Brzozowski’s algorithm (co)algebraically

F. Bonchi!, M.M. Bonsangue?3, J.J.M.M. Rutten®*, A.M. Silva®%5

1 ENS Lyon, Université de Lyon
2 LIACS - Leiden University
3 Radboud University Nijmegen
4 Centrum Wiskunde & Informatica
5 Universidade do Minho

Abstract. We give a new presentation of Brzozowski’s algorithm to
minimize finite automata, using elementary facts from universal algebra
and coalgebra, and building on earlier work by Arbib and Manes on the
duality between reachability and observability. This leads to a simple
proof of its correctness and opens the door to further generalizations.

1 Introduction

Brzozowski’s algorithm [6] is a somewhat unusual recipe for minimizing
finite state automata: starting with a (possibly non-deterministic) au-
tomaton, one reverses its transitions, makes it deterministic, takes the
part that is reachable, and then repeats all of this once more. The result
will be a deterministic automaton that is the minimization of the original
one.

Though an elementary description and correctness proof of the algo-
rithm is not very difficult (see for instance [13, Cor. 3.14]), the algorithm
comes to most as a bit of a surprise. Here we try to add to its understand-
ing by presenting a proof that is based on a result by Arbib and Manes
[2,3] on the duality between reachability and observability (the latter is
another word for minimality).

We will first present a reformulation of Arbib and Manes’ duality re-
sult in terms of a bit of elementary algebra and coalgebra. These are the
natural mathematical settings for the modelling of reachability and ob-
servability, respectively. Ultimately, their duality is due to the fact that
the transitions of an automaton X (with input alphabet A) can be mod-
elled both algebraically, as a function of type X x A — X and coal-
gebraically, as a function of type X — X4. Next, we will derive (the
correctness of) Brzozowski’s algorithm as a corollary from this duality.

Our reasons for giving this new formulation of Brzozowski’s algorithm
are the following.



First, the duality between reachability and observability, on which we
will base our proof, is in itself a very beautiful result that, unfortunately,
it is not very well-known. The original proof by Arbib and Manes uses
some category theory that makes it for many difficult to understand.
Although our proof of this duality is in essence categorical as well, we
have formulated it in elementary terms, using only the notions of sets
and functions. As a result, the present paper should be understandable
to anyone with a very basic understanding of automata.

Secondly, Brzozowski’s algorithm follows as an immediate corollary of
this (newly formulated) duality result. This observation gives a new way
of understanding the algorithm and makes a formal proof of its correction
very easy.

Thirdly, we expect that our proof of Brozowski’s algorithm is easy to
generalise. The present paper contains the straightforward generalisation
of the algorithm to Moore automata. We mention further applications, to
weighted and to probabilistic automata, as future work.
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2 Rechability and observability

Let 1 = {0}, 2= {0,1} and let A be any set. A deterministic automaton
with inputs from A is given by the following data:

That is: a set X of states; a transition function ¢: X — X4 mapping
each state z € X to a function #(x): A — X that sends an input symbol
a € A to a state t(x)(a); an initial state i € X (formally denoted by a
function i: 1 — X); and a set of final (or accepting) states given by a
function f: X — 2, sending a state to 1 if it is final and to 0 if it is not.



We introduce reachability and observability of deterministic automata
by means of the following diagram:
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L, Ak )
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in the middle of which we have our automaton X.
On the left, we have the set A* of all words over A, with the empty
word € as initial state and with transition function

a: A = (A aw)(a) =w-a

On the right, we have the set 24" of all languages over A, with tran-
sition function

B:2 = (2 B(L)(a)={we A" |a-we L}
and a final state function
€?:24" 59

that maps a language to 1 if it contains the empty word, and to O if it
does not.

Horizontally, we have functions r and o that we will introduce next.
First we define x,,, for x € X and w € A*, inductively by

Te=2T  Tyq=t(Tyw)(a)
With this notation, we now define
r:AY = X r(w) =iy

and
0: X =24 o(x)(w) = flzw)

Thus r sends a word w to the state i,, that is reached from the initial state
i € X by inputting (all the letters of) the word w. And o send a state z
to the language it accepts. That is, switching freely between languages as
maps and languages as subsets,

o(x) ={we A" | f(xw) =1} (3)



We think of o(x) as the semantics or the behavior of the state x.

The functions r and o are homomorphisms in the precise sense that
they make the triangles and squares of diagram (2) commute. In order
to understand the latter, we note that at the bottom of the diagram, we
use, for f:V — W, the notation

fAaavA s wA

to denote the function defined by f4(¢)(a) = f(¢(a)), for ¢p: A — V and
a€ A

One can readily see that the function r is uniquely determined by
the functions ¢ and ¢; similarly, the function o is uniquely determined by
the functions ¢t and f. In categorical terms, the unique existence of r is
a consequence of A* being an initial algebra of the functor 1+ (A x —);
similarly, the unique existence of o rests on the fact that 24" is a final
coalgebra of the functor 2 x (—)4.

Having explained diagram (2), we can now give the following defini-
tion.

Definition 1 (reachability and observability). A deterministic au-
tomaton X is reachable if r is surjective. It is observable if o is injective.

Thus X is reachable if all states are reachable from the initial state:
for every x € X there exists a word w € A* such that i, = z. And X
is observable if different states recognize different languages or, in other
words, if they have different observable behavior. We note that an observ-
able automaton is also minimal: it does not contain any pair of (language)
equivalent states. In what follows, we shall therefore use the words ob-
servable and minimal as synonyms.

3 Constructing the reverse of an automaton

Next we show that by reversing the transitions, and by swapping the
initial and final states of a deterministic automaton, one obtains a new
automaton accepting the reversed language. By construction, this au-
tomaton will again be deterministic. Moreover, if the original automaton
is reachable, the resulting one is minimal.

Our construction will make use the following operation:

2(=) . fJ — Lf

W oW



which is defined, for a set V, by 2V = {S | S C V} and, for f: V — W
and S C W, by

2f oW L9V 2f(S)={ve V| fv)e S}
(In categorical terms, this is the contravariant powerset functor.)

The main construction: Given the transition function ¢t: X — X4 of our
deterministic automaton, we apply, from left to right, the following three
transformations:

X || X x A|2Xx4 | (25)4

L LT T

x4 X 92X |l 9x

The single, vertical line in the middle corresponds to an application of
the operation 2(=) introduced above. The double lines, on the left and
on the right, indicate isomorphisms that are based on the operations of
currying and uncurrying. The end result consists of a new set of states:
2X together with a new transition function

ot 2X 5 (254 249)(a) = {z € X | t(z)(a) € S}

which maps any subset S C X, for any a € A, to the set of all its a-
predecessors. Note that our construction does two things at the same
time: it reverses the transitions (as we shall see formally later) and yields
again a deterministic automaton.

Initial becomes final: Applying the operation 2(2) to the initial state
(function) of our automaton X gives

1] 2
{ Tzi
X

2X

(where we write 2 for 2!), by which we have transformed the initial state
i into a final state function 2! for the new automaton 2%. We note that
according to this new function 2¢, a subset S C X is final (that is, is
mapped to 1) precisely when i € S.



Reachable becomes observable: Next we apply the above construction(s)
to the entire left hand-side of diagram (2), that is, to both ¢ and i and
to v and e, as well as to the functions ~ and r4. This yields the following

commuting diagram:
2i
26
27‘

2X 2A*

1)

(QX)A 7} (2A*)A
27‘
We note that for any language L € 247, we have 2¢(L) = €?(L) and, for
any a € A,
2%(L)(a) ={we A" |w-a € L}

The latter resembles the definition of S(L)(a) but it is different in that
it uses w - a instead of a - w. By the universal property (of finality) of the
triple (24", 3, €?), there exists a unique homomorphism

b

24" _ Il 047

(5)
2{ L@’

(QA*)A _ 73 (2A*)A
rev

which sends a language L to its reverse
rev(L) = {w € A* |wR € L}

where w® is the reverse of w.
Combining diagrams (4) and (5) yields the following commuting dia~
gram:
2

€?




Thus we see that the composition of rev and 2" (is the unique function
that) makes the following diagram commute:

e

9X _ el L 9A* O=revo?’

1)

(QX)A 707,4% (2A*)A
One can easily show that it satisfies, for any S C X,
0(S) = {w? € A* | i, € S} (7)

Final becomes initial: The following bijective correspondence

2 1
fT J{f
X || 2X

(again an instance of currying) transforms the final state function f of the
original automaton X into an initial state function of our new automaton
2% which we denote again by f. It will induce, by the universal property
of (A%, €, &), a unique homomorphism as follows:

1
J f
* 7R7 X
A -2 (8)

(A*)A 7};49 (2X)A

Putting everything together: By now, we have obtained the following, new
deterministic automaton:



where the above diagram is simply the combination of diagrams (8) and
(6) above.

Theorem 2. If the original automaton X 1is reachable, that is, if r is
surjective, then the new automaton 2% is observable, that is, O is injec-
tive. Furthermore, the language accepted by the initial state f of the new
automaton 2% is the reverse of the language accepted by the initial state
i of the new automaton 2%.

Proof. As the operation 2(=) transforms surjections into injections, reach-
ability of X implies observability of 2%. The second statement follows
from the fact that we have

O(f) ={w e A* | 2°(f,) = 1}
= {wf e A" |i, € f}  [by identity (7)]
=rev({w € A" | iy € f})
= rev(o(i))

O

Ezample 3. We consider the following two automata. In the picture be-
low, an arrow points to the initial state and a double circle indicates that
a state is final:

(10)

The automaton on the left is reachable (but not observable, since y and z
accept the same language {a,b}*a + 1). Applying our construction above
yields the automaton on the right, which is observable (all the states ac-
cept different languages) but not reachable (e.g., the state {x, y}, denoted
by zy, is not reachable from the initial state {y, z}). Furthermore, the lan-
guage accepted by the state {y, z} on the right: a{a,b}*, is the reverse of
the language accepted by the state x on the right, which is {a,b}*a. O



4 Brzozowski’s algorithm

As an immediate consequence, we obtain the following version of Brzo-
zowski’s algorithm.

Corollary 4. Applying the above construction to a deterministic and
reachable automaton accepting a language L yields a minimal automaton
accepting rev(L). Taking of the latter automaton the reachable part, and
applying the same procedure again yields a minimal automaton accepting

L.

Example 3 continued: We saw that applying our construction to the first
automaton of Example 3 resulted in the second automaton given there. By
taking the reachable part of the latter, we obtain the automaton depicted
below on the left (where 1 = {y, 2z}, 2 = {z,y, 2} and 3 = 0):

(u)

The automaton on the right is obtained by applying our construction
once more. It is the minimization of the automaton we started with. O

5 Moore automata

Moore automata generalise deterministic automata by allowing outputs
in an arbitrary set B, rather than just 2. Formally, a Moore automaton
with inputs in A and outputs in B consists of a set of states X, an initial
state i: 1 — X, a transition function t: X — X4 and an output function
f: X — B. Moore automata accept functions in BA" (that is functions
¢: A* — B) instead of languages in 24",

Here is in a nutshell how our story above can be generalised to Moore
automata. We can redraw diagram (2) by simply replacing 2 with B. We
then define reachability and observability as before. Next we adopt our



procedure of reversing transitions by using (the contra-variant functor)
B©) instead of 2(7): for all sets V, BY = {¢: V — B} and, for all
functions g: V. — W, the function B9: BY — BY maps each ¢ € BV
to BY(¢) = ¢ o g. Finally, all the results discussed above will also hold
for Moore automata. The next example illustrates the minimization of a
Moore automaton.

FEzxample 5. We consider the following Moore automaton with inputs in
A = {a,b} and output in the set of real numbers R. In the picture below,
the output value r of a state s is indicated inside the circle by s/r:

The automaton accepts a function in R4" mapping every word w ending
with ba to 1, every word ending with b to % and every other word to %
Clearly the automaton is reachable from p. However it is not observable,
since, for example, the states p and ¢ accept the the same function.
Applying our construction above yields a Moore automaton with R
as set of states, where S = {p, q, s,t,u} is the set of states of the original
automaton. The output value of a state ¢: S — R is given by é(p),
where p is the initial state of the original automaton. Further, the output
function of the original automaton becomes the new initial state, i.e., the
function ¢g: S — R mapping p and g to %, t and u to %, and u to 1. By
the above results, it follows that the automaton is observable. It is not
reachable, as it contains infinitely many states, and there are only five

states reachable from ¢g, as we can see in the picture below.

(13)




We do not spell out the full definition of the above states. As an example,
the state ¢ consists of the map assigning p, ¢ and s to %, and t,u to 1.
Note that the function in R4" accepted by the state ¢g maps each words
w € {a,b}* to the same value where the reverse word w’ is mapped
by the function accepted by the original automaton in Figure 12. More
formally, it maps words which begin with ab to 1, words which begin with
b to %, and all other words to %

If we repeat the same construction one more time, and take the reach-
able automaton from the initial state we obtain the minimal Moore au-
tomaton equivalent to the one in Figure 12:

(14)

6 Discussion

We have given a new description and a new correctness proof of Brzo-
zowski’s algorithm [6] for the minimization of deterministic automata.
Next we have shown how to generalise the algorithm to deterministic
Moore automata.

There are several other, sometimes more efficient minimization algo-
rithms for finite automata [8]. But even though the complexity of Br-
zozowski’s algorithm is double exponential in the worst case (essentially
because it applies the contravariant powerset construction twice), the al-
gorithm has been shown to behave rather well in practice, at least for
non-deterministic automata [16].

Our proof of correctness of the algorithm is based on the duality
between reachability and observability, which is due to Arbib and Manes
[2, 3]. Our formulation uses, albeit implicitly, a bit of (standard) universal
algebra and coalgebra [12]. In particular we have given a simple proof that
the resulting automaton is minimal, where minimality means that the
automaton does not contain two different states with the same observable
behaviour. Our method can be applied also to automata with infinitely
many states.

The duality between reachability and observability has been studied
also in other contexts. In [4], this duality is used to establish several analo-



gies between concepts from observational (coalgebraic) and constructor-
based (algebraic) specifications. In the present paper, we have highlighted
how Brzozowski’s algorithm integrates both concepts, for the specific case
of deterministic and Moore automata.

Yet another approach, but somewhat similar in spirit to ours, can
be found in [5], where a Stone-like duality between automata and their
logical characterization is taken as a basis for Brzozowski’s algorithm. The
precise connection between that approach and the present paper, remains
to be better understood. More generally, it is a challenge to try and
generalise Brzozowski’s algorithm to various other types of coalgebras.

Crucial for our approach was the combined use of both algebra and
coalgebra. Notably, it was important to include in the definition of au-
tomaton an initial state, which is in essence an algebraic concept. In
coalgebra, one typically models automata without initial states. In that
respect, so-called well-pointed coalgebras [1], which are coalgebras with
a designated initial state, may have some relevance for the further gener-
alization of Brzozowski’s algorithm.

A somewhat different notion of nondeterministic Moore automata has
recently been introduced in [7]. It basically consists of a nondeterministic
automaton with output in a set that comes equipped with a commutative
and associative operator. Interesting for our context is their variant of
Brzozowski’s algorithm for the construction of a minimal deterministic
Moore automaton that is equivalent to a given nondeterministic one.

Brzozowski’s minimization algorithm has also been combined with
Brzozowski’s method for deriving deterministic automata from regular
expressions in [17]. It would be useful to investigate how such a com-
bination can be generalized to, for example, Kozen’s calculus of Kleene
algebras with tests [9]. All that is required for our approach is a deter-
ministic Moore automaton accepting the guarded language denoted by
the reverse of the input expression.

Brzozowski’s algorithm was originally formulated for nondeterminis-
tic finite automata [6]. Our present approach (as well as that of [5]) takes
a deterministic automaton as a starting point. Recently [15], we have pre-
sented a generalisation of the subset construction for the determinisation
of many different types of automata. Examples include Rabin’s proba-
bilistic automata [11] and weighted automata [14], to which our method
applies in spite of the fact that the resulting deterministic (Moore) au-
tomaton is infinite. How to minimize nondeterministic automata directly,
without having to introduce an extra determinisation step, is left as fu-
ture work. Also we would like to combine the results of the present paper



with those of [15] to generalise Brzozowski’s algorithm to probabilistic
and weighted automata.
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