
Automatic equivalence proofs for non-deterministic

coalgebras

Marcello Bonsanguea,d, Georgiana Caltaisb, Eugen-Ioan Goriacb,
Dorel Lucanuc, Jan Ruttend,e, Alexandra Silvae,d,f

aLIACS - Leiden University, The Netherlands
bSchool of Computer Science - Reykjavik University, Iceland

cFaculty of Computer Science - Alexandru Ioan Cuza University, Romania
dCentrum Wiskunde & Informatica, The Netherlands

eRadboud University Nijmegen, The Netherlands
fHASLab / INESC TEC, Braga, Portugal

Abstract

A notion of generalized regular expressions for a large class of systems modeled
as coalgebras, and an analogue of Kleene’s theorem and Kleene algebra, were
recently proposed by a subset of the authors of this paper. Examples of the sys-
tems covered include infinite streams, deterministic automata, Mealy machines
and labelled transition sytems. In this paper, we present a novel algorithm to
decide whether two expressions are bisimilar or not. The procedure is imple-
mented in the automatic theorem prover CIRC, by reducing coinduction to an
entailment relation between an algebraic specification and an appropriate set of
equations. We illustrate the generality of the tool with three examples: infinite
streams of real numbers, Mealy machines and labelled transition systems.

1. Introduction

Regular expressions and finite deterministic automata (DFA’s) constitute
two of the most basic structures in computer science. Kleene’s theorem [10]
gives a fundamental correspondence between these two structures: each regu-
lar expression denotes a language that can be recognized by a DFA and, con-
versely, the language accepted by a DFA can be specified by a regular expression.
Languages denoted by regular expressions are called regular. Two regular ex-
pressions are (language) equivalent if they denote the same regular language.
Salomaa [20] presented a sound and complete axiomatization (later refined by
Kozen in [11, 12]) for proving the equivalence of regular expressions.

The above programme was applied by Milner in [15] to process behaviours
and labelled transition systems (LTS’s). Milner introduced a set of expressions

Email addresses: marcello@liacs.nl (Marcello Bonsangue), gcaltais10@ru.is
(Georgiana Caltais), egoriac10@ru.is (Eugen-Ioan Goriac), dlucanu@info.uaic.ro
(Dorel Lucanu), janr@cwi.nl (Jan Rutten), alexandra@cs.ru.nl (Alexandra Silva)

Preprint submitted to Science of Computer Programming November 25, 2011

for finite LTS’s and proved an analogue of Kleene’s Theorem: each expression
denotes the behaviour of a finite LTS and, conversely, the behaviour of a fi-
nite LTS can be specified by an expression (modulo bisimilarity). Milner also
provided an axiomatization for his expressions, with the property that two ex-
pressions are provably equivalent if and only if they are bisimilar.

Coalgebras arose in the last decade as a suitable mathematical framework to
study state-based systems, such as DFA’s and LTS’s. For a functor G : Set →
Set, a G-coalgebra or G-system is a pair (S, g), consisting of a set S of states
and a function g : S → G(S) defining the “transitions” of the states. We call the
functor G the type of the system. For instance, DFA’s can be readily seen to
correspond to coalgebras of the functor G(S) = 2 × SA and image-finite LTS’s
are obtained by G(S) = Pω(S)

A, where Pω is finite powerset.
For coalgebras of a large class of functors, a language of regular expressions,

a corresponding generalization of Kleene’s theorem, and a sound and complete
axiomatization for the associated notion of behavioral equivalence were intro-
duced in [22]. Both the language of expressions and their axiomatization were
derived, in a modular fashion, from the functor defining the type of the system.

Algebra and related tools can be successfully used for reasoning on properties
of systems. In this paper, we present a novel method for checking for the
bisimilarity of generalized regular expressions using the coinductive theorem
prover CIRC [5, 17]. The main novelty of the method lies on the generality of
the systems it can handle. CIRC is a metalanguage application implemented in
Maude [4], and its target is to prove properties over infinite data structures. It
has been successfully used for checking the equivalence of programs, and trace
equivalence and strong bisimilarity of processes. The tool may be tested online
and downloaded from http://fsl.cs.uiuc.edu/index.php/Circ.

Determining whether two expressions are equivalent is important in order
to be able to compare behavioral specifications. In the presence of a sound and
complete axiomatization one can determine equivalence using algebraic reason-
ing. A coalgebraic perspective on regular expressions has however provided
a more operational/algorithmic way of checking equivalence: one constructs a
bisimulation relation containing both expressions. The advantage of the bisimu-
lation approach is that it enables automation since the steps of the construction
are fairly mechanic and require almost no ingenuity.

We remark that in theory it has been shown that both problems are in
PSPACE [13, 24], but in practice bisimulation checking tends to be easier. We
illustrate this with an example, to give the reader the feeling of the more al-
gorithmic nature of bisimulation. We want to stress however that we are not
underestimating the value of an algebraic treatment of regular expressions: on
the contrary, as we will show later, the axiomatization plays an important role
in guaranteeing termination of the bisimulation construction and is therefore
crucial for the main result of this article.

We show below a proof of the sliding rule: a(ba)∗ ≡ (ab)∗a. The algebraic
proof, using the rules and equations of Kleene algebra, needs to show the two

2

containments

a(ba)∗ ≤ (ab)∗a and (ab)∗a ≤ a(ba)∗

and it requires some ingenuity in the choice of the equation applied in each step.
We show the proof for the first inequality, the other would follow a similar proof
pattern.

a(ba)∗ ≤ (ab)∗a
⇐ a+ (ab)∗a(ba) ≤ (ab)∗a right-star rule
⇐⇒ (1 + (ab)∗ab)a ≤ (ab)∗a associativity and distributivity
⇐⇒ (ab)∗a ≤ (ab)∗a right expansion rule: 1 + r∗r = r∗

For the coalgebraic proof, we build incrementally, and rather mechanically,
a bisimulation relation containing the pair (a(ba)∗, (ab)∗a). We start with the
pair we want to prove equivalent and then we close the relation with respect
to syntactic language derivatives, also known as Brzozowski derivatives. In the
current example, the bisimulation relation would contain three pairs:

R = {(a(ba)∗, (ab)∗a), ((ba)∗, b(ab)∗a+ 1), (0, 0)}

where 1 and 0 are, respectively, the regular expressions denoting the empty
word and the empty language. In constructing this relation, no decisions were
made, and hence the suitability of bisimulation construction as an automatic
technique to prove equivalence of regular expressions.

The main contributions of this paper can be summarized as follows. We
present a decision procedure to determine equivalence of generalized regular
expressions, which specify behaviours of many types of transition systems, in-
cluding Mealy machines, labelled transition systems and infinite streams. The
valid expressions for each system are type-checked automatically in the tool.
We illustrate the decision procedure we devised by applying to several exam-
ples. As a vehicle of implementation, we choose CIRC, a coinductive theorem
prover which has already been explored for the construction of bisimulations.
To ease the implementation in CIRC, we present the algebraic specifications’
counterpart of the coalgebraic framework of the generalized regular expressions
mentioned above. This enables us to automatically derive algebraic specifi-
cations that model the language of expressions, and to define an appropriate
equational entailment relation which mimics our decision procedure for check-
ing behavioural equivalence of expressions. The implementation of both the
algebraic specification and the entailment relation in CIRC allows for automatic
reasoning on the equivalence of expressions.

The present paper is an extended version of the conference paper [2]. In
comparison with the aforementioned paper we have extended the tool to deal
with non-deterministic systems. More precisely, we have included the powerset
function in the class of functors considered. Moreover, we have included all the
proofs, more examples and additional explanations on the theory behind and
implementation of the tool.

3

Organization of the paper. Section 2 recalls the basic definitions of the language
associated to a non-deterministic functor. Section 3 describes the decision pro-
cedure to check equivalence of regular expressions. Section 4 formulates the
aforementioned language as an algebraic specification, which paves the way to
implement in CIRC the procedure to decide equivalence of expressions. The
implementation of the decision procedure and its soundness are described in
Section 5. In Section 6 we show, by means of several examples, how one can
check for bisimilarity, using CIRC. Section 7 contains concluding remarks and
pointers for future work.

2. Regular expressions for non-deterministic coalgebras

In this section, we briefly recall the basic definitions in [22].
Let Set denote the category of sets (represented by capital letters X,Y, . . .)

and functions (represented by lower case letters f, g, . . .). We write Y X for the
family of functions fromX to Y and Pω(X) for the collection of finite subsets of a
set X . The product of two sets X,Y is written as X×Y and has the projections
functions π1 and π2: X

π1←− X × Y
π2−→ Y . We define X ✸+ Y = X ⊎ Y ⊎ {⊥,⊤}

where ⊎ is the disjoint union of sets, with injections X
κ1−→ X ⊎ Y

κ2←− Y .
Note that the set X ✸+ Y is different from the classical coproduct of X and Y
(which we shall denote by X + Y), because of the two extra elements ⊥ and ⊤.
These extra elements are used to represent, respectively, underspecification and
inconsistency in the specification of some systems.

For each of the operations defined above on sets, there are analogous ones
on functions. Let f : X → Y , f1 : X → Y and f2 : Z → W . We define the
following operations:

f1 × f2 : X × Z → Y ×W f1 ✸+ f2 : X ✸+ Z → Y ✸+W

(f1 × f2)(x, z) = 〈f1(x), f2(z)〉 (f1 ✸+ f2)(c) = c, c ∈ {⊥,⊤}

(f1 ✸+ f2)(κi(x)) = κi(fi(x)), i ∈ 1, 2

fA : XA → Y A Pω(f) : Pω(X)→ Pω(Y)
fA(g) = f ◦ g Pω(f)(X1) = {y ∈ Y | f(x) = y, x ∈ X1}

Remark 1. For the sake of brevity, we use the notation i ∈ 1, n as a shorthand
for i ∈ {1, . . . , n}.

Note that in the definition above we are using the same symbols that we
defined above for the operations on sets. It will always be clear from the context
which operation is being used.

In our definition of non-deterministic functors we will use constant sets
equipped with an information order. In particular, we will use join-semilattices.
A (bounded) join-semilattice is a set B equipped with a binary operation ∨B and
a constant ⊥B ∈ B, such that ∨B is commutative, associative and idempotent.
The element ⊥B is neutral with respect to ∨B. As usual, ∨B gives rise to a
partial ordering ≤B on the elements of B: b1 ≤B b2 ⇔ b1 ∨B b2 = b2. Every set
S can be mapped into a join-semilattice by taking B to be the set of all finite
subsets of S with union as join.

4

Coalgebras. A coalgebra is a pair (S, g : S → G(S)), where S is a set of states
and G : Set → Set is a functor. The functor G, together with the function g,
determines the transition structure (or dynamics) of the G-coalgebra [19].

A coalgebra (S, g) is finite if S is a finite set.

Definition 1 (Bisimulation). Let (S, f) and (T, g) be two G-coalgebras. We
call a relation R ⊆ S × T a bisimulation [9] iff

(s, t) ∈ R⇒ (f(s), g(t)) ∈ G(R)

where G(R) is defined as G(R) = {(G(π1)(x),G(π2)(x)) | x ∈ G(R)}.

We write s ∼G t whenever there exists a bisimulation relation containing
(s, t) and we call ∼G the bisimilarity relation. It is interesting to remark that
the relation ∼G is an equivalence relation. We shall drop the subscript G when-
ever the functor G is clear from the context. In the literature, one finds different
definitions of bisimulation or behavioral equivalence [23]. For the class of func-
tors we consider here the different notions coincide and therefore we will not
discuss them.

Non-deterministic functors. They are functors G : Set → Set built induc-
tively from the identity, and constants, using ×, ✸+, (−)A and Pω:

NDF ∋ G ::= Id | B | G✸+ G | G× G | GA | PωG (1)

where B is a (non-empty) finite join-semilattice and A is a finite set. Typical
examples of non-deterministic functors include S = B × Id, M = (B × Id)A,
D = 2 × IdA, Q = (1 ✸+ Id)A, N = 2 × Pω(Id)

A and L = 1 ✸+ Pω(Id)
A. These

functors represent, respectively, the type of streams, Mealy, deterministic, par-
tial deterministic automata, non-deterministic automata and labeled transition
systems with explicit termination. S-bisimulation is stream equality, whereas
D-bisimulation coincides with language equivalence.

Remark 2. As stated in [22], the use of join-semilattices for constant functors
and ✸+ instead of the ordinary product enabled the use of underspecification and
inconsistency (i.e., ⊤ and ⊥, respectively) in the specification of systems, and
moreover, has allowed the whole framework to be studied in the category of
Set. Even though underspecification and inconsistency can be captured by a
semilattice structure, and the axiomatization provides the set of expressions with
a join-semilattice structure (therefore allowing the work directly in the category
of join-semilattices), remaining in the category of Set was chosen for simplicity.

Next, we give the definition of the ingredient relation, which relates a non-
deterministic functor G with its ingredients, i.e., the functors used in its induc-
tive construction. We shall use this relation later for typing our expressions.

Definition 2. Let ⊳ ⊆ NDF ×NDF be the least reflexive and transitive rela-
tion on non-deterministic functors such that

G1 ⊳G1×G2, G2 ⊳G1×G2, G1 ⊳G1 ✸+G2, G2 ⊳G1 ✸+G2, G⊳GA, G⊳PωG

5

Here and throughout this document we use F⊳G as a shorthand for (F,G) ∈ ⊳.
If F⊳ G, then F is said to be an ingredient of G. For example, 2, Id, IdA and D

itself are all the ingredients of the deterministic automata functor D.

A language of regular expressions for non-deterministic coalgebras.
We now associate a language of expressions ExpG with each non-deterministic
functor G.

Definition 3 (Expressions). Let A be a finite set, B a finite join-semilattice
and X a set of fixed-point variables. The set Exp of all expressions is given by
the following grammar, where a ∈ A, b ∈ B and x ∈ X :

ε ::= ∅ | x | ε⊕ ε | µx.γ | b | l〈ε〉 | r〈ε〉 | l[ε] | r[ε] | a(ε) | {ε} (2)

where γ is a guarded expression given by:

γ ::= ∅ | γ ⊕ γ | µx.γ | b | l〈ε〉 | r〈ε〉 | l[ε] | r[ε] | a(ε) | {ε} (3)

In the expression µx.γ, µ is a binder for all the free occurrences of x in γ.
Variables that are not bound are free. A closed expression is an expression
without free occurrences of fixed-point variables x. We denote the set of closed
expressions by Expc.

The language of expressions for non-deterministic coalgebras is a general-
ization of the classical notion of regular expressions: ∅, ε1 ⊕ ε2 and µx.γ play
similar roles to the regular expressions denoting empty language, the union of
languages and the Kleene star. Moreover, note that, not unexpectedly, in [22],
⊕ was axiomatized as an associative, commutative and idempotent operator,
with ∅ as a neutral element. The expressions l〈ε〉, r〈ε〉, l[ε], r[ε], a(ε) and {ε}
specify the left and right hand-side of products and coproducts, function ap-
plication and singleton sets, respectively. Next, we present a type assignment
system for associating expressions to non-deterministic functors. This will al-
low us to associate with each functor G the expressions ε ∈ Expc that are valid
specifications of G-coalgebras.

Definition 4 (Type system). We now define a typing relation ⊢ ⊆ Exp ×
NDF × NDF that will associate an expression ε with two non-deterministic
functors F and G, which are related by the ingredient relation (F is an ingredient
of G). We shall write ⊢ ε : F ⊳ G for (ε,F,G) ∈ ⊢. The rules that define ⊢ are
the following:

⊢ ∅ : F ⊳ G ⊢ b : B⊳ G
(b ∈ B)

⊢ x : G⊳ G

⊢ ε : G⊳ G

⊢ µx.ε : G ⊳ G

⊢ ε1 : F ⊳ G ⊢ ε2 : F ⊳ G

⊢ ε1 ⊕ ε2 : F ⊳ G

⊢ ε : G⊳ G

⊢ ε : Id⊳ G

⊢ ε : F2 ⊳ G

⊢ r[ε] : F1 ✸+ F2 ⊳ G

⊢ ε : F ⊳ G

⊢ a(ε) : FA
⊳ G

(a ∈ A)
⊢ ε : F1 ⊳ G

⊢ l〈ε〉 : F1 × F2 ⊳ G

⊢ ε : F2 ⊳ G

⊢ r〈ε〉 : F1 × F2 ⊳ G

⊢ ε : F1 ⊳ G

⊢ l[ε] : F1 ✸+ F2 ⊳ G

⊢ ε : F1 ⊳ G

⊢ {ε} : PωF1 ⊳ G

6

We can now formally define the set of G-expressions: well-typed expressions
associated with a non-deterministic functor G.

Definition 5 (G-expressions). Let G be a non-deterministic functor and F an
ingredient of G. We define ExpF⊳G by:

ExpF⊳G = {ε ∈ Expc | ⊢ ε : F ⊳ G} .

We define the set ExpG of well-typed G-expressions by ExpG⊳G.

In [22], it was proved that the set of G-expressions for a given non-deterministic
functor G has a coalgebraic structure:

δG : ExpG → G(ExpG)

More precisely, in [22], which we refer to for the complete definition of δG, the
authors defined a function δF⊳G : ExpF⊳G → F(ExpG) and then set δG = δG⊳G.

The coalgebraic structure on the set of expressions enabled the proof of a
Kleene like theorem.

Theorem 1 (Kleene’s theorem for non-deterministic coalgebras). Let G
be a non-deterministic functor.

1. For any ε ∈ ExpG, there exists a finite G-coalgebra (S, g) and s ∈ S such
that ε ∼ s.

2. For every finite G-coalgebra (S, g) and s ∈ S there exists an expression
εs ∈ ExpG such that εs ∼ s.

In order to provide the reader with intuition over the notions presented
above, we illustrate them with an example.

Example 1. Let us instantiate the definition of G-expressions to the functor
of streams S = B × Id (the ingredients of this functor are B, Id and S itself).
Let X be a set of (recursion or) fixed-point variables. The set ExpS of stream
expressions is given by the set of closed, guarded expressions generated by the
following BNF grammar. For x ∈ X:

ExpS ∋ ε ::= ∅ | ε⊕ ε | µx.ε | x | l〈τ〉 | r〈ε〉
τ ::= ∅ | b | τ ⊕ τ

(4)

Intuitively, the expression l〈b〉 is used to specify that the head of the stream is
b, while r〈ε〉 specifies a stream whose tail behaves as specified by ε. For the
two element join-semilattice B = {0, 1} (with ⊥B = 0) examples of well-typed
expressions include ∅, l〈1〉 ⊕ r〈l〈∅〉〉 and µx.r〈x〉 ⊕ l〈1〉. The expressions l[1],
l〈1〉 ⊕ 1 and µx.1 are examples of non well-typed expressions for S, because the
functor S does not involve ✸+, the subexpressions in the sum have different type,
and recursion is not at the outermost level (1 has type B⊳ S), respectively.

7

By applying the definition in [22], the coalgebra structure on expressions δS
would be given by:

δS : ExpS → B× ExpS
δS(∅) = 〈0, ∅〉
δS(ε1 ⊕ ε2) = 〈b1 ∨ b2, ε

′
1 ⊕ ε′2〉 where 〈bi, ε

′
i〉 = δS(εi), i ∈ 1, 2

δS(µx.ε) = δS(ε[µx.ε/x])
δS(l〈τ〉) = 〈δB⊳S(τ), ∅〉
δS(r〈ε〉) = 〈⊥B, ε〉
δB⊳S(∅) = ⊥B

δB⊳S(b) = b
δB⊳S(τ ⊕ τ ′) = δB⊳S(τ) ∨ δB⊳S(τ

′)

The proof of Kleene’s theorem provides algorithms to go from expressions to
streams and vice-versa. We illustrate it by means of examples.

Consider the following stream:

s1 s2 s3

1 0 1

We draw the stream with an automata-like flavor. The transitions indicate the
tail of the stream represented by a state and the output value the head. In
a more traditional notation, the above automata represents the infinite stream
(1, 0, 1, 0, 1, 0, 1, . . .).

To compute expressions ε1, ε2 and ε3 equivalent to s1, s2 and s3 we associate
with each state si a variable xi and get the equations:

ε1 = µx1.l〈1〉 ⊕ r〈x2〉 ε2 = µx2.l〈0〉 ⊕ r〈x3〉 ε3 = µx3.l〈1〉 ⊕ r〈x2〉

As our goal is to remove all the occurrences of free variables in our expressions,
we proceed as follows. First we substitute x2 by ε2 in ε1, and x3 by ε3 in ε2,
and obtain the following expressions:

ε1 = µx1.l〈1〉 ⊕ r〈ε2〉 ε2 = µx2.l〈0〉 ⊕ r〈ε3〉

Note that at this point ε1 and ε2 already denote closed expressions. Therefore,
as a last step, we replace x2 in ε3 by ε2 and get the following closed expressions:

ε1 = µx1.l〈1〉⊕ r〈ε2〉 ε2 = µx2.l〈0〉⊕ r〈ε3〉 ε3 = µx3.l〈1〉⊕ r〈µx2.l〈0〉⊕ r〈x3〉〉

satisfying, by construction, ε1 ∼ s1, ε2 ∼ s2 and ε3 ∼ s3.
For the converse construction, consider the expression ε = (µx.r〈x〉) ⊕ l〈1〉.

We construct an automaton by repeatedly applying the coalgebra structure on
expressions δS, modulo associativity, commutativity and idempotency (ACI) of
⊕ in order to guarantee finiteness.

First, note that δS(µx.r〈x〉) = δS(r〈µx.r〈x〉〉) = 〈⊥B, µx.r〈x〉〉. Applying
the definition of δS above, we have:

δS(ε) = 〈1, (µx.r〈x〉) ⊕ ∅〉 and δS((µx.r〈x〉) ⊕ ∅) = 〈0, (µx.r〈x〉) ⊕ ∅〉

8

which leads to the following stream (automaton):

ε (µx.r〈x〉) ⊕ ∅

1 0

At this point, we want to remark that the direct application of δS, without
ACI, might generate infinite automata. Take, for instance, the expression ε =
µx.r〈x⊕x〉 . Note that δS(µx.r〈x⊕x〉) = 〈0, ε⊕ε〉, δS(ε⊕ε) = 〈0, (ε⊕ε)⊕(ε⊕ε)〉,
and so on. This would generate the infinite automaton

ε ε⊕ ε (ε⊕ ε)⊕ (ε⊕ ε) . . .

0 0 0 . . .

instead of the intended, simple and very finite, automaton

ε

0

In order to guarantee finiteness, one needs to identify the expressions modulo
associativity, commutativity and idempotency (ACI), as we will discuss further
in this paper. Moreover, the axiom ε ⊕ ∅ ≡ ∅ could also be used in order to
obtain smaller automata, but it is not crucial for termination.

Note that, throughout the paper, we will often use streams as a basic example
to illustrate the definitions. It should be remarked that the framework is general
enough to include more complex examples, such as deterministic automata,
automata on guarded strings, Mealy machines and labelled transition systems.
The latter two will be used as examples in Section 6.

3. A decision procedure for the equivalence of generalized regular
expressions

In this section, we briefly describe the decision procedure to determine
whether two expressions are equivalent or not.

The key observation is that point 1. of Theorem 1 above guarantees that
each expression in the language for a given system can always be associated to
a finite coalgebra. Given two expressions ε1 and ε2 in the language ExpG of a
given functor G we can decide whether they are equivalent by constructing a
finite bisimulation between them. This is because the finite coalgebra generated
from an expression contains precisely all states that one needs to construct the
equivalence relation. Even though this might seem like a trivial observation, it
has very concrete consequences: for a large class of generalized regular expres-
sions we can always either determine that they are bisimilar, and exhibit a proof
in the form of a bisimulation, or conclude that they are not bisimilar and pin-
point the difference by showing why the bisimulation construction failed. Hence,
we have a decision procedure for equivalence of generalized regular expressions.

9

We will give the reader a brief example on how the equivalence check works.
Further examples, for different types of systems, including examples of non-
equivalence, will appear in Section 6.

We will show that the stream expressions ε1 = µx.r〈x〉 ⊕ l〈0〉 and ε2 =
r〈µx.r〈x〉 ⊕ l〈0〉〉 ⊕ l〈0〉 are equivalent. In order to do that, we have to build a
bisimulation relation R on expressions for the stream functor S, defined above,
such that (ε1, ε2) ∈ R. We do this in the following way: we start by taking
R = {(ε1, ε2)} and we check whether this is already a bisimulation, by applying
δS to each of the expressions and check whether the expressions have the same
output value and, moreover, that no new pairs of expressions (modulo associa-
tivity, commutativity and idempotency, for more details see page 24) appear
when taking transitions. If new pairs of expressions appear we add them to R
and repeat the process. Intuitively, for this particular example, the transition
structure can be depicted as follows:

ε1
R

ε2 R = {(ε1, ε2)}

ε1 ε1
not yet in R; add it

R = {(ε1, ε2), (ε1, ε1)}

ε1
R

ε1 X

Figure 1: Bisimulation construction

Here, we omit the output values of the expressions, which are all 0. In

the figure above, we use the notation ε1
R

ε2 to denote (ε1, ε2) ∈ R. As

illustrated in Figure 1, R = {(ε1, ε2), (ε2, ε2)} is closed under transitions and is
therefore a bisimulation. Hence, ε1 and ε2 are bisimilar and specify the same
infinite stream (concretely, the stream with only zeros).

4. An algebraic view on the coalgebra of generalized regular expres-
sions

Recall that our goal is to reason about equality of generalized regular expres-
sions in a fully automated manner. As we showed in the introduction, obtaining
this equality can be achieved in two distinct ways: either algebraically, reason-
ing with the axioms, or coalgebraically, by constructing a bisimulation relation.
The latter, because of its algorithmic nature, is particularly suited for automa-
tion. Automatic constructions of bisimulations have been widely explored in
CIRC and we will use this tool to implement our algorithm. This section con-
tains material that enables us to soundly use CIRC. We want to stress however
that the main result of the paper is the description of a decision procedure to
determine whether two expressions are equivalent or not. This procedure in
turn could be implemented in any other suitable tool or even as a standalone

10

application. Choosing CIRC was natural for us, given the pre-existent work on
bisimulation constructions. In Section 5, we show that the process of generating
the G-coalgebras associated to expressions by repeatedly applying δG and nor-
malizing the expressions obtained at each step is closely related to the proving
mechanism already existent in CIRC.

In Section 2, we have introduced a (theoretical) framework which, given a
functor G, allows for the uniform derivation of 1) a language ExpG for specifying
behaviors of G-systems, and 2) a coalgebraic structure on ExpG, which provides
an operational semantics to the set of expressions. In this context, given that
CIRC is based on algebraic specifications, we need two things in order to reach
our final goal:

• extend and adapt the framework of Section 2 in order to enable the im-
plementation of a tool which allows the automatic derivation of algebraic
specifications that model 1) and 2) above, to deliver to CIRC;

• provide a decision procedure, implemented in CIRC based on an equational
entailment relation, in order to check bisimilarity of expressions.

In the rest of the paper we will present the algebraic setting for reasoning on
bisimilarity of generalized regular expressions. A brief overview on the paral-
lel between the coalgebraic concepts in [22] and their algebraic correspondents
introduced in this section is provided later, in Figure 2.

Algebraic specifications. An algebraic specification is a triple E = (S,Σ, E),
where S is a set of sorts, Σ is amany-sorted signature and E is a set of conditional
equations of the form (∀X) t = t′ if (

∧
i∈I ui = vi), where t, t

′, ui, and vi (i ∈ I
– a set of indexes for the conditions) are Σ-terms with variables in X . We
say that the sort of the equation is s whenever t, t′ ∈ TΣ,s(X). Here, TΣ,s(X)
denotes the set of terms of sort s of the Σ-algebra freely generated by X . If
I = {} then the equation is unconditional and may be written as (∀X) t = t′.

Let ⊢ be the equational entailment (deduction) relation defined as in [6]. For
consistency reasons, we write E ⊢ e whenever equation e is deducible from the
equations E in E by reflexivity, symmetry, transitivity, congruence or substitu-
tivity (i.e., whenever E ⊢ e).

In this paper, the algebraic specifications of coalgebras of generalized regular
expressions are built on top of definitions based on grammars in Backus-Naur
form (BNF) such as (1) and (2). Therefore, in what follows, we introduce the
general technique for transforming BNF notations into algebraic specifications.

From BNF grammars to algebraic specifications. The general rule used
for translating definitions based on BNF grammars into algebraic specifications
is as follows: each syntactical category and vocabulary is considered as a sort and
each production is considered as a constructor operation or a subsort relation.

For instance, according to the grammar (1) of non-deterministic functors,
we have a sort SltName – representing the vocabulary of join-semilattices B,

11

a sort AlphName – for the vocabulary of the alphabets A, a sort Functor –
associated to the syntactical category of the non-deterministic functors G, a
subsort relation SltName < Functor representing the production G ::= B, and
constructor operations for the other productions.

Generally, each production A ::= rhs gives rise to a constructor (rhs)→ (A),
the direction of the arrow being reversed. For instance, for grammar (1), the pro-
duction G ::= Id is represented by a constant (nullary operation) Id:→ Functor,
and the sum construction by the binary operation ✸+ :Functor Functor →
Functor.

Remark 3. Note that the above mechanism for translating BNF grammars into
algebraic specifications makes use of subsort relations for representing produc-
tions such as G :: = B. This because CIRC works with order-sorted algebras,
and we want to keep the algebraic specifications of non-deterministic functors
as close as possible to their implementation in CIRC. However, order-sorted al-
gebras can be reduced to many-sorted algebras [6], where a subsort relation s<s′

is modeled by an inclusion operation cs,s′ : s → s′. This way, even if we use
order sorted algebras, we remain in the framework of circular coinduction.

The algebraic specifications of coalgebras of generalized regular expressions
are defined in a modular fashion, based on the specifications of:

• non-deterministic functors (G);

• generalized regular expressions (ε ∈ ExpG);

• “transition” functions (δG);

• “structured” expressions (σ ∈ F(ExpG), for all F ingredients of G).

Moreover, recall that for a non-deterministic functor G, bisimilarity of G-
expressions is decided based on the relation lifting G over “structured” expres-
sions in G(ExpG) (Definition 1). Therefore, the deduction relation ⊢ has to be
extended to allow a restricted contextual reasoning over “structured” expres-
sions in F(ExpG), for all ingredients F of G.

The aforementioned algebraic specifications and the extension of ⊢ are mod-
eled as follows.

The algebraic specification of a non-deterministic functor G. It in-
cludes:

• the translation of the BNF grammar (1), as presented above;

• the specification of the functor ingredients, given by a sort Ingredient and a
constructor ⊳ : Functor Functor→ Ingredient (according to Definition 2);

• the operations owner : Alph → AlphName used to model the relationship
between the elements of an alphabet and the name of the alphabet, and
owner : Slt → SltName for the relationship between the elements and the
name of a semilattice (we will see later that these operations are seman-
tically equivalent to the membership relation);

12

• the specification of each alphabet A = {a1, . . . , an} occurring in the def-
inition of G: this consists of a subsort A < Alph, a constant A of sort
AlphName, a constant ai:→ A and an equation owner(ai) = A (this A is
the constant of sort AlphName) for i ∈ 1, n;

• the specification of each semilattice B = ({b1, . . . , bn},∨,⊥B) occurring in
the definition of G: this consists of a subsort B< Slt, a constant B of sort
SltName, a constant bi:→ B and an equation owner(bi) = B (this B is the
constant of sort SltName) for i ∈ 1, n, and the equations defining ∨ and
⊥B (this should be one of bi);

• an equation defining G (as a functor expression).

The algebraic specification of generalized regular expressions. It con-
sists of:

• (according to the BNF grammar in Definition 3) a sort Exp represent-
ing expressions ε, FixpVar the sort for the vocabulary of the fixed-point
variables, and Slt the sort for the elements of semilattices. Moreover, we
consider constructor operations for all the productions. For example, the
production ε ::= ε⊕ε is represented by an operation ⊕ : Exp Exp→ Exp,
and ε ::= µx.γ is represented by µ . : FixpVar Exp→ Exp. (We chose not
to provide any restriction to guarantee that γ is a guarded expression, at
this stage in the definition of µ . . However, guards can be easily checked
by pattern matching, according to the grammars in Definition 3);

• the specification of the substitution of a fixed-point variable with an ex-
pression, given by an operation [/] : Exp Exp FixpVar → Exp and a set
of equations – one for each constructor. For example, the equations as-
sociated to ∅ and ⊕ are: ∅[ε/x] = ∅, and respectively, (ε1 ⊕ ε2)[ε/x] =
(ε1[ε/x])⊕(ε2[ε/x]), where ε, ε1, ε2 are G-expressions and x is a fixed-point
variable;

• the specification of the type-checking relation in Definition 4, given by an
operation : : Exp Ingredient→ Bool and an equation for each inference
rule defining this relation. For example the rule

⊢ ε1 : F ⊳ G ⊢ ε2 : F ⊳ G

⊢ ε1 ⊕ ε2 : F ⊳ G

is represented by the equation ε1 ⊕ ε2 : F ⊳ G = ε1 : F ⊳ G ∧ ε2 : F ⊳ G. The
type-checking operator is used in order to verify whether the expressions
checked for equivalence are well-typed (Definition 5). Moreover, note that
for the consistency of notation, algebraically we write ε : F ⊳ G to represent
expressions ε of type F ⊳ G.

13

The algebraic specification of δG. It consists of:

• the specification of the coalgebra of G-expressions δG given by three oper-
ations δ () : Ingredient Exp → ExpStruct, Empty : Ingredient → ExpStruct,
and Plus (,) : Ingredient ExpStruct ExpStruct→ ExpStruct;

• a set of equations describing the definitions of these operations as in [22].

The algebraic specification of structured expressions. As mentioned
above, the set of G-expressions is provided with a coalgebraic structure given
by the function δG : ExpG → G(ExpG), where G(ExpG) can be understood as the
set of expressions with structure given by G (and its ingredients). The set of
structured expressions is defined by the following grammar:

σ ::= ε | b | 〈σ, σ〉 | k1(σ) | k2(σ) | ⊥ | ⊤ | λ.(a,F ⊳ G, σ) | {σ} (5)

where ε ∈ ExpG and b ∈ B. The typing rules below give precise meaning to these
expressions. Note that ⊥,⊤ are two expressions coming from G = G1✸+G2, used
to denote underspecification and over specification, respectively.

The associated algebraic specification includes:

• a sort ExpStruct representing expressions σ (from F(ExpG), with F ⊳ G),
and one operation for each production in the BNF grammar (5). Note that
the construction λ.(a,F ⊳ G, σ) has as coalgebraic correspondent a function
f ∈ FA(ExpG), and is defined by cases as follows: λ.(a,F ⊳ G, σ)(a′) = if
(a = a′) then σ else EmptyF ⊳ G;

• the extension of the type-checking relation to structured expressions, de-
fined by:

⊢ b : B ⊳ G

⊢ b ∈ B(ExpG)

⊢ ε : Id ⊳ G

⊢ ε ∈ Id(ExpG)

⊢ ⊥ ∈ F1✸+F2(ExpG) ⊢ ⊤ ∈ F1✸+F2(ExpG)

⊢ σ ∈ Fi(ExpG)

⊢ ki(σ) ∈ F1✸+F2(ExpG)
i ∈ 1, 2

⊢ σ1 ∈ Fi(ExpG) ⊢ σ2 ∈ Fi(ExpG)

⊢ 〈σ1, σ2〉 ∈ F1×F2(ExpG)

⊢ σ ∈ F(ExpG), a ∈ A

⊢ λ.(a,F ⊳ G, σ) ∈ FA(ExpG)

⊢ σ ∈ F(ExpG)

⊢ {σ} ∈ PωF(ExpG)

and specified by an operation ∈ (Exp) : ExpStruct Functor Functor →
Bool (where we used a mix-fix notation) and an equation for each of
the above inference rules. For example, the first rule has associated the
equation b ∈ B(ExpG) = b : B ⊳ G. For consistency of notation, we write
σ ∈ F(ExpG) to denote that σ is an element of F(ExpG).

Remark 4. In terms of membership equational logic (MEL) [3], both F ⊳ G
and F(ExpG) can be thought as being sorts and, for example, ε : F ⊳ G as a

14

membership assertion. Even if MEL is an elegant theory, we prefer not to use it
here because this implies the dynamic declaration of sorts and a set of assertions
for such a sort. The above approach is generic and therefore more flexible.

The equational entailment relation ⊢NDF for bisimilarity checking.
As previously hinted in the beginning of this section, in order to algebraically
reason on bisimilarity of G-expressions in CIRC, one has to extend the deduction
relation ⊢ to allow a restricted contextual reasoning on expressions in F(ExpG),
for all ingredients F of a non-deterministic functor G. We call the extended
entailment ⊢NDF .

The aforementioned restriction refers to inhibiting the use of congruence
during equational reasoning, in order to guarantee the soundness of CIRC proofs.
This is realized by means of a freezing operator, which intuitively, behaves as a
wrapper on the expressions checked for equivalence, by changing their sort to a
fresh sort Frozen. This way, the hypotheses collected during a CIRC proof session
cannot be used freely in contextual reasoning, hence preventing the derivation
of untrue equations (as illustrated in Example 2).

We further show how the freezing mechanism is implemented in our algebraic
setting, and define ⊢NDF .

Let E be an algebraic specification. We extend E by adding the freezing
operation − : s → Frozen for each sort s ∈ Σ, where Frozen is a fresh sort. By
t we represent the frozen form of a Σ-term t, and by e a frozen equation of
the shape (∀X) t = t′ if c. The entailment relation ⊢ is defined over frozen
equations following the line in [17]; more details are provided in Section 5.

Recall from Section 2 that a relation R ⊆ ExpG × ExpG is a bisimulation if

and only if (s, t) ∈ R ⇒ (δG ⊳ G(s), δG ⊳ G(t)) ∈ G(R). Here, G(R) ⊆ G(ExpG) ×
G(ExpG) is the lifting of the relation R ⊆ ExpG × ExpG, defined as

G(R) = {(G(π1)(x),G(π2)(x)) | x ∈ G(R)} .

So, intuitively, reasoning on bisimilarity of two expressions (ε, ε′) in R re-
duces to checking whether the application of δG maps them into G(R).

Therefore, checking whether a pair (sδ, tδ) is in G(R) consists in checking,
for example for the case of G = G1 × G2, whether (s

δ
1, t

δ
1) ∈ G1(R) and (sδ2, t

δ
2) ∈

G2(R), where sδ = 〈sδ1, s
δ
2〉 and tδ = 〈tδ1, t

δ
2〉. In an algebraic setting, this

would reduce to building an algebraic specification E and defining an entailment

relation ⊢NDF such that one can infer E ⊢NDF 〈sδ1, s
δ
2〉 = 〈tδ1, t

δ
2〉 (this is the

algebraic correspondent we consider for (〈sδ1, s
δ
2〉, 〈t

δ
1, t

δ
2〉) ∈ G(R)) by showing

E ⊢NDF sδ1 = tδ1 (or (sδ1, t
δ
1) ∈ G1(R)) and E ⊢NDF sδ2 = tδ2 (or (sδ2, t

δ
2) ∈

G2(R)). We hint that the aforementioned algebraic specification E consists of
EG and a set of frozen equations (see Corollary 1).

The entailment relation ⊢NDF for reasoning on bisimilarity of G-expressions
is based on the definition of G.

15

Definition 6. The entailment relation ⊢NDF is the extension of ⊢ with the
following inference rules, which allow a restricted contextual reasoning over the
frozen equations of structured expressions:

EG ⊢NDF σ1 = σ′
1 EG ⊢NDF σ2 = σ′

2

EG ⊢NDF 〈σ1, σ2〉 = 〈σ′
1, σ

′
2〉

(6)

EG ⊢NDF σ = σ′

EG ⊢NDF ki(σ) = ki(σ
′)

i ∈ 1, 2 (7)

EG ⊢NDF f(a) = g(a) , for all a ∈ A

EG ⊢NDF f = g
(8)

EG ⊢NDF σi1 = σ′
j1

, . . . , EG ⊢NDF σik = σ′
jk

EG ⊢NDF {σ1, . . . , σn} = {σ′
1, . . . , σ

′
m}

{i1, . . . , ik} = {1, . . . , n}
{j1, . . . , jk} = {1, . . . ,m}

(9)

Remark 5. Note that the extension of the entailment relation ⊢ to ⊢NDF im-
plies that EG ⊢ e iff EG ⊢NDF e holds, for any equation e of shape ε1 = ε2
or ε1 = ε2, with ε1, ε2 non-structured expressions. Below, we will use the no-
tation EG ⊢NDF R, where R is a set of possibly frozen equations, to denote
∀e∈R · EG ⊢NDF e.

It is interesting to recall the relation lifting for the powerset functor which
is encoded in the last rule of Definition 6. A pair 〈U, V 〉 is in PωG(R) if and
only if for every u ∈ U there exists a v ∈ V such that 〈u, v〉 belongs to G(R)
and, conversely, for every v ∈ V , there exists a u ∈ U such that 〈u, v〉 belongs
to G(R).

Remark 6. As already hinted (and proved in Corollary 1), reasoning on bisim-
ilarity of expressions in a binary relation R ⊆ ExpG × ExpG reduces to showing

that δG(s) = δG(t) is a ⊢NDF -cosequence, for all (s, t) ∈ R. The equational
proof is performed in a “top-down” fashion, by reasoning on the subsequent
equalities between the components of the corresponding structured expression
δG(s), δG(t) in an inductive manner. This is realized by applying the inverted
rules (6)–(9).

Moreover, note that rule (9) is not invertible in the usual sense; rather any
statement matching the form of the conclusion can only be proved by some in-
stance of the rule.

We will further formalize the connection between the inductive definition
of G (on the coalgebraic side) and ⊢NDF (on the algebraic side) in Theorem 2,
hence enabling the definition of bisimulations in algebraic terms, in Corollary 1.

Remark 7. Equations in EG (built as previously described in this section) are
used in the equational reasoning only for reducing terms of shape op(t1, . . . , tn)
according to the definition of the operation op. For the simplicity of the proofs
of Theorem 2 and Corollary 1, whenever we write op(t1, . . . , tn), we refer to the
associated term reduced according to the definition of op.

16

First we introduce some notation conventions. Let G be a non-deterministic
functor and R ⊆ ExpG × ExpG. We write:

• Rid to denote the set R∪ {(ε, ε) | EG ⊢ ε : G ⊳ G = true};

• cl(R) for the closure of R under transitivity, symmetry and reflexivity;

• R to represent the set
⋃

e∈R{ e }; (application of the freezing operator to
all elements of R)

• δG ⊳ G(ε = ε′) to represent the equation δG ⊳ G(ε) = δG ⊳ G(ε
′);

• EG ∪ R as a shorthand for (S,Σ, E ∪ { ε = ε′ | (ε, ε′) ∈ R}), where
EG = (S,Σ, E);

• (σ, σ′) ∈ G(R) as a shorthand for: (σ, σ′) is among the enumerated ele-
ments of a set S explicitly constructed as an enumeration of the finite set
G(R) (in the algebraic setting, G(R) is a subset of TΣ,ExpStruct× TΣ,ExpStruct

and EG ⊢ G(R) = S).

Theorem 2. Consider a non-deterministic functor G. Let F be an ingredient
of G, R a binary relation on the set of G-expressions, and σ, σ′ ∈ F(ExpG).

a) If G is not a constant functor, then (σ, σ′) ∈ F(cl(Rid)) iff EG ∪ R ⊢NDF

σ = σ′ ;

b) If G is a constant functor B, then (σ, σ′) ∈ B(cl(Rid)) iff EG ⊢NDF σ =
σ′ .

In order to prove Theorem 2.a) we introduce the following lemma:

Lemma 1. Consider G a non-deterministic functor and R a binary relation on
the set of G-expressions. If (ε, ε′) ∈ cl(Rid) then EG ∪ R ⊢NDF ε = ε′ .

Proof. The proof is trivial, as the equational deduction is reflexive, symmetric
and transitive. �

We are now ready to prove Theorem 2.

Proof (Theorem 2).

• Proof of Theorem 2.a).

• “⇒ ”. The proof is by induction on the structure of F.
Base case:

∗ F = B. It follows that (σ, σ′) is of shape (b, b) where b ∈ B,
therefore EG ∪ R ⊢NDF b = b holds by reflexivity.

∗ F = Id. In this case (σ, σ′) ∈ cl(Rid) = Id(cl(Rid)), so the result
follows immediately by Lemma 1.

Induction step:

17

∗ F = F1 × F2. Obviously, σ = 〈σ1, σ2〉 and σ′ = 〈σ′
1, σ

′
2〉, where

(σ1, σ
′
1) ∈ F1(cl(Rid)) and (σ2, σ

′
2) ∈ F2(cl(Rid)). Therefore,

by the induction hypothesis, both EG ∪ R ⊢NDF σ1 = σ′
1 and

EG∪ R ⊢NDF σ2 = σ′
2 hold. Hence, according to the definition

of ⊢NDF (see (6)), we conclude that EG ∪ R ⊢NDF 〈σ1, σ2〉 =

〈σ′
1, σ

′
2〉 holds.

∗ The cases F = F1 ✸+ F2, F = FA
1 and F = PωF

′ are handled in a
similar way.

• “ ⇐ ”. We proceed also by induction on the structure of F. More-
over, recall that the observations in Remark 7 hold (for each of the
subsequent cases).
Base case:

∗ F = B. In this case (σ, σ′) is of shape (b, b′), where b, b′ are two
elements of the semilattice B. Also, recall that G 6= B, therefore,
the equations (of type G ⊳ G 6= F(ExpG)) in R are not involved in

the equational reasoning. We deduce that b = b′ is proved by
reflexivity, hence (b, b′) = (b, b) ∈ B(cl(Rid)).

∗ F = Id. Note that for this case, σ, σ′ are expressions of the
same type with the expressions in R. We further identify two
possibilities:

· σ = σ′ is proved by reflexivity, therefore (σ, σ′) ∈ {(ε, ε) |
ε:G ⊳ G} ⊆ Rid ⊆ cl(Rid) = Id(cl(Rid)).

· the equations in R are used in the equational reasoning
EG ∪ R ⊢NDF σ = σ′ . In addition, the freezing operator
inhibits contextual reasoning, therefore σ = σ′ is proved
according to the equations in R , based on the symmetry
and transitivity of ⊢NDF . In other words, (σ, σ′) ∈ cl(Rid) =
Id(cl (Rid)).

Induction step:

∗ F = F1 × F2. Obviously, due to their type, the equations in
R are not involved in the equational reasoning. Also, recall
that (*) holds. Therefore, EG ∪ R ⊢NDF 〈σ1, σ2〉 = 〈σ′

1, σ
′
2〉

is a consequence of the inverted rule (6). More explicitly, it fol-
lows that EG ∪ R ⊢NDF σ1 = σ′

1 and EG ∪ R ⊢NDF σ2 =

σ′
2 must hold. By the induction hypothesis, we deduce that

(σ1, σ
′
1) ∈ F1(cl(Rid)) and (σ2, σ

′
2) ∈ F2(cl(Rid)). So by the def-

inition of F1 × F2 we conclude that (〈σ1, σ2〉, 〈σ′
1, σ

′
2〉) = (σ, σ′) ∈

F1 × F2(R).

∗ The cases F = F1✸+F2, F = (F1)
A and F = PωF

′ follow a similar
reasoning.

18

• Proof of Theorem 2.b). It follows immediately by the definition of B and
Remark 7.

�

Corollary 1. Let G be a non-deterministic functor and R a binary relation on
the set of G-expressions.

a) If G is not a constant functor, then cl(Rid) is a bisimulation iff EG ∪
R ⊢NDF δG ⊳ G(R) ;

b) If G is a constant functor B, then cl(Rid) is a bisimulation iff EG ⊢NDF

δG ⊳ G(R) .

Proof.

• Proof of Corollary 1.a). We reason as follows:

cl(Rid) is a bisimulation

⇔ (∀(ε, ε′) ∈ cl(Rid)).((δG ⊳ G(ε), δG ⊳ G(ε
′)) ∈ G(cl(Rid)) (Def. 1)

⇔ EG ∪ R ⊢NDF δG ⊳ G(cl(Rid)) (Thm. 2)

⇔ EG ∪ R ⊢NDF δG ⊳ G(R) (cl(Rid),⊢NDF)

• Proof of Corollary 1.b). It follows immediately by the definition of bisim-
ulation relations and according to the observations in Remark 7.

�

In Figure 2 we briefly summarize the results of the current section, namely,
the algebraic encoding of the coalgebraic setting presented in [22].

5. A decision procedure for bisimilarity in CIRC

In this section, we describe how the coinductive theorem prover CIRC [14] can
be used to implement the decision procedure for the bisimilarity of generalized
regular expressions, which we discussed above.

CIRC can be seen as an extension of Maude with behavioral features and
its implementation is derived from that of Full-Maude. In order to use the
prover, one needs to provide a specification (a CIRC theory) and a set of goals.
A CIRC theory B = (S, (Σ,∆), (E, I)) consists of an algebraic specification
(S,Σ, E), a set ∆ of derivatives, and a set I of equational interpolants, which
are expressions of the form e⇒ {ei | i ∈ I} where e and ei are equations. The
intuition for this type of expressions is simple: e holds whenever for any i in I the
equation ei holds. In other words, to prove E ⊢ e one can chose to instead prove

19

coalgebraic algebraic

⊢ ε : F ⊳ G EG ⊢ ε : F ⊳ G = true

ExpF ⊳ G {ε ∈ TΣ,Exp| EG ⊢ ε : F ⊳ G = true}

ExpG {ε ∈ TΣ,Exp| EG ⊢ ε : G ⊳ G = true}

F(ExpG) {σ ∈ TΣ,ExpStruct| EG ⊢ σ ∈ F(ExpG) = true}

δF ⊳ G : ExpF ⊳ G → F(ExpG) δ () : Ingredient Exp→ ExpStruct

EG ⊢ σ ∈ F(ExpG) = true,

EG ⊢ σ′ ∈ F(ExpG) = true

(σ, σ′) ∈ F(cl(Rid)) EG ∪ R ⊢NDF σ = σ′ if G 6= B

or

EG ⊢NDF σ = σ′ if G = B (Thm. 2)

cl(Rid) is a bisimulation EG ∪ R ⊢NDF δG ⊳ G(R) if G 6= B

or

EG ⊢NDF δG ⊳ G(R) if G = B (Cor. 1)

Figure 2: non-deterministic functors - coalgebraic vs. algebraic approach

E ⊢ {ei | i ∈ I}. For the particular case of non-deterministic functors, we use
equational interpolants to extend the initial entailment relation in a consistent
way with rules (6)–(9). (For more information on equational interpolants see
[7]). A derivative δ ∈ ∆ is a Σ-term containing a special variable ∗:s (i.e.,
a Σ-context), where s is the sort of the variable ∗. If e is an equation t = t′

with t and t′ of sort s, then δ[e] is δ[t/∗:s] = δ[t′/∗:s]. We call this type
of equation a derivable equation. An equation is non-derivable if it is of sort
s′ which is not a subsort or supersort [6] of s. We write δ[R] to represent
{δ[e] | e ∈ R}, where R is a set of derivable equations, and ∆[e] for the set
{δ[e] | δ ∈ ∆ appropriate for e}.

Moreover, note that CIRC works with an extension of the entailment relation
⊢ over frozen equations (introduced in Section 4), with two more axioms, as
in [17]:

E ∪R ⊢ e iff E ⊢ e (A1)

E ∪R ⊢ G implies E ∪ δ[R] ⊢ δ[G] for each δ ∈ ∆ (A2)

Above, E ranges over unfrozen equations, e over non-derivable unfrozen
equations, and R,G over derivable frozen equations.

CIRC implements the coinductive proof system given in [17] using a set of
reduction rules of the form (B,F ,G)⇒ (B,F ′,G′), where B represents a speci-
fication, F is the coinductive hypothesis (a set of frozen equations) and G is the
current set of goals. The freezing operator is defined as described in Section 4.
Here is a brief description of these rules:

20

[Done]: (B,F , {})⇒ ·
Whenever the set of goals is empty, the system terminates with success.

[Reduce]: (B,F ,G ∪ { e })⇒ (B,F ,G) if B ∪ F ⊢ e
If the current goal is a ⊢-consequence of B ∪ F then e is removed from
the set of goals.

[Derive]: (B,F ,G ∪ { e })⇒ (B,F ∪ { e },G ∪ ∆[e]) if B ∪ F 6⊢ e
When the current goal e is derivable and it is not a ⊢-consequence, it is
added to the hypothesis and its derivatives to the set of goals.

[Simplify]: (B,F ,G ∪ { θ(e) })⇒ (B,F ,G ∪ { θ(ei) | i ∈ I})
if e⇒ {ei | i ∈ I} is an equational interpolant from the
specification and θ : X → TΣ(Y) is a substitution.

[Fail]: (B,F ,G ∪ { e })⇒ failure if B ∪ F 6⊢ e ∧ e is non-derivable
This rule stops the reduction process with failure whenever the current
goal e is non-derivable and is not a ⊢-consequence of B ∪ F .

It is worth noting that there is a strong connection between a CIRC proof
and the construction of a bisimulation relation. We illustrate this fact and the
importance of the freezing operator with a simple example.

Example 2. Consider the case of infinite streams. The set Bω of infinite
streams over a set B is the final coalgebra of the functor S = B × Id, with a
coalgebra structure given by hd and tl, the functions that return the head and
the tail of the stream, respectively. Our purpose is to prove that 0∞ = (00)∞.
Let z and zz represent the stream on the left hand side and, respectively, on the
right hand side. These streams are defined by the equations: hd(z) = 0, tl(z) =
z, hd(zz) = 0, tl(zz) = 0:zz. In Fig. 3 we present the correlation between the
CIRC proof and the construction of the bisimulation relation. Note how CIRC
collects the elements of the bisimulation as frozen hypotheses.

Let us analyze what happens if the freezing operator − were not used. Sup-
pose the circular coinduction algorithm would add the equation z = zz in its
unfrozen form to the hypotheses. After applying the derivatives we obtain the
goals hd(z) = hd(zz), tl(z) = tl(zz). At this point, the prover could use the
freshly added equation z = zz, and according to the congruence rule, both goals
would be proven directly, though we would still be in the process of showing that
the hypothesis holds. By following a similar reasoning, we could also prove that
0∞ = 1∞! In order to avoid these situations, the hypotheses are frozen, (i.e.,
their sort is changed from Stream to Frozen) and this stops the application of
the congruence rule, forcing the application of the derivatives according to their
definition in the specification. Therefore, the use of the freezing operator is vital
for the soundness of circular coinduction.

Next, we focus on using CIRC for automatically reasoning on the equivalence
of G-expressions. As we will show, the implementation of both the algebraic

21

CIRC proof Bisimulation construction

(add goal z = zz .)
z zz (zz)′

0 0 0

(B, {}, { z = zz }) F = {}; z ∼ zz ?

[Derive]
−→

(
B, { z = zz },

{
hd(z) = hd(zz)

tl(z) = tl(zz)

})
F = {(z, zz)};

z
0

−→z

zz
0

−→(zz)′

[Reduce]
−→ (B, { z = zz }, { z = 0:zz }) F = {(z, zz)}; z ∼ (zz)′ ?

[Derive]
−→

(
B,
{ z = zz
z = 0:zz

}
,

{
hd(z)= hd(0:zz)

tl(z)= tl(0:zz)

})
F = {(z, zz), (z, (zz)′)};

z
0

−→z

(zz)′
0

−→zz

[Reduce]
−→

(
B,
{ z = zz
z = 0:zz

}
, {}
)

F = {(z, zz), (z, (zz)′)} X

Figure 3: Parallel between a CIRC proof and the bisimulation construction

specifications associated to non-deterministic functors and the equational en-
tailment relation described in Section 4 is immediate. Given a non-deterministic
functor G, we define a CIRC theory BG = (S, (Σ,∆), (E, I)) as follows:

• (S,Σ, E) is EG

• ∆ = {δG ⊳ G(∗:Exp)}

• I consists of the following equational interpolants , whose role is to replace
current proof obligations with new ones:

{〈σ1, σ2〉 = 〈σ
′
1, σ

′
2〉} ⇒{σ1 = σ′

1, σ2 = σ′
2} (10)

{ki(σ) = ki(σ
′)} ⇒{σ = σ′} (11)

{f = g} ⇒{f(a) = g(a) | a ∈ A} (12)

{∪i∈1,n{σi} = ∪j∈1,m{σ
′
j}} ⇒{∧i∈1,n(∨j∈1,m σi = σ′

j)

∧j∈1,m (∨i∈1,n σi = σ′
j)} (13)

The interpolants (10), (11), (12) and (13) in I extend the entailment relation
⊢NDF (introduced in Definition 6) as follows:

E ⊢NDF {ei | i ∈ I}

E ⊢NDF e
if e⇒ {ei | i ∈ I} in I

Theorem 3 (Soundness). Let G be a non-deterministic functor, and G a bi-
nary relation on the set of G-expressions.
If (BG,F0 = {},G0 = G)

∗
⇒ (BG,Fn,Gn = {}) using [Reduce], [Derive] and

[Simplify], then G ⊆∼G.

22

Proof. The idea of the proof is to find a bisimulation relation F̃ s.t. G ⊆ F̃ .
We distinguish between two cases:

a) G = B. For this case, the set of expressions in G is given by the following
grammar:

ε :: = ∅ | b | ε⊕ ε | µx.ε (14)

Moreover, note that [Simplify] is not used during the proving process,
as the equational interpolants (10)–(13) are applied only for structured
expressions in F(ExpG), for F of shape F1 × F2, F1 ✸+ F2, F

A
1 or PωF1.

i) Assume that [Derive] is not applied during the CIRC proof session. Then,
the goals in G are ⊢-consequences of BG. Therefore, according to Remark 7

and by Corollary 1.b) it follows that F̃ = cl(Gid) is a bisimulation, hence
G ⊆ cl(Gid) ⊆∼G.

ii) Assume that [Derive] is applied for (at least) one goal ε = ε′ in G
during the CIRC proof session. Note that by (14) and the definition of
δ it follows that δB⊳B(ε), δB⊳B(ε

′) ∈ B. Therefore, the proof obligation
δB⊳B(ε) = δB⊳B(ε

′) is reduced to a goal of shape b = b′ for b, b′ ∈ B.

Discussion. Whenever the current proof obligation is of the shape b = b′ ,
with b, b′ ∈ B, CIRC does not perform any derivation and does not make
use of the collected hypotheses. Instead, it reasons on the equality of
b and b′ directly, by evaluating the expression b == b′ to either true
(if b and b′ refer to the same constant in B), or false (otherwise). The
motivation is simple. Assume the aforementioned ε, ε′ are equal to b and
b′, respectively. Also, assume [Derive] is applied. In this case, ε = ε′ (or
equivalently, b = b′) is added to the hypotheses. Obviously, the current
proof obligation δG(ε) = δG(ε

′) (or equivalently, δG(b) = δG(b
′)) is

reduced to b = b′ which trivially holds by the hypotheses, no matter
what the values of the constants b, b′ are. This allows for the derivation
of untrue proof obligations, whenever b 6= b′.

Consequently, for the case G = B, all the goals of shape b = b′ hold by
reflexivity. By the definition of bisimulation relations and Corollary 1.b),

it follows that F̃ = cl(Gid) is a bisimulation. Therefore, G ⊆ cl(Gid) ⊆∼G.

b) G 6= B. Based on the reduction rules implemented in CIRC, it is quite easy
to see that the initial set of goals G is a ⊢NDF -consequence of BG ∪ F ,
where F is the set of hypotheses (or derived goals) collected during a
proof session. In other words, G ⊆ cl(Fid). So, if we anticipate a bit,

we should show that F̃ = cl(Fid) is a bisimulation, i.e., according to
Corollary 1, BG ∪ F ⊢NDF δG ⊳ G(F) . This is achieved by proving that

BG ∪ F ⊢NDF Gi(i ∈ 0, n) (note that δG ⊳ G(F) ⊆
⋃

i∈0,n Gi, according
to [Derive]). The proof is by induction on j, where n − j is the current
proof step, and by case analysis on the CIRC reduction rules applied at
each step.

23

�

Remark 8. The soundness of the proof system we describe in this paper does
not follow directly from Theorem 3 in [17]. This is due to the fact that we do
not have an experiment-based definition of bisimilarity. So, even though the
mechanism we use for proving BG ∪ F ⊢NDF δG ⊳ G(F) (for the case G 6= B) is
similar to the one described in [17], the current soundness proof is conceived in
terms of bisimulations (and not experiments).

Remark 9. The entailment relation ⊢NDF that CIRC uses for checking the
equivalence of generalized regular expressions is an instantiation of the paramet-
ric entailment relation ⊢ from the proof system in [17]. This approach allows
CIRC to reason automatically on a large class of systems which can be modeled
as non-deterministic coalgebras.

As already stated, our final goal is to use CIRC as a decision procedure for the
bisimilarity of generalized regular expressions. That is, whenever provided a set
of expressions, the prover stops with a yes/no answer w.r.t. their equivalence.
In this context, an important aspect is that the sub-coalgebra generated by an
expression ε ∈ ExpG by repeatedly applying δG is, in general, infinite. Take for
example the non-deterministic functor S = B× Id associated to infinite streams,
and consider the property µx.∅ ⊕ r〈x〉 = µx.r〈x〉. In order to prove this, CIRC
builds an infinite proof sequence by repeatedly applying δS as follows:

δS(µx.∅ ⊕ r〈x〉) = δS(µx.r〈x〉)
↓

〈0, ∅ ⊕ (µx.∅ ⊕ r〈x〉)〉 = 〈0, µx.r〈x〉〉

δS(∅ ⊕ (µx.∅ ⊕ r〈x〉)) = δS(µx.r〈x〉)
↓

〈0, ∅ ⊕ ∅ ⊕ (µx.∅ ⊕ r〈x〉)〉 = 〈0, µx.r〈x〉〉 [. . .]

In this case, the prover would never stop. We observed in Section 3 that The-
orem 1 guarantees we can associate a finite coalgebra to a certain expression.
In the proof of the aforementioned theorem, which is presented in [22], it is
shown that the axioms for associativity, commutativity and idempotency (ACI)
of ⊕ guarantee finiteness of the generated sub-coalgebra (note that these axioms
have also been proven sound w.r.t. bisimulation). ACI properties can easily be
specified in CIRC as the prover is an extension of Maude, which has a powerful
matching modulo ACUI (ACI plus unity) capability. The idempotency is given
by the equation ε⊕ε = ε, and the commutativity and associativity are specified
as attributes of ⊕. It is interesting to remark that for the powerset functor
termination is guaranteed without the axioms, because the coalgebra structure
on the expressions for the powerset functor already includes ACI (since Pω(Exp)
is itself a join-semilattice).

24

Theorem 4. Let G be a set of proof obligations over generalized regular expres-
sions. CIRC can be used as a decision procedure for the equivalences in G, that
is, it can decide whenever a goal (ε1, ε2) ∈ G is a true or false equality.

Proof. Note that as proven in [22], the ACI axioms for ⊕ guarantee that δG
is applied for a finite number of times in the generation of the sub-coalgebra
associated to a G-expression. Therefore, it straightforwardly follows that by
implementing the ACI axioms in CIRC (as attributes of ⊕), the set of new
goals obtained by applying δG is finite. In these circumstances, whenever CIRC
stops according to the reduction rule [Done], the initial proof obligations are
bisimilar. On the other hand, whenever it terminates with [Fail], the goals are
not bisimilar. �

6. A CIRC-based tool

We have implemented a tool that, when provided with a functor G, auto-
matically generates a specification for CIRC which can then be used in order to
automatically check whether two G-expressions are bisimilar. The tool is imple-
mented as a metalanguage application in Maude. It can be downloaded from
the address http://goriac.info/tools/functorizer/. In order to start the
tool, one needs to launch Maude along with the extension Full-Maude and load
the downloaded file using the command in functorizer.maude .

The general use case consists in providing the join-semilattices, the alphabets
and the expressions. After these steps, the tool automatically checks if the
provided expressions are guarded, closed and correctly typed. If this check
succeeds, then it outputs a specification that can be further processed by CIRC.
In the end, the prover outputs either the bisimulation, if the expressions are
equivalent, or a negative answer, otherwise.

We present two case studies in order to emphasize the high degree of gener-
ality for the types of systems we can handle, and show how the tool is used.

Example 3. We consider the case of Mealy machines, which are coalgebras for
the functor (B× Id)A.

Formally, a Mealy machine is a pair (S, α) consisting of a set S of states
and a transition function α : S → (B × S)A, which for each state s ∈ S and
input a ∈ A associates an output value b and a next state s′. Typically, we write

α(s)(a) = 〈b, s′〉 ⇔ s
a|b

s′ .

In this example and in what follows we will consider for the output the two-
value join-semilatice B = {0, 1} (with ⊥B = 0) and for the input alphabet A =
{a, b}. The expressions for Mealy machines are given by the grammar:

E ::= ∅ | x | E ⊕ E | µx.E2 | a(r〈E〉) | b(r〈E〉) | a(l〈E1〉) | b(l〈E1〉)
E1 ::= ∅ | E1 ⊕ E1 | 0 | 1
E2 ::= ∅ | E2 ⊕ E2 | µx.E2 | a(r〈E〉) | b(r〈E〉) | a(l〈E1〉) | b(l〈E1)

25

Intuitively, an expression of shape a(l〈E1〉) specifies a state that for an input
a has an output value specified by E1. For example, the expression a(l〈1〉)
specifies a state that for input a outputs 1, whereas in the case of a(l〈∅〉) the
output is 0. An expression of shape a(r〈E〉) specifies a state that for a certain
input a has a transition to a new state represented by E. For example, the
expression µx.a(r〈x〉) states that for input a, the machine will perform a “a-
loop” transition, whereas a(r〈∅〉) states that for input a there is a transition to
the state denoted by ∅. It is interesting to note that a state will only be fully
specified in what concerns transitions and output (for a given input a if both
a(l〈E1〉) and a(r〈E〉) appear in the expression (combined by ⊕). In the case
only transition (resp. output) are specified, the underspecification is solved by
setting the target state (resp. output) to ∅ (resp. ⊥B = 0).

Next, to provide the reader with intuition, we will explain how one can rea-
son on the bisimilarity of two simple expressions, by constructing bisimulation
relations. Later on, we show how CIRC can be used in conjunction with our
tool in order to act as a decision procedure when checking equivalence of two
expressions, in a fully automated manner.

We will start with the expressions ε1 = µx.a(r〈x〉) and ε2 = ∅.We have to
build a bisimulation relation R on G-expressions, such that (ε1, ε2) ∈ R. We
do this in the following way: we start by taking R = {(ε1, ε2)} and we check
whether this is already a bisimulation, by considering the output values and
transitions and check whether no new expressions appear in this process. If
new pairs of expressions appear we add them to R and repeat the process.
Intuitively, this can be represented as follows:

ε1

a|0

R

b|0

ε2

a|0
b|0

R = {(ε1, ε2)}

ε2

a|0,b|0

ε1
R

ε2 ε2

not yet in R; add it
a|0,b|0

R = {(ε1, ε2), (ε2, ε2)}

ε2a|0,b|0 ε2 a|0,b|0

R

X

Figure 4: Bisimulation construction

In the figure above, and as before, we use the notation ε1
R

ε2 to denote

(ε1, ε2) ∈ R. As illustrated in Figure 4, R = {(ε1, ε2), (ε2, ε2)} is closed under
transitions and is therefore a bisimulation. Hence, ε1 ∼G ε2.

The proved equality ∅ = µx.a(r〈x〉) might seem unexpected, if the reader is
familiar with labelled transition systems. The equality is sound because these
are expressions specifying behavior of a Mealy machine and, semantically, both
denote the function that for every non-emtpy word outputs 0 (the semantics of

Mealy machines is given by functions BA+

, intuitively one can think of these ex-

26

pressions as both denoting the empty language). This is visible if one draws the
automata corresponding to both expressions (say, for simplicity, the alphabet is
A = {a}):

∅

a|0

µx.a(r〈x〉)

a|0

Note that (i) the ∅ expression for Mealy machines is mapped with δ to a function
that for input a gives 〈0, ∅〉, which represents a state with an a-loop to itself and
output 0; (ii) the second expression specifies explicitly an a-loop to itself and
it also has output 0, since no output value is explicitly defined. Now, also note
that similar expressions for labelled transition systems (LTS), or coalgebras of
the functor Pω(−)A, would not be bisimilar since one would have an a-transition
and the other one not. This is because the ∅ expression for LTS really denotes
a deadlock state. In operational terms they would be converted to the systems

∅ µx.a(x)

a

which now have an obvious difference in behavior.
By performing a similar reasoning as in the example above one can show that

the expressions ε1 = µx.a(r〈x〉)⊕b(r〈x〉) and ε2 = µx.a(r〈x〉) are bisimilar, and
the bisimulation relation is built as illustrated in Figure 5:

ε1

a|0

R

b|0

ε2

a|0
b|0

R = {(ε1, ε2)}

ε1

a|0,b|0

ε1
R

ε2 ∅

not yet in R; add it
a|0,b|0

R = {(ε1, ε2), (ε1, ∅)}

ε1a|0,b|0 ∅ a|0,b|0

R

X

Figure 5: Bisimulation construction

Let us further consider the Mealy machine depicted in Figure 6, where all
states are bisimilar.

s1 a|0

b|1

a|0

b|1

b|1a|0 s2 b|1a|0

Figure 6: Mealy machine: s1 ∼ s2

We show how to check for the equivalence of two expression characterizing
the states s1 and s2, in a fully automated manner, using CIRC. These expres-

27

sions, are ε1 = µx.b(l〈1〉) ⊕ b(r〈ε2〉) ⊕ a(µy.a(r〈y〉) ⊕ b(r〈ε2〉) ⊕ b(l〈1〉)) and
ε2 = µx.b(l〈1〉)⊕ b(r〈x〉) ⊕ a(r〈x〉), respectively.

In order to check bisimilarity of ε1 and ε2 we load the tool and define the
semilattice B = {0, 1} and the alphabet A = {a, b}:

(jslt B is 0 1 bottom 0 . 0 v 0 = 0 . 0 v 1 = 0 . 1 v 1 = 1 . endjslt)

(alph A is a b endalph)

We provide the functor G using the command (functor (B x Id)^A .). The
command (set goal) specifies the goal we want to prove:

(set goal
\mu X:FixpVar . b(l<1>) (+) a(l<0>) (+) b(r<X:FixpVar>) (+)

a(r<X:FixpVar>) =
\mu X:FixpVar . b(l<1>) (+) b(<\mu X:FixpVar . b(l<1>) (+)

b(r<X:FixpVar>) (+) a(r<X:FixpVar>)>) (+)
a(\mu Y:FixpVar . a(r<Y:FixpVar>) (+)
b(<\mu X:FixpVar . b(l<1>) (+) a(l<0>) (+)
b(r<X:FixpVar>) (+) a(r<X:FixpVar>)>) (+) b(l<1>)) .)

In order to generate the CIRC specification we use the command (generate

coalgebra .). Next we need to load CIRC along with the resulting specification
and start the proof engine using the command (coinduction .).

As already shown, behind the scenes, CIRC builds a bisimulation relation
that includes the initial goal. The proof succeeds and the output consists of (a
subset of) this bisimulation:

Proof succeeded.
Number of derived goals: 2
Number of proving steps performed: 50
Maximum number of proving steps is set to: 256

Proved properties:
- phi (+) (\mu X . a(l<0>) (+) a(r<X>) (+) b(l<1>) (+) b(r<X>)) =
phi (+) (\mu Y . a(r<Y>) (+) b(l<1>) (+)
b(r<\mu X . a(l<0>) (+) a(r<X>) (+) b(l<1>)(+)b(r<X>)>))

- \mu X . a(l<0>) (+) a(r<X>) (+) b(l<1>) (+) b(r<X>) =
\mu Z . a(r<\mu Y . a(r<Y>) (+) b(l<1>) (+)

b(r<\mu X . a(l<0>) (+) a(r<X>) (+) b(l<1>) (+) b(r<X>)>)>) (+)
b(l<1>) (+) b(r<\mu X . a(l<0>) (+) a(r<X>) (+)
b(l<1>) (+) b(r<X>)>)

For the ease of understanding, here we printed a readable version of the
proved properties. In Section 6.1, however, we show that internally each ex-
pression is brought to a canonical form by renaming the variables. Moreover,
note that in our tool, ∅ is represented by the constant phi. All the examples
provided in the current section make use of this convention.

As previously mentioned, CIRC is also able to detect when two expressions
are not equivalent. Take, for instance, the expressions µx.a(l〈0〉)⊕a(r〈a(l〈1〉)⊕
a(r〈x〉)〉) and a(l〈0〉)⊕ a(r〈a(r〈µx.a(r〈x〉)⊕ a(l〈0〉)〉)⊕ a(l〈1〉)〉), characterizing

28

the states s1 and s3 from the Mealy machines in Fig. 7. After following some
steps similar to the ones previously enumerated, the proof fails and the output
message is Visible goal [...] failed during coinduction.

s1

a|0

s2
a|1

s3

a|0

s4

a|1

s5 a|0

Figure 7: Mealy machines: s1 6∼ s3

Example 4. Let us show how one may check strong bisimilarity of two nonde-
terministic processes of a non-trivial CCS-like language with termination, dead-
lock, and divergence, as studied in [1]. A process is a guarded, closed term
defined by the following grammar:

P ::= X | δ | Ω | a.P | P + P | x | µx.P (15)

where:

• X is the constant for successful termination,

• δ denotes deadlock,

• Ω is the divergent computation (i.e., the undefined process),

• a.P is the process executing the action a and then continuing as the process
P , for any action a from a given set A,

• P1 + P2 is the non-deterministic process behaving as either P1 or P2, and

• µx.P is the recursive process P [µx.P/x].

In [22] is is shown that, up to strong bisimilarity, the above syntax of pro-
cesses is equivalent to the canonical set of (guarded, closed) regular expressions
derived for the functor 1✸+ Pω(Id)

A,

E :: = ∅ | E ⊕ E | x | µx.E | l[E1] | r[E2]
E1 :: = ∅ | E1 ⊕ E1 | 1
E2 :: = ∅ | E2 ⊕ E2 | a(E3)
E3 :: = ∅ | E3 ⊕ E3 | {E}

The translation map (−)† from processes to expressions is defined by induc-
tion on the structure of the process:

(X)† = l[1] (a.P)† = r[a({P †})]
(δ)† = r[∅] (P1 + P2)

† = (P1)
† ⊕ (P2)

†

(Ω)† = ∅ (µx.P)† = µx.P †

x† = x .

29

Consider now two processes P and Q over the alphabet A = {a, b}:

P = µx.(a.x+ a.P1 + b.b.X+ b.(δ +Ω))
Q = µz.(a.z + b.(δ + b.X) + b.δ)

where P1 = µy.(a.(y+ δ) + b.δ+ b.(δ+ b.X)+ δ). Graphically, the two processes
can be represented by the following labelled transition systems (for simplicity we
omit annotating states with information regarding the satisfiability of successful
termination, divergence, and deadlock):

Pa
b

a
b

Q a

b
b

P1 a
b

b
b b

b

Figure 8: Nondeterministic processes: Q ∼ P

We want to check if the process P is strongly bisimilar to the process Q. By
using the above translation, process P is represented by the expression

µx.(r[a({µy.(r[a({y ⊕ r[∅]})]⊕ r[b({r[∅]})]⊕
r[b({r[∅]⊕ r[b({l[1]})]})]⊕ r[∅])})]⊕

r[a({x})]⊕ r[b({r[b({l[1]})]})]⊕ r[b({r[∅]⊕ ∅})])

whereas process Q is represented by the expression

µz.(r[a({z})]⊕ r[b({r[∅]⊕ r[b({l[1]})]})]⊕ r[b({r[∅]})]).

In order to use the tool, one needs to specify the semilattice, the alphabet,
the functor, and the goal in a manner similar to the one previously presented:

(jslt B is 1 bottom 1 . 1 v 1 = 1 . endjslt)

(alph A is a b endalph)

(functor B + (P Id)^A .)

(set goal \mu X:FixpVar .
r[a({ X:FixpVar })] (+)
r[a({ \mu Y:FixpVar .

r[a({ Y:FixpVar (+) r[phi] })] (+)
r[b({ r[phi] })] (+)
r[b({ r[phi] (+) r[b({ l[1] })] })] (+)
r[phi]

})
] (+)
r[b({ r[b({ l[1] })] })] (+)
r[b({ r[phi] (+) phi })]
=

30

\mu Z:FixpVar .
r[a({ Z:FixpVar })] (+)
r[b({ r[phi] (+) r[b({ l[1] })] })] (+)
r[b({ r[phi] })] .)

For the generated specification CIRC terminates and outputs a positive result:

Proof succeeded.
Number of derived goals: 15
Number of proving steps performed: 58
Maximum number of proving steps is set to: 256

Proved properties:
- r[phi] (+) (\mu Y. r[phi] (+) r[a({r[phi] (+) Y})] (+) r[b({r[phi]})]
(+) r[b({r[phi] (+) r[b({l[1]})]})])
=
\mu Z. r[a({Z})] (+) r[b({r[phi]})] (+) r[b({r[phi] (+) r[b({l[1]})]})]

- r[b({l[1]})] = r[phi] (+) r[b({l[1]})]
- \mu Y. r[phi] (+) r[a({r[phi] (+) Y})] (+) r[b({r[phi]})] (+)
r[b({r[phi] (+) r[b({l[1]})]})]
=
\mu Z. r[a({Z})] (+) r[b({r[phi]})] (+) r[b({r[phi] (+) r[b({l[1]})]})]

- \mu X. r[a({X})] (+) r[a({\mu Y. r[phi] (+) r[a({r[phi] (+) Y})] (+)
r[b({r[phi]})] (+) r[b({r[phi] (+) r[b({l[1]})]})]})] (+)
r[b({r[phi] + phi})] (+) r[b({r[b({l[1]})]})]
=
\mu Z. r[a({Z})] (+) r[b({r[phi]})] (+) r[b({r[phi] (+) r[b({l[1]})]})]

6.1. Implementation

In this section we present details on the implementation of the algebraic
specification given in Section 4, based on the examples from Section 6.

In order to generate the algebraic specifications for CIRC when provided a
functor and two expressions we used the Maude system [4]. We choose it for
its suitability for performing equational and rewriting logic based computations,
and because of its reflective properties allowing for the development of advanced
metalanguage applications. As the technical aspects on how to work at the
meta-level are beyond the scope of this paper, we refrain from presenting them
and show, instead, what the generated specifications consist of.

Most of the algebraic specifications from Section 4 have a straightforward
implementation in Maude. Consider, for instance, the case of Mealy machines
presented in Example 3. The generated grammars for functors (1) and expres-
sions (Definition 3) are coded as:

sort Functor . sorts Exp ExpStruct Alph Slt .
sorts AlphName SltName . subsort Exp < ExpStruct .
subsort SltName < Functor . enum A is a b . enum B is 0 1 .

subsort A < Alph .
op A : -> AlphName . subsort B < Slt .
op B : -> SltName .
op G : -> Functor . op _‘(+‘)_ : Exp Exp -> Exp .
op Id : -> Functor . op _‘(_‘) : Alph Exp -> Exp .
op _+_ : Functor Functor -> Functor . op \mu_._ : FixpVar Exp -> Exp .

31

op _^_ : Functor AlphName -> Functor . ops l<_> r<_> : Exp -> Exp .
op _x_ : Functor Functor -> Functor . op phi : -> Exp .

eq G = (B x Id) ^ A .

Most of the syntactical constructs are Maude-specific: sorts and subsort

declare the sorts we work with and, respectively, the relations between them; op
declares operators; eq declares equations (the equation in our case defines the
shape of the functor G). The only CIRC-specific construct, enum, is a syntactic
sugar for declaring enumerable sorts, i.e., sorts that consist only of the specified
constants. As a side note, if brackets ((, [, {) are used in the declaration of an
operation, then they must be preceded by a backquote (‘).

As mentioned in Section 2, in order to guarantee the finiteness of our proce-
dure, one needs to include the ACI axioms for (+). Moreover, we have observed
that the unity axiom for (+) plays an important role in decreasing the number
of states generated by the repeated application of δG, therefore improving the
overall time performance of the tool. For example, the number of rewritings
CIRC performed in order to prove the bisimilarity of ε1 and ε2 in Figure 5 was
halved when the unity axiom was used.

By turning on the axiomatization flag using the command (axioms on .),
the following code is generated:

op _‘(+‘)_ : Exp Exp -> Exp [assoc comm] .
eq E:Exp (+) E:Exp = E:Exp .
eq E:Exp (+) phi = E:Exp .

It is an obvious question on why not to add other axioms to the tool, since
the unity axiom has improved performance. At this stage we do not have stud-
ied in detail how much adding other axioms would help. It is in any case a
trade-off on how many extra axioms one should include, which will get the au-
tomaton produced from an expression closer to the minimal automaton, and
how much time the tool will take to reduce the expressions in each step modulo
the axioms. For classical regular expressions, there is an interesting empirical
study on this [16]. We leave it as future work to carry on a similar study for
our expressions and axioms.

The process of substituting fixed-point variables has a natural implementa-
tion. We present the equations handling the basic expressions ∅ and x, and the
operation (+):

op _‘[_/_‘] : Exp Exp FixpVar -> Exp .
eq phi [E:Exp / X:FixpVar] = phi .
ceq Y:FixpVar [E:Exp / X:FixpVar] = E:Exp if (X:FixpVar == Y:FixpVar) .
eq Y:FixpVar [E:Exp / X:FixpVar] = Y:FixpVar [owise] .
eq (E1:Exp (+) E2:Exp) [E:Exp / X:FixpVar] =

(E1:Exp [E:Exp / X:FixpVar]) (+) (E2:Exp [E:Exp / X:FixpVar]) .

In order to avoid matching problems and to overpass the fact that in Maude
one cannot handle an equation that has fresh variables in its right-hand-side
(i.e., they do not appear in the left-hand-side), we replace expression variables

32

with parameterized constants: op var : Nat -> FixpVar . The operation that
obtains this canonical form has an inductive definition on the structure of the
given expression and makes use of the substitution operation presented above.
For this reason, the bisimulation CIRC builds contains parameterized constants
instead of the user declared variables. The property proved in Example 4 is,
therefore, written as:

\mu var(2) . r[a({var(2)})] (+) r[a({\mu var(1) . r[phi] (+)
r[a({r[phi] (+) var(1)})] (+) r[b({r[phi]})] (+) r[b({r[phi] (+)
r[b({l[1]})]})]})] (+) r[b({r[phi] (+) phi})] (+) r[b({r[b({l[1]})]})]
=
\mu var(1) . r[a({var(1)})] (+) r[b({r[phi]})] (+)
r[b({r[phi] (+) r[b({l[1]})]})]

The most important part of the algebraic specification consists of the equa-
tions defining the operations δ (), Plus (,), and Empty. Most of these equa-
tions are implemented as presented in [22]. The only difficulties we encoun-
tered were for the exponentiation case, as Maude does not handle higher-order
functions. Without entering into details, as a workaround, we introduced a
new sort Function < ExpStruct and an operation \. : ExpoCase Alph Functor

ExpStruct -> Function in order to emulate function-passing. The first argument
is used to memorize the origin where the exponentiation ingredient is encoun-
tered: δ, Plus , or Empty. Its purpose is purely technical – we use it in order to
avoid some internal matching problems. The other three parameters are those
of the structured expression λ.(a,F ⊳ G, σ) presented in Section 4: a letter in the
alphabet, an ingredient, and some other structured expression.

Another thing worth describing is the way we enable CIRC to prove equiva-
lences when the powerset functor occurs. Namely, we present how interpolant
(13) is implemented. Recall that we want to show that two sets of expressions
are equivalent, which means that for each expression in the first set there must
be an equivalent one in the second set and vice-versa.

In order to handle sets of structured expressions we introduce a new sort,
ExpStructSet as a supersort for ExpStruct. We also consider the set separator
, : ExpStructSet ExpStructSet -> ExpStructSet [assoc,comm], the empty set
emptyS : -> ExpStructSet, and the set wrapping operation { } : ExpStructSet

-> ExpStruct. In order to mimic universal quantification over a set, we use a
special constant referred to as token “[/]”. In what follows, we consider two vari-
ables of sort ExpStructSet: ES and ES’, and two variables of sort ExpStructSet:
ESS and ESS’. We now describe the process of finding the equivalence between
two sets:

• whenever encountering two wrapped expression sets we add the universal
quantification token to each of them in two distinct goals:

srl {ESS} = {ESS’} => {[/] ESS} = {ESS’} /\ {ESS} = {[/] ESS’} .

• iterate through the expressions on the left-hand-side (similarly for the
other direction):

33

srl {[/] (ES , ESS)} = {ESS’} =>
{[/] ES} = {ESS’} /\ {[/] ESS} = {ESS’} .

srl {ESS} = {[/] (ES’ , ESS’)} =>
{ESS} = {[/] ES’} /\ {ESS} = {[/] ESS’} .

• when left with one expression on the left-hand-side, start iterating through
the expressions on the right-hand-side until finding an equivalence (simi-
larly for the other direction):

srl {[/] ES} = {ES’ , ESS’} => ES = ES’ \/ {[/] ES} = {ESS’} .
srl {ES , ESS} = {[/] ES’} => ES = ES’ \/ {ESS} = {[/] ES’} .

• if no equivalence has been found, transform the current goal into a visible
failure:

srl {ESS} = emptyS => true = false .
srl emptyS = {ESS} => true = false .

Finally, the type checker for structured expressions has a straightforward
implementation. Its code does not appear in the generated specification as it
is only used when the tool receives the expressions as input. This prevents
obtaining the specification and starting the prover in case invalid expressions
are provided.

7. Discussion

One of the major contributions of this paper is that we provided a decision
procedure for the bisimilarity of generalized regular expressions. In order to
enable the implementation of the decision procedure, we have exploited an en-
coding of coalgebra into algebra, and we formalized the equivalence between the
coalgebraic concepts associated to non-deterministic coalgebras [22] and their
algebraic correspondents. This led to the definition of algebraic specifications
(EG) that model both the language and the coalgebraic structure of expressions.
Moreover, we defined an equational deduction relation (⊢NDF), used on the
algebraic side for reasoning on the bisimilarity of expressions.

The most important result of the parallel between the coalgebraic and al-
gebraic approaches is given in Corollary 1, which formalizes the definition of
the bisimulation relations in algebraic terms. Actually, this result is the key for
proving the soundness of the decision procedure implemented in the automated
prover CIRC [14]. As a coinductive prover, CIRC builds a relation F closed un-
der the application of δG with respect to ⊢NDF (EG ∪ F ⊢NDF δG(F)), hence
automatically computing a bisimulation the initial proof obligations belong to.

The approach we present in this paper enables CIRC to perform reasoning
based on bisimulations (instead of experiments [17]). This way, the prover
is extended to checking bisimilarity in a large class of systems that can be
modeled as non-deterministic coalgebras. Note that the constructions above
are all automated – the (non-trivial) CIRC algebraic specification describing

34

EG, together with the interpolants implementing ⊢NDF are generated with the
Maude tool presented in Section 6.

We now mention some of the existing coalgebraic based tools for proving
bisimilarity and the main differences with the tool presented in this paper. Co-
Casl [8] and CCSL [18] are tools that can generate proof obligations for theorem
provers from coalgebraic specifications. In [8] several tactics for interactive and
automatic bisimulation building are implemented in Isabelle/HOL and are used
to derive bisimilarities for translated specifications from CoCasl. The main dif-
ference between our tool and CoCasl or CCSL is that, given a functor, the tool
derives a specification language for which equivalence is decidable (that is, it
is automatic and not interactive). CIRC [5, 17], on top of which the current
tool is built, is based on hidden algebra and uses a partial decision procedure for
proving bisimilarities via implicit construction of bisimulations. Our tool can be
seen as an extension of CIRC to a fully automatic theorem prover for the class
of non-deterministic coalgebras. We stress the fact that the focus of this paper
was on a language for which equivalence is decidable. Tools such as CoCasl,
CCSL or CIRC have a more expressive language, where one can, for instance,
specify streams which in our language could not be specified (intuitively, the
streams we can specify in our language are eventually periodic). In those tools
decidability of equivalence can however not be guaranteed.

There are several directions for future work.
Extending the class of systems to include quantitative coalgebras (such as

weighted automata and Markov chains) will enlarge the scope of applicability of
the tool. The challenge in this extension arises from the fact that the definition
of expressions for quantitative coalgebras involving the distribution monad is not
as modular as for the other functors (for details see [21]). This is a consequence
of the fact that the sum of two valid expressions might not be a valid expression
anymore (since in distributions we require that the sum of probabilities add up
to 1). Moreover, calculating bisimulation relations in the quantitative setting
will encompass metric manipulation, which is currently not implemented in
CIRC.

To improve usability, building a graphical interface for the tool is an obvious
next step. The graphical interface should ideally allow the specification of ex-
pressions by means of systems of equations (which are then solved internally) or
even by means of an automaton, which would then be translated to an expres-
sion using Kleene’s theorem. We also would like to explore how adding more
axioms than ACI to the prover (that is, each step of the bisimulation checking is
performed modulo more equations) improves the performance. Our experience
so far shows that by adding the axiom for the distribution of the ∅ expression
through the constructors, i.e. ∅ ⊕ ε = ε, the prover works significantly faster.

We have not yet studied complexity bounds for the algorithms presented in
this paper. We conjecture however that the bounds will be very similar to the
already known for classical regular expressions [13, 24]. Further explorations in
this direction are left as future work.

35

Acknowledgments. We would like to thank the referees for the many construc-
tive comments, which greatly helped us improving the paper. The authors are
also grateful for useful comments from Luca Aceto, Filippo Bonchi, and Miguel
Palomino Tarjuelo. The work of Georgiana Caltais and Eugen-Ioan Goriac
has been partially supported by the project ‘Meta-theory of Algebraic Process
Theories’ (nr. 100014021) of the Icelandic Research Fund. The work of Dorel
Lucanu has been partially supported by the PNII grant CNCSIS IDEI 393. The
work of Alexandra Silva was partially supported by Fundação para a Ciência e
a Tecnologia, Portugal, under grant number SFRH/BPD/71956/2010.

References

[1] L. Aceto and M. Hennessy. Termination, deadlock, and divergence. J.
ACM, 39:147–187, January 1992.

[2] M. Bonsangue, G. Caltais, E.-I. Goriac, D. Lucanu, J. Rutten, and A. Silva.
A decision procedure for bisimilarity of generalized regular expressions. In
Proceedings of the 13th Brazilian conference on Formal methods: founda-
tions and applications, SBMF’10, pages 226–241, Berlin, Heidelberg, 2011.
Springer-Verlag.

[3] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in
membership equational logic. Theor. Comput. Sci., 236(1-2):35–132, 2000.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. All about Maude - a high-performance logical framework: how
to specify, program and verify systems in rewriting logic. Springer-Verlag,
Berlin, Heidelberg, 2007.

[5] J. Goguen, K. Lin, and G. Rosu. Circular coinductive rewriting. In ASE
’00: Proceedings of the 15th IEEE international conference on Automated
software engineering, pages 123–132, Washington, DC, USA, 2000. IEEE
Computer Society.

[6] J. A. Goguen. Order-sorted algebra i: Equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105:217–273, 1992.

[7] E.-I. Goriac, D. Lucanu, and G. Roşu. Automating Coinduction with Case
Analysis. Technical Report TR 10-05, “Al.I.Cuza” University of Iaşi, Fac-
ulty of Computer Science, 2010. URL:http://www.infoiasi.ro/˜tr/tr.pl.cgi.

[8] D. Hausmann, T. Mossakowski, and L. Schröder. Iterative Circular Coin-
duction for CoCasl in Isabelle/HOL. In M. Cerioli, editor, FASE, volume
3442 of Lecture Notes in Computer Science, pages 341–356. Springer, 2005.

[9] C. Hermida and B. Jacobs. Structural induction and coinduction in a
fibrational setting. Inf. Comput., 145(2):107–152, 1998.

36

[10] S. Kleene. Representation of events in nerve nets and finite automata.
Automata Studies, pages 3–42, 1956.

[11] D. Kozen. A completeness theorem for Kleene algebras and the algebra of
regular events. In LICS, pages 214–225. IEEE Computer Society, 1991.

[12] D. Kozen. Myhill-Nerode relations on automatic systems and the com-
pleteness of Kleene algebra. In A. Ferreira and H. Reichel, editors, STACS,
volume 2010 of Lecture Notes in Computer Science, pages 27–38. Springer,
2001.

[13] D. Kozen. On the coalgebraic theory of Kleene algebra with tests. Techni-
cal Report http://hdl.handle.net/1813/10173, Computing and Infor-
mation Science, Cornell University, March 2008.

[14] D. Lucanu, E.-I. Goriac, G. Caltais, and G. Roşu. CIRC: a behavioral verifi-
cation tool based on circular coinduction. In Proceedings of the 3rd interna-
tional conference on Algebra and coalgebra in computer science, CALCO’09,
pages 433–442, Berlin, Heidelberg, 2009. Springer-Verlag.

[15] R. Milner. A complete inference system for a class of regular behaviours.
J. Comput. System Sci., 28(3):439–466, 1984.

[16] S. Owens, J. H. Reppy, and A. Turon. Regular-expression derivatives re-
examined. J. Funct. Program., 19(2):173–190, 2009.

[17] G. Roşu and D. Lucanu. Circular coinduction: a proof theoretical foun-
dation. In Proceedings of the 3rd international conference on Algebra and
coalgebra in computer science, CALCO’09, pages 127–144, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[18] J. Rothe, H. Tews, and B. Jacobs. The coalgebraic class specification
language CCSL. J. UCS, 7(2):175–193, 2001.

[19] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor.
Comput. Sci., 249(1):3–80, 2000.

[20] A. Salomaa. Two complete axiom systems for the algebra of regular events.
J. ACM, 13(1):158–169, 1966.

[21] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Quantitative Kleene
coalgebras. May 2011.

[22] A. Silva, M. M. Bonsangue, and J. J. M. M. Rutten. Non-deterministic
Kleene coalgebras. Logical Methods in Computer Science, 6(3), 2010.

[23] S. Staton. Relating coalgebraic notions of bisimulation. In A. Kurz,
M. Lenisa, and A. Tarlecki, editors, CALCO, volume 5728 of Lecture Notes
in Computer Science, pages 191–205. Springer, 2009.

37

[24] J. Worthington. Automatic proof generation in Kleene algebra. In
R. Berghammer, B. Möller, and G. Struth, editors, RelMiCS, volume 4988
of Lecture Notes in Computer Science, pages 382–396. Springer, 2008.

38

