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1. Introduction 

The cubic sensor problem is the problem of 
determining conditional statistics of the state of a 
one-dimensional stochastic process {x,: t ~ O} 
satisfying 

dx = dw, x 0 = xin, (1.1) 

with w a Wiener process, independent of x in, given 
the observation process { y,: t ~ O} satisfying 

dy = x 3dt + dv, Yo= 0, (1.2) 

* Supported in part by the National Science Foundation under 
Grant ECS~8022033 and in part by the Joint Services Elec
tronics program under contract F-49620-77-C-0101. 

where v is another Wiener process independent of 
wand xin. Given a smooth function</>: IR-+ IR let 
cf>1 denote the conditional expectation 

cf,1 = cp(x,) 

(1.3) 

By definition a smooth finite-dimensional recur
sive filter for cp, is a dynamical system on a smooth 
finite-dimensional manifold M governed by an 
equation 

dz=a(z)dt+,8(z)dy, z0 =zi0 , (1.4) 

driven by the observation process, together with 
an output map 

y: M-+ IR (1.5) 

such that, if z1 denotes the solution of (1.4), 

y(z,)=cf,, a.s. (1.6) 

Roughly speaking one now has the theorem 
that for nonconstant cp such filters cannot exist. 
For a more precise statement of the theorem see 
2.10 below. 

It is the purpose of this note to give a fairly 
detailed outline of the proof of this theorem and to 
discuss the structure of the proof. That is the 
general principles underlying it. The full precise 
details of the analytic and realization-theoretic 
parts of the proof will appear in [20,21], the details 
of the algebraic part of the proof can be found in 
[7]. An alternative much better and shorter proof 
of the hardest bit of the algebraic part will appear 
in [15]. 

The preprint version [8] of the present note 
contains some 9 pages more detail on the analytic 
and realization-theoretic parts. 

2. System-theoretic part I: precise formulation of 
the theorem 

2.1. The setting. The precise system-theoretic prob
abilistic setting which we shall use for the cubic 
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sensor filtering problem is as follows. 
(i) ( Q, .91, P) is a probability space. 

(ii) (Sil,: 0 .;:;; t) is an increasing family of a-al
gebras. 

(iii) ( w, v) is a two-dimensional standard 
Wiener process adapted to the d 1• 

(iv) x = { x 1 : t ~ O} is a process which satisfies 
dx = dw, i.e. 

x, = x 0 + w1 a.s. for each t. (2.1) 

(v) x 0 is d 0-measurable and has a finite fourth 
moment. 

(vi) { y1 : t ~ 0} is a process which satisfies d y 
= x 3dt + dv, i.e. 

(I 3 
y, = 10 xs ds + v, a.s. for each t. (2.2} 

(vii) The processes v, w, x, y all have continu
ous sample paths, so that in particular (2.1) and 
(2.2) actually hold and not just almost surely. 

(More precisely one can always find, if neces
sary, modified versions of v, w, x, y such that (vii) 
(also) holds.) 

2.3. The filtering problem. Let y,, t ~ 0, be the 
a-algebra generated by the y,, 0.,,;; s.,,;; t and let 
</>: IR ~ IR be a Borel-measurable function. Then 
the filtering problem (for this particular </>) con
sists of determining 

E [ cf>(x,)JY,]. 

2.4. Smooth finite-dimensional filters. Consider a 
(Fisk-Stratonivic) stochastic differential equation 

dz=a(z)dt+/3(z)dy, zEM, (2.5) 

where M is a finite-dimensional smooth manifold 
and a and /3 are smooth vector fields on M. Let 
there also be given an initial state and a smooth 
output map 

Zin E M, y: M ~ IR. (2.6) 

The equation (2.5) together with the initial condi
tion z(O) = zin has a solution z = { z1 : t ~ O} de
fined up to a stopping time T, which satisfies 

0 < T..;; oo a.s., 
{ wJT( w) > t} E Y, fort~ 0. (2.7) 

Moreover there is a unique maximal solution, i.e. 
one for which the stopping time T is a.s. ~ T1 if T1 

is the stopping time of an arbitrary other solution 
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z 1• In the following z = { z 1 : t ~ 0} denotes such a 
maximal solution. 

The system given by (2.5), (2.6) is now said to 
be a smooth finite-dimensional filter for the cubic 
sensor 2.1 (i)-(vii) if for y equal to the observation 
process (2.2) the solution z of (2.5) satisfies 

E[_<t>(x,)JY,] =y(z1 ) 

a.s. on { wJT( w) > t}. 
(2.8) 

2.9. Statement of the theorem. With these notions 
the main theorem of this note can be stated as: 

2.10. Theorem. Consider the cubic sensor 2.1 
(i)-(vii), i.e. assume that these conditions hold. Let 
</>: IR ~ IR be a Borel-measurable function which 
satisfies for some /3 ~ 0 and 0 .,,;; r < 4 

J<f>(x)J.,,;; exp(/3JxJ'), -oo <x< oo. (2.11) 

Assume that </> is not almost everywhere equal to a 
constant. Then there exists no smooth finite-dimen
sional filter for the conditiOnal statistic E[ <f>(x1 ) I Y,]. 

3. System-theoretic part II: The homomorphism 
principle and outline of the proof (heuristics) 

3.1. The Duncan-Mortensen-Zakai equation. Con
sider a nonlinear stochastic dynamical system 

(3.2) 

where w1 is a standard Brownian motion indepen
dent of the initial random variable xin and where/ 
and G are appropriate vector-valued and matrix
valued functions. Let the observations be given by 

(3.3) 

where v1 is another standard Brownian motion 
independent of wand xi". Let .X1 denote the condi
tional expectation 

x1 = E[x1JY,] = E[x1 Jys, 0.;:;; s.,,;; t] (3.4) 

where Y, is the a-algebra generated by the y,, 
0.,,;; s.,,;; t. Let p(x, t) be the density of .X1 where it 
is assumed (for the purposes of this heuristic sec
tion) that p ( x, t) exists and is sufficiently smooth 
as a function of x and t. Then an unnormalized 

. . 
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version p(x, t) satisfies the Duncan-Mortensen
Zakai (DMZ) equation 

dp(x, t) =(!I: a a; (( GGT)ij) 
i,J x, x.1 

+ L:h1p(x, 1) dy1,. 

p(x, O)=densityof xi", 

(3.5) 

where h1 = h1(x) is the j-th component of h, 
(GGT)i,J is the (i,j)-th entry of the product of the 
matrix G(x) with its transpose and/;= f;(x) is the 
i-th component of f(x). The equation (3.5) is a 
stochastic partial differential equation in Fisk
Stratonovic form. In the case of the cubic sensor 
(2.1), (2.2) (or (1.1), (1.2)) the equation becomes 

dp(x, t) = ( i dd:2 -ix6 )p(x, t)dt 

+x3p(x, t)dy. (3.6) 

3.7. The homomorphism principle. Now assume for 
a given <f> : IR n -+ IR we have a smooth finite-dimen
sional filter 

j (3.8) 
Z 0 = Zin' Y : IR n -+ IR' 

to calculate the statistic 

ef,, = E [ </> ( x I) I Y,] . 

I.e. <f,, = y(z,) a.s. if z 1 is the solution of (3.8). The 
equation (3.8) is to be interpreted in the Stratonovic 
sense. 

Then, very roughly, we have two ways to pro
cess an observation path 

to give the same result. One way is by means of 
the filter (3.8), the other way is by means of the 
infinite-dimensional system (3.5) (defined on a 
suitable space of functions) coupled with the out
put map 

Assuming that (3.8) is observable, deterministic 
realization theory [16] then suggests that there 
exists a smooth map F from the reachable part 
(from p(x, 0)) of (3.6) to the reachable part of 
(3.8), which takes the vector fields of (3.6) to the 
vector fields of (3.6) and which is compatible with 
the output maps y and (3.9). The operators in (3.6) 
define linear vector fields in the state space of (3.6) 
(a space of functions). Let L0 , L 1, ... ,LP be the 
operators occuring in (3.5) so that 

dp = L 0 pdt + L 1pdy; + · · · + LPpdyP. 

The Lie algebra of differential operators generated 
by L 0 , •.• , LP is called the estimation Lie algebra, 
and is denoted L(2). The idea of studying this Lie 
algebra to find out things about filtering problems 
is apparently due to both Brockett and Mitter, cf. 
e.g. [2] and [13] and the references in these two 
papers. 

Let L ---+ L be the map which assigns to an 
operator the corresponding linear vector field 
(analogous to the map which assigns to an n X n 
matrix A= (aiJ) the linear vector field 

a 
:La;;X;-;-

IJXJ 

as IR n ). Then L ---+ - L is a homomorphism of Lie 
algebras. Further F induces a homomorphism of 
Lie algebras 

dF: L0 -+ a, L;-+ fJ;. i = 1, ... ,p. 

Thus the existence of a finite-dimensional filter 
should imply the existence of a homomorphism of 
Lie algebras L(2)-+ V(M) where V(M) is the Lie 
algebra of smooth vector fields on a smooth 
finite-dimensional manifold M. This principle, 
originally enunciated by Brockett, has come to be 
called the homomorphism principle. 

3.10. Pathwise filtering (robustness). As it stands 
the remarks in 3.7 are quite far from a proof of the 
homomorphism principle. First of all (3.6) and 
(3.8) are stochastic differential equations and as 
such they have solutions defined only almost ev
erywhere. The first thing to do to remedy this 
situation is to show that these equations make 
sense and have solutions pathwise so that they can 
be interpreted as processing devices which accept 
an observation path y: [O, t]-+ IR P and produce 
outputs ef,,(y) as a result. Another reason for look-
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ing for pathwise robust versions which is most 
important for actual applications, lies in the ob
servation that actual physical observation paths 
will be piecewise differentiable and that the space 
of all such paths is of measure zero in the proba
bility space of paths underlying (3.6) and (3.8) (cf. 
[3]). 

Still another difficulty in using the remarks of 
3.7 to establish a general homomorphism principle 
lies in the fact that (3.6) evolves on an infinite-di
mensional state space. A different approach to the 
establishing of homomorphism principles (than the 
one used in this paper) is described in [11]. 

3.11. On the proof of Theorem 2.10. In this paper 
the following route is followed to establish the 
homomorphism principle for the case of the cubic 
sensor. First for suitable</>: IR -+ IR it is established 
that there exists a robust pathwise version of the 
functional <f,1• More precisely if C, is the space of 
continuous functions [O, t] -+ ~ then it is shown 
that there exists a functional A~: C, -+ ~ such that 
( cf. 4.1 below) 

" Ll~(y) 
<P, = .11, ( y) a.s. if y = yw. (3.12) 

The next step is to show that A~( y ), y E C,, is 
given by a density n,(y)(x) so that 

Ll~(y) = j n,(y )(x)q,(x )dx 

and to show that n,(y)(x) is smooth (as a function 
of x). 

The next step is to use that there exists (up to a 
stopping time) pathwise and robust solutions of 
stochastic differential equations like (3.8). Robust
ness of both (3.6) and (3.8) then gives the central 
equality (4.7) anywhere (not just a.s.), that is 

(3.13) 

The next step is to prove results about the smooth
ness properties of the density nr(Y) as a function 
of t 1, ••. , tm for paths y such that u = y is of the 
bang-bang type: u(s) =Um E ~ for 0 ~ t < tm, 
equal to iim-I for tm ~ t < t,,, + tm-1' etc. and to 
observe that (t, x) - n r ( y )( x) satisfies the DMZ 
equation (3.6). This permits to write down and 
calculate the result of applying 
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at!.().~ i)tJ,,=···=tm=O 
to both sides of (3.13) and gives a relation of the 
type 

(A(iim)· · · A(ii1)y)(z) 

=L(um)·· · L(ii1 )(P(iJ;,) (3 .14) 

where A(ii) is the vector field a+ ii/3, L(ii) the 
operator 

L + uL = - -- - - x + ux - ( 1 d2 1 6) - 3 
o I 2 dx2 2 

and L (ii) the linear vector field associated to 
L(ii), (P the functional (3.9), and i/;= a function 
corresponding to z, cf. Section 5. 

A final realization-theoretic argument having to 
do with reducing the filter-dynamical system (3.8) 
to an equivalent observable and reachable system 
then establishes the homomorphism principle in 
the case of the cubic sensor and the fact that if the 
homomorphism is zero, <P was a constant. 

The remaining algebraic part of the proof con
sists of two parts: 

(i) A calculation of L(z) for the cubic sensor. 
It turns out that L(Z) is in this case equal to the 
Heisenberg-Wey! algebra W1 of all differential 
operators (any order) in x with polynomial coeffi
cients. 

(ii) The theorem that if V(M) is the Lie alge
bra of smooth vector fields on a smooth finite-di
mensional manifold and a : W1 -+ V( M) a homo
morphism of Lie algebras, then a = 0. 

4. Analytic part 

t! denotes the space of all functions </> : IR -+ IR 
such that there exist constants C E ~. a ER and 
r, 0 ~ r < 4, such that 

/cJ>(x)/ ~ C exp(a/x/') 

for all x E ~. And $ denotes the space of all 
C 00-functions cJ>: IR -+ IR such that 

exp( /3/x/') /q,<k>( x) / 

is bounded for all f3;;;. 0, 0 ~ r < 4, k E ~ u {O}. 
Finally Cr is the space of all continuous functions 
y: [O, t]-+ R such that y(O) = 0. 

. . 

.., 
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4.1. A robust version of~'= E[cp(x,)lyJ There 
exists for all cp E &'a functional 

such that Ll~(y) is continuous, Ll\(y)> 0 and such 
that 

i:,<f>( )=Ll~(y) <!>( ( )) 
u, y Ll\ ( y) ' w >-4 o, y, w , (4.2) 

is a version of~,. The formula for L\~(y) is pro
vided by (the numerator of) the Kallianpur
Striebel formula (slightly modified by a partial 
integration to remove the dy, term). By means of 
some explicit estimates on the terms occurring in 
the formula for Ll~(y) it is shown that Ll~(y) is 
continuous, and that L\~( h) has a density n ,( y) for 
<f> bounded. 

Moreover one shows that n, ( y) is smooth, that 
is in.% if y is smooth. More importantly one shows 
that n,(y) as a family of densities depending ony 
is a smooth family in a certain technical sense. In 
particular this implies that if y(t) is such that 

ti+I + ... +tm.,,;;t.,,;;ti+ ... +t,,,, 

i=l, .. .,m, 

then n, ( y) depends smoothly on t 1, ..• , t,,, in the 
sense that n,(y)(x) is a jointly smooth function of 
11, .•. ,Im, X. 

Directly from the formula for Ll~(y) one shows 
that (t, x) >-4 n,(y)(x) satisfies the (DMZ) PDE 
(belonging to the cubic sensor) 

-=--+ x 3u(t)-- p ap 1 a2p ( x 6 ) 

at 2 ax 2 2 , ( 4.3) 

p(O, x) = n0 (x ), u = y. 

Note that we first establish existence and 
smoothness of n 1 ( y )( x) and afterwards prove that 
it satisfies the DMZ equation. 

Let exp(tL(ii))if denote the solution of (4.3) 
thus obtained with 

if = n 0 ( x) = density of x in, 

y(t)=ii, O.,,;;r.,,;;t, 

and let 

where 

1 a2 l 6 3 
Lo= -2 -" - 2x ' Li = x . ax-
Then it readily follows that 

a"' 
at"' exp(t1L(ii1 ) · · · t,,,L(u,J) 

= L(ii1 ) exp(t1L(ii1 )) • • • 

· · · L ( iin,)exp( tmL (ii,,,)) if. (4.4) 

4.5. Robustness of the filter. Now consider a sto
chastic differential on a manifold M (in the 
Stratonivic sense) with an output map and initial 
state driven by the (observation) process y, 

dz = a(z)dt + ,B(z)dy, 

z(O) = zin, z ~ y(z) E IR, z EM 
(4.6) 

(such as we would have for a filter for ~. cf. 2.4 
above). Let y E C, be given (not necessarily dif
ferentiable). Then r ~ z( r ), 0.,,;; r.,,;; t, is said to be 
a solution of ( 4.6) if there exists a neighbourhood 
U of y in C, and a continuous map jJ>-4z(y), 
Uc C([O, t], M) such that z(.P) in a solution of 
(4.6) in the usual sense of ODE's for all once 
differentiable y. It is now a theorem that up to a 
stopping time ( 4.6) admits solutions in this sense 
(where now y,( w) is an observation process), cf. 
[21] for details, cf. also [17] for the case that y, is a 
Wiener process; the same techniques apply. 

Denoting the stopping time with T it readily 
follows that if ( 4.6) is a filter for a cubic sensor 
then 

o,<f> ( y ) = y ( z ( y ) ( r ) ) (4.7) 

holds everywhere whenever t > 0, y EC,, T(y) > t. 

5. System-theoretic part III. Realization theory 

5.1. Some differential topology on.%. Let Uc.% be 
the open subset of all if such that ji/;(x) dx > 0. 
Let <P : U ~ IR be a functional of the form 

<P (if;) = ( j if; ( x) dx )-
1 j cp ( x) if; ( x) dx. 

Then <P is smooth in the sense that it takes a 
smooth family of densities depending on a finite 
number of parameters into a smooth function of 
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these parameters. In particular because n ,( y) is a 
smooth family, we have that o/'(y) is a smooth 
function of t i • ... 't m for y of the form described 
just above (4.3) in the previous section. 

To a continuous (linear) operator L: .'F - %"one 
naturally associates a (linear) vector field L on %" 
defined by the formula 

- d I (L<P)'</;= dt t=O<P(if;+ tL-.f;), 

and the map L ~ L is an anti-homomorphism of 
Lie algebras, i.e. [Li, L 2 ]= [Li, L 2 r. 

Using the L one has for smooth functionals <P 

()"' I - -. <f>(e'iL(u1)···1,,,f.(11,,.)'f) at ... a1 
l nz 11 = ··· = r m = () 

=L(u,,,)· · · L(ui)<P(..J;). (5.2) 

5.3. Lie-algebraic implications of the existence of a 
smooth filter. The (much easier and well known) 
analogue of (5.2) for a system (4.6) evolving on a 
smooth finite-dimensional manifold M is 

Clt1 _a_~ otm I,,= ... =tm=O 

Y('77'(U1, t 1 )· · • 7r(u,,,, t,,,); z) 

=(A( um)··· A(u1 ) y)(z) 

where 

(5 .4) 

is the point of M reached at time t = ti + · · · + tm 

by starting in z and evolving along 

z =a( z) + u( t )/3( z) 

with 

u(t) = U; for ti+ 1 + · · · + tm,;;;; t,;;;; t1 + · · · + t,,,. 

HereA(u) is the vector field a(z)+u/3(z). 
Let L 1 be the Lie algebra generated i(-1), 

L(l) and L 2 the Lie algebra generated by A(-1) 
and A (l ). Let I denote the ideal in L 2 consisting of 
the vector fields V such that 

( V1,[ V2,[. .. [ Vm,V] ... ] y(z) = 0 

for all VI, ... , vm E L2. 
(5.5) 

Combining (5.2), (5.4) and (4.7) it follows that 
L( -1) ~ A(-1), L(l) ~ A(2) defines a homomor-
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phism of Lie algebras 

LI - L2I. (5 .6) 

One now uses fairly standard realization-theo
retic arguments to show that (for suitable z) L 2 I is 
(locally near z) the Lie algebra of vector fields of 
the reachable and observable sub-quotient M 3 of 
M. Thus from the existence of a smooth filter for 
the cubic sensor the existence results of a homo
morphism of Lie algebras 

(5.7) 

for some smooth finite-dimensional manifold. 
The final result in this section is: 

5.8. Lemma. Assume that the homomorphism v of 
Lie algebras of (5.7) is zero and assume that Li 
contains all the operators 

d k 
dx x , k = 0, 1, 2, .... 

Then </> is constant almost everywhere. 

6. Algebraic part 

6.1. The Wey! Lie algebras W,,. The Wey! Lie 
algebra W,, is the algebra of all differential opera
tors (any order) in 

a a 

with polynomial coefficients. The Lie bracket op
eration is of course the commutator 

A basis for W1 (as a vector space over IR) consists 
of the operators 

a1 
x' ()xi, i,j = 0, 1, 2, ... , 

where of course 

. ao . 
x 1-=x 1 , ax 0 

a1 a1 
xo-.=-., 

ax 1 ox1 

One has for example 

- x 2 =4x-+2 [ a
2 

] a ox 2 , ax 

ao 
xo-= 1. 

ax 0 

( 6.2) 
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as is easily verified by calculating 

[ a2 ] 82 . a2 
-;2•x 2 f(x) = -;2(x 2f(x))-x 2 - 7 (/(x)) 
ux ux ax-

for an arbitrary test !'unction (polynomial) f ( x ). 
Some easy facts (theorems) concerning the Wey! 

Lie algebras Wn are ( cf. [7] for proofs): 

6.3. Proposition. The Lie algebra W,, is generated 
(as a Lie algebra) by the elements 

X;, d2/dx;, X;2 (CJ/dx,), i=l, ... ,n; 

In particular W1 is generated by 

6.4. Proposition. The only nontriuial ideal of W,, is 
the one-dimensional ideal IR 1 of scalar multiples of 
the identity operator. 

If M is a C 00 differentable manifold let V( M) 
denote the Lie algebra of all C 00 vector fields on 
M (i.e. the Lie algebra of all derivations on the 
ring of smooth functions on M ). If M = ~ n, V(IR n) 
is the Lie algebra of all differential operators of 
the form 

with g;(x 1, ••• ,xn) a smooth function on !Rn. 
A deep fact concerning the Wey! Lie algebras 

W,, is now: 

6.5. Theorem. Let M be a finite-dimensional smooth 
manifold. Then there are no nonzero homomor
phisms of Lie algebras W,, --> V( M) or W,,/IR 1 --> 

V(M)for n;;. l. 

The original proof of this theorem [6] is long 
and computational. Fortunately there now exists a 
much better proof (about two pages) of the main 
and most difficult part [15], essentially based on 
the observation that the associative algebra W1 

cannot have left ideals of finite codimension. For 
some more remarks about the proof cf. 6.8 below. 

6.6. The Lie algebra of the cubic sensor. According 
to Section 2 above the estimation Lie algebra 
L(2) of the cubic sensor is generated by the two 

operators 

1 d2 
L =- -- _ lx6 

o 2 dx2 2 ' 

Calculating [ L 0 , L iJ gives 

> d 
C= 3x- dx + 3x. 

Let adc(-) = [ C, -]. Then (adc )3 = B =Const. x 6 

which combined with A gives as that (d 2/dx 2 ) E 

L(2). To show that also x 2(d/dx) E L(2) re
quires the calculation of some more brackets (about 
15 of them). For the details cf. (6]. Then 

d d 2 
X, x 2-d , - E L(z) 

x dx2 

which by Proposition 6.3 implies: 

6.7. Theorem. The estimation Lie algebra L(2) of 
the cubic sensor is equal to the Wey! Lie algebra W1• 

In a similar manner one can e.g. show that the 
estimation Lie algebra of the system 

dx, = dw,, dy, = x,dt +ex:+ du, 

is equal to W1 for all e * 0. It seems highly likely 
that this is a generic phenomenon, i.e. that the 
estimation Lie algebra of a system of the form 

dx, = f(x,)dt + G(x,)dt, 

dy, = h(x,)dt +du,, 

with x E IR n and f, G and h polynomial, is equal to 
W,, for almost all (in the Zariski topology sense) 
polynomials f, G, h. 

6.8. Outline of the proof of the nonembedding theo
rem 6.5. Let V,, be the Lie algebra of all expres
sions 

(6.9) 

where / 1 ( x ), ... Jn ( x) are formal power series in 
Xp ... ,xn. (No convergence properties are re
quired.) Suppose that 

a: W,,--> V(M) (6.10) 

is a nonzero homomorphism of Lie algebras into 
some V( M) with M finite dimensional. Then there 
is a DE W,, and an m EM such that the tangent 
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vector a( D )( m) '4' 0. Now take formal Taylor series 
of the a( D) around m (with respect to local coor
dinates at m) to find a nonzero homomorphism of 
Lie algebras 

a: W,,--. V,,, ( 6.11) 

where m = dim(M). 
Observe that W1 is a sub-algebra of W,, (consist

ing of all differential operators not involving x,, 
i ~ 2, and a;ax;, j ~ 2) so that it suffices to prove 
Theorem 6.5 for the case n = 1. 

Because the only nontrivial ideal of W1 is IRl 
(cf. Proposition 6.4) the existence of a nonzero 
a : wl --> V,,, implies that WI or W1/IR 1 can be 
embedded in V,,,. 

The Lie algebra V,,, carries a filtration 

V =L -::;L -:JL-:::; ... m -l O l 

where the L; are sub-Lie algebras. This filtration 
has the following properties: 

(6.12) 
00 

n L;= {O}, (6.13) 
;~ -1 

dim(L_ 1/L,)<oo, i=-1,0,l, ... , ( 6 .14) 

where dim means dimension of real vector spaces. 
Indeed let 

(6.15) 
p 

v = (v 1,. .. , vm), v; E 1\1 U {O} a multi-index, be the 
explicit power series for /;(x). Then L1 c V111 con
sists of all formal vector fields (6.15) for which 

a;,v = 0 for all v with Iv! ~j (6.16) 

where lvl = v1 + · · · + vm. 
If there were an embedding WI --> vm or 

W1/IR1--> f7n,, the Lie algebra W1 or W1/11\n would 
inherit a similar filtration satisfying (6.12)-(6.15). 
One can now show, essentially by brute force 
calculations, that W1 and W1/1Rl do not admit 
such filtrations. Or much better one observes that 
(6.12) and (6.14) say that L,, i = 0, 1, 2,. .. , is a 
subalgebra of finite codimension and applies Toby 
Stafford's result (15] that W1 has no such sub-Lie 
algebras. 
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7. Putting it all together and concluding remarks 

To conclude let us spell out the main steps of 
the argument leading to Theorem 2.10 and finish 
the proof together with some comments as to the 
generalizability of the various steps. 

We start with a stochastic system, in particular 
.the cubic sensor 

dx = dw, x(O) = x 1n, dy = x 3dt +du (7.1) 

described more precisely in 2.1 and with a rea
sonable function <P of the state of which we want 
to compute the conditional expectation~,. 

The first step now is to show that there exists a 
pathwise and robust version of~,. More precisely 
it was shown in Section 4 that there exists a 
functional 

Ll<P( r') 
o,1' ( y) = .11: ( ~,) , .11; ( y) = ( N, ( y), <P), (7 .2) 

such that the measures N,( y) depend continuously 
on the path y: [O, t] --> IR, such that .11, ( y) > 0 for 
all t > 0, such that the density n, ( y) is smooth and 
such that for y(t)=y,(w)='yw(t) a sample path 
of (7.1), 

~,(w)=o,<P(y"'). (7.3) 

From this we also obtained in the case of the 
cubic sensor that n 1 ( y )( x) as a function of ( t, x) 
satisfies the (control version of the) DMZ equation 

:tn,(x) = ( ~ a~2 - ~x 6 )n,(y)(x) 

+ n,(y )(x)y(t )x 3 (7.4) 

for piecewise differentiable functions y: [O, t)--> IR. 
And we showed that the family of densities n ,( y ), 
as a function of t, is smooth as a function of 
t 1, ... ,t,,, if y=u with u a bang-bang control of 
the type u(t) = u1 E IR for 

t 1 + ... +t,_ 1 ~t~t 1 + ···+t,, lu,i=l. 

This whole bit is the part of the proof that 
seems most resistant to generalization. At present 
at least this requires reasonable growth bounds on 
the exponentials occurring in the Kallianpur
Striebel formula (that is the explicit pathwise ex
pressions for Ll~( y )). In particular let us call a 
family <I>, of continuous maps C, -i. IR a pathwise 
version of ~,, if 
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y"'·'(s)=y,(w), O...;s.,,;;t, 

is a version of ~,. Then it is not at all clear that 
pathwise versions exist for arbitrary nonlinear 
filtering problems. 

Now suppose that there exists a smooth finite
dimensional filter for~,. That is a smooth dynami
cal system 

dz=a(z)+.B(z)dy, y:M~IR. z{O)=zin, 

(7.5) 

such that if zy(t) denotes the solution of (7.5) then 

y ( z \ ( t ) ) = ~/ = 8/' ( y ) (7.6) 

almost surely. As described in 4.5 above up to a 
stopping time there also exists a robust pathwise 
version of the solutions of (7.5) so that z ,.(t) exists 
for all continuousy and so that (7.6) holds always. 
Now let 

and 

L ( ii) = L 0 + uL 1 • 

The next step is to use the smoothness of 

(7.7) 

for smooth if; as a function of t 1, .. .,tm, that is 
the smoothness of n, ( y )( x ), and to calculate 
o"'/ot1 • • • otm of (7.7). The result being formula 
( 4.4). 

The next thing is to reinterpret a differential 
operator on §as a linear vector field L on §by 
giving meaning to L@ for tP a functional§~ IR, 
for instance a functional of the form 8/'(y). 

This permits us to give meaning to expressions 
like 

Cl"' ____ !.l<l>(y)j t=t1 + ... +tm, a a u, 1,=···=1-0• 
f1 • .. lm m 

(7.8) 

for y EC, with y = u a bang-bang function. The 
same operator can be applied to the left-hand side 
of (7 .6) and as both sides depend smoothly on 
t 1, .•• , t"' there results from (7 .6) an equality of the 
type 

(A ( u,J · · · A ( ii1 )y )( z) 

=(L(un.)"· L(u1)<I>)(..PJ (7.9) 

where z e Mand o/. e~are corresponding quanti
ties in that they r~sult from feeding in the same 
control function y(t) to the evolution equations 
for z and ..p respectively. 

This relation in turn using some techniques 
familiar from nonlinear realization theory ( essen
tially restriction to the completely reachable and 
observable subquotient of M) then implies that 
there is a homomorphism of Lie algebras from the 
Lie algebra L(2) generated by L 0 and L 1 to a Lie 
algebra of smooth vector fields. Moreover under 
the rather inelegant extra assumption that L(2) 
contains the operator (d/dx)xk it can be shown 
that <P must have been constant if this homomor
phism of Lie algebras is zero (Lemma 5.8). 

The final part is algebra and shows (i) that 
L(2) = W1 so that in particular (d/dx)xk E L(2) 
for all k = 0, 1, ... and (ii) there are no nonzero 
homomorphisms of Lie algebras W1 ~ V( M 1 ) for 
M 1 a smooth finite-dimensional manifold. Thus 
both hypotheses of Lemma 5.3 are fulfilled and <P 
is a constant. This proves the main theorem 2.10. 

It seems by now clear [6] that the statement 

L(2) = Wk, k = dim{state space) 

will turn out to hold for a great many systems 
(though anything like a general proof for certain 
classes of systems is lacking). The system-theoretic 
part of the argument is also quite general. The 
main difficulty of obtaining similar more general 
results lies thus in generalizing the analytic part or 
finding suitable substitutes for establishing the 
homomorphism principle, perhaps as in [ll]. 

It should also be stressed that the main theorem 
2.10 of this paper only says things about exact 
filters; it says nothing about approximate filters. 
On the other hand it seems clear that the 
Kalman-Bucy filter for x, for 

dx = dw, dy = xdt + dv (7.10) 

should for small e give reasonable approximate 
results for 

dx = dw, dy = (x + ex 3 )dt + dv. (7 .11) 

Yet the estimation Lie algebra of (7.ll) is fore-=!= 0 
also equal to W1 (a somewhat more tedious calcu
lation, cf. [5]) and the arguments of this paper can 
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be repeated word for word (practically) to show 
that (7.11) does not admit smooth finite-dimen
sional filters (for nonconstant statistics). Positive 
results that the Kalman-Bucy filter of (7.10) does 
give an approximation to :X1 for (7.11) are con
tained in [5,19,1]. 

It is possible that results on approximate filters 
can be obtained by considering L(2) not as a bare 
Lie algebra but as a Lie algebra with two dis
tinguished generations L 0 , L 1 which permits us to 
consider also the Lie algebra Ls(2) generated by 
sL0 , sL 1 (where s is an extra variable) and to 
consider statements like L,(2) is close to Ls(2') 
modulo s'. 

References 

[1] G.L. Blankenship, C.-H. Liu and S.I. Marcus, Asymptotic 
expansions and Lie algebras for some nonlinear filtering 
problems, IEEE Trans. Automat. Control 28 (1983). 

[2] R.W. Brockett, Nonlinear systems and nonlinear estima
tion theory, in: [9], pp. 441-478. 

[3] J.M.C. Clark, The design of robust approximations to the 
stochastic differential equations of nonlinear filtering, in: 
J.K. Skwirzynski, Ed., Communication Systems and Ran
dom Process Theory (Sijthoff and Noordhoff, Alphen a/d 
Rijn, 1978). 

(4] M.H.A. Davis, A pathwise solution to the equations of 
nonlinear filtering, Teor. Verojatnost i. Prim. 27 (1) (1982) 
160-167. 

[5] M. Hazewinkel, On deformations, approximations and 
nonlinear filtering, Systems Control Lett. 1 (1981) 32-36. 

[6] M. Hazewinkel and S.I. Marcus, Some facts and specula
tions on the role of Lie-algebras in nonlinear filtering, in: 
[9], pp. 591-604. 

[7] M. Hazewinkel and S.I. Marcus, On Lie algebras and 
finite dimensional filtering, Stochastics 7 (1982) 29-62. 

[8] M. Hazewinkel, S.l. Marcus and H.J. Sussmann, Nonex-

340 

istence of finite dimensional filters for conditional statis
tics of the cubic sensor problem, Report MB178, 1983, 
Mathematical Centre Amsterdam (also to appear in Coll. 
ENST-CNET, Developpements Recents dans le Filtrage et 
le Contro/e des Processus Aleatoires, Leet. Notes in Inform. 
Sci. and Control, Springer). 

[9] M. Hazewinkel and J.C. Willems, Editors, Stochastic Sys
tems: The Mathematics of Filtering and Identification and 
Application (Reidel, Dordrecht, 1981). 

[10] R. Hermann, On the accessibility problem in control 
theory, in: Internal. Symp. on Nonlinear Differential Equa
tions and Nonlinear Mechanics (Academic Press, New York, 
1963), pp. 325-332. 

[11] 0. Hijab, Finite dimensional causal functionals of 
Brownian motion, in: Proc. NATO-AS! Nonlinear Sto
chastic Pr~blems, Algarve, 1982 (Reidel, Dordrecht, 1983). 

[12] S.l. Marcus, S.K. Mitter and D. Ocone, Finite dimensional 
nonlinear estimation for a class of systems in continuous 
and discrete time, in: Proc. Internal. Conf on Analysis and 
Optim. of Stoch. Systems, Oxford, 1978 (Academic Press, 
New York, 1980). 

[13] S.K. Mitter, Nonlinear filtering and stochastic mechanics, 
in: [9], pp. 479-504. 

[14] S.K. Nagano, Linear differential systems with singularities 
and an application to transitive Lie algebras, J. Math. Soc. 
Japan 18 (1966) 398-404. 

[15] T. Stafford, On a result of Hazewinkel and Marcus, to 
appear. 

[16] H.J. Sussmann, Existence an uniqueness of minimal reali
zations of nonlinear systems, Math. Systems Theory 10 
(1977) 263-284. 

[17] H.J. Sussmann, On the gap between deterministic and 
stochastic ordinary differential equations, Ann. Probab 6 
(1978) 19-41. 

[18] H.J. Sussmann, Rigorous results on the cubic sensor prob
lem, in: [9], pp. 637-648. 

(19] H.J. Sussmann, Approximate finite-dimensional filters for 
some nonlinear problems, Systems Control Lett., to appear. 

[20] H.J. Sussmann, Rigorous results on robust nonlinear filter
ing, Stochastics, to appear. 

[21] H.J. Sussmann, Nonexistence of finite-dimensional filters 
for the cubic sensor problem, to appear. 


