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The following fundamental theorem about the adequacy of the algebraic 
specification methods for data abstractions is proved. Let A be a data type with n 
subtypes. Then A is computable if, and only if, A possesses an equational 
specification, involving at most 3(n + I) hidden operators and 2(11 + I) axioms. 
which defines it under initial and final algebra semantics simultaneously. 

INTRODUCTION 

Suppose you wish to define a data abstraction as a set of primitive 
operators E whose behaviour satisfies a set of algebraic axioms E. Then 
initial and final algebra semantics are two different, though natural, ways of 
settling on a unique meaning for the specification (E, E). As its semantics, 
they each assign to (E, E) a many-sorted algebra, unique up to isomorphism, 
from the class ALG(E, E) of all algebras of signature E satisfying the 
axioms in E. Seen from the syntax of the data type, initial algebra semantics 
insists that two syntactic operator expressions t, t' over E are semantically 
equivalent if, and only if, t = t' can be proved from the axioms E. While 
final algebra semantics assumes t, t' to be semantically equivalent as long as 
t = t' does not contradict the requirements in E. Here t, t' are called obser­
vationally or behaviourly equivalent as far as the axioms of E are concerned; 
or-as one says in the terminology of logic-t = t' is consistent with E. 

The two choices have been discussed in the literature on data abstraction 
with varying degrees of precision and approval. For example, equivalent 
forms of initial algebra semantics are clearly explained in early articles Zilles 
(1974, 1975), Liskov and Zilles (1975), and Goguen et al. (1975). But 
Guttag (1975), Guttag and Horning (1978) probably favour final algebra 
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semantics: certainly Guttag and Horning ( 1978) contains a disclaimer about 
initial semantics and an approximate description of the objectives of the final 
algebra technique. An early rigorous account of final algebra semantics is 
Wand (1979) and other exact treatments of this far less well-understood 
alternative can be seen in Giarratana, Gimona, and Montanari ( 1976 ), 
Hornung and Raulefs (1980), Kamin (1980), Kapur (1980), the Munich 
Group, Broy et al. (1979) and Wirsing and Broy (1980), and our own 
articles Bergstra and Tucker ( l 980a, 1983 ). 

Any evaluation of the methods depends on any number of specific 
questions about data types, of course. And, regrettably, no properly 
researched comparative study is yet available. The point of this paper is to 
settle one basic question about the completeness or adequacy of the two 
specification methods: Can algebraic specifications under initial and/or final 
algebra semantics define all the data types one wants, at least in principle? 
Recalling that a data type, or data abstraction, is modelled by a many-sorted 
algebra, finitely generated by elements named in its signature, the following 
theorem answers that in a fundamental theoretical sense one needs, and can 
rely on, both: 

THEOREM. Let A be an n-sorted algebra finitely generated by elements 
named in its signature E. Then the following are equivalent: 

( 1) A is computable. 

(2) A possesses an algebraic specification, involving at most 3(n + 1) 
auxiliary operators and 2(n + 1) equations, which defines A under both its 
initial and final algebra semantics. 

That (2) implies ( 1) is a consequence of some straight-forward necessary 
conditions on the specification methods while the statement that ( 1) implies 
(2) is the hard-won answer to our adequacy question. 

This paper belongs to a series of articles about the relative power of the 
various algebraic specification methods for data abstractions (Bergstra and 
Tucker ( l 979a, b, l 980a-d, 1983 )). In particular, it is a companion to 
Bergstra and Tucker ( 1983 ), where we characterised a cosemicomputable 
data type A of signature E as a structure possessing an algebraic 
specification (L'0 , £ 0) using final algebra semantics. However, there we 
required E 0 to contain conditional equations, our bounds on the size of E0 

depended on the number of operators in L', and the arguments involved were 
sufficiently complicated to authorise our working with single-sorted 
structures only. The corresponding problem about semicomputable data 
types and initial algebra semantics remains open, but from the proof of the 
main theorem in Bergstra and Tucker ( 1983) one could extract a second 
specification of the same size which defines A initially as long as A is 
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computable. Thus, our new theorem sharpens the corollary in Bergstra and 
Tucker ( 1983) in each of the four ways just mentioned and, more impor­
tantly. it has its own rather elegant proof which is significantly easier 
without the overheads of the main theorem in Bergstra and Tucker 
(1983).We think of our new theorem as a fundamental completeness theorem 
for the algebraic specification methods. 

Readers of this paper are assumed to be well versed in the informal issues 
and technical foundations of the algebraic specification methods. For this 
Goguen et al. (1978) is essential, and Thatcher et al. (1979a, b) is recom­
mended, but knowlege of our previous articles is not, strictly speaking, a 
prerequisite. A very detailed account of final algebra semantics and of the 
computability of data abstractions is contained in Bergstra and Tucker 
( 1983) and so in what follows only the proof of our theorem will receive a 
generous exposition. 

l. DATA TYPES AND THEIR SPECIFICATION 

Here we record notation and the technical ideas about data types and their 
specification which we shall need in proving our theorem. Let us repeat that 
the reader is supposed to be familiar with the basic principles of the 
algebraic specification method and to be used to working with the methods 
in Goguen et al. (1978). First we comment on the algebra needed. 

Semantically, a data type or data abstraction is identified with (the 
isomorphism type of) a many-sorted algebra A finitely generated by elements 
named in its signature E. Such structures are called minimal algebras 
because they contain no proper subalgebras. Typically, the many-sorted 
algebra A consists of a finite family A p···, An of (data) domains or (subtype) 
components together with a finite collection of distinguished elements, and 
operators of the form 

where A;, µ E { 1, ... , n }. The signature E of A carries names for its domains, 
called sorts, and notations for the constants and operators; we will use 
numbers for sorts. 

An algebra A is finite if each domain Ai is finite; and it is the unit algebra 
if every domain A; is a singleton. We write the unit algebra as ~. 

1.1. LEMMA. Let A and B be minimal algebras. Each homomorphism 
A _, B is an epimorphism and if A and B are homomorphic images of one 
another, then they are isomorphic. 
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If 9: A --+ B is a homomorphism, then the relation =$ defined in A by 
a =rt> b if, and only if, 9(a) = 9(b) in B is a congruence. If 9 identifies all of 
A, that is, the relation =rt> is A X A, then B ~ 11. 

Next we turn to specifications and their semantics. A specification is a 
pair (E, E) composed of a signature .E and a set of algebraic axioms E. 

These axioms will always be equations over L or conditional equations over 
E, the latter being formulae of the kind 

where e 1 , ••• , ek, e are equations over E. 
If A satisfies the axioms E we call A an £-algebra and write E I= A. A 

second set of axioms E' is a refinement of E if A I= E' implies A I= E; and 
we write this symbolically as E' I= E. If p is a formula provable in the 
equational calculus or conditional equation calculus from E we write E r- p. 

The starting point for an understanding of initial and final algebra 
semantics is their description in terms of operator expressions over E, stated 
in the Introduction, rather than their category-theoretic formulations which 
give the semantics their names. In our proof, we shall use only the proof­
theoretic characterisation of initial algebra semantics and only the category­
theoretic definition of final algebra semantics. Since the latter semantics is 
not well known we will look at it in relation to initial semantics from the 
category theory point of view. 

A specification (E, E) for a data type distinguishes the category 
ALG*(.E, E) of all minimal algebras of signature E satisfying the axioms E 

and all morphisms between them. And the semantics of a specification (E, E) 

is designed so as to pick out some algebra from ALG*(E, E) as the unique 

meaning . #'(E, E), where the uniqueness of . 4r(E, E) is measured up to 
algebraic isomorphism. Given a data type semantics (modelled by an 
algebra) A, a specification (E, E) can be said to correctly define the data 
type when .J((E, E) ~A. 

Seen from the category ALG*(E, E), initial algebra semantics for 
algebraic specifications assigns as the meaning of (E, E) the initial algebra 
I(E, E) in ALG*(E, E); this I(E, E) always exists and is unique up to 
isomorphism. On the other hand, final algebra semantics would like to pick 
out the final object from ALG*(.E, E) as the meaning of (E, E), but clearly 
this final algebra is in all cases the unit algebra 11 E ALG*(E, E). (Notice 11 
may not play an initial role in ALG*(E, E) because of the minimality 
assumption.) Instead, final algebra semantics turns to the category 
ALGJ'(E, E) which is simply ALG*(E, E) with the unit algebra removed. 
Unfortunately, ALGri(E, E) need not always possess a final object F(E, E), 

but when it does this object is unique. Because of this asymmetry, defining 
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and using the final algebra semantics of algebraic specifications can be a 
rather delicate matter when compared with the initial technique. 

The equivalence of the category theory definitions and the logical 
definitions is represented by this lemma. 

1.2. LEMMA. Let (E, E) be a specification, and let t, t' be closed terms 

over £. Then 

( 1) /(E, E) F= t = t' if, and only if, E 'r- t = t'. 

And, assuming F(E, E) exists, 

(2) F(E, E) F= t = t' if, and only if, t = t' is consistent with E in the 
sense that there is some nonunit model A E ALG(I, E), where A F= t = t'. 

Let T(E) be the algebra of all terms over £. Let T1(£, E) denote the 
standard syntactic copy of I(E, E), made by factoring T(I) be the least £­
congruence. The corresponding construction TAI, E) for F(J;, E) can be 
found in Bergstra and Tucker (1983), but we shall not be needing it. We can 
now record the definitions governing the ways a specification characterises a 
data abstraction. 

Let E be a set of equations or conditional equations over the signature E 
and let A be an algebra of signature E. The pair (£, E) is said to be an 
equational or a conditional equation specification of the algebra A with 
respect to ( 1) initial algebra semantics or (2) final algebra semantics if ( 1) 
I(.E, E) 8:: A or (2) F(I, E) 8:: A. When the set of axioms E is finite we speak 
of finite specifications with respect to these semantics. 

Finally we must explain how we involve auxiliary or hidden functions in 
the semantics of specifications. Let A be an algebra of signature EA and let E 
be a signature E c EA. Then we mean by A IE the E-algebra whose domain is 
that of A and whose constants and operators are those of A named in E: the 
E-reduct of A; and by (A )J: the E-subalgebra of A generated by the constants 
and operators of A named in E viz. the smallest E-subalgebra of A IE. 

The following represents the two basic working definitions of specification 
theory in this paper. 

Algebraic Specifications with Hidden Operators 

The specification (E, E) is said to be a finite equational or a conditional 
equation hidden enrichment specification of the algebra A with respect to ( 1) 
initial algebra semantics, or (2)final algebra semantics if EA c E, and Eis a 
finite set of (conditional) equations over the (finite) signature J; such that 

or 
l(E, E) IEA = (I(E, E))l:A 8:: A 

F(E, E) IJ:A = (F(J;, E) >l:A 8:: A. 

(1) 

(2) 
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In this paper, all specifications involving hidden operators are made to define 
data types as described above. 

2. COMPUTABLE DATA TYPES 

A many-sorted algebra A is said to be effectively presented if 
corresponding to its component data domains A 1 , ••• ,An there are mutually 
recursive sets n I, .•• , n n of natural numbers and surjections al: n i--> Ai 
(1 ~ i ~ n) such that for each operation a A= a~·µ of A there is a recursive 
tracking function a°'= a~·µ which commutes the following diagram 

wherein a.i., X ··· X a.i.k(x .. ,, ... , X.i.) = (a.1,(x .. ), ... , a.1k(x.i.)). 
Now A is computable (semicomputable or cosemicomputable) if, in 

addition, the relations =a· defined on ni by 
I 

if, and only if, a1(x) = a1(y) in A 1 

are all recursive (r.e. or co-r.e.) for 1 ~ i ~ n. 
These three notions are the standard formal definitions of constructive 

algebraic structures and they derive from the work of Rabin (1960) and, in 
particular, Mal'cev (1961). Their special feature is that they make 
computability into a finiteness condition of algebra: an isomorphism 
invariant possessed of all finite structures. This lemma was proved in 
Bergstra and Tucker (1979a). 

2.1. REPRESENTATION LEMMA. Every computable many-sorted algebra A 
is isomorphic to a recursive algebra of numbers n each of whose numerical 
domains n 1 is the set of natural numbers w, or the set of the first m natural 
numbers wm, accordingly as the corresponding domain A1 is infinite, or finite 
of cardinality m. 

The following proposition draws attention to the fundamental difference 
between initial and final algebra semantics. 

2.2. BASIC LEMMA. Let (E, E) be a specification with E a recursively 
enumerable set of conditional equations. Then I(E, E) is semicomputable and 
F(E, E) is cosemicomputable, if it exists. In particular, if algebra A possesses 
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an r.e. conditional equation hidden enrichment specification with respect to 
( 1) initial algebra semantics, or (2) final algebra semantics, then ( 1) A is 
semicomputable, or (2) A is cosemicomputable. If A possesses such 
specifications with respect to both initial and final algebra semantics, then A 
is computable. 

The proof of Basic Lemma 2.2 is routine once the syntactic algebras 
T1(E, E) and TF(E, E) have been constructed. The theorem first appeared in 
Bergstra and Tucker (1980d) where we used it to find a data type which 
could not be specified by an r.e. set of algebraic axioms under initial algebra 
semantics. More examples can be found in Bergstra and Tucker ( 1983 ). The 
next section is given over to proving a strong converse of the last statement 
of the lemma. 

3. PROOF OF THE THEOREM 

Because of Basic Lemma 2. 2, we have only to prove that statement ( l) 
implies statement (2). 

Let A be a computable many-sorted algebra finitely generated by elements 
named in its signature E. By the Representation Lemma 2.1, A can be iden­
tified with a recursive number algebra R each of whose domains is either w 
or some finite initial segment wm of w. It is sufficient to build an appropriate 
specification for R and this task we organise into some semantical 
constructions followed by some syntactical constructions. 

First, we add enumeration operators to R to make a new algebra Re with 
the special property that any specification which defines Re (and hence R) 
under initial algebra semantics will also define Re (and hence R) under final 
algebra semantics. Next, Re is augmented with arithmetical and conditional 
operators to make a second algebra R 0 • To complete the proof of the 
theorem it will be sufficient to provide a concise equational specification 
(E0 , E 0 ) which defines R 0 under initial algebra semantics: this is the 
objective of the syntactical constructions. 

Semantical Constructions 

Let D and D 1 , ••• , D n _ 1 denote the n domains of R with 
card(D):;;;, card(D ).) for 1 ~A.~ n - 1; call D the principal domain of R and 
notice that R is finite if, and only if, D is finite. To R we add the following 
constant and operators to form a new algebra Re of signature Ee in which all 
domains can be accessed and enumerated from D. 

Principal Enumeration Operators. For the principal domain D, add to R 
the element 0 E D as a constant together with the map succ: D ___, D defined 
by succ(x) = x + 1 if D = w or by succ(x) = min(x + 1, m) if D = wm; and 
the map pred: D ___, D defined by pred(x) = x _:__ 1. 
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Access Operators. For each nonprincipal domain D.1 ( l <A,< n - l ), add 
to R the map fold.1 : D.1 -+ D defined by fold.1(x) = x; and the map unjold.1 : 

D-+ D .A defined by unfold,1 (x) = x if D" = w or by unfold.i(.x-) = min(x, m(.A.)) 
if D =Wm(.\). 

Clearly, Re possesses 1 constant and 2 + 2(11 - I)= 211 operators more 

than R, and Re l:i: = (Re)r = R. 

3.1. LEMMA. If B is a homomorphic image of R 0 then either B ~Re or 
B~~. 

Proof Let ~:Re-+ B be an epimorphism and suppose it is not injective; 
we show ~ is trivial. There are two cases depending upon whether ~ identifies 
distinct points in the principal domain or in some nonprincipal domain. 

Case 1. Suppose i, j E D and i of- j but ~(i) = ~()). Let i > j and write 
i=succ;(O) and j=succj(O). Then succ;(O)=<t>succi(O) implies pred; 1 

(succ;(O)) =<t> predi- 1(succi(O)) because =<t> is a congruence. Thus, 

succ(O) =<t> 0 and, in fact, 

0 =<t> succ(O) =" succ2(0) =" · · · 

so all of D is identified in B under ~· Now, for any x,y E D.1 

(1 < ,1. < n - 1) we can write x = unfold.A(x) and y = unfold.\(y). Since 
x =<t> y in D we know that unfold.1 (x) =.;unfold.\ (y) in D.1 : that is, x =" y in 
D _,,. Thus, all of D .A is identified in B under ~ and B is the unit algebra. 

Case 2. Suppose i,j E D.1 and i * j but ~(i) = ~()) for some 
1 < ,1. < n - I. Since i =<t> j in D .A we know that fold.1 (i) '='.;fold . .\()) in D 
because ="' is a congruence. Thus, two distinct elements of D are identified 
and we are in Case 1 again. I 

3.2. COROLLARY. If Re is the initial object of some ALG(.Ee, Ee), then 
Re is the final object of ALGt(.Ee, Ee), too; in fact, ALGt(.E", E.,) is merely 
the isomorphism type of Re. 

The corollary is immediately deducible from Lemma 3.1. And it follows 
that if R 0 is an algebra of signature .E0 such that .E .. c .Ea and 

Ro lr" = (Ra)r, =Re, 

then if R 0 is the initial object of some ALG(.E0 , Ea), then R 0 is the final 
object of ALGt(.E0 , E0 ) too; and again ALGt(.E0 , £ 0 ) contains only R 0 up 
to isomorphism. This is simply because each .E0-homomorphism is 
necessarily a .Ee-homomorphism. 

Our aim is to create such an enrichment R 0 of R 0 and give it a concise 
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algebraic specification (170 , E 0 ) without hidden functions. Clearly, we need 
only bother about initial algebra semantics in such circumstances. 

We complete the semantical foundations of the proof by adding arithmetic 
to the principal domain in Re, and a selection of conditional operators to 
both principal and non principal domains in Re. 

Arithmetic Operators. For the principal domain D, add to Re the map add: 
D x D---> D defined by add(x,y) = x + y if D = w or by add(x, y) = 
min(x + y, m) if D = wm; and the map mult: DX D---> D defined by 
mult(x,y) = x. y if D = w or by mult(x,y) = min(x · y, m) if D =Wm. 

Conditional Operators. For the principal domain D, add to Re the maps 
c: DX D X D---> D and h: D X DX D---> D defined by 

c(x,y, z) = 0 if x=y and z =0, 

=l otherwise, 

h(x,y, z) = z if x=y, 

=0 otherwise. 

And for each nonprincipal domain D,, (1 ~ il ~ n - 1) add to Re the map 
h.l: DX DX D.t---> D defined by 

h,,(x,y,z)=z 

=0 

if x = y, 

otherwise. 

(Beware of the change of sort when dealing with h" ! ) 
Re augmented by these 4 + (n - 1) operators results in the algebra R 0 of 

signature 170 • Clearly, R0 posseses 1 constant and 3(n + 1) operators more 
than R, and R 0 lr = (R 0)E = R. 

It now remains for us to build an algebraic specification (170 , E 0 ) 

involving 2(11 + I) equations and no hidden functions, which defines R 0 

under initial algebra semantics. This task is divided into two stages: we begin 
by finding an algebraic specification (170 , E 1) for R 0 which uses conditional 
equations of a special kind. The role of this (170 ,£1) is to act as a template 
for a sequence of transformations which will compress E 1 into the 
required £ 0 • 

Syntactical Constructions: The Template 

Remember that R 0 is R augmented by the constant and operators 

0, succ, pred, add, mult, c, h 

on the principal domain D; and 
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for each other domain D .i. ( 1 ~ A. ~ n - I). Let the signature E 0 of R 0 contain 
the following notations for the extra operators: 

O, SUCC, PRED, ADD, MULT, D, H, FOLD_,, UNFOLD_,., H.v 

3.3. LEMMA. There is a finite algebraic specification (E0 , £ 1) involving 
equations, and conditional equations of the form 

t = t'--+ r = S, 

where the premiss t = t' is an equation over the principal sort in E 0 , which 
defines R 0 under initial algebra semantics. 

Proof If R 0 is a finite algebra, then it is straightforward to make a 
specification by enumerating the graphs of the operations of R 0 and trans­
lating these relations into formal syntactical identities. Such a 
specification will satisfy the requirements of the lemma. (We had occasion to 
write out this observation in our study (Bergstra and Tucker ( l 980c ). ) 

Assume R 0 is an infinite algebra so that, in particular, D is infinite. Here 
are the equations making up E 1 • For enumerations and arithmetic on D we 
take 

PRED(O)= 0, 

ADD(X, 0) = X, 

MULT(X, O) = 0, 

PRED(SUCC(X)) = X, 

ADD(X, SUCC(Y)) = SUCC(ADD(X, Y)), 

MULT(X, SUCC(Y)) = ADD(X, MULT(X, Y)). 

For the access operators we take 

for each A. (I ~A.~ n - I); and for each unfolding of D into a finite domain 
D .i.= wm<-"> we use these special equations 

The various conditional operators c, h, and h_,. and the original operators 
of R can all be treated in the same way. 

Let FE EU {C, H, H_,.} name function!: Da:cll X ·•· X Dack>--+ D13 , where 
a(l), ... , a(k), fJ E {O, 1, ... , n - I} and D0 =D. For convenience in notations, 
let us introduce unfold0 : D--+ D, defined by unfold0 (x) = x, and give it the 
syntactic name UNFOLD0 ; now we can write 

graph(!)= { (x 1 , ••• , xk,y) E Dk+ 1 :f(unfold,.(l)(x 1), ••• , unfoldack>(xk)) 

= unfoldll(y) }. 
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Remember that D = w and notice that graph(/) is a recursively enumerable 
set. 

Using Matijacevic's Diophantine theorem (see Manin, 1977) one can find 
polynomials p1 and q1 in variables X = (Xp ... , Xk), Y and Z = (Z 1 , .•• , Z 1) 

such that 

graph(/)= j(x,y) E wk X w: ::Jz E w2 • [Pt(x,y, z) = q/x,y, z)j}. 

Let Pf and Q1 be formal translations of PJ and qf to polynomials over the 
enumeration and arithmetic operator names {O, SUCC, PRED, ADD, 
MULT}. Now we take the following conditional equations to govern F: 

Pt<X, Y,Z)= Qr(X, Y,Z)-+F(UNFOLDa(Il(X 1), ... , UNFOLDa<kl(Xd) 

= UNFOLD8(Y). 

To complete the construction of E 1 it remains to consider the constants of 
L. If f EL is a constant of the principal sort naming element c E D, then 
take 

If f E L is a constant of a non principal sort naming c E D.1 , then take 

f = UNFOLD.,(SUCC(O)). 

Clearly R0 I=E 1 and by initiality there is an epimorphism 
T/L0 ,E1)-+R 0 , but one needs to give the reverse map R 0 -+T1(L0 ,E 1 ) in 
order to prove T/L 0 , E 1 ) :::::: R 0 (Lemma 1.1 ). The inverse <P: R 0 -+ T1(L 0 , E 1 ) 

is the family of maps (~, ~ 1, ... , ~n- i) defined by 

~(x)= [SUCCX(O)] 

~.,(x)= [UNFOLD.,\(succx(o))J 

for xE D, 

for x ED .1., 

where 1 ~ ..1. ~ n - l and It J denotes the equivalence class of terms deter­
mined by t E T(L0) under the congruence =E,. The proof that this <P is a 
homomorphism is a lengthy exercise which is entirely routine for any reader 
with some experience in many-sorted algebra: we take the liberty of omitting 
it, leaving the reader to consult some of our earlier articles such as Bergstra 
and Tucker (1979) and (1980a, b) if necessary. 

Syntactical Constructions: Compression 

The specification (L0 , £ 1) is not particularly concise: if R 0 is finite, then 
the number 1£11 of algebraic axioms in E 1 is comparable with the cardinality 
IRal of R 0 ; and if R 0 is infinite, then 1£ 11 is a function of ILol and, hence, of 
ILi. The compression of E 1 is based upon this simple, but important, tool: 
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3.4. REFINEMENT LEMMA. Let (E, E) be an algebraic specification for 

some data type A and assume l(E, E) ~A. Suppose (.E, E') is another 
algebraic specification such that 

(i) E''r=E 

and 

(ii) A 'r= E'. 

Then I(.E, E') ~A. 

Proof By hypothesis (ii), A is an £'-algebra and so there is an 

epimorphism I(E, E')-> A. On the other hand, hypothesis (i) implies /(E, £') 

is an £-algebra and so initiality again implies there is an epimorphism 

A ~ I(E, E) _, I(E, E' ). By Lemma 1.1, /(E, E') ~A. I 

Starting with E 1 , we shall generate a sequence of refined specifications for 

Ro, 

by replacing one axiomatisation by another and checking conditions (i) and 

(ii) of the Refinement Lemma 3.4. 

First Step 

For purely technical reasons, the first refinement of E 1 leads to a set of 

equations E 2 • If R 0 is finite then set £ 2 =£ 1 • If R 0 is infinite, then let £ 2 

contain all the equations in E 1 together with the n new equations 

H(X, X, Z) = Z, H.l (X, X, z·t) = z·1' 

where Z" is a variable of sort ). and 1 <). < n - 1. And now replace each 

conditional equation of the form 

t = t'-> r = s or t = t'-> r' = s·1 

in E 1 by the equation 

H(t, t', r) = H(t, t', s) or 

respectively. This is all of £ 2 , and clearly £ 2 1= £ 1 and R 0 F= £ 2 • 

Second Step 

From E 2 we make a new axiomatisation E 3 with the special feature that 

most formulae are equations which govern the behavior of the principal 
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domain and those formulae which remain are the simple conditional 
equations 

The set E 1 contains all those equations in E 2 over the pincipal sort; and each 
equation ·,.i = s·i in E 2 over sort A (I ~A~ n - 1) is replaced by the 
equation 

Adding the n - l simple conditional equations completes E 3 and it is clear 
that £ 3 F- £ 2 and R 0 F- £ 3 • 

Third Step 

From £ 3 we make a concise axiomatisation £ 4 which involves 1 equation 
and n + 1 conditional equations. The set £ 4 contains the n - 1 simple 
conditional equations of £ 3 and, in addition, these two new conditionals 

C(X, Y, Z) = 0-tX= Y, 

C(X, Y,Z)=O-tZ=O. 

Thus to complete £ 4 it remains for us to construct one master equation. 
Let {t; = t;: 1:::;;; i ~ /} be an enumeration of all the equations in £ 3 ; as we 

know, these are equations over the principal sort. Inductively define a master 
polynomial M by 

M0 =0, M; +I = C(t i + I' tj + I ' M;), 

for 0:::;;; i:::;;; l - 1 and set M = M1• The master equation is simply 

M=O. (me) 

Now to verify that £ 4 F- E 3 and R 0 F- E 4 one checks with induction that for 
each i 

and that R 0 F- M; = 0. 

Last Step 

and 

The last refinement step turns £ 4 into a set of 2(n + 1) equations and this 
set Es is the axiomatisation £ 0 required in the theorem. The set Es contains 
the master equation (me) of £ 4 , but the pair of conditional equations 
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C(X, Y, Z) = 0--+ X = Y, 

C(X, Y, Z) = 0--+ Z = 0, 

is replaced by the triple of equations 

H(X, X, Z) = Z, 

H( C(X, Y, Z), 0, X) = H( C(X, Y, Z), 0, Y), 

H(C(X, Y, Z), 0, Z) = H(C(X, Y, Z), 0, 0). 

And, instead of the n - 1 conditional equations, 

in £ 4 , the set Es contains the 2(n - 1) equations 

H_«X, X, Z..\) = Z·\ 
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H.t(FOLD_,(X1), FOLD ..\(Y·1 ), X') = H_1(FOLD_1(X1 ), FOLD_1(Y1 ), Y 1 ). 

Clearly, IE5 l=4+2(n-1)=2(n+ 1) and it is straightforward to check 
that Es F= E4 and R 0 F= Es. Thus, taking E0 = £ 5 we have the concise initial 
and final semantics specification (£0 , £ 0 ) of R0 which is a hidden function 
specification of R under both initial and final algebra semantics. I 
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