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ANALYSIS OF HEURISTICS FOR STOCHASTIC 
PROGRAMMING: RESULTS FOR HIERARCHICAL 

SCHEDULING PROBLEMS* 
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J. K. LENSTRA# AND A. H. G. RINNOOY KAN§§ 

Certain multistage decision problems that arise frequently in operations management 
planning and control allow a natural formulation as rnultistage stochastic programs. In job 
shop scheduling, for example, the first stage could correspond to the acquisition of resources 
subject to probabilistic information about the jobs to be processed, and the second stage to the 
actual allocation of the resources to the jobs given deterministic information about their 
processing requirements. For two simple versions of this two-stage hierarchical scheduling 
problem, we describe heuristic solution methods and show that their performance is asymptoti­
cally optimal both in expectation and in probability. 

1. Introduction. Certain multistage decision problems that arise frequently in 
operations management planning and control allow a natural formulation as multi­
stage stochastic programming problems. In the context of job shop scheduling, for 
example, at least two decision stages can usually be recognized. At the aggregate level, 
one has to decide upon the acquisition of resources; precise information about what 
will be required of them, however, is either unavailable because it results from 
unknown future developments, or intentionally suppressed to facilitate the decision 
making. Subsequently, at the detailed level, one has to decide upon the actual 
allocation of the resources over time, when all the relevant information is at hand. 

Problems of this type occur in other settings as well, such as the design of distribution 
and vehicle routing systems [3]. They always involve a sequence of decisions over time, 
at an increasing level of detail and with increasing information becoming available. 
Quite often, however, probabilistic information about the effect of the decisions can be 
obtained in advance. Each decision can then be made to correspond to a stage in the 
stochastic programming model, the objective now being to set the decision variables at 
each stage in such a way that the joint outcome of the decision in question and all its 
successors is optimal in expectation. 

It should be noted that our concept of multistage stochastic program is broader than 
what is common in the literature. According to the traditional interpretation [12], each 
next stage reflects a recourse decision to correct infeasibilities due to the decision at the 
previous stage; this usually leads to a stochastic linear program at each stage. In the 
above job shop scheduling problem, the second stage problem is neither stochastic nor 
linear, and it does not involve a recourse decision. 

As described in a companion paper [3], multistage decision problems are more and 
more frequently being solved by hierarchical planning systems. Such a system consists 
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of suitably linked mathematical programming models, each of which corresponds to a 
particular decision stage. These models have so far always been deterministic in nature. 
By opting for a stochastic programming model instead, we not only arrive at a more 
accurate problem representation but also obtain a framework in which the quality of 
hierarchical planning systems can be evaluated analytically rather than by ad hoe 
methods such as Monte Carlo simulation. 

The increased sophistication of stochastic programming models comes at the ex­
pense of an increased computational effort required to solve them to optimality. The 
decision problems occurring at each stage are already quite hard when all data are 
known with certainty. Insofar as these problems are of a combinatorial nature, they 
often belong to the notorious class of NP-hard problems [8], [13]. To estimate the 
effect of an optimal solution to such problems when certain data are only known in 
terms of probability distributions is a formidable computational task. 

Any hierarchical planning system designed to solve the multistage stochastic pro­
gram in its entirety is therefore likely to be of a heuristic nature, yielding an 
approximate solution rather than a guaranteed optimum. We shall see, however, that 
such stochastic programming heuristics can be subjected to the same type of worst case 
performance analysis that has been so successful in the area of deterministic combinato­
rial optimization [4], [7], [8]. The main difference with the deterministic case is that the 
heuristic and the optimum solution values which must be compared are both random 
variables. 

We will present such analyses for two special cases of the job shop scheduling 
problem described above. In both cases, the aggregate (first stage) problem is to decide 
on the number and types of machines to be acquired. When this decision has to be 
made, the cost and speed of each type of machine and the number of jobs to be 
processed are known with certainty, but the job processing times are only known 
stochastically; in fact, we assume that they are independent, identically distributed 
random variables. After the aggregate decision has been made, a particular realization 
of the processing times becomes known. The detailed (second stage) problem is then to 
decide on the schedule of the jobs so as to minimize the maximum of their completion 
times. The overall objective is to minimize the machine cost plus the maximum job 
completion time. 

§2 deals with the case in which all available machines are identical both in cost and 
in speed; all that has to be decided at the first stage is how many of them are to be 
acquired. §3 considers the more general case of uniform machines, each of which has 
its own cost and speed; the first stage decision involves the selection of an optimal 
subset of the available machines. In both cases, we will describe a simple heuristic and 
show that it sets the decision variables at both stages in such a way that, as the number 
of jobs goes to infinity, the error in the heuristic solution value relative to the optimum 
solution value approaches zero, in expectation as well as in probability. 

These results are the first examples to our knowledge of a worst case analysis of 
heuristics for stochastic programming. They are sufficiently encouraging to justify our 
hope that they can be extended to a wider class of problems. §4 briefly describes 
extensions of the model to the case in which the second stage objective is to minimize 
the maximum job tardiness with respect to a common due date, to a multiperiod 
model involving recourse decisions, and to the case that the number of jobs is a 
random variable as well. Possible applications of our approach to other multistage 
decision problems on which we are currently working, such as the design of hierarchi­
cal distribution systems, are mentioned too. We expect that these results will lead to 
the formulation of general conditions under which asymptotically optimal stochastic 
programming heuristics exist. 

Boldface variables will indicate random variables. 
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2. Identical machines. The two-stage stochastic programming model studied in 
this section is the following. At the first stage, one has to decide on the number m of 
identical parallel machines that are to be acquired, while knowing the cost c of a single 
machine, the number n of jobs J 1, ••• , Jn that are to be processed, and the probability 
distribution of the vector p = (p1, ..• , Pn) of their processing times. At the second stage, 
after m has been determined, a realization p of p becomes known, and one has to 
decide on a schedule in which each machine processes at most one job at a time, each 
job J1 is processed during an uninterrupted time period of length pi' and no job is 
processed prior to time 0. 

The second stage objective is to minimize the maximum job completion time, given 
m and p; let C*(m, p) denote the minimum value to be computed. The overall 
objective is to minimize, over all realizations of p, the expected value of the total cost 
z*(m) = cm + C*(m, p), i.e., to determine m* such that 

Ez*(m*) = min {cm+ EC*(m,p) }. 
m 

Note that, in precise terms, c is the ratio of machine cost to delay cost per time unit. 
It is not obvious how to solve this problem to optimality. Computing C*(m, p) for 

given m and p is already an NP-hard problem [13], so determining EC*(m,p) as a 
function of m for an arbitrary given probability distribution of p seems virtually 
impossible. In designing a heuristic for the first stage problem, we apply an idea that is 
fundamental to all hierarchical planning systems: we suppress the combinatorial fine 
structure of the second stage problem and replace C*( m, p) by a lower bound P / m, 
where P = 2,}= 1 P)' The resulting problem is then to minimize the expected value of 
the lower bound on z*( m) given by zL8 ( m) = cm + P / m, i.e., the heuristic sets 
m = mL8 where 

EzL8 (mLB) = mjn {cm+ E: }· 
The derivative of the objective function is zeroed by m = JEP / c . Since m must be 
a positive integer, mLB is determined by minimizing cm+ EP/m subject to 
m E {[JEP/c J,[~EP/c l} n N. (For a real number x, lxJ and [x] denote its integer 
rounddown and roundup respectively.) 

The heuristic for the second stage problem schedules the jobs 1 1, ••• , Jn with 
processing times p 1 , ••• , Pn on m LB machines according to list scheduling: the jobs are 
placed in an arbitrarily fixed order and at each step the next job on the list is assigned 
to the earliest available machine [4], [7], [10] (cf. Figure 1). Let CL8 (m, p) denote the 
earliest time by which all jobs are completed under this rule, for given m and p, and let 
zL8 (m) =cm+ CL8 (m,p). The two-stage stochastic programming heuristic produces a 
solution of total cost zLs ( m LB). 

Problem instance: mLB = 3, n = 7, p = (1,2,3,4,5,6,7). 

List: (1,2,3,4,5,6,7). 

Schedule: 

machine 1 I J1 I 
machine 2 1---J=-2 --'--.---'J5~---'------i 
machine 3 J3 

'----"---'---------~--
A A 

0 

FIGURE I. Illustration of the second stage heuristic. 
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(Since our results concern an arbitrary list scheduling rule, we may as well consider a 
stochastic version of the second stage model, in which p1 becomes known only at the 
completion of J. (j = 1, ... , n), and solve it by the following heuristic: at time 0, a job 
is assigned to e~ch of the m machines in list order; as soon as the first job is completed 
on a certain machine, the next job on the list is assigned to that machine, and so on 
until cLs(m,p) is realized.) 

The expected worst case performance of our heuristic is characterized by Theorem l. 
Let Pmax = max1{p1}. 

THEOREM 1. 

EzLS(mL8) Ep 
~l+ max. 

Ez*( m*) 2i/cEP 

PROOF. Consider a schedule produced by the list scheduling rule on m LB machines 
for a realization p of p. Let L denote the latest time that all machines are occupied and 
let job Jk be completed last. It follows from the nature of list scheduling that 

cLS(mL8 , p) ~ L + h ~ p /mLB + Pmax 

(cf. Figure 1) and hence 

zLS(mLB) ~ zLB(mLB) + Pmax. 

Taking expectations, we find that 

EzLS(mLB) ~ EzL8 (mLB) + EPmax 

On the other hand, 

~ EzLB(m*) + EPmax 

~ Ez*(m*) + EPmax 

(by the definition of m LB) 

(sinceP/m* ~ C*(m*,p)). 

Ez*(m*) > EzLB( VEP / c) = 2i/cEP . 

Combining the last two inequalities establishes the theorem. I 

Before we discuss the asymptotic implications of Theorem 1, we note that there exist 
second stage heuristics with a better worst case performance than arbitrary list 
scheduling [7], [10]. Moreover, certain simple variations on our heuristic have error 
bounds different from the one above. For example, if m LB is determined by minimiz­
ing cm+ Emax{Pmax,P/m}, then we can use the result from [9] that CL5(m,p) 
..;; (2- l/m)max{Pmax,P/m} to obtain a heuristic whose expected total cost is less 
than twice the optimal expected value. However, this bound may be considerably 
higher than the bound given by Theorem 1, particularly in the realistic situation of 
uniformly bounded processing times. In any case, Theorem 1 will turn out to be 
sufficiently strong for establishing asymptotic optimality. 

To investigate the performance of our heuristic as the number of jobs tends to 
infinity, we require the following assumption about the probability distribution of the 
processing times. 

ASSUMPTION A. The processing times p1 (j = 1, ... , n) are independent, identically 
distributed random variables with finite second moment. 

Under Assumption A, EP = nµ, whereµ= Ep1 is finite. We now have the following 
lemma (cf. [2], [6]). 
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LEMMA 1. Under Assumption A, 

(a) limn->oo Epmax/ {ri = O; 

(b) P limn->oo Pmax/ {ri = 0. 

529 

We recall that the sequence of random variables xn converges to a random variable 
x in probability (notation: p limn-+oo xn = x) if 

lim P { lxn - xl > €} = 0 
n-->oo 

for all € > 0, 

and in distribution if 

}i~ F,..(x) = F,.(x) at all points of continuity of F,., 

where FY denotes the distribution function of a random variable y. The first concept of 
stochastic convergence implies the second; in the present context, the two concepts 
coincide since the limiting random variable x will always be a constant [2, p. 93, 
Example 4]. 

The following result is an immediate consequence of Theorem 1 and Lemma l(a). 

THEOREM 2. Under Assumption A, 

. EzLs(mLB) 
hm = 1. 

n-->oo Ez*( m*) 

Theorem 2 states that the performance of our heuristic is asymptotically optimal in 
expectation. We will now show that it is also asymptotically optimal in probability. To 
this end, we will consider the probability limit 

. zLS(mLB) . CmLB + CLS(mLB,p) 
P hm =p hm . 

n-->OAJ z*(m*) n-->oo cm*+ C*(m*,p) 

The reason that this distributional analysis is not completely straightforward is that 
both m LB and m* have been chosen to minimize an expected value. 

The following two lemmas state that at both stages the approximation on which the 
heuristic is based is asymptotically accurate in probability. 

LEMMA 2. If m = O({ri), then under Assumption A 

. C*(m,p) . CL5 (m,p) 
p hm = p hm = 1. 

n-->oo nµ/ m n-->oo nµ/ m 

PROOF. For every realization p of p we have that 

p ..-; C*(m, p) < CLs(m, p)..;;; p + Pmax · 
m m 

Dividing this by nµ/ m yields 

p - nµ C*(m, p) cLs(m, p) p - nµ mpma 
--- + 1 ..-; ..;;; --..,--- ..-; + 1 + ____:. . 

nµ nµ/m nµ/m np. np. 
(1) 

The observation that, under Assumption A, p limn_,. 00(P - nµ)/ nµ = 0, and Lemma 
l (b) imply the lemma. 1 

LEMMA 3. Under Assumption A, 

lim m* 
n-->oo C-,-/ ynp.; c 

= lim = 1. 
n-->oo 
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PROOF. Since m LB E {l Vnµ/ c j, r Vnµ/ c ]}, we trivially have that 

. mLB 
hm --- = 1. 

n->oo ~/ ynµ; c 

Suppose next that there exists an E > 0 such that for all n0 there is an n > n0 with 

m* >I+ E. 

Vnµ/c 

We will show that this implies 

Ez*(m*) > Ez*(mLB), 

which contradicts the optimality of m*. 
If (3) would hold as an equality, then we would have that 

EzLB(m*) =cm*+nµ/m* =l(i+e+-1-). 
EzLB( Vnµ/ c) 2[Cnµ 2 I + E 

(2) 

(3) 

(4) 

Inequality (3) and the unimodality of the function EzLB(m) therefore imply that, if 

E < 1, 

Ez*(m*) > EzLB(m*) > i ( l + E + 1 ~ € )EzLB( Vnµ/ c) 

> ( 1 + -j- e2)EzL8 ( ,/nµ/ c )· (5) 

Consider the first, second and fourth terms of the inequalities ( 1). Setting m = m LB, 

taking expectations, and using mLB = O({r;) and Lemma l(a), we obtain 

EC*(mLB,p) 
lim = l 

n->oo nµ/mLB 

and hence 

Ez*(mLB) 
lim = 1. 

n->oo EzLB( m LB) 

In view of (2), it follows that for n sufficiently large 

(1 + ~1: 2)EzLB( Vnµ/ c) > Ez*(m LB). (6) 

Inequalities (5) and (6) together give the contradiction (4). 

The assumption that there exists an e > 0 such that for all n0 there is an n > n0 with 

<l-E 

similarly yields a contradiction. We conclude that 

* lim m = l, 
n->oo /--;-/ ynµ; c 

as required. 1 

By combining Lemmas 2 and 3, we obtain the desired result. 
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THEOREM 3. Under Assumption A, 

. zLS(mLB) 
P hm = 1. 

n-?oo z*(m*) 

The following result is also a straightforward consequence of Lemmas 2 and 3. 

THEOREM 4. Under Assumption A, 

. z*(m*) . zLs(mLB) 
p hm = p hm = 1. 

n->oo 2,/cnµ, n->oo 2,/cnµ, 
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Theorem 4 implies that the optimal solution value is asymptotically equal to 2./cnµ, 
and that the heuristic solution value approaches the same limit. Similar strong results 
have been obtained for other probabilistic extensions of combinatorial optimization 
problems, mostly of a geometric nature, such as the Euclidean traveling salesman 
problem [I], [15] and the planar K-median problem [5], [l l]. 

It is possible to show that the performance of our heuristic is even asymptotically 
optimal with probability 1. We recall that a sequence of random variables xn converges 
to a random variable x almost surely or with probability I if 

P { lim x11 = x} = l. 
n->oo 

To see why this is true, consider the last part of the proof of Lemma 2. The strong law 
of large numbers implies that, sinceµ, is finite, P {lim11 -7 00 (P - nµ,)/nµ, = O} = 1. It is 
also known that, under Assumption A, P {lim11~ooPmaxl {n" = O} = I [2], [6]. It follows 
that the convergence results of Lemma 2 hold not only in probability but also almost 
surely, and hence the same is true with respect to Theorems 3 and 4. 

3. Uniform machines. The model studied in this section is an extension of the one 
considered in §2. The only difference is that, at the first stage, rather than deciding on 
a number of identical machines, one has to select a subset from a set j/ of uniform 
machines, while knowing the cost C; and speeds; of each machine i E j(. When, at the 
second stage, job 11 is assigned to machine i, it has to be processed during a period of 
length p1 / s; . 

We define q; = c;/s; for all i E j(. Let cL,cu,sL,su be such that cL ( C; ( cu and 
sL<s;(su for all iEj(, and let qL=cL/su, qu=cu/sL. For a given subset 
MC JI, let c(M) = 2:;;EM C;, s(M) = 2:;;EMs;, and let C*(M, p) denote the minimum 
value of the maximum job completion time, given a realization p of p. 

The objective is to minimize the expected value of w*(M) = c(M) + C*(M,p), i.e., 
to determine M* c JI such that 

Ew*( M*) = min { c( M) +EC*( M, p) }· 
M 

In designing a heuristic for the first stage problem, we proceed along similar lines as in 
the previous section: we replace the second stage objective C*(M, p) by a lower bound 
P / s(M) and attempt to minimize the expected value of the lower bound on w*(M) 
given by wL8 (M) = c(M) + P/s(M). Let MLB c JI be such that 

EwL8 ( MLB) = min { c( M) + _§X__}. (7) 
M s(M) 

Unfortunately, it is unlikely that M LB can be determined in polynomial time. 

LEMMA 4. The problem of minimizing EwL8 (M) over all MC j( is NP-hard. 
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PROOF. We will show that problem (7) is a generalization of the following known 
NP-complete problem [13]: 

PARTITION. Given a set Y = {I, ... , t) and positive integers a 1, ••• , a" b with 
2:;;E.Ta; = 2b, does there exist a subset TC Y such that 2:;;ETa1 = b? 

Given any instance of PARTITION, we construct an instance of problem (7) by 
defining JI= Y, c1 = s; =a; (i E Y) and EP = b2• It is easily verified that, for a 
subset Tc Y, L;;Era; = b if and only if c(T} + EP / s(T) ~ 2b. Hence, PARTI­
TION yields a positive answer if and only if (7) has a solution with value at most 2b. 

I 

Lemma 4 strongly suggests the inevitability of a heuristic approach to solve (7) in 
polynomial time. We propose to use a greedy heuristic that yields an approximate 
solution MG to (7). Let \JI! denote the cardinality of JI, let JI= {1,2, ... , \Ji\), 
suppose that the machines are numbered according to nondecreasing ratios q;, and 
define C1 =2:;~=lch, S;=2:;~=tsh, W;= C;+ EP/S; (iE~H') and W0 = oo. The 
greedy heuristic selects a subset MG = { I, ... , g} c JI, where g is the largest index 
such that wg-l > wg. 

An absolute bound on the worst case performance of the first stage heuristic is 
established by Lemma 5. 

LEMMA 5. The greedy solution MG satisfies 
(a) wg = miniE.R { W;}; 
(b) EwLB(MG) < EwLB(MLB) +cu. 

PROOF. (a) The values W; define a piecewise linear function W(S) on the interval 
[O,s(J/)] as follows: if S = t.S; +(I - ft.)S;+ 1 for some i:? 0 and ;\ E [O, l], then 
W(S) = ft.W; +(I - ;\) W;+ 1• This function is convex, since its slope over [S;, S;+ iJ 
increases with i: 

Therefore, Sg is uniquely determined as the smallest value of S for which W(S) takes 
on its minimum. 

(b) There exists an i > 0 such that S; < s(ML8 ) ~ S;+i· Since C; is the minimum 
machine cost at which a total speed S; can be achieved, we have C; ~ c(ML8 ). Hence, 

< Ci+I - C; = C;+1 <cu. I 

The heuristic for the second stage problem again schedules the jobs Jp ... , Jn with 
processing requirements p 1, ••• , Pn on the machines in MG according to list schedul­
ing. Let cLs(M, p) denote the earliest time by which all jobs are completed under this 
rule, for given Mand p, and let wLs(M) = c(M) + cLs(M,p). The overall heuristic 
produces a solution with value wLs(MG). 

The expected worst case performance of our heuristic is characterized by Theorem 5. 

THEOREM 5. 

EwLs(MG) cu + Ep . /sL < I + max 

Ew*(M*) 2~qL£p 
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PROOF. It is easily seen that for every realization p of p 

cLS(MG,p) < p + Pmax. 
s(MG) SL 

(8) 

Hence, 

EwL5(M 0 ) < EwL8(M 0 ) + EPmax/sL 

(by Lemma 5) 

(by the definition of MLB) 

< EwLB(MLB) +Cu+ EPmax/sL 

< EwL8 ( M*) + Cu+ Epmaxf SL 

< Ew*(M*) +Cu+ EPmax/sL (since P / s( M*) < C*( M*, p)). 

On the other hand, 

Ew*(M*) ~ EwL8 (M*) > qLs(M*) +_§_f._ > 2~qLEP 
~ s(M*) . 

These inequalities establish the theorem. I 

For an asymptotic analysis, we need some assumptions about the set ~I/. It is 
reasonable to assume that both costs and speeds have constant lower and upper 
bounds, i.e., cL,cu,sL,su are constants rather than problem instance dependent 
variables. This will imply that the number of selected machines grows as ../n, as in the 
previous section. It is then also reasonable to assume that the number of available 
machines grows faster than ..Jn, but remains polynomially bounded in n in order to 
allow an efficient implementation of the greedy heuristic. We therefore require the 
following. 

ASSUMPTION B. The parameters c L, c u, s L, s u for which c L < c; < c u and s L < s; 
< su (i E JI) are fixed constants. Moreover, there exist constants D > 0, D' > 0, 
d' > d > 0 such that Dn 1! 2 +d < 111 ~ D'n 1f2+d'. 

The following result is an immediate consequence of Theorem 5 and Lemma l(a). 

THEOREM 6. Under Assumptions A and B, 

. EwLs(Mo) 
hm =I. 

n--+oo Ew*( M*) 

As before, we now proceed to show that the performance of our heuristic is not only 
asymptotically optimal in expectation but also in probability. The strong property of 
the identical machine model expressed in Theorem 4 does not hold for the uniform 
machine model, and hence the proof is more complicated. 

The following lemma states that the total speeds of the sets MLB, M 0 and M* grow 
as {ri. We use the notation g(n) = O(f(n)) to indicate that there exist constants C > 0 
and C' > 0 such that Cf(n) < I g(n)I < C'f(n) for n sufficiently large. 

LEMMA 6. Under Assumptions A and B, 

(a) s(ML8 ) = O({ri); 

(b) s(M 0 ) = 0(../n); 

(c) s(M*) = O(../n). 

PROOF. (a) We observe that EwL8 (ML8 ) is not greater than the minimum expected 
lower bound obtainable under the assumption that c; = c u and s; = s L for all i E ~I/. 
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As we have seen in §2, the latter value tends to 2~q unµ as n ~ oo. Hence, we may 
choose any q* > q u to insure that for n sufficiently large 

qLs(MLB) + nµ ,,;;; EwLB(MLB),,;;; 2Vq*nµ, 
, s(MLB) 

which implies c{ti .,;; s(ML8 )" C'{ti for 

{<1-~q* - qL 
C= L (ii, 

q 

This proves part (a) of the lemma. 
(b) For n sufficiently large, we have that 

qLs( Mo)+ nµ ,,;;; EwLB( MG) 
s(M 0 ) 

(by Lemma 5) 

<;; 2Vq*nµ +cu = O(fti). 

Part (b) of the lemma now follows by a similar argument as used above. 
(c) For n sufficiently large, we have that 

qLs(M*) + _!!l!:_ <;; EwL8(M*) 
s(M*) 

<;; Ew*(M*) 

,,;;; EwLs( M LB ) 

,,;;; qus(MLB) + ECLs(MLB,p) 

<;; qus(MLB) + nµ/s(MLB) + EPmax/sL (cf. (8)) 

(by Lemma l(a)). 

Part (c) of the lemma follows immediately. I 

The following lemma presents an asymptotic upper bound on the heuristic solution 
value and an asymptotic lower bound on the optimal solution value, which hold with 
probability arbitrarily close to 1. 

LEMMA 7. Under Assumptions A and B and for every e > 0, there exist constants 
C > 0 and C' > 0 such that for n sufficiently large 

(a) P {wL5 (M 0 ).,;; w*(M*) + C + Pmu/ sL} ;;;. 1 - E; 

(b) P{w*(M*);;;. C'{ti};;;.. 1- e. 

PRooF. (a) We observe that 

wL8 (M 0 ) <;; c(M 0 ) + P / s(M 0 ) + Pmax/ SL ( cf. (8)) 

= EwL8(M 0 ) + (P - nµ)/ s(M 0 ) + Pmax/ SL 

<;; EwL8(MLB) + (P- nµ)/s(M 0 ) +Cu+ Pmax/sL (by Lemma 5) 

.,;; w*(M*) + ((nµ - P)/ s(M*) + (P - nµ)/ s(M 0 )) +Cu+ Pmax/ sL. 



ANALYSIS OF HEURISTICS FOR STOCHASTIC PROGRAMMING 535 

Let us examine the second term of this upper bound in more detail: 

I:~~*~ + :c~~~ I< IP- nµI( s(~*) + s(~G J· 
Under Assumption A, a 2 = E(p1 - µ)2 is finite. By the Central Limit Theorem, we 
have that for every c > 0 and for n sufficiently large 

where </> denotes the standard normal distribution function. This observation and 
Lemma 6(b), (c) imply that for every E > 0 there exists a constant C >Osuch that for 
n sufficiently large 

P ---+ <C >1-E. { nµ, - P P - nµ, } 
s(M*) s(MG) 

This proves part (a) of the lemma. 
(b) We choose a constant y E (0, l) and note that 

P - ynn ynµ w*(M*);;;. wL8 (M*);;;. qLs(M*) + r- + 
s(M*) s(M*) · 

Since 

{ p - ynµ } 
P s(M*) >0 =P{P-nµ>(y- l)nµ,}, 

Assumption A and the Central Limit Theorem imply that this probability is arbitrarily 
close to I for n sufficiently large. Part (b) of the lemma now follows from the above in 
combination with Lemma 6(c). 11 

We finally obtain the desired result. 

THEOREM 7. Under Assumptions A and B, 

. WLS(MG) 
P hm = 1. 

n-->oo w*( M*) 

PROOF. Lemmas l(b) and 7 imply that p limn ~ 00 wLS(MG)/w*(M*) < l. The ob­
servation that wL5 (M 0);;;. w*(M*) for every realization of p establishes the theorem. 

In contrast to Theorem 4, all we can say about the asymptotic form of w*( M*) and 
wL5 (MG) is that for every£> 0 there exist constants C > 0 and C' > 0 such that for n 

sufficiently large 

4. Concluding remarks. In this final section we review some extensions of the 
model investigated in §§2 and 3 and possible applications of our approach to other 
multistage decision problems. 

A natural extension of the job shop scheduling problem is to assume that all jobs 
have a common due date d and that the second stage objective is to minimize the 
maximum job tardiness, i.e., the maximum amount by which any completion time 
exceeds the due date. If, in the identical machine model, one attempts to design a first 
stage heuristic by minimizing the expected lower bound cm + E max { P / m - d, 0}. 
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then m LB is given by the solution to the integral equation 

m= 

which specializes tom= ~EP / c if d = 0. 
There is an interesting difference between this first stage heuristic and those in §§2 

and 3. The latter heuristics remain the same when the random processing times are 
simply replaced by their expected values. The above heuristic, however, makes use of 
distributional information on the processing times, due to the nonnegativity restriction 
on the lower bound for the second stage cost. 

In the case that d = o( [rl ), it can be proved that choosing m LB as in §2 yields a 
heuristic that is still asymptotically optimal in expectation and in probability, and this 
result extends immediately to the uniform machine model. This is not too surprising: if 
d grows more slowly than the expected schedule length, the probability that at least 
one job is tardy tends to 1, so that the asymptotic difference between maximum 
tardiness and maximum completion time can be ignored. 

The case that d = O({rl) is therefore much more interesting, in particular since it is a 
first step towards a multiperiod extension of the model. Here the objective would be to 
estimate the amount of resources required for a multiperiod production plan under 
certain assumptions on the possible overflow of work from one period to the next one. 
In that context, it is natural to allow true recourse decisions such as the acquisition of 
additional resources at a higher price if the original estimate turns out to be inade­
quate. 

Another, quite simple, extension would be to treat the number of jobs to be executed 
as a random variable as well. 

The techniques developed in this paper to design and analyze asymptotically 
optimal stochastic programming heuristics can probably be applied to other multistage 
decision problems. It seems likely that such results can be obtained most easily when 
the optimal final stage objective value has a simple asymptotic form and when a 
heuristic exists that yields asymptotically the same value. We are currently working on 
two- and three-stage formulations of vehicle routing system design problems, for which 
such results do exist [14]. We expect that it will be possible to capture the conditions 
under which this approach is successful in a general framework, containing several 
special cases of practical interest. 

The primary purpose of this paper has been to show that the quality of hierarchical 
planning systems can be analyzed in a more rigorous fashion than has been customary 
so far. They are, after all, nothing more than heuristics to solve multistage stochastic 
programs. Given the obvious intractability of such problems, precise statements about 
the performance of approximation algorithms for their solution are of immediate 
interest to researchers and practitioners. 
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