structures. This lemma was proved in
Bergstra and Tucker (1979a).

2.1. REPRESENTATION LEMMA. Every computable many-sorted algebra A
is isomorphic to a recursive algebra of numbers n each of whose numerical
domains n 1 is the set of natural numbers w, or the set of the first m natural
numbers wm, accordingly as the corresponding domain A1 is infinite, or finite
of cardinality m.

The following proposition draws attention to the fundamental difference
between initial and final algebra semantics.

2.2. BASIC LEMMA. Let (E, E) be a specification with E a recursively
enumerable set of conditional equations. Then I(E, E) is semicomputable and
F(E, E) is cosemicomputable, if it exists. In particular, if algebra A possesses

192 BERGSTRA AND TUCKER

an r.e. conditional equation hidden enrichment specification with respect to
(1) initial algebra semantics, or (2) final algebra semantics, then (1) A is
semicomputable, or (2) A is cosemicomputable. If A possesses such
specifications with respect to both initial and final algebra semantics, then A
is computable.

The proof of Basic Lemma 2.2 is routine once the syntactic algebras
T1(E, E) and TF(E, E) have been constructed. The theorem first appeared in
Bergstra and Tucker (1980d) where we used it to find a data type which
could not be specified by an r.e. set of algebraic axioms under initial algebra
semantics. More examples can be found in Bergstra and Tucker (1983). The
next section is given over to proving a strong converse of the last statement
of the lemma.

3. PROOF OF THE THEOREM

Because of Basic Lemma 2. 2, we have only to prove that statement (l)
implies statement (2).

Let A be a computable many-sorted algebra finitely generated by elements
named in its signature E. By the Representation Lemma 2.1, A can be iden­
tified with a recursive number algebra R each of whose domains is either w
or some finite initial segment wm of w. It is sufficient to build an appropriate
specification for R and this task we organise into some semantical
constructions followed by some syntactical constructions.

First, we add enumeration operators to R to make a new algebra Re with
the special property that any specification which defines Re (and hence R)
under initial algebra semantics will also define Re (and hence R) under final
algebra semantics. Next, Re is augmented with arithmetical and conditional
operators to make a second algebra R 0 • To complete the proof of the
theorem it will be sufficient to provide a concise equational specification
(E0 , E 0) which defines R 0 under initial algebra semantics: this is the
objective of the syntactical constructions.

Semantical Constructions

Let D and D 1 , ••• , D n _ 1 denote the n domains of R with
card(D):;;;, card(D).) for 1 ~A.~ n - 1; call D the principal domain of R and
notice that R is finite if, and only if, D is finite. To R we add the following
constant and operators to form a new algebra Re of signature Ee in which all
domains can be accessed and enumerated from D.

Principal Enumeration Operators. For the principal domain D, add to R
the element 0 E D as a constant together with the map succ: D ___, D defined
by succ(x) = x + 1 if D = w or by succ(x) = min(x + 1, m) if D = wm; and
the map pred: D ___, D defined by pred(x) = x _:__ 1.

ALGEBRAIC SPECIFICATION METHODS 193

Access Operators. For each nonprincipal domain D.1 (l <A,< n - l), add
to R the map fold.1 : D.1 -+ D defined by fold.1(x) = x; and the map unjold.1 :

D-+ D .A defined by unfold,1 (x) = x if D" = w or by unfold.i(.x-) = min(x, m(.A.))
if D =Wm(.\).

Clearly, Re possesses 1 constant and 2 + 2(11 - I)= 211 operators more

than R, and Re l:i: = (Re)r = R.

3.1. LEMMA. If B is a homomorphic image of R 0 then either B ~Re or
B~~.

Proof Let ~:Re-+ B be an epimorphism and suppose it is not injective;
we show ~ is trivial. There are two cases depending upon whether ~ identifies
distinct points in the principal domain or in some nonprincipal domain.

Case 1. Suppose i, j E D and i of- j but ~(i) = ~()). Let i > j and write
i=succ;(O) and j=succj(O). Then succ;(O)=<t>succi(O) implies pred; 1

(succ;(O)) =<t> predi- 1(succi(O)) because =<t> is a congruence. Thus,

succ(O) =<t> 0 and, in fact,

0 =<t> succ(O) =" succ2(0) =" · · ·

so all of D is identified in B under ~· Now, for any x,y E D.1

(1 < ,1. < n - 1) we can write x = unfold.A(x) and y = unfold.\(y). Since
x =<t> y in D we know that unfold.1 (x) =.;unfold.\ (y) in D.1 : that is, x =" y in
D _,,. Thus, all of D .A is identified in B under ~ and B is the unit algebra.

Case 2. Suppose i,j E D.1 and i * j but ~(i) = ~()) for some
1 < ,1. < n - I. Since i =<t> j in D .A we know that fold.1 (i) '='.;fold . .\()) in D
because ="' is a congruence. Thus, two distinct elements of D are identified
and we are in Case 1 again. I

3.2. COROLLARY. If Re is the initial object of some ALG(.Ee, Ee), then
Re is the final object of ALGt(.Ee, Ee), too; in fact, ALGt(.E", E.,) is merely
the isomorphism type of Re.

The corollary is immediately deducible from Lemma 3.1. And it follows
that if R 0 is an algebra of signature .E0 such that .E .. c .Ea and

Ro lr" = (Ra)r, =Re,

then if R 0 is the initial object of some ALG(.E0 , Ea), then R 0 is the final
object of ALGt(.E0 , E0) too; and again ALGt(.E0 , £ 0) contains only R 0 up
to isomorphism. This is simply because each .E0-homomorphism is
necessarily a .Ee-homomorphism.

Our aim is to create such an enrichment R 0 of R 0 and give it a concise

194 BERGSTRA AND TUCKER

algebraic specification (170 , E 0) without hidden functions. Clearly, we need
only bother about initial algebra semantics in such circumstances.

We complete the semantical foundations of the proof by adding arithmetic
to the principal domain in Re, and a selection of conditional operators to
both principal and non principal domains in Re.

Arithmetic Operators. For the principal domain D, add to Re the map add:
D x D---> D defined by add(x,y) = x + y if D = w or by add(x, y) =
min(x + y, m) if D = wm; and the map mult: DX D---> D defined by
mult(x,y) = x. y if D = w or by mult(x,y) = min(x · y, m) if D =Wm.

Conditional Operators. For the principal domain D, add to Re the maps
c: DX D X D---> D and h: D X DX D---> D defined by

c(x,y, z) = 0 if x=y and z =0,

=l otherwise,

h(x,y, z) = z if x=y,

=0 otherwise.

And for each nonprincipal domain D,, (1 ~ il ~ n - 1) add to Re the map
h.l: DX DX D.t---> D defined by

h,,(x,y,z)=z

=0

if x = y,

otherwise.

(Beware of the change of sort when dealing with h" !)
Re augmented by these 4 + (n - 1) operators results in the algebra R 0 of

signature 170 • Clearly, R0 posseses 1 constant and 3(n + 1) operators more
than R, and R 0 lr = (R 0)E = R.

It now remains for us to build an algebraic specification (170 , E 0)

involving 2(11 + I) equations and no hidden functions, which defines R 0

under initial algebra semantics. This task is divided into two stages: we begin
by finding an algebraic specification (170 , E 1) for R 0 which uses conditional
equations of a special kind. The role of this (170 ,£1) is to act as a template
for a sequence of transformations which will compress E 1 into the
required £ 0 •

Syntactical Constructions: The Template

Remember that R 0 is R augmented by the constant and operators

0, succ, pred, add, mult, c, h

on the principal domain D; and

ALGEBRAIC SPECIFICATION METHODS 195

for each other domain D .i. (1 ~ A. ~ n - I). Let the signature E 0 of R 0 contain
the following notations for the extra operators:

O, SUCC, PRED, ADD, MULT, D, H, FOLD_,, UNFOLD_,., H.v

3.3. LEMMA. There is a finite algebraic specification (E0 , £ 1) involving
equations, and conditional equations of the form

t = t'--+ r = S,

where the premiss t = t' is an equation over the principal sort in E 0 , which
defines R 0 under initial algebra semantics.

Proof If R 0 is a finite algebra, then it is straightforward to make a
specification by enumerating the graphs of the operations of R 0 and trans­
lating these relations into formal syntactical identities. Such a
specification will satisfy the requirements of the lemma. (We had occasion to
write out this observation in our study (Bergstra and Tucker (l 980c).)

Assume R 0 is an infinite algebra so that, in particular, D is infinite. Here
are the equations making up E 1 • For enumerations and arithmetic on D we
take

PRED(O)= 0,

ADD(X, 0) = X,

MULT(X, O) = 0,

PRED(SUCC(X)) = X,

ADD(X, SUCC(Y)) = SUCC(ADD(X, Y)),

MULT(X, SUCC(Y)) = ADD(X, MULT(X, Y)).

For the access operators we take

for each A. (I ~A.~ n - I); and for each unfolding of D into a finite domain
D .i.= wm<-"> we use these special equations

The various conditional operators c, h, and h_,. and the original operators
of R can all be treated in the same way.

Let FE EU {C, H, H_,.} name function!: Da:cll X ·•· X Dack>--+ D13 , where
a(l), ... , a(k), fJ E {O, 1, ... , n - I} and D0 =D. For convenience in notations,
let us introduce unfold0 : D--+ D, defined by unfold0 (x) = x, and give it the
syntactic name UNFOLD0 ; now we can write

graph(!)= { (x 1 , ••• , xk,y) E Dk+ 1 :f(unfold,.(l)(x 1), ••• , unfoldack>(xk))

= unfoldll(y) }.

196 BERGSTRA AND TUCKER

Remember that D = w and notice that graph(/) is a recursively enumerable
set.

Using Matijacevic's Diophantine theorem (see Manin, 1977) one can find
polynomials p1 and q1 in variables X = (Xp ... , Xk), Y and Z = (Z 1 , .•• , Z 1)

such that

graph(/)= j(x,y) E wk X w: ::Jz E w2 • [Pt(x,y, z) = q/x,y, z)j}.

Let Pf and Q1 be formal translations of PJ and qf to polynomials over the
enumeration and arithmetic operator names {O, SUCC, PRED, ADD,
MULT}. Now we take the following conditional equations to govern F:

Pt<X, Y,Z)= Qr(X, Y,Z)-+F(UNFOLDa(Il(X 1), ... , UNFOLDa<kl(Xd)

= UNFOLD8(Y).

To complete the construction of E 1 it remains to consider the constants of
L. If f EL is a constant of the principal sort naming element c E D, then
take

If f E L is a constant of a non principal sort naming c E D.1 , then take

f = UNFOLD.,(SUCC(O)).

Clearly R0 I=E 1 and by initiality there is an epimorphism
T/L0 ,E1)-+R 0 , but one needs to give the reverse map R 0 -+T1(L0 ,E 1) in
order to prove T/L 0 , E 1) :::::: R 0 (Lemma 1.1). The inverse <P: R 0 -+ T1(L 0 , E 1)

is the family of maps (~, ~ 1, ... , ~n- i) defined by

~(x)= [SUCCX(O)]

~.,(x)= [UNFOLD.,\(succx(o))J

for xE D,

for x ED .1.,

where 1 ~ ..1. ~ n - l and It J denotes the equivalence class of terms deter­
mined by t E T(L0) under the congruence =E,. The proof that this <P is a
homomorphism is a lengthy exercise which is entirely routine for any reader
with some experience in many-sorted algebra: we take the liberty of omitting
it, leaving the reader to consult some of our earlier articles such as Bergstra
and Tucker (1979) and (1980a, b) if necessary.

Syntactical Constructions: Compression

The specification (L0 , £ 1) is not particularly concise: if R 0 is finite, then
the number 1£11 of algebraic axioms in E 1 is comparable with the cardinality
IRal of R 0 ; and if R 0 is infinite, then 1£ 11 is a function of ILol and, hence, of
ILi. The compression of E 1 is based upon this simple, but important, tool:

ALGEBRAIC SPECIFICATION METHODS 197

3.4. REFINEMENT LEMMA. Let (E, E) be an algebraic specification for

some data type A and assume l(E, E) ~A. Suppose (.E, E') is another
algebraic specification such that

(i) E''r=E

and

(ii) A 'r= E'.

Then I(.E, E') ~A.

Proof By hypothesis (ii), A is an £'-algebra and so there is an

epimorphism I(E, E')-> A. On the other hand, hypothesis (i) implies /(E, £')

is an £-algebra and so initiality again implies there is an epimorphism

A ~ I(E, E) _, I(E, E'). By Lemma 1.1, /(E, E') ~A. I

Starting with E 1 , we shall generate a sequence of refined specifications for

Ro,

by replacing one axiomatisation by another and checking conditions (i) and

(ii) of the Refinement Lemma 3.4.

First Step

For purely technical reasons, the first refinement of E 1 leads to a set of

equations E 2 • If R 0 is finite then set £ 2 =£ 1 • If R 0 is infinite, then let £ 2

contain all the equations in E 1 together with the n new equations

H(X, X, Z) = Z, H.l (X, X, z·t) = z·1'

where Z" is a variable of sort). and 1 <). < n - 1. And now replace each

conditional equation of the form

t = t'-> r = s or t = t'-> r' = s·1

in E 1 by the equation

H(t, t', r) = H(t, t', s) or

respectively. This is all of £ 2 , and clearly £ 2 1= £ 1 and R 0 F= £ 2 •

Second Step

From E 2 we make a new axiomatisation E 3 with the special feature that

most formulae are equations which govern the behavior of the principal

198 BERGSTRA AND TUCKER

domain and those formulae which remain are the simple conditional
equations

The set E 1 contains all those equations in E 2 over the pincipal sort; and each
equation ·,.i = s·i in E 2 over sort A (I ~A~ n - 1) is replaced by the
equation

Adding the n - l simple conditional equations completes E 3 and it is clear
that £ 3 F- £ 2 and R 0 F- £ 3 •

Third Step

From £ 3 we make a concise axiomatisation £ 4 which involves 1 equation
and n + 1 conditional equations. The set £ 4 contains the n - 1 simple
conditional equations of £ 3 and, in addition, these two new conditionals

C(X, Y, Z) = 0-tX= Y,

C(X, Y,Z)=O-tZ=O.

Thus to complete £ 4 it remains for us to construct one master equation.
Let {t; = t;: 1:::;;; i ~ /} be an enumeration of all the equations in £ 3 ; as we

know, these are equations over the principal sort. Inductively define a master
polynomial M by

M0 =0, M; +I = C(t i + I' tj + I ' M;),

for 0:::;;; i:::;;; l - 1 and set M = M1• The master equation is simply

M=O. (me)

Now to verify that £ 4 F- E 3 and R 0 F- E 4 one checks with induction that for
each i

and that R 0 F- M; = 0.

Last Step

and

The last refinement step turns £ 4 into a set of 2(n + 1) equations and this
set Es is the axiomatisation £ 0 required in the theorem. The set Es contains
the master equation (me) of £ 4 , but the pair of conditional equations

ALGEBRAIC SPECIFICATION METHODS

C(X, Y, Z) = 0--+ X = Y,

C(X, Y, Z) = 0--+ Z = 0,

is replaced by the triple of equations

H(X, X, Z) = Z,

H(C(X, Y, Z), 0, X) = H(C(X, Y, Z), 0, Y),

H(C(X, Y, Z), 0, Z) = H(C(X, Y, Z), 0, 0).

And, instead of the n - 1 conditional equations,

in £ 4 , the set Es contains the 2(n - 1) equations

H_«X, X, Z..\) = Z·\

199

H.t(FOLD_,(X1), FOLD ..\(Y·1), X') = H_1(FOLD_1(X1), FOLD_1(Y1), Y 1).

Clearly, IE5 l=4+2(n-1)=2(n+ 1) and it is straightforward to check
that Es F= E4 and R 0 F= Es. Thus, taking E0 = £ 5 we have the concise initial
and final semantics specification (£0 , £ 0) of R0 which is a hidden function
specification of R under both initial and final algebra semantics. I

REFERENCES

I. BERGSTRA, J. A. AND TUCKER, J. v. (1979a). "Algebraic Specifications of Computable

and Semicomputable Data Structures," Mathematical Centre, Department of Computer

Science Research Report IW 115, Amsterdam.

2. BERGSTRA, J. A. AND TUCKER, J. v. (1979b), On the adequacy of finite equational

methods for data type specification, ACM-SIGPLAN Notices 14 (I I), 13-18.
3. BERGSTRA, J. A. AND TUCKER, J. V. (1980a), A characterisation of computable data

types by means of a finite, equational specification method, in "Automata, Languages,

and Programming, Seventh Colloquium, Noordwijkerhout" (J. W. de Bakker and J. van

Leeuwen, Eds.), pp. 76-90, Springer-Verlag, Berlin.

4. BERGSTRA, J. A. AND TUCKER, J. v. (1980b), "Equational Specifications for Computable

Data Types: Six Hidden Functions Suffice and Other Sufficiency Bounds," Mathematical

Centre, Department of Computer Science Research Report IW l28, Amsterdam.

5. BERGSTRA, J. A. AND TUCKER, J. v. (1980c), "On bounds for the Specification of Finite

Data Types by Means of Equations and Conditional Equations," Mathematical Centre,

Department of Computer Science Research Report IW 131, Amsterdam.

6. BERGSTRA, J. A. AND TUCKER, J. v. (1980d), A natural data type with a finite equational

final semantics specification but no effective equational initial semantics specification,

Bull. European Assoc. Theoret. Comput. Sci. l l, 23-33.
7. BERGSTRA, J. A. AND TUCKER, J. V. (1983), Initial and final algebra semantics for data

type specifications: Two characterisation theorems, SIAM J. Comput. 12, 366-387.

8. BROY, M., DOSCH, w., PARTSCH, H., PEPPER, P., AND WIRSING, M. (1979), Existential

200 BERGSTRA AND TUCKER

quantifiers in abstract data types, in "Automata, Languages, and Programming, Sixth
Colloquium, Graz" (H. Maurer, Ed.), pp. 72-87, Springer-Verlag, Berlin.

9. GOGUEN, J. A .. THATCHER. J. W., WAGNER, E. G., AND WRIGHT, J.B. (1975), Abstract
data types as initial algebras and correctness of data representations, in "Proceedings
ACM Conference on Computer Graphics, Pattern Recognition, and Data Structure,"
pp. 89-93, Assoc. Comput. Mach., New York.

10. GOGUEN, J: A .. THATCHER, J. W., AND WAGNER, E. G. (1978), An initial algebra
approach to the specification, correctness and implementation of abstract data types, in
"Current Trends in Programming Methodology IV, Data Structuring" (R.T. Yeh, Ed.)
pp. 80-149, Prentice-Hall, Englewood Cliffs, N.J.

11. GUTT AG, J. V. (1975), "The Specification and Application to Programming of Abstract
Data Types,'' Ph.D thesis, Univ. of Toronto.

12. GUTTAG, J. V. AND HORNING, J. J. (1978) The algebraic specification of abstract data
types, Acta !tiform. 10, 27-52.

13. HOARE, C. A. R. (1969), An axiomatic basis for computer programming, Comm. ACM
12, 576-580.

14. HORNUNG, G. AND RAULEFS, P. (1980), Terminal algebra semantics and retractions for
abstract data types, in "Automata, Languages, and Programming, Seventh Colloquium,
Noordwijkerhout" (J. W. de Bakker and J. van Leeuwen, Eds.), pp. 310-325, Springer­
Verlag, Berlin.

15. KAMIN, S (1980) Final data type specifications: A new data-type specification method, in
"Seventh ACM Principles of Programming Languages Conference, Las Vegas,"
pp. ,131-138, Assoc. Comput. Mach., New York.

16. KAPUR, D. (1980), "Towards a Theory for Abstract Data Types," MIT/LCS/TR-237,
Cambridge, Mass.

17. LISKOV, B. AND ZILLES, S. (1975), Specification techniques for data abstractions, IEEE
Trans. Software Engrg. 1, 7-19.

18. MAL'CEV, A. I. (1961), Constructive algebras. I. Russian Math. Surveys, 16, 77-129.
19. MANIN, Y. (1977), "A Course in Mathematical Logic," Springer-Yerlag, New York.
20. RABIN, M. 0. (1960), Computable algebra, general theory and the theory of computable

fields, Trans. Amer. Math. Soc. 95, 341-360.
21. THATCHER, J. W., WAGNER, E.G., AND WRIGHT, J.B. (1979a), "Specification of Abstract

Data Types Using Conditional Axioms," IBM Research Report RC 6214, Yorktown
Heights.

22. THATCHER, J. W., WAGNER, E. G., AND WRIGHT, J. B. (1979b), "Data Type
Specification: Parametrization and the Power of Specification Techniques," IBM
Research Report RC 7757, Yorktown Heights.

23. WAND, M. (1979), Final algebra semantics and data type extensions, J. Comput. Systems
Sci. 19, 27-44.

24. VAN WIJNGAARDEN, A. (1966), Numerical analysis as an independent science, BIT 6,
66-81.

25. WIRSING, M. AND BROY, M. (1980), Abstract data types as lattices of fintely generated
models, in "Mathematical Foundations of Computer Science, Eight Symposium
Rydzyna," Springer-Verlag, Berlin.

26. ZILLES, S. (1974), "Algebraic Specification of Data Types," Project MAC Progress
Report 11, M.l.T., Cambridge, Mass.

27. ZILLES, S. (1975), "An Introduction to Data Algebras," working paper, IBM Research
Laboratory, San Jose, Calif.

28. GIARRATANA, V., GIMONA, F., AND MONTANARI, u. (1976), Observability concepts in
abstract data type specification, in "Mathematical Foundations of Computer Science" (A.
Mazurkievicz, Ed.), Lecture Notes in Computer Science, No. 45, Springer-Verlag, Berlin.

