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We consider two ways of assigning semantics to a class of statements built from a set of atomic actions 
(the 'alphabet'), by means of sequential composition, nondeterministic choice, recursion and merge (arbi
trary interleaving). The first is linear time semantics (LT), stated in terms of trace theory; the seman
tic domain is the collection of all closed sets of finite and infinite words. The second is branching time 
semantics (BT), as introduced by de Bakker and Zucker; here the semantic domain is the metric completion 
of the collection of finite processes. For LT we prove the continuity of the operations (merge, sequential 
composition) in a direct, combinatorial way. 

Next, a connection between LT and BT is established by means of the operation trace which assigns to 
a process its set of traces. If the alphabet is finite, the trace set of a process is closed and trace is 
a continuous operation. Using trace, we then can carry over BT into LT. 

l . INTRODUCTION 

We study two ways of assigning meaning to a simple language L which has elementa

ry actions (a,b,c, ... ), sequential composition, nondeterrninistic choice, recursion 

and merge (arbitrary interleaving) as its constituent concepts. Tnis type of language 

may be seen as the core of various current approaches to p~rallellism (mostly to be 

extended with further concurrent concepts such as synchronization and communication, 

and often with simple iteration rather than full recursion), and it deserves in our 

opinion a full study of its associated semantics. There are a number of issues one en

counters in developing a rigorous theory for this purpose. 

Firstly, there is the issue of "linear time" versus "branching time", a terrnino-

logy one finds, e.g., in investigations of the model theory of temporal logic. In fact, 

an important motivation for our investigation was to better understand this phenomenon. 

"Linear time" is easy: it is nothing but trace theory. For example, in the linear time 

model both the statements (a;b) u (a;c) and a; (b Uc) obtain as associated meaning the 

so-called trace set {ab,ac}. "Branching time" refers to an approach where one wants to 

distinguish between these two statements. Here for the two statements we obtain as 

meaning the two trees: and al . 
Y"\ 
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(Trees are not quite what we want, though. The statement au a should yield the object 

al rather than ~ as its meaning, and there are further differences - to be 

explained below - between trees and the.objects in the branching time universe.) 

secondly, the appearance of merge ( 11 ) introduces various questions. For traces, 

"II" is to be defined as the usual shuffle in the sense of language theory; for the 

branching time model a new definition is required. Also, various known results about 

context free (or algebraic) languages, possibly with infinite words, have to be ex

tended due to the addition of the "II" operator. 

Thirdly, in accordance with the emphasis which in the study of concurrency is 

put onto nonterminating computations, we want to include a mathematical rigorous 

treatment of finite and infinite actions specified by the programs in our language. 

For example, employing the µ-notation for recursion, we want as (linear time) meaning 

of µx[a;x] the sequence a00 (the infinite sequence of a's), and for µx[ (a;x) u b] the 

set of sequences (a*b) u a00 • The trace theory to be developed below is a continuation 

of the investigation of languages of infinite words by Nivat and his school [10 - 13]. 

The inclusion of the "II" operation is responsible for further technical problems 

which - as far as we know - are not dealt with in their work in a way resembling our 

approach. (Also, in cases where Nivat addresses questions of semantics, these concern 

languages which are completely different from our l.) 

The development of the models for linear time and branching time semantics (from 

now on abbreviated to LT and BT) starts with a few tools from metric topology. For LT, 

not much more is used than the definition of distance between words. E.g.,d(abc,abde) _, 
2 , where 3 is the index where the sequences exhibit their first difference. Next, 

a notion of closed set (closed with respect to d) is introduced. For example, the set 

a* is not closed since it does not contain its limit point a . The framework for LT 

semantics is then taken as the complete partially ordered set of closed sets, with 

"2" (set containment) as the "i;;;" ordering of the cpo. For BT we use the (mathemati

cal) notion of ppocess which is an element of a domain of processes obtained as solu

tion of a domain equation by topological completion techniques. Domain equations have 

been studied extensively by Scott ([15,16]) and, in a nondeterministic setting and 

using category theory, by Plotkin [14] and Smyth [17]. The theory of processes has 

been described elsewhere ([3,4]), and is included here to facilitate comparison be

tween the LT and BT semantics. 

Section 2 is devoted to LT semantics, Section 3 to BT semantics, and Section 4 

to the relationship between the two, and to some variations on the preceding defini

tions. The proof of Lemma 4.4 is omitted here and can be found in [2]. 

2. LT SEMANTICS: MATHEMATICAL BACKGROUND AND SEMANTICAL EQUATIONS 

Let A be an alphabet with elements a,b, •... (Most of the results below hold when A 

is finite or infinite. In a few cases, we require A to be finite.) Let x,y, ... be 

statement variables from a set S.tmv, which we shall use in the formation of PeouPsive 
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or µ-statements. The syntax for the language l is given (in a self-explanatory BNF 

notation) in 

2.1.1. EXAMPLES. (a;b) u(allcl, µx[(a;µy[(b;ylJlxJ)uc]. 

2.1.2. REMARKS. (1) Syntactic ambiguities should be remedied by using parentheses or 

conventions for the priority of the operations. 

( 2) (For the reader who isn't familiar with the µ-notation.) A term such as 

µx[ (a;x) u b] has the same meaning as a call of the procedure declared (in an ALGOL

like language) by P*' (a;P) u b, or, alternatively, generates the same language (of 

finite and infinite words) as the grammar x + aX I b. 

(3) In a term µx[S], x may occur "guarded" in S, i.e., when S has the form a; (--x--): 

a recursive "call" of x is guarded by at least one elementary action a EA. Terms like 

µx[x], µx[x;b] or µx[allxl contain unguarded occurrences of x. (In language theory, 

the equivalent notion is the "Greibach condition", as in Nivat [12] .) Certain results 

below are - though mathematically correct - not necessarily semantically satisfactory 

for statements with unguarded variables. 

We now turn to the development of the underlying semantic framework. 

2.2. DEFINITION. (a) A00 = A*UAw, where A* is the set of all finite words over A, and 

Aw the set of all infinite words. 

(b) " denotes the usual prefix relation (a partial order) on A'°. The prefix of x EA"' 

of length n will be denoted by x[n]. 

(Examples: abc ~ abccb; abccb[3] = abc; abc[S] = abc; abc[O] is the empty word.) 

(c) Let x,yE A'°. The distance or metric d: A00 
... [O,l] is defined by 

d(x,y) 
J 2-min{n I x(n] ;fy[n]} + 1 if 3n x[n] ;fy[n) 

lo otherwise (i.e. ifx=y) 

(d) P (A00
) denotes the collection of all closed subsets of A00

• Here 'closed' refers 
c 

to the metric d, i.e., X E p (A00
) whenever each Cauchy sequence <x > has a limit in 

c n n 
X. (By definition, the elements of a Cauchy sequence have arbitrarily small distances 

for sufficiently large index.) In the sequel we write C for the collection P (A00
). c 

We define the order "£::;;" on C by putting xi;; Y iff X 2 Y (with " 2" set-contain-

ment) . 

"' 2.3. LEMMA. dis a metric on A , and C is a complete partially ordered set with res-

pect to ~' with A00 as bottom element and with [_J X = n X , for <X > a C -chain. n n n n nn -

For later use (in Section 4) we introduce one further definition with a theorem 

and a corollary: 
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2.4. DEFINITION. (Hausdorff distance) 

For any metric space (M,d), x,y e M and X,Y!;;M we define distances d, d: 

(a) d(x,Y) inf {d(x,yllyeY}, where inf Jil = l 

(b) d(X,Y) max (sup { d (x, Y) Ix E X} , sup {d(y,X) lyeY}) where sup Jil 0. 

2 .5. THEOREM. (a) d is a metPio for' P (M). 
c -

(b) If (M,dl is oompiete, then so is (pc(M),d). Aiso, foP <Xn>n a Cauohy sequence 

in pc(M), we then have that limn xn (xl xn+x, with xnE;'Xn}. 

PROOF. See e.g. (6). A complete proof of (b) is contained in [4]. 0 

2.6. COROLLARY. The HausdoPff metpic on C turns it into a compiete metric space. O 

The Hausdorff metric on C will be written as ~ (to be contrasted with the Hausdorff 

metric dB on~. in Section 3). 

In section 4 we will need the following connection between the metric on C and 

its cpo structure: 

2. 7. PROPOSITION. Let <Xn> n be both a Cauchy sequence in C and a &;; -chain. Then: 

Ux 
n n 

lim X . 
n n 

PROOF. By Theorem 2.5 we must prove that Q Xn = (x I x =limn xn' for some xne Xn}. 

Here ( ~ ) is trivial. ( :;i) : let x = limn xn for some sequence <xn> n such that xn e Xn. 

Since Xn s;_ x0 for all n, we have xn e x0 . Since x0 is closed, x e x0 . Likewise 

x =limn xn+l is an element of x1 , etc. Hence x e fJ Xn. 0 

We shall use C with its cpo structure as semantic domain for the trace semantics 

of l. (By Corollary 2.6, C is also a complete metric space. However, contrary to the 

situation for BT semantics, we find the cpo structure more convenient for the LT se

mantics.) We need two theorems to support C as model. (Technically, these two theorems 

are among the main results of the paper.) First we give the natural definitions of the 

basic operations on A~ and C: 

2.8. DEFINITION. (a) For x,y e A"", x•y (mostly written as xy) is the usual concatena

tion of sequences (including the convention that xy = x for x e Aw). 

Further, xllY is the set of all shuffies of x with y (extending to the infinite case 

the classical definition of the shuffle of two finite words) . 

(b) XuY is the set-theoretic union of x and Y; x•Y={x•y lxex, ye-Y}, 

and xllY= lJlxllY I xeX, yeY). We will write also XY for X•Y. 

The main theorems of this section state that the operations u , 11 preserve 

closedness and are continuous (in the usual cpo sense) in both their arguments. 

(But note the proviso in Theorem 2.10.) 

2.9. THEOREM. For X,Y in c, x•Y, XUY and xllY a:re in c. 
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~. See Appendix. 0 

2 .10. THEOREM. Let A be finite. Then the operations , u, II from C x C to C are conti

nuous in both their arguments. 

~. See Appendix. D 

2.10.l. REMARK. The finiteness condition on A ensures compactness of A= (as observed 

in [12J). We then have that each sequence in A= has a convergent subsequence. It is 

readily seen that this implies that, for each !;;; -chain <Xn> n such that Xn 'I-~ for all 

n, we have that n X F ~, and this fact is needed in the proof of Theorem 2.10. n n 

We proceed with the definition of the linear time semantics for l. We adopt the 

usual technique with environments to deal with (free) statement variables. Let r 

5;f:fnv + C, and let y range over r. Let, as before, X range over C, and let y {X/x} stand 

for the environment which is like y, but for its value in x which is now X. Let [C +CJ 

stand for the collection of all continuous functions from C to C, and let, for ~ 

[ C +CJ, µ~ denote its least fixed point. We have 

2.11. DEFINITION. The semantic mapping [ ] :l + c r ... Cl is given by 
L 

[a~(y) ={a}, [Sl;S2]L(y) = [sl]L(y) ·[s2]L(y) 

[sl u s2]L (yJ = [sl]L (y) u [s2l (yJ, [sl II s2l (yl 

[µx[SJ] (y) = µ~ where t = AX.[S] (y{X/x)J. 
L S,y S,y L 

This definition is justified by the following Lemma: 

2.12. LEMMA. (iJ Ax1 ... x. [s]L(y{X./x.}~ 1 ) E: [C+[C+ ... +[C+CJ ... JJ (nfactorsC) 
~~- n i i 1= 

(ii) The functions in (i) are monotonic. 

~· (i) Routine (see, e.g., (lJ Theorem 7.9), once Theorem 2.10 is available. 

(ii) By a simple inductive proof. Or: note that C is also a complete lattice, and use 

the fact that in a complete lattice continuous functions are monotonic (see e.g. [lJ).0 

2.13. COROLLARY. [µx[SJ]L(y) = nn ~n (A"') where tS is as in Definition 2 11 S,y ,y • • 

PROOF. By Definition 2.11, Lemma 2.12(i) and the Tarski-Knaster fixed point theorem.O 

2.14. EXAMPLE. [µx[(a;x)Ubl\(y) = µ[AX.[(a;x)Ub]L(y{X/x})] = µ[)_X.((a•X)Ub)J 

n X, where X =A"', and X. = (a•X.)Ub. Hence, [l X = a*bUaw. 
n n O i+l 1 n n 

2.15. REMARK. For statements which have unguarded µ-terms, the semantics [ ]L may not 

be the most natural one. E.g. we have - for any y - that [µx[x]]L(y) =A.., and 

[µx[x;bJ]L(Y) =Aw. We shall return to this point in Section 4, where we are in a 

position to compare both LT and BT semantics for such unguarded µ-terms. 
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3. BT SEMANTICS: MATHEMATICAL BACKGROUND AND SEMANTIC EQUATIONS 

The branching time semantics for l is based on the theory of processes as sketched in 

[3] and described more fully in [4]. We briefly recall the main facts from this theory 

(in the terminology of (3,4] referring only to uniform processes). 

For an approach to uniform processes via projective limits, see [5]; and for an 

approach where processes are congruence classes of trees ('behaviours'), see Milner 

[8,9]. (See [2] for a comparison between the present uniform processes and Milner's 

behaviours.) 

Here, processes are objects which are best compared to labeled unordered trees 

without repetitions in successor sets. Considering the examples 

we have that the first and second, and the third and fourth represent the same process. 

Also, processes are closed objects: they contain all their limit points, in a sense 

to be made precise in a moment. E.g., the tree t 1 does not represent a process, but 

tree t 2 does, since it contains also the limit process "aw " 

a 

Technically, processes are obtained as follows: 

O. Start from alphabet A as before; moreover, a so-called nil-process p0 is assumed. 

1. Define Pn' n=O,l, ... , by P0 = {p0 }. Pn+l = P<A><Pn)' where P<-l stands for the 

collection of all subsets of (. J • Write P = LJ P . 
w n n 

2. Introduce a metric on Pn (by suitably combining Definition 2.2(c) and 2.4) and 

take ~ as the compietion of Pw. Let dB be the metric on ~-

We can then show 

3 .1. THEOREM. ~ ;;; {p0 } Up c (Ax f.>) 

where Pc(.) refers to the collection of all closed subsets of (.) - with respect to 

dB - , and ;;; denotes isometry. 

The next definition gives the main operations upon processes. We distinguish the 

cases p=p0 , p=xc;;.P(AxPn) for some n~o. or p=limi pi' with <p/i a Cauchy sequence 

of elements pi in Pi. 

3. 2. DEFINITION. (a) p 0 Po 

p o limi qi = limi (po qi) 

p, p 0 x {pox I XEX}, po<a,q> <a,poq>, 

(b) p u Po = p0 up = p, and, for p,q '/- p0 , p u q is the set-theoretic union of p and q 
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(c) P!IP0 =Po II p = p, x llY = {xllY I xEX} u{XllY I yeY}, 

<a,p >II Y = <a,pllY>, XII <a,q> = < a,xllq>, (limi pi) II (limj qj) = lirok (pkllqk). 

3.3. LEMMA. The above operations are ~eZZ-defined and aontinuous in both arguments. 

This lemma is the counterpart of the results in the Appendix for the LT framework. 

For the proof - which does not require more effort than the LT case - see [4]. 

By way of preparation for the definition of the recursive case we need a classi

cal result. A mapping T:'P+'P is called aontracting whenever dB(T(p),T(p'))( c.dB(p,p') 

with 0 "'c < l. We will need Banach• s fixed point theorem: 

3.4. THEOREM. If T is continuous and contracting, then for each q e '/>, the sequence 

q, T (q) , T' (q) , •.. 1:s a Cauchy sequence aonverqinq to the unique fixed point of T. 

As final preparatory step for the semantic definition we extend the alphabet A 

with a special so-called unobservable action t and take as process domain the domain 

'P2 given by 'P2 ~ {p0 }uPc((AU{i:}) x'f>2l. As before, we apply the familiar environment 

technique. Let r = 5.tmv + 'P 2 . We define the BT-semantics for l in 

3.5. DEFINITION. The semantic mapping [ ]B:l+ (r+'f>2 l is given by 

[a]B(y) = {<a,po>} 

[s1 15 2]B(y) = [s2]B(y) 0 [sl]B(y) 

[sl u s2]B (yl 

[s1 11s 2] 8 Cyl 

[x]B (y) = y (x) 

[sl]BCyl u [s2]BCyl 

[sl]BCyl II [s2]s<yl 

[µx[SJ]B(y) = limi pi' where p0 is the nil-process and pi+l 

3.6. EXAMPLES. (For simplicity we omit y.) 

(1) 

(2) 

(3) [µx[ (a;x) u bl]B = limi pi' where pi+l = {<t, {<a,pi>' <b,p0>}>}; 

(4) [µx[x]]B = [µx[x;bJ]B = {<t,{<1,{<1, ..• >}>}>}. t 
; 

3.7. REMARK. The central clause is the definition of recursion µx[S]. We have solved 

this by introducing for each s an associated contracting mapping 

T = Ap.{<t,[S] 8 (y{p/x})>}. Contractivity is enforced by the <t•···> construct. 

Operationally, the <t, ... > action corresponds to the action of procedure entrance, 

which does not involve any "observable" action in A. For such T, limi Ti(p0 ) is its 

unique fixed point (p0 is only chosen for definiteness; other choices would of course 
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yield the same result.) We shall return to the motivation for adopting this strategy 

in the next section. 

4. LT AND BT COMPARED 

In this section we compare the two semantics presented in Sections 2 and 3. More spe

cifically, we discuss the relationship betJeen LT and BT bcth for statements with 

guarded µ-terms only, and for statements with any form of recursion. 

The main result of the section is stated in terms of the notion of trace set of 

a process. Roughly, the trace set of process p is the set of branches (terminating or 

infinite) obtained by viewing p as a labelled tree. In order to establish a correspon

dence between LT and BT semantics, we will only consider processes whose terminating 

branches all terminate in p0 and not in~. which according to the definition of pro

cesses is also possible. (Termination in~ is used in [3,4] to model failure, but in 

the present context this issue is not yet at stake.) That is, we adopt the natural re

striction to the closure of 

r[] = { [S]B (y) I s not containing free statement variables, y E 5-tmv .. r}. 

(Note that 7irD itself is not yet closed.) We will write 7>+ for this closure. Obvious

ly, r+ is a complete metric subspace of r. An alternative characterization of r+ is: 

r+ = {p E 'P I all terminating paths of p end in Po}. 

For use in Theorem 4.7, we note that rp+ = lllS]B(yJ I alls, yES-tmv .. 'P+}. 

4.1. DEFINITION. Let pE'P+. (1) A path 11 for p is a (finite or infinite) sequence 

<a1 ,p1>, <a 2 ,p2>, ... such that <a1 ,p1> Ep and <ai+l'Pi+l> Epi, i=l,2 

(2) (i) Let ir = <a1 ,p1>, <a2 ,p2>, ... be an infinite path of pE'P+. Then a 1a 2 ... EAw is 

called a trace of p. 

(ii) Let 11 = <a1 rP/, ... , <an ,p0> be a finite path of p Erp+. Then a1 a 2 ... an EA* is 

a tl'ace of p. 

(3) Vl.ace(p) is the set of traces of p. 

4.2. EXAMPLES. V1.ace({<a,{<b,p0>}>,<a,{<c,p0>}>}l = {ab,ac}, 

w w 
.Vmce({<a,{<a, ... >}>}l ={a}, V1.ace([µx[(a;x)ubJ]8 Cyl =(Ta) u(•al*•b. 

Now we would like to assert that VI.ace is an operation from 'P+ to C, i.e. for 

p Er+, VI.ace (p) is a closed set. Surprisingly, this need not to be the case if A is 

infinite; say A = {a} U {b. Ii~ l}: 
l. 

4. 3. EXAMPLE. Consider p Erp+ as given by the tree 

i.e.: p = {<a,pi>li~O) where p0 is the nil-process 

and for n > 0: pn = {<bn,p0> ,<a,qn_1>} • 

qn = {<a,<a,<a, ... ,<a,p0>)> ..• >) (n times a). 

a 

a 
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Then .Uace(p) = {anln;>l} u {aa lm;>l}, which is not closed as it lacks a"'. 
m 

However, with the additional assumption that A is finite, we have (by a nontri

vial proof which is omitted here and can be found in [2]) that .tltace(p) is closed in

deed. In fact we have: 

4.4. LEMMA. Let A be finite. Then: (i) .tllace(p) e C, 

(ii) .tllace is continuous (with respect to the Hausdorff metrics in ~+ and CJ. 0 

We will also need the following fact, whose proof is routine and omitted here: 

4.5. PROPOSITION. :Vi.ace: ~+~ C is an homomorphism (with respect to the operations 

u , 11 on ~+ and CJ. 0 

We also need the notion of universai process for~+, 

4.6. DEFINITION. The universal process for~+. called Pu• is the (unique) solution 

of the equation p = {<a,p> I a e A} u (<a,p0> I a e A}. 

(Note that .Uace(pu) =A~.) 

In the following, it will be convenient to restrict ourselves to ciosed state

ments, i.e., statements without free statement variables. Now the natural question 

which suggests itself concerning the relationship between LT and BT is whether, for 

each closed S - omitting y which is then superfluous - we have that 

Taken as it stands, the answer to the question is no. For example, taking Ss µx[x] 

we have that 

.tltace ( [µx [ x] ] 8 .tltace((<T,{<1, ... >}>}J = !•"'} f A~ [µx(xJ]L . 

This discrepancy is not an essential phenomenon, but due to the special role of the 

unobservable action , for BT semantics. Remember that , was introduced to enforce 

contractivity of the mapping T as defined in Remark 3.7, which in turn was necessary 

to allow us to apply Banach's fixed point theorem 3.4. However, another approach may 

also be adopted which will lead to a positive answer to the question (,). It is con

venient to treat separately the cases where 

(i..) 5 hcv., only 9J.LG/l.ded µ-:trvztM, and 

(uJ 5 may have W?.9J.LGAded µ-:teA.ITIA. 

CC24e UJ. (Only 9J.LG/l.ded µ-:trvztM.} In this case the "T-trick" for BT is in fact super

fluous. Taking T' = Ap.[S]B(y{p/x}J, T' is now contracting for each S, and 

T' (pi), converges to the unique fixed 

point of T' independent of the initial p1 - which we may therefore choose as pu to 

facilitate the proof of 
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4.7. ~-Assume statements is ciosed and invoives oniy guarded µ-terms. 

Let [s]L be as before, and let [S]B be as in Definition 3.5, except that in the 

clause .for µx[S], we replace p0 by pu and define 

pi+l = [S]B(y{p/xll. 

Then: 

~- We will prove the following stronger fact, necessary for the induction on the 

structure of statements S' (which now need not to be closed): 

for every S' containing only guarded µ-terms, and for every y E S:tnzv ... rp+: 

[s']L(.t.11.aceoy) = .t.11.ace([S']B(y)). 

Case (i). S' f. µx[S]. Now the result follows easily by the induction hypothesis and 

and the homomorphism properties of tA.ace. 

The interesting case is 

Case (ii). S' = µx[S]. 

Some notation: tA.ace o y = y'. Further, we employ again the notation of Defini

tion 2.11: 4>S,y' = AX.[S]L(y'{X/x}). Finally, pn is defined as in the statement of 

the theorem. 

First we prove 

CLAIM 1. biace(pn) = ~~.y' (A"'). 

Proof of Claim 1. btace(pn) = tA.ace([S]B(y{pn-l/x})) = (by the induction hypothesis) 

[S]L(y'{tA.ace(pn-l)/x}) = (XX.[S]L(y'{X/x})) (btace(pn-l)) = ~S,y' (tA.ace(pn-l)). 

n "' Hence .:tn.ace (p ) = 4> 5 , (.tltace (p ) ) = 4> 5 , (A ) . 
n ,y u ,y 

CLAIM 2. r:i ~~;y'(A"') =limn 4>~rY' (A"'). 

Proof of Claim 2. By the fact that only guarded µ-terms are considered, {pn} is a 

Cauchy sequence. By the continuity of tA.ace (Lemma 4.4), {bz.ace(pn)} is therefore 

also a Cauchy sequence. So by Claim 1, {~n , (A"')} is a Cauchy sequence. 
S,y 

Furthermore, the~~ , are monotonic (Lemma 2.12(ii)). Since A"' is the maximal 
... ,y n 

element of C, the sequence aS,y' (A..,)} is therefore decreasing (w.r.t. ~).Now 

Claim 2 follows by Proposition 2.7. 

Now we have: [s•]L(.tltaceoy) _ [µx[Sl]L(y') = (Coroll.2.13) 

n n 00 • n co 
lnl 4>S,y' (A) = (Claim 2) limn 4>S,y' (A) = (Claim 1) 

limn bz.ace(pn) = (Lemma 4.4) btace(limn pn) = (definition in the 

present theorem) tA.ace [µx [ s] ]B (y) _ tA.ace [s' ]B (y) . 

0 
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We continue with 

CG/.Je 1.i.i..J. Is .invo~ve.4 a,t ~eG/.Jt one !Jn.{)Uatu:ied µ-tf'Am.) Now two ways of achieving (f) 

are available. 

Firstly, we can maintain the definition of [s]L, and use the revised definition 

of [S]B as stated in Theorem 4.7. The crucial difference is that the mapping T' is 

now no longer contracting in general, and we cannot use Banach's fixed point theorem 

to show that the sequence pu' T' (pu)' T' 2 (pu) , ••• converges to a fixed point of T'. 

However, this fact has indeed - with some effort, and for arbitrary initial q - been 

established in Bergstra & Klop [5]. Thus, we can base our revised definition on their 

theorem, and again obtain - by the same reasoning as in the proof of Theorem 4.7 -

that (f) holds. 

Secondly, we may also keep the definition of rs]B as in Definition 3.5, and 

revise that of [S]L. We then replace the last clause of Definition 2.11 by 

[µx[SJ]L(y) = µ[>.X.[1;S]L(y{X/x})]. 

All this amounts to the idea of replacing, both for LT and for BT, µx[S] by µx[1;S], 

thus ensuring that all statements have only guarded terms, so that Theorem 4.7 

applies again. 

APPENDIX: Well-definedness and continuity of the operations • , u , 11 on C • 

We will now give the proofs of Theorem 2.9 and 2.10. For both theorems the case of 

' U ' is trivial; this leaves us with the following four propositions, which we will 

treat together since their proofs have a common structure. 

THEOREM 2.9, 2.10. (i) X,YE C =} XllY EC, (ii) X,YE C =} X•Y EC, 

(iii) Let A be .finite. Let xn,Ym EC (n,m ;i. 0) be such that x0 :;i x1 2 •.• and Y0 2 Y1 2. • · 

Then: 

(iv) As (iii) with II replaced by • 

PROOF. The proofs of (i), ... , (iv) all start with a Cauchy sequence {z. Ii ;i. O}, where 

the zi are elements of xllY, X•Y, J-:io (XkllYk), k~O xk•yk' respectiv~ly. Since we 

will need to specify which parts from zi originate from X (resp. \_) and which from Y 

(resp. Yk), we introduce two disjoint copies Al; and An of the alphabet A. Intuitively, 

Al; and An are colored copies of A, say 'blue' resp. 'red'. The sequence {zi} is then 

colored, i.e. lifted to a sequence{'.} where i,;. e (A~uA )00 = B00 and h(i,;.) z · 
"i 1 .. n 1 i' 

h is the 'decoloring homomorphism' whose precise definition is left to the reader. 

The sequence {i,;.} is however in general no longer a Cauchy sequence in P (B00
). 

1 c 
But it contains a subsequence {i,;g(i)} which is a Cauchy sequence. The (colored) limit 

I; of this subsequence is then used to prove the result. 

More precisely: 
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Proof of (i).Let {z.li;i>O} be a Cauchy sequence such that ziEXllY 
1 

zi E xiii Yi for some xiE X, 

z; . , !;. , 11. such that I; . " A;, 
J. 1 1 1 " 

y. E y. Lifting to the alphabet B we find 
1 

11 . E A~ and z; . E ~ . 11 11 . · 
1 11 1 1 1 

"o 
EA €A 

'g 10> = 'f0 co1 

'f0 c11= 

' = 

j 'l n 

(i~ 0). So 

colored versions 

Consider n = n0 . Since {zi} is a Cauchy sequence, there is a k0 such that the 

prefixes zi [n0 J are constant for i ~ k0 , namely equal to zk [ n0 l. This need not to be 
0 

the case for z;i[n0 J. However, since there are only finitely many colorings of zk [n0 J, 
0 

there is (by the pigeon-hole principle) a subsequence {z;f
0

(i)} of {z;ili ~k0 } such 

that the prefixes z;f
0

(i) [n0 ] are constant for all i. (Here f 0 is some monotonic 

function from JN to N.) 

Now consider n1 > n0 . From the sequence {z;f
0

(i)} we can in the same way extract a 

subsequence {z;f
1 

(fo(i))} whose n1-prefixes are constant. Continuing this procedure we 

find a sequence {z;g(j)} where g is a monotonic function such that g(j) = 

(fjo ... of1of0 ) (0), which evidently is a Cauchy sequence in P c(B~). Call the limit I;. 

Then c can be decomposed (by projections to A~, resp. A11 ) into ~.n such that z;E 1;lln

Decoloring, we have zExllY· Since z is the limit of {zi}, we are through if XE X and 

y E Y. This follows easily because X, Y are closed. 

Proof of (ii). The proof is almost identical to that of (ii: we only have to replace 

xi•yi etc. (In the figure: the 'blue' parts 

precede the 'red' parts, instead of being mixed.) 
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Proof of (iii).(<;;) is trivial.(:)): take ZE n(X.llY.), SO for all i: ZEx.llY. 
- l l l l 

for some XiE Xi and yJ;EYi. Again, find colored versions i;i,f;i,ni such that 

i; i E B 00
, i; i E A;, n i E ATI, h ( i; i) = z, h (I; i) = x i, h (TI i) = y i and i; i Eo f; i 11 TI i. 

Construct z;;,f;,n such that l;Eslln as in (i). 

Let h(I;) = X and h(TI) = y. It remains to show that XE nx and yE ny . 
n m 

This follows because for each prefix x' of x there is a p such that x' ~ xp E Xp <;; x 0 • 

Since x 0 is closed, it follows that x E x 0 ; likewise x E x1 , and so on. 

The finiteness condition on A is used to ensure that nx f' JlJ and ny f' ~. 
n = m o:1 

The non-emptiness of these intersections is needed in the case that I; E Al; or i; E A11 
(i.e. is entirely 'blue' or 'red'). In that case we need to pick an arbitrary n 

resp. I; such that h(n) = yE ny resp. h(0 = XE nx , to be able to write m n 
I; E I; 11 TI and z E x II y. 

Proof of (iv): mutatis mutandis identical to that of (iii). [] 
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