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CHAPTER 1

Introduction

1.1 Main results

A lattice L is a discrete subgroup of a Euclidean space. As such, it comes
equipped with a norm map q : L → R and is a free abelian group of finite
rank. Lattices were first used in algebraic number theory and since then have
been applied in many different areas of mathematics. When one has to do
calculations with a lattice, one needs to choose a basis for it. Then, as in
linear algebra, certain bases are more suitable than others. For example, bases
that are nearly orthogonal and/or whose basis vectors are short, are usually
preferred. This leads to the problem of, given an arbitrary basis, finding a
“good” one.

In the 1982 paper [8], the authors provide a polynomial time algorithm,
now called the LLL algorithm, for solving the above problem. More precisely,
they give an algorithm that given a basis b1, . . . , bm of a sublattice of Zm such
that maxi q(bi) 6 B, computes a reduced basis for this sublattice with the
number of bit operations bounded by a constant multiple of n6(logB)3. A
reduced basis in the sense of that paper, for all practical purposes, achieves
both conditions stated in the last paragraph. Namely, the computed basis
vectors are nearly orthogonal and short; the discovery of this algorithm was
a breakthrough in the computational theory of lattices. For instance, in the
same paper, the authors used the LLL algorithm to show that factorization of
primitive polynomials with rational coefficients is solvable in polynomial time
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10 CHAPTER 1. INTRODUCTION

as well.
Nonetheless, the LLL algorithm has certain shortcomings. The purpose of

this work is to extend this algorithm so as to remove one of those shortcomings.
The problem in question is exemplified in the following application of the LLL
algorithm.

Suppose f : Zm → Zn is a group homomorphism and F is the matrix of f
with respect to the canonical bases of Zm and Zn. One wants to compute the
integer kernel of F, i.e., find a basis for ker f over Z. To do so we introduce
a norm on Zm making it into a lattice in such a way that extremely short
vectors generate the kernel. Let

M > 2m−1(r + 1)rrF 2r (1.1)

where r is the rank of F and F is the maximum of the entries of F. Define
q : Zm → R by q(x) = ||x||2 + M · ||f(x)||2 where || · || denotes the usual
Euclidean norm. Then applying the LLL algorithm to the canonical basis of
Zm yields a basis b1, . . . , bm of which the first m−r vectors form a basis for the
kernel (see [10, Proposition of section 14, pg. 163] for a proof). Intuitively one
sees that as M → ∞ more and more vectors in ker f will have norm smaller
than M and for sufficiently big M the LLL algorithm finds a basis for the
kernel among them.

This trick of “weighting” the norm to exploit the LLL algorithm is used in
many other circumstances, including the problem of finding a basis out of a
generating set of a lattice. We refer the reader to [2] and [12].

The issue we want to address is the choice of the constant M above. As
exemplified by (1.1), these numbers are typically huge and, as such, carry
severe computational overhead. Except for a lower bound it must satisfy, M
is completely arbitrary and this challenges us to find a better solution. The
key idea is to indeed let M →∞ and work with M “as a symbol”. Note that
this leads to the pleasant fact that, contrary to the case where M is a concrete
number, the whole kernel is comprised of “small” vectors (compared to M).
On the other hand, the norm is now a vector valued function q : L→ R+R·∞
with R+R ·∞ anti-lexicographically ordered. In a way, the kernel is a “layer”
below the other vectors of the lattice. Our discussion so far leads to the concept
of a layered lattice, which can be defined algebraically as follows.

Definition 1.2. A layered lattice is a triple (L, V, q) where L is a finitely
generated abelian group, V is a totally ordered, finite-dimensional, real vector
space and q : L→ V is a map satisfying the following conditions.

(i) For all x ∈ L \ {0} we have q(x) 6= 0.

(ii) For all x, y ∈ L we have q(x+ y) + q(x− y) = 2 · q(x) + 2 · q(y).

(iii) The set q(L) ⊂ V is well-ordered. ♦
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The purpose of this work if to develop the ideas above and to describe an
algorithm that accomplishes what the LLL algorithm does in the classical
case. We develop a theory of layered lattices and their ambient spaces, which
we call layered Euclidean spaces. In the latter, an important result is the
existence of orthogonal bases. We give an algorithm to compute them: the
Gram-Schmidt procedure.

Definition 1.3. A layered Euclidean space is a triple (E, V, 〈·, ·〉) where E is a
finite-dimensional real vector space, V is a totally ordered, finite-dimensional,
real vector space, and 〈·, ·〉 : E×E → V is a bilinear symmetric map such that
the following conditions are satisfied.

(i) For all x ∈ E \ {0} we have 〈x, x〉 > 0.

(ii) For all x, y ∈ E there exists λ ∈ R such that 〈x, y〉 6 λ〈y, y〉.

Given x, y ∈ E, we say that x is orthogonal to y if for all λ ∈ R we have
λ〈x, y〉 6 〈y, y〉. We write this condition as x ⊥ y. For a subset S ⊂ E we
write x ⊥ S if for all y ∈ S we have x ⊥ y. The set of all x ∈ E such that
x ⊥ S is denoted by S⊥. ♦

A few words of caution are important here. The notion of orthogonality in lay-
ered Euclidean spaces clearly generalizes the usual notion of orthogonality, but
there are important differences. For example, orthogonality is not in general
a symmetric relation. In (3.18) we give an example where two vectors x, y in
a layered Euclidean space are such that x ⊥ y but y 6⊥ x. This subtlety gives
rises to new phenomena in the geometry of layered Euclidean spaces. Despite
that, this notion of orthogonality turns out to be very useful in our theory.
We remark that for any set S, the set S⊥ is a subspace.

Theorem 1.4. Let (E, V, 〈·, ·〉) be a layered Euclidean space and b1, . . . , bm be
an ordered basis of E. Then there exists a unique basis b∗1, . . . , b

∗
m such that

the following holds.

(a) For all i ∈ {1, . . . ,m} we have b∗i ∈ (span{b1, . . . , bi−1})⊥.

(b) For all i ∈ {1, . . . ,m} we have bi − b∗i ∈ span{b1, . . . , bi−1}.

The basis {b∗1, . . . , b∗m} of the theorem above is called the Gram-Schmidt basis
associated to {b1, . . . , bm}. For a procedure to compute the Gram-Schmidt
basis of {b1, . . . , bm} see proposition (5.7). In (5.28) we also give a polynomial-
time algorithm to compute such bases.

An embedded layered lattice is a subgroup of a layered Euclidean space that
is a layered lattice with the norm induced by the inner-product. An important
result in the theory, and one which nicely generalizes the classical situation,
is that any layered lattice can be embedded in a layered Euclidean space. We
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remark that associated to the quadratic norm q : L → V of a layered lattice
there is a bilinear symmetric map 〈·, ·〉 : L×L→ V such that for all x ∈ L we
have q(x) = 〈x, x〉.

Theorem 1.5. Let (L, V, q) be a layered lattice. Then (R⊗ZL, V, 〈·, ·〉), where
the map 〈·, ·〉 : R⊗Z L×R⊗Z L→ V is given on generators by

〈α⊗ x, β ⊗ y〉 = αβ〈x, y〉,

is a layered Euclidean space. The inclusion map ι : L ↪→ R ⊗Z L given by
x 7→ 1 ⊗ x is such that for all x ∈ L we have 〈ι(x), ι(x)〉 = q(x) and makes
ι(L) into an embedded layered lattice.

As in the classical case we use Gram-Schmidt bases to introduce the concept
of reduced bases of layered lattices.

Definition 1.6. Let L ⊂ E be a layered lattice of rank m embedded in
a layered Euclidean space (E, V, 〈·, ·〉) of the same dimension (see definition
(4.4)). Let {bi}mi=1 be an ordered basis of L and {b∗i }mi=1 be its associated
Gram-Schmidt basis. Let {λi,j}16j<i6m be the set of real numbers such that
bi = b∗i +

∑
j<i λi,jb

∗
j for all i ∈ {1, . . . ,m} (see proposition (5.7)).

(i) The basis {bi}mi=1 is called size-reduced if for all i ∈ {1, . . . ,m} and all j < i
we have |λi,j | 6 1/2.

(ii) Let c ∈ R, c > 1. The basis {bi}mi=1 satisfies the Lovász condition for c if
for all ε ∈ R>0 and all i ∈ {2, . . . ,m}, we have q(b∗i−1) 6 (c+ ε) · q(b∗i ).

(iii) A basis satisfying (i) and (ii) above is called c-reduced. ♦

One of the main results of this thesis is the theorem below, which is proven in
§6.3. For this theorem, a layered lattice is concretely given as

(Zm,Rn,B1, . . . ,Bn)

where Rn is anti-lexicographically ordered and the ordered set of rational
matrices B1, . . . ,Bn ∈ Mm(Q) specifies the inner-product by the formula

〈ei, ej〉 = (B1
i,j , . . . ,B

n
i,j)

with {ei}mi=1 denoting the canonical basis of Zm.

Theorem 1.7. For each c ∈ Q, c > 4/3, there is a polynomial-time algorithm
that given a layered lattice (Zm,Rn,B1, . . . ,Bn) of rank m, computes a c-
reduced basis of this lattice.
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To review some of the definitions on complexity theory including the definition
of a polynomial-time algorithm we refer the reader to the last section of this
introduction.

We remark that the algorithm of theorem (1.7) is not a direct generaliza-
tion of the classical LLL algorithm. One might wonder if, and this is highly
desirable, performing the steps of the classical LLL algorithm in the layered
setting leads to a well-posed, terminating algorithm. We prove this fact in
theorem (6.13) of section §6.2. The algorithm one obtains is therefore called
the layered LLL algorithm. It was not proven that the layered LLL algorithm
is polynomial-time, but the author expects it to be the case and we will pursue
this line of inquiry in future research.

When dimV = 1 our theory reduces to the classical case of lattices and
the LLL algorithm. Therefore, as in that case, not every layered lattice has a
c-reduced basis if c < 4/3. On the other hand, it is quite easy to show, using
the classical theory and some results of this thesis, that every layered lattice
admits a 4/3-reduced basis. Our algorithm of theorem (1.7) finds, for a fixed
c > 4/3 and in polynomial time, a c-reduced basis for an arbitrary layered
lattice. No polynomial-time algorithm for computing a 4/3-reduced basis is
known even in the classical case.

The rest of this work is divided as follows.
In Chapter 2 we review the necessary background in ordered vector spaces

and prove the key result that every finite-dimensional, totally ordered, real
vector space is order-isomorphic to Rn with the anti-lexicographic order.

The theory of layered Euclidean spaces is developed in chapter 3. This is
the theory concerning itself with the geometry of finite-dimensional real vector
spaces endowed with a layered inner-product. Here we define the concept of
orthogonality and prove an analogue of the decomposition theorem of Hilbert
spaces, i.e., that each subspace of a layered Euclidean space has an orthogonal
complement.

Chapter 4 develops the theory of layered lattices. For a layered lattice, the
discreteness property of a lattice is replaced by the well-ordering of the set of
norms of its elements. We prove many results concerning them that are clear
analogues of classical results and others that are completely novel.

In chapter 5 we introduce associated Gram-Schmidt bases. As the name
suggests there is much in common with the classical Gram-Schmidt orthogo-
nalization procedure although there are some new phenomena, which we will
discuss. The chapter ends with the introduction of a polynomial-time algo-
rithm to compute associated Gram-Schmidt bases.

Chapter 6 deals with layered lattice basis reduction. We introduce c-reduced
bases of layered lattices and look at some of their properties. In a nutshell,
their properties are very similar to the classical c-reduced bases. In fact, one
can look at those bases as being “layer-wise” reduced, with the basis vectors
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in any one given layer sharing the properties of a classical c-reduced basis (see
theorem (6.4) for details).

The short Appendix gives two “implementations” of algorithms presented
in the text; one for a layered Gram-Schmidt procedure, another for the layered
LLL algorithm.

1.2 Review on ordered sets, and on algebra

A partially ordered set is a pair (S,6) where S is a set and6 is a binary relation
on S that is reflexive, transitive and anti-symmetric. By anti-symmetric we
mean that if a, b ∈ S are elements such that a 6 b and b 6 a then a = b. A
partially ordered set is also called a poset. When the relation is clear from the
context we will adopt the custom of denoting the poset (S,6) by S. If (S,6)
is a poset, we denote the dual relation on S by >. This relation is defined by
the condition that a > b if and only if b 6 a. Given a, b ∈ S we write a < b to
denote the condition a 6 b with a 6= b.

A morphism of posets f : S → T is a morphism of the underlying sets with
the property that if a, b ∈ S are such that a 6 b then f(a) 6 f(b). A maximal
element of a poset S is an element m ∈ S such that if a ∈ S and m 6 a
then m = a. Such an element need not to be unique or exist. There is a
corresponding notion of minimal element of a poset; it is a maximal element
with respect to the dual relation.

A totally ordered set is a poset (S,6) where the relation is total, i.e. for any
a, b ∈ S we have a 6 b or b 6 a. From now on whenever we write ordered set
we implicitly mean a totally ordered set. In case we deal with only a partial
order we will explicitly say so. For any n ∈ Z>0 we denote by n the ordered
set {1, 2, . . . , n} and by n0 the ordered set {0, 1, . . . , n}.

A well-ordered set is an ordered set in which any non-empty subset has a
minimal element. This element is unique for this subset. Such an order is
called a well-order on S. If S is a non-empty subset of a well-ordered set we
denote its minimum element by minS. For any s ∈ S, the successor of s,
denoted by s + 1, is the element min{t ∈ S : s < t} ∈ S in case this set is
non-empty (so that its minimum exists). If S is a finite ordered set then it is
automatically well-ordered. In this case, and only in this case, the dual order
on S is also a well-order. The successor of an element s ∈ S in the dual order
is called the predecessor of s and denoted by s− 1.

Let {Sk}k∈K be a family of posets indexed by an ordered set K. Their co-
product as sets, i.e., their disjoint union, denoted by

∐
k∈K Sk, can be ordered

as follows. Let π :
∐
k∈K Sk → K be the map given by s 7→ k where k is the

unique element of K such that s ∈ Sk. Given two elements s, t ∈
∐
k∈K Sk we

let s 6 t if either π(s) < π(t) or both π(s) = π(t) and s 6 t in Sπ(s). This is
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a partial order in
∐
k∈K Sk and is a total order in case all the Sk are totally

ordered. In this case, we call this order the anti-lexicographic order on the
coproduct of the {Sk}k∈K with respect to K.

Given a finite family of posets {Sk}k∈n, indexed by the ordered set n, their
product denoted by

∏
k∈n Sk is their product as sets with the order given as

follows. For s = (sk)k∈n, t = (tk)k∈n ∈
∏
k∈n Sk we set s 6 t if either s = t

or both s 6= t and sl < tl for l = max{k : sk 6= tk}. This order is called the
anti-lexicographic order on

∏
k∈n Sk.

Let I be a set and G a group. The I-fold direct product of G, denoted by GI ,
is the set of maps I → G; it is a group with the operation given component-
wise. The I-fold direct sum of G is then the subgroup G(I) ⊂ GI of functions
which take the identity value almost everywhere, i.e., except for a finite subset
of I.

In the present work all rings are assumed commutative with unity. Let R
be a ring. We denote by R× the group of invertible elements of R under
multiplication. If I is a set then the group R(I) is an R-module and there
is a canonical map I → R(I) given by mapping i ∈ I to its characteristic
function ei, i.e., the function such that ei(i) = 1 and ei(j) = 0 for j 6= i. If M
is an R-module then given any map I → M there is a unique R-linear map
R(I) → M factoring I → M through the canonical map I → R(I), i.e., such
that the composition I → R(I) → M equals I → M . We say that I → M is
linearly independent if this induced map is injective and that it generates M if
this map is surjective. If it both generates M and is linearly independent, we
say it is a basis for M . A module M is free if there exists a basis I → M for
M . If M is a free R-module and I → M is a basis then the rank of M is the
cardinal #I and this is well defined if R 6= {0}. If I → M is a basis (or just
linearly independent) and R 6= {0} then I → M is injective and, therefore, I
can be identified with its image. In such a case, we may represent the basis
I → M by its image {mi}i∈I ⊂ M . By abuse of notation we call {mi}i∈I a
basis as well. An ordered basis is a basis for which I is ordered.

If I is finite then R(I) = RI and if I is also ordered then I is order-isomorphic
to n for n = #I. In this case we write Rn for this direct sum. For n ∈ Z>0,
the determinant is the unique n-multilinear, alternating function

det : Rn × · · · ×Rn → R

such that det(e1, . . . , en) = 1. If the elements of Rn are written as “column
vectors” we may view the determinant as a function on the set Mn(R) of n by
n matrices over R.

Let M be an R-module. A filtration F of M is a totally ordered subset
of the poset Sub(M) comprised of all submodules of M partially ordered by
inclusion. A filtration G of M is a refinement of F if F ⊂ G.
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Now let R be a field or the ring of integers Z and M be a free R-module. A
flag of M is a filtration F satisfying two conditions. First, the elements of F
are pure submodules, i.e., for all N ∈ F the quotient M/N is free. Second, the
filtration is maximal among the filtrations by pure submodules, i.e., satisfying
the first condition. If M is finitely generated and n = rankM then a flag
of M is nothing but a set M0 $ M1 $ · · · $ Mn of pure submodules where
rankMi = i for all i ∈ n0. Given an ordered basis {mk}k∈n of M , there is a
canonical filtration associated to this basis. Namely, for each k ∈ n0 one sets
Mk = span{ml : l 6 k}. We denote this flag by F(I →M) or F({mk}k∈n).

1.3 Review on complexity theory

It is important, especially for chapters 5 and 6, to give a quick review of
some results from complexity theory. Words like input, output, arithmetical
complexity, binary complexity and polynomial-time should be well-known to
anyone working with algorithms on a theoretical level. To precisely define
these terms here would take us too far afield so we refer the reader to [13,
Chapter 2] where all of this can be found; we contend ourselves with some
general remarks.

For us, an algorithm can be thought as a procedure that can be given to a
computer, a Turing machine for example, and that “implements” a function
f : Z>0 → Z>0, i.e., given n ∈ Z>0, this algorithm computes f(n). A good
example of an algorithm is the Euclidean algorithm, which on input p, q ∈ Z
computes the greatest common divisor of the pair (p, q), i.e., the unique number
r ∈ Z>0 such that we have Zr = Zp+ Zq. One might argue that, phrased in
this way, the input of the Euclidean algorithm is not really a positive integer n
but this is immaterial (for the purpose of what an algorithm is) since one can
“encode” the input in terms of positive integers, i.e., find a way of representing
a pair (p, q) by an integer n > 0.

Of course in the realm of algorithms we have special interest in finding effi-
cient ones. The word “efficient” here already entails some discussion (now, for
example, even the encoding referred to in the last paragraph is of importance
as it has to be efficient as well) but the concept of a polynomial-time algorithm
seems to have stood the test of time.

Definition 1.8. (i) Let f, g : Z>0 → R be two functions. We say that f is
big-O of g, denoted by f ∈ O(g), if there exists M ∈ R>0 such that for all
n ∈ Z>0 we have |f(n)| 6M |g(n)|.

(ii) Let F be a field. By an arithmetical operation in F we mean one instan-
tiation of an algorithm that performs the sum, subtraction, multiplication or
division of two elements of F (the first by the second in the case of subtraction
and division).
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(iii) By a binary operation we mean an arithmetic operation in the field F2 of
two elements.

The importance of this definition is that a binary operation, for all practical
purposes, is the atomic unit in which algorithms are evaluated qua efficiency.
To elaborate, since computers are universal Turing machines working almost
exclusively with bits or a fixed-sized string of bits, an algorithm implemented
on a computer will, for any given input n ∈ Z>0, perform a series of binary
operations. One counts how many of these the algorithm takes to compute
the output associated to this given input, and this number is a measure of
the efficiency of the algorithm. In practice, one gives bounds for the number
of binary operations in terms of the binary length of the input (log2 n in our
notation).

Definition 1.9. An algorithm is called polynomial-time if there exists a poly-
nomial f ∈ Q[x] such that for any given input n ∈ Z>0, the number of binary
operations performed by the algorithm to compute the associated output is
bounded by f(log2 n). ♦

If c denotes the cost function of the algorithm, i.e., for any n ∈ Z>0, the
number of binary operations performed by the algorithm on input n is c(n),
then the algorithm is polynomial-time if there exists f ∈ Q[x] such that c ∈
O(f ◦ log2).

1.4 Notation

To facilitate the reading of this work we give a list of the more “non-standard”
notations used together with a reference to where the respective definition can
be found.

Notation Description Reference

A ⊂ B The set A is a subset of the set B with, possibly,
an equality of sets.

A $ B The set A is a proper subset of the set B, i.e.,
A ⊂ B and A 6= B hold.

m For m ∈ Z>0 denotes the ordered set {1, 2, . . . ,m}. Section 1.1

m0 For m ∈ Z>0 denotes the ordered set {0, 1, . . . ,m}. Section 1.1
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Notation Description Reference

Im For m ∈ Z>0 and I an ordered set, denotes the
m-fold product of I anti-lexicographically ordered
with respect to m.

Section 1.1

R>0, R>0 For an ordered ring R, respectively, denotes the
subset of non-negative elements and the subset of
positive elements.

R× For a ring R, denotes its group of units, i.e., the
group of invertible elements of R.

Rn For an ordered ring R denotes the n-fold direct
sum of R ordered anti-lexicographically.

Section 1.1

Mm(R),
Mm×n(R)

Respectively, the sets of m by m and m by n ma-
trices over the ring R.

GLm(R) The group Mm(R)× of invertible m by m matrices
over the ring R.

F({mi}i∈I),
F(I →M)

The flag associated to a basis of a vector space or
of a lattice.

Section 1.1

♦ Signals the end of a definition.

� Signals the end of a proof.

C(V ) The filtration of convex susbspaces of an ordered
vector space V .

(2.16)

C∗(V ) C(V ) \ {{0}}.

C(u) The convex subspace spanned by u. (2.16)

u 4 v Reads: u is “dominated” by v, i.e., C(u) ⊂ C(v). (2.16)

u� v Reads: u is “infinitesimal” with respect to v, i.e.,
C(u) $ C(v) or u = 0.

(2.16)

u ∼ v Reads: u is “comparable” to v, i.e., C(u) = C(v). (2.16)

u ' v Reads: u is “infinitely close” to v, i.e., u− v � v. (2.16)

S(V ),
Sm(V )

The (graded) symmetric algebra of a vector space
V and its m-th homogeneous subspace.

(2.26)
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Notation Description Reference

EU The U -th layer of a layered Euclidean space E. (3.3)

LU The U -th layer of a layered lattice L. (4.18)

L(E),L(L) The ordered set of layers of a layered Euclidean
space E or of a layered lattice L.

(3.3) and
(4.18)

L(x) The layer of x; equals EC(q(x)). (3.3)

(·, x) For each x in a layered Euclidean space this de-
notes a special kind of functional associated to x.

(5.5)

f ∈ O(g) Reads: f is big-O of g and means that |f | is boun-
ded by a constant multiple of |g|.

(1.8)





CHAPTER 2

Ordered vector spaces

In this chapter we review some results on ordered algebraic structures, specif-
ically, ordered vector spaces. We prove that in the case the field in question is
the field of real numbers there is essentially only one type of totally ordered
vector space of dimension n for each n ∈ Z>0. A generalization of this result
can be found in [6] but, for completeness, we give this special case here in full
detail.

2.1 Ordered rings and fields

Definition 2.1. An ordered ring is an ordered set (R,6) where R is a ring
and 6 satisfies the following conditions.

(i) For all a, b, c ∈ R such that a 6 b we have a+ c 6 b+ c.

(ii) For all a, b ∈ R such that 0 < a and 0 < b we have 0 < ab.

An element a ∈ R such that 0 < a is called positive. An ordered field is an
ordered ring which is also a field. ♦

Remark 2.2. (a) It is easy to see that in an ordered ring R we have 0 6 1.
Thus, by repeatedly using (i) above, if 1 6= 0 in R then n · 1 is positive for all
n ∈ Z>0 \{0}. Hence, if R 6= {0} then R has characteristic zero. In particular,
if F is an ordered field then F is an extension of Q.

21
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(b) It is an easy consequence of (i) and (ii) above that if a, b, c ∈ R with a 6 b
and 0 6 c then ac 6 bc.

Proposition 2.3. Let (R,6) be an ordered ring with R 6= {0}. Then R is a
domain. The quotient field of R is an ordered field under the relation

a

b
6
c

d
⇐⇒ ad 6 bc

where b and d are taken positive.

Proof. That R is a domain follows immediately from axiom (ii) above. Let
a/b, c/d, e/f ∈ F with b, d, f positive, a/b 6 c/d and c/d 6 e/f . We have

ad 6 bc, cf 6 de.

Multiplying the first of these inequalities by f and the second by b we obtain

adf 6 bcf 6 edb.

Using that d is positive and the contrapositive of item (b) of remark (2.2) we
obtain af 6 eb, that is to say, a/b 6 e/f . From the above argument it not
only follows that 6 is transitive but also that 6 is well-defined for if a/b = c/d
and c/d 6 e/f then a/b 6 e/f too. Finally, the relation is clearly reflexive
and anti-symmetric, thus, an order on F . It is straight-forward to check that
(F,6) is an ordered field.

Proposition 2.4. Let F be an ordered field. Then the set of positive elements
of F is a subgroup of F× of index 2.

Proof. Follows from results in [1, Chapter 6, § 2].

Proposition 2.5. Let 6 be an order on Q such that (Q,6) is an ordered
field. Then 6 is the usual order.

Proof. See [1, Chapter 6, § 2].

Definition 2.6. Let F be an ordered field. We say F is Archimedean if for
each positive a ∈ F there exists n ∈ Z>0 such that a < n · 1. ♦

The following result is an easy consequence of the uniqueness of the field of
real numbers as a complete, Archimedean ordered field.

Proposition 2.7. Let F be an Archimedean ordered field. Then F embeds
into R as an ordered field, i.e., F is order isomorphic to a subfield of R.

Proof. See [4, Propositions 6.1.1 and 6.3.1].
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2.2 Ordered vector spaces

Definition 2.8. Let F be an ordered field. An ordered F -vector space is an
ordered set (V,6) where V is an F -vector space and 6 satisfies the following
conditions.

(i) For all u, v, w ∈ V such that u 6 v we have u+ w 6 v + w.

(ii) For all u ∈ V and all λ ∈ F such that 0 6 u and 0 6 λ we have 0 6 λu.

An element u ∈ V such that 0 < u is called positive and the set P = {u ∈ V :
0 < u} is called the positive cone of V . A morphism of ordered vector spaces
V → W is a morphism of the underlying posets which is also a morphism of
vector spaces, i.e., F -linear. ♦

In the remainder of this chapter F will denote an ordered field.

Lemma 2.9. Let V be a one-dimensional, ordered F -vector space. For any
positive λ ∈ F the map x 7→ λx is an order automorphism of V . Conversely
every order automorphism is of this form for some λ ∈ F positive. The dual
order on V is the only other relation making V into an ordered F -vector space.

Proof. An automorphism of V is of the form x 7→ λx for λ ∈ F . If λ < 0
then clearly it reverses the order and is, thus, not an order isomorphism. Let
6′ be another order on V . If v ∈ V is a non-zero vector with 0 < v then either
0 <′ v in which case 6 and 6′ are the same or v′ < 0 in which case 6′ is the
order dual to 6.

Example 2.10. Let K be an ordered set and {Vk}k∈K be a sequence of
ordered F -vector spaces. Let V =

⊕
k∈K Vk and u = (uk)k∈K , v = (vk)k∈K

be elements of V . We define u 6 v if either u = v, or u 6= v and ul 6 vl for
l = max{k ∈ K : uk 6= vk}. Note that such l exists since u and v have finite
support. We obtain an order on V , which we call the anti-lexicographic order.
With this order, V is an ordered vector space.

Definition 2.11. Let K be an ordered set and {Vk}k∈K be a sequence of or-
dered F -vector spaces. The ordered vector space V =

⊕
k∈K Vk with the order

described in example (2.10) is called the anti-lexicographic sum of {Vk}k∈K .
♦

Throughout our work, whenever we consider F (K) as an ordered vector space
we implicitly assume the order to be the anti-lexicographic order, i.e., we set
Vk = F for all k ∈ K in the construction above.

Definition 2.12. Let V be an ordered F -vector space. We say the order on
V is anti-lexicographic or that V is anti-lexicographically ordered if there exists
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an ordered basis K → V such that the resulting isomorphism F (K) ' V is
an isomorphism of ordered vector spaces. Any such basis is called an anti-
lexicographic basis. ♦
Definition 2.13. Let V be an ordered F -vector space and P its positive cone.
We define the function | · | : V → P ∪ {0}, called the absolute value function,
by the formula

|v| =
{
v, if v ∈ P or v = 0
−v, otherwise.

♦
Definition 2.14. Let V be an ordered F -vector space. A subset U ⊂ V is
convex if for all v ∈ V such that there exists u ∈ U satisfying |v| 6 |u| we have
v ∈ U . The set of convex subspaces of V we denote by C(V ). ♦
Proposition 2.15. Let V be an ordered F -vector space.

(a) The set of convex subspaces of V is totally ordered by inclusion.

(b) Let {Uk}k∈K be a family of convex subspaces. Then
⋂
k∈K Uk and

⋃
k∈K Uk

are convex subspaces.

Proof. (a) Let U and W be convex subspaces and u ∈ U,w ∈W . If |u| 6 |w|
then by the convexity of W we have u ∈W . This means that if U \W 6= ∅ and
u ∈ U \W then we have |u| > |w|. Then by the convexity of U we have w ∈ U .
Since w is arbitrary in this argument we conclude that W ⊂ U . Similarly,
if W \ U 6= ∅ one obtains U ⊂ W . Supposing that U 6= W , one of those
conditions must hold. This shows that C(V ) is totally ordered by inclusion.

(b) Let u ∈
⋂
k∈K Uk and v ∈ V with 0 6 |v| 6 |u|. By the convexity of Uk

we have v ∈ Uk for all k thus v ∈
⋂
k∈K Uk. A very similar argument shows

that
⋃
k∈K Uk is convex since it is a subspace by (a) above.

Definition 2.16. Let V be an ordered F -vector space. The ordered set C(V )
of convex subspaces of V is called the convex filtration of V . The convex
subspace generated by v ∈ V , denoted by C(v), is the element

⋂
{U ∈ C(V ) :

v ∈ U} of C(V ). We define the following binary relations on V :

u 4 v ⇐⇒ C(u) ⊂ C(v)
u� v ⇐⇒ C(u) $ C(v) or u = 0
u ∼ v ⇐⇒ C(u) = C(v)
u ' v ⇐⇒ u− v � v ♦

Remark 2.17. Note that the convex filtration is a filtration in the sense we
defined in the review section of the introduction. Also, it is obvious that if
u � 0 then u = 0 and, thus, if u ' 0 then u = 0 and similarly, if 0 ' v then
v = 0. It is an easy exercise to show that if u ' v then u ∼ v. Hence, the
relation ' is actually symmetric. Since it is also reflexive and transitive, it is
an equivalence relation on V .
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Notation. For an ordered vector space V we denote the subset C(V ) \ {{0}}
of C(V ) by C∗(V ).

Lemma 2.18. Let V be an ordered F -vector space and v ∈ V . Then we have

C(v) = {u ∈ V : ∃λ ∈ F : |u| 6 λv}.

Proof. Denote the righthand side of the equation above by U . By using that
|v + v′| 6 |v|+ |v′| for all v, v′ ∈ V , it is easy to show that U is a subspace. If
w ∈ V is such that there exists u ∈ U with |w| 6 |u| then by the definition of
U there is also a λ ∈ F such that |u| 6 λ|v|. By transitivity we have |w| 6 λ|v|
and thus w ∈ U . This shows that U is convex. By the definition of C(v) we
have C(v) ⊂ U .

For the other inclusion, let u ∈ U . Then we have |u| 6 λ|v| for some λ ∈ F .
Since λ|v| ∈ C(v), by the convexity of the latter is follows that u ∈ C(v). Thus
we have U ⊂ C(v).

The following examples illustrate the connection between convex subspaces
and anti-lexicographic orders. This relation is formalized in the next proposi-
tion and, intuitively, it is the fact that every finite-dimensional ordered vector
space can be decomposed, in a canonical way, into an anti-lexicographic sum
such that the “partial sums” of its components are precisely its convex sub-
spaces.

Example 2.19. The convex filtration of Qn is the set{
k⊕
l=1

Qel : k ∈ n0

}
,

ordered by inclusion, where {e1, . . . , en} denotes the canonical basis of Qn.
This can easily be checked from the definitions. Also note that the basis
inducing the sequence above is not unique if n > 0.

Example 2.20. Let ζ ∈ R\Q and V = Q ·1+Q ·ζ ⊂ R viewed as an ordered
two-dimensional rational subspace. I claim that C(V ) = {{0}, V }. In fact, let
U 6= V be a convex subspace. Then there exists positive rational numbers r, s
such that for all n ∈ Z>0 and all u ∈ U we have n|u| < r + sζ ∈ R. Since
R is Archimedean this forces U = {0} as claimed. Since the set of convex
subspaces of Q2 is {{0},Q(1, 0),Q2}, this shows that the order on V is not
anti-lexicographic, i.e., there does not exist an order isomorphism between Q2

and V .

Proposition 2.21. Let U be a convex subspace of an ordered F -vector space
V . Denote the equivalence class of v ∈ V in V/U by v and define on V/U the
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relation v1 6 v2 if either v1 = v2, or v1 6= v2 and v1 6 v2. Then (V/U,6) is
an ordered vector space.

Let U ⊕V/U be the anti-lexicographic sum of U and V/U and s : V/U → V
be a linear section of the projection V → V/U . Then the map U ⊕ V/U → V
given by

(u, v) 7→ u+ s(v)

is an isomorphism of ordered vector spaces.

Proof. To show that the relation 6 on V/U is well-defined it suffices to show
that if v1 6 v2 with v1 6= v2 then v1 + u 6 v2 for all u ∈ U . In fact, since
v2 − v1 6∈ U is positive, the convexity of U immediately implies that for any
u ∈ U we have |u| < v2 − v1 from which the claim follows.

That this binary relation is an order and that V/U is an ordered F -vector
space with this order follows immediately from the properties of the order 6
on V .

The only remaining assertion to prove is that the map (u, v) 7→ u + s(v)
is an isomorphism of ordered vector spaces. By general results from linear
algebra this map is an isomorphism of vector spaces so it suffices to show that
if 0 6 (u, v) in U ⊕ V/U then 0 6 u + s(v) in V . In case v = 0 then from
s(v) = 0 we obtain 0 6 u as desired. If 0 < v then we have 0 < v in V
and s(v) = v + u′ for some u′ ∈ U . Thus, by what was proven in the first
paragraph, we have 0− u− u′ < v, i.e., 0 < u+ (v + u′) = u+ s(v) as was to
be shown.

Corollary 2.22. Let V be an ordered vector space of finite dimension. Then
there is a canonical isomorphism of ordered vector spaces

V '
⊕

U∈C∗(V )

U/U ′

where U ′ denotes the predecessor of U in C(V ) .

Proof. We proceed by induction on the dimension of V . The case V = {0} is
trivial. For V 6= {0}, let V ′ denote the predecessor of V in C(V ). By induction,
we have a canonical isomorphism of ordered vector spaces

V ′ '
⊕

U∈C∗(V ′)

U/U ′.

Combining this with the order isomorphism V ' V ′⊕V/V ′ obtained from the
previous proposition applied to V ′ we get

V '

 ⊕
U∈C∗(V ′)

U/U ′

⊕ V/V ′ =
⊕

U∈C∗(V )

U/U ′

as an anti-lexicographic sum.
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2.3 Real ordered vector spaces

We now prove the main result of this chapter. It is a particular case of a
result in [6], which we give here for completeness. We first prove the following
lemma. Recall definition (2.16) where we introduced the several relations on
elements of an ordered vector space.

Lemma 2.23. Let V be an ordered vector space over R. Let u, v ∈ V with v
positive and u 4 v. Then there exists a unique γ ∈ R such that u− γv � v.

Proof. Since u 4 v there exists ν ∈ R positive, such that |u| < νv. Thus,
the sets A = {λ ∈ R : λv 6 u} and B = {µ ∈ R : u < µv} are non-empty.
Further, for all λ ∈ A and all µ ∈ B we have

λv 6 u < µv =⇒ (λ− µ)v < 0 =⇒ λ < µ.

Thus, A is bounded above, B is bounded below and A ∩ B = ∅. We have
R = A ∪B since 6 is total and thus supA = inf B. Denoting this number by
γ we have, by construction,

(γ − ε)v < u < (γ + ε)v

for all ε > 0. Equivalently, we have |u − γv| < εv for all ε > 0. By lemma
(2.18) we have C(u − γv) ⊂ C(v) and C(v) 6= C(u − γv). Thus, we conclude
that u− γv � v.

Remark 2.24. The above lemma implies that for a real ordered vector space
V , it is impossible to have a situation like in example (2.20) where there was
no convex subspace of V of codimension 1.

Theorem 2.25. Let V be a finite-dimensional ordered real vector space. Then
V admits an anti-lexicographic basis.

Proof. By proposition (2.22) it suffices to show that the convex filtration of
V has (dimV ) + 1 elements. If V = {0} there is nothing to prove and by
induction on the dimension of V , it is enough to show that V admits a convex
subspace of codimension one.

Let U = max{C(v) : v ∈ V } ⊂ V . This element of C(V ) exists since V
is finite-dimensional. If U 6= V then there exists v ∈ V \ U and we have
v ∈ C(v) ⊂ U ⊂ V which is a contradiction. Thus U = V and it follows that
V = C(v) for some v ∈ V , which we can choose such that v > 0.

Since C(V ) is finite and #C(V ) > 1, the space V has a predecessor in C(V ),
which we denote by W . We claim that W has codimension 1 in V . Let u ∈ V .
Since V = C(v) we have u 4 v. By the lemma above, there exists a unique
γ ∈ R such that u− γv � v. Thus u− γv ∈W and V/W ' Rv.
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2.4 Symmetric powers

As before let F be an ordered field. In the last section of this chapter we will
study the symmetric powers of an F -vector space in the context of ordered
algebraic structures.

Definition 2.26. Let V be an F -vector space, let r ∈ Z>0, and let Sym(r)
denote the symmetric group on r = {1, . . . , r}. Let V ⊗r denote the r-fold
tensor product of V . The r-th symmetric power of V , denoted by Sr(V ), is
the quotient of V ⊗r by the subspace spanned by the commutation relations:{

v1 ⊗ · · · ⊗ vr − vσ(1) ⊗ · · · ⊗ vσ(r) : v1, . . . , vr ∈ V, σ ∈ Sym(r)
}
.

The class of a generator v1⊗· · ·⊗vr is denoted by v1 . . . vr. We define V ⊗0 = F .
The graded ring

S(V ) =
⊕
r∈Z>0

Sr(V )

is the symmetric algebra of V . ♦

As a ring, S(V ) is the quotient of the tensor algebra T (V ) of V by the ideal
I =

⊕
r∈Z>0

Ir where Ir is the ideal generated by the commutation relations

on V ⊗r. Note that if W ⊂ V is a subspace then for all r ∈ Z>0 we have
Sr(W ) ⊂ Sr(V ). We refer the reader to [7, Chapter XVI, §8] for further
details.

Notation. Let {vi}i∈n be a basis of an F -vector space V and r ∈ Z>0. There
is a canonical basis of Sr(V ) induced by this basis of V . Namely, let

P (r) = {(p1, . . . , pn) ∈ (r0)n : p1 + · · ·+ pn = r} (2.27)

and for each p = (p1, . . . , pn) ∈ P (r) let vp = vp11 . . . vpnn ∈ Sr(V ). Then the
map P (r) → Sr(V ) given by p 7→ vp is the aforementioned basis of Sr(V ).
This follows from [7, Chapter XVI, Proposition 8.1] for example. Note that
r = 0 is consistent. We have P (0) = {0 = (0, . . . , 0)} and defining v0k = 1 ∈ F
for any k we obtain v0 = 1 ∈ F as the induced basis of S0(V ) = F . An element
of Sr(V ) can be uniquely written as

∑
p∈P λpv

p with λp ∈ F . Furthermore,
looking at {vi}i∈n as an ordered basis we see that P (r) is ordered as a subset
of the ordered set (r0)n (the latter is the n-fold anti-lexicographic product of
r0 as described in the review section of the introduction).

Proposition 2.28. Let V be an F -vector space and V1, V2 be subspaces such
that V = V1⊕V2. Let {vi}i∈k and {uj}j∈l be bases for V1 and V2 respectively.
Let r ∈ Z>0. Then for all s, t ∈ Z>0 such that s + t = r, the map Ss(V1) ×
St(V2)→ Sr(V ) given on basis vectors by (vp, uq) 7→ vpuq where p ∈ P (s) and



2.4. SYMMETRIC POWERS 29

q ∈ P (t) induces an injective linear map Ss(V1)⊗St(V2)→ Sr(V ). Identifying
the domain of this map with its image we have a direct sum decomposition

Sr(V ) =
⊕
s+t=r

Ss(V1)⊗ St(V2).

Proof. See [7, Chapter XVI, Proposition 8.2].

We will use the above proposition to define an order on Sr(V ) in such a way
that if V is an ordered vector space and {vi}i∈n is an anti-lexicographic basis
of V then the map P (r) → Sr(V ) given by p 7→ vp is an anti-lexicographic
basis of Sr(V ). Later on we will prove that the resulting order depends only
on the order of V ; in particular, it is independent of the choice of the anti-
lexicographic basis {vi}i∈n of V .

So fix r ∈ Z>0 and an anti-lexicographic basis {vk}k∈n of V (note that this
implies that all vk are positive). Denote Rvk by Vk. So, V1 ⊕ · · · ⊕ Vn is a
decomposition of V in an anti-lexicographic sum of one-dimensional subspaces.
Then the proposition above gives

Sr(V ) '
⊕

p∈P (r)

Sp1(V1)⊗ · · · ⊗ Spn(Vn). (2.29)

From the given basis {vk} of Vk we obtain a basis {vpkk } of Spk(Vk). Since
vk > 0, from the two possible orders of Spk(Vk) (see lemma (2.9)) we choose
the one for which vpkk is positive for compatibility. The aforementioned lemma
implies that this choice is independent of the choice of the basis vk of Vk so
long as vk > 0. A basis for Sp1(V1) ⊗ · · · ⊗ Spn(Vn) is now {vp11 . . . vpnn } and
the order on this space is the unique one where this basis is positive.

By (2.29) we can order Sr(V ) as the anti-lexicographic sum of the one-
dimensional ordered vector spaces appearing on the right hand side.

Finally, we order the symmetric algebra as the anti-lexicographic sum of
the Sr(V ) for r ∈ Z>0. This resulting order on Sr(V ) is anti-lexicographic.
Let P0(r) = {0}

∐
P (r) be the ordered disjoint union of {0} and P (r), which

amounts to saying that we introduce 0 as the minimum of P0(r). The convex
filtration of Sr(V ) is {Srp(V )}p∈P0(r) where we set Sr0(V ) = {0} and, for p 6= 0,

Srp(V ) =
⊕

q∈P (r),q6p

Sq1(V1)⊗ · · · ⊗ Sqn(Vn). (2.30)

Furthermore, the choice of the order on P (r) is such that, identifying V with
S1(V ), the order resulting from the above construction is the same as the
order on V . These observations hint that the order on Sr(V ) is independent
of the choice of the decomposition V1 ⊕ · · · ⊕ Vn of V (and thus, of the anti-
lexicographic basis {v1, . . . , vn} inducing it). We prove this in the following
lemma but we first introduce the following definition.
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Definition 2.31. Let V be a finite-dimensional, anti-lexicographically or-
dered, F -vector space and {vk}k∈n an anti-lexicographic basis of V . We define
the functions deg : S(V )\{0} → Z>0 and lt : S(V )→ S(V ) and lc : S(V )→ F
called respectively, the degree, leading term and leading coefficient functions,
as follows.

(i) We define lt(0) = 0 and lc(0) = 0.

(ii) Let s ∈ Sr(V ), s 6= 0, for some r ∈ Z>0. We define deg(s) = r. Write
s =

∑
p∈P (r) λpv

p where {vp : p ∈ P (r)} is the anti-lexicographic basis of

Sr(V ) as in (2.27) and let q = max{p ∈ P (r) : λp 6= 0}. We define lt(s) = λqv
q

and lc(s) = λq.

(iii) Let s ∈ S(V ), s 6= 0. Write s =
∑
r∈Z>0

sr where sr ∈ Sr(V ), and let

d = max{r ∈ Z>0 : sr 6= 0}. We define deg(s) = d and lt(s) = lt(sd) and
lc(s) = lc(sd). ♦

Remark 2.32. (a) Note that lt(s) and lc(s) depend on the anti-lexicographic
basis {v1, . . . , vn} of V chosen. Even so, we avoid expressing this in the nota-
tion since whenever we use these functions the basis in use will be clear from
the context.

(b) It is straight-forward to see that both functions are multiplicative, i.e.,
lt(st) = lt(s)lt(t) for any s, t ∈ S(V ) (and the same holds for lc).

(c) For any s ∈ S(V ) we have C(s) = C(lt(s)), i.e., the convex space generated
by s is the same as the one generated by its leading term. In fact, we have
the following slightly stronger statements. For all s ∈ S(V ) we have s ' lt(s).
For all s, t ∈ S(V ) we have s ' t if and only if lt(s) = lt(t).

We now give the promised lemma.

Lemma 2.33. Let Sr(V ) be ordered via the construction above with respect to
a fixed anti-lexicographic basis {v1, . . . , vn} of V . Let u1, . . . , ur, w1, . . . , wr ∈
V with uk 4 wk for all k ∈ r. Then u1 . . . ur 4 w1 . . . wr in Sr(V ). Further-
more, if all wk are non-zero and for at least one k ∈ r we have uk � wk then
u1 . . . ur � w1 . . . wr in Sr(V ).

Proof. Both statements of the lemma are trivially true if any of the uk’s or
any of the wl’s are zero. We thus assume all of them to be non-zero.

Writing uk and wk in terms of the anti-lexicographic basis we obtain

uk =
∑
l∈n

αk,lvl, wk =
∑
l∈n

βk,lvl, k ∈ r

with αk,l, βk,l ∈ F . Let f : r → n be given by

k 7→ f(k) = max{l : αk,l 6= 0}
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and let g : r → n be the corresponding function for the wk’s. From this it
follows that

lt(uk) = αk,f(k)vf(k), lt(wk) = βk,g(k)vg(k).

Since lt is multiplicative, we have

lt

∏
k∈r

uk

 =
∏
k∈r

lt(uk) =
∏
k∈r

αk,f(k)vf(k)

with a corresponding equation for lt(w1 . . . wr).
Let q ∈ P (r) such that lt(u1 . . . ur) ∈ Srq (V ) and p ∈ P (r) such that

lt(w1 . . . wr) ∈ Srp(V ) (these elements of P (r) exist and are unique by the
way we defined the function lt). The condition that uk 4 wk means that for
all k we have f(k) 6 g(k) for all k and this implies that q 6 p in the order we
defined for P (r), i.e., the order induced by (r0)n. By equation (2.30) we have

lt(u1 . . . ur) 4 lt(w1 . . . wr)

and the third item in the remark above implies that u1 . . . ur 4 w1 . . . wr. If for
k ∈ r we have uk � wk then for this k we obtain f(k) < g(k) and, hence, q < p
in P (r). The same reasoning as before then gives lt(u1 . . . ur)� lt(w1 . . . wr)
and then u1 . . . ur � w1 . . . wr.

Corollary 2.34. The order on Sr(V ) above does not depend on the choice
of the anti-lexicographic basis {v1, . . . , vn} of V chosen for the construction
above.

Proof. Let {vk}k∈n and {wk}k∈n be two anti-lexicographic bases for V . Let
Sr(V ) be ordered using the basis {vk, }k∈n. We have vk ∼ wk for all k ∈ n.
By applying lemma (2.33) using {vk} as the fixed anti-lexicographic basis,
we immediately get, for all p ∈ P (r), that vp11 . . . vpnn ∼ wp11 . . . wpnn . Thus,
{wp11 . . . wpnn }p∈P (r) is also an anti-lexicographic basis for Sr(V ). The corollary
is proven.

Proposition 2.35. Let V be a finite-dimensional, anti-lexicographically or-
dered, F -vector space. Then the symmetric algebra S(V ) is an ordered ring.

Proof. Axiom (i) of the definition is clear as S(V ) is an ordered F -vector
space. Writing V = V1 ⊕ · · · ⊕ Vn as the anti-lexicographic sum of one-
dimensional subspaces, to prove (ii) it suffices to show that the product maps

Sp(Vk)× Sq(Vl)→ Sp(Vk)⊗ Sq(Vl) ⊂ Sp+q(V )

for all admissible p, q, k and l have the property that the product of positive
elements is positive. Such a product is given by

(λvpk, µv
q
l ) 7→ λµvpkv

q
l
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with λ, µ ∈ F positive and vk, vl a positive basis of Vk, Vl respectively. Since
λµvpkv

q
l is positive the proof is complete.

Example 2.36. Let R3 be anti-lexicographically ordered and {e1, e2, e3} its
canonical basis. This is an anti-lexicographic basis. The symmetric algebra
S(R3) can be identified with the polynomial algebra R[e1, e2, e3]. For every
d ∈ Z>0, the subspace Sd(R3) is identified with the set of homogeneous polyno-
mials in e1, e2 and e3 of degree d. For d = 2, for example, an anti-lexicographic
basis for S2(R3) is given by

{e21, e1 · e2, e22, e1 · e3, e2 · e3, e23}

in this order.



CHAPTER 3

Layered Euclidean spaces

In this chapter we develop the theory of layered Euclidean spaces. Put simply,
these are real inner-product spaces where the inner-product takes values in an
ordered real vector space. In close analogy to the classical case where lattices
are discrete subgroups of Euclidean spaces, layered Euclidean spaces are the
ambient spaces into which layered lattices, the subject to be discussed in our
next chapter, can be embedded.

We start in a more general setting, where the field is not necessarily the
field of real numbers and then move to this particular case where we can prove
an analogue of the decomposition theorem of Hilbert spaces. This theorem
implies the existence of Gram-Schmidt bases, which will be important later
on.

In this chapter, F denotes an ordered field.

3.1 Layered forms

Definition 3.1. Let D and V be F -vector spaces with V ordered. Let

B : D ×D → V

be a bilinear symmetric function. Such a function is called a V -valued form.
We say B is positive-semidefinite if for all x ∈ D we have B(x, x) > 0 and say
B is positive-definite if for all non-zero x ∈ D we have B(x, x) > 0. The set

radB = {y ∈ D : ∀x ∈ D,B(x, y) = 0}

33
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is called the radical of B. Given an ordered basis {bi}i∈I ofD, the Gram matrix
of B with respect to this basis is the V -valued matrix B = (B(bi, bj))i,j∈I .

We say B is layered if for all x, y ∈ D we have B(x, y) 4 B(y, y), i.e.,
the convex subspace generated by B(x, y) is contained in the convex subspace
generated by B(y, y) (see definition (2.16)). ♦

Proposition 3.2. Let D and V be F -vector spaces with V ordered. Let B :
D×D → V be a form on D. Then radB is a subspace and B factors through
D/ radB×D/ radB. Moreover, if B is positive-semidefinite and layered then
radB = {y ∈ D : B(y, y) = 0} and the induced form on D/ radB is a positive-
definite layered form.

Proof. That radB is a subspace follows from the bilinearity of B. By defi-
nition, B is zero on D× radB and by symmetry also on radB ×D, hence, it
factors through D/ radB ×D/ radB.

Clearly radB ⊂ {y ∈ D : B(y, y) = 0} holds. To prove the other inclusion,
let x, y ∈ D with B(y, y) = 0. Since B is layered, we have B(x, y) ∈ C(B(y, y))
but since C(B(y, y)) = C(0) = {0} we conclude that B(x, y) = 0.

Finally, the induced map onD/ radB is clearly bilinear, symmetric, positive-
semidefinite and layered. It remains to show that it is positive-definite but this
follows from the inclusion {y ∈ D : B(y, y) = 0} ⊂ radB just proven.

Definition 3.3. Let D and V be F -vector spaces with V ordered and B :
D × D → V be a positive-semidefinite, layered form. Following definition
(2.16), let C(V ) be the convex filtration of V . For U ∈ C(V ) the set

DU = {x ∈ D : B(x, x) ∈ U}

is called the U -th layer of D. The set of all layers of D we denote by L(D).
Let x ∈ D. The set ⋂

{DU ∈ L(D) : x ∈ DU}

is the layer of x and we denote it by L(x). ♦

Remark 3.4. The following remarks are straight-forward to check.

(a) The set of layers of D is ordered by inclusion. With this order, the map
U 7→ DU is a morphism of ordered sets.

(b) By proposition (2.15), for any x ∈ D, the layer of x is L(x) = DC(B(x,x)).

(c) The radical of B is the minimal layer of D.

The following theorem is the main result of this section and is a strengthening
of proposition (3.2).
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Theorem 3.5. Let D and V be F -vector spaces with V ordered and B :
D ×D → V be a positive-semidefinite, layered form. Let C(V ) be the convex
filtration of V and L(D) be the set of layers of D. Then the layers are subspaces
and for all U ∈ C(V ) the form B induces a positive-definite, layered form

BU : D/DU ×D/DU → V/U.

Proof. Recall from proposition (2.21) that V/U is an ordered F -vector space.
Let U ∈ C(V ) and consider the map BU : D × D → V/U given by the
composition of B with the projection V → V/U . It is clear that this map
is a positive-semidefinite, layered form. Applying proposition (3.2) to BU
immediately gives the result since radBU = DU .

Definition 3.6. A layered space is a triple (D,V,B) where D and V are F -
vector spaces with V ordered and B : D×D → V is a positive-definite, layered
form. In a layered space, the form B is called the inner-product. A layered
Euclidean space is a layered space where D and V are finite-dimensional and
F = R. ♦

Definition 3.7. If B is the inner-product on a layered space (D,V,B) we
denote by qB : D → V the map given by qB(x) = B(x, x) and call it the
associated quadratic norm. ♦

Example 3.8. (a) A Euclidean space is a layered Euclidean space.

(b) If (D,V,B) is a layered space and D′ ⊂ D is a subspace then, denoting
by B′ the restriction of B to D′ ×D′, the triple (D′, V, B′) is a layered space.

(c) The quotient of a layered space by one of its layers is a layered space by
the theorem above.

(d) Let U ∈ C∗(V ) and U ′ be the predecessor of U in C(V ). Combining (b)
and (c) we see that (DU/DU ′ , U/U

′, 〈·, ·〉) is a layered Euclidean space with
dimU/U ′ = 1.

(e) (E, V, 〈·, ·〉) be a layered Euclidean space with dimV = 1 and v ∈ V, v > 0.
Then (E, 〈·, ·〉) is a Euclidean space under the identification V ' R given by
v 7→ 1. Any other choice of positive basis for V corresponds to a uniform
scaling of the lengths of vectors of (E, 〈·, ·〉). In particular, by (d) above, and
for any U ∈ C∗(V ), we may identify (EU/EU ′ , U/U

′, 〈·, ·〉) with a classical
Euclidean space (as in (d), we let U ′ be the predecessor of U in C(V )).

We recall the definition of a flag of a vector space D given in the review section
of the introduction. This will be used below.

Definition 3.9. Let (D,V,B) be a layered space. Let I → D be an ordered
basis of D and F(I → D) be its induced flag. The basis I → D is a layered
basis of D if L(D) ⊂ F(I → D). ♦
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Remark 3.10. (a) The inclusion L(D) ⊂ F implies that each layer of D is
generated by a subset of the image of the basis I → D. Note that this auto-
matically implies that the inclusion map L(D)→ F(I → D) is a morphism of
ordered sets. Intuitively, this means that the basis vectors “come in the right
order”, meaning, first vectors generating the first non-trivial layer, then the
second, and so forth. As such, a layered basis induces in a canonical way, for
each U ∈ C∗(V ), an ordered basis of the layered space (DU/DU ′ , U/U

′, 〈·, ·〉)
where U ′ ∈ C(V ) is the predecessor of U .

(b) If two bases of a layered Euclidean space generate the same flag, then one
is layered if and only if the other is.

The following result gives a criterion for identifying a layered form B in terms
of its Gram matrix with respect to certain bases. Although it can be stated in a
slightly more general form, for simplicity, and since we are mostly interested in
this special case, we restrict ourselves to anti-lexicographically ordered vector
spaces. We need the following definition.

Definition 3.11. Let m ∈ Z>0. An m-by-m symmetric matrix M with
coefficients in F is said to be positive-(semi)definite if the form it induces on
Fm by the rule

(x, y) 7→ xTMy

is positive-(semi)definite. ♦

Theorem 3.12. Let D and V be finite-dimensional F -vector spaces with
V anti-lexicographically ordered (see definition (2.12)) and convex filtration
C(V ). Denote by C∗(V ) the subset C(V ) \ {{0}}. Let {vW }W∈C∗(V ) be an
anti-lexicographic basis of V .

Let B : D × D → V be a V -valued form on D and {DU : U ∈ C(V )} be
a family of subspaces of D such that DU ′ ⊂ DU whenever U ′ 6 U and with
D{0} = {0} and DV = D. Let {IU ⊂ DU : U ∈ C(V )} be a family of ordered
subsets such that for any U ∈ C(V ), the coproduct

∐
U ′6U IU ′ → DU is an

ordered basis of DU .
For each pair (U,U ′) ∈ C∗(V )× C∗(V ) let BU,U ′ be the V -valued matrix

BU,U ′ = (B(x, y))x∈IU ,y∈IU′

and for each W ∈ C∗(V ) let BW
U,U ′ be the F -valued matrices such that we have

BU,U ′ =
∑

W∈C∗(V )

BW
U,U ′vW . (3.13)

Then the statement D is a layered space and for all U ∈ C(V ) its U -th layer
equals DU is equivalent to the following two conditions.
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(a) For all U,U ′,W ∈ C∗(V ), with min{U,U ′} < W we have BW
U,U ′ = 0.

(b) For all W ∈ C∗(V ) the matrix BW
W,W is positive-definite.

Before giving the proof we remind the reader that for an ordered finite set S
and s ∈ S, we denote the predecessor of s by s− 1, whenever it exists (see the
review and notation section of the introduction).

Proof of theorem 3.12. Suppose (a) and (b) hold. Let U,U ′ ∈ C∗(V ) and
x ∈ IU , y ∈ IU ′ . By definition B(x, y) is an entry of BU,U ′ and from equation
(3.13) and (a) we see that B(x, y) ∈ min{U,U ′} for all such pairs x, y. Since
C(B(y, y)) = U ′, the layered property B(x, y) 4 B(y, y) holds for these pairs
of vectors. By the linearity of B in the second argument and (b) we see that
for all y ∈ span I ′U we have B(y, y) ∈ U ′ and positive. The linearity of B in
the first argument now implies that B(x, y) 4 B(y, y) for all x ∈ span IU and
y ∈ span IU ′ .

Let U0, U
′
0 ∈ C∗(V ) and x ∈ DU0

\ DU0−1 then we have x =
∑
U6U0

xU
with xU ∈ span IU . Let y ∈ DU ′0

\ DU ′0
and similarly write y =

∑
U ′6U ′0

yU ′

with yU ′ ∈ span IU ′ . From what we saw, for any U 6 U0 and any U ′ 6 U ′0,
we have B(xU , yU ′) 4 B(yU ′ , yU ′) 4 B(yU ′0 , yU ′0). Since B(x, y) is a sum of
terms of the form B(xU , yU ′) we conclude that for all x ∈ DU0

\ DU0−1 and
y ∈ DU ′0

\ DU ′0−1 we have B(x, y) 4 B(yU ′0 , yU ′0). Since the convex subspace
generated by the latter is U ′0 this proves that B is layered. From this and the
bilinearity of B it is straight-forward to check that B(x, x) ' B(xU0

, xU0
) and

since the latter is positive, by what we already shown, we conclude that B is
positive-definite. Hence, D is a layered space. It remains to show that for any
U ∈ C(V ), the U -th layer of D equals DU . We already have D{0} = {0} as
required. For any U ∈ C∗(V ), from (a) and the fact that

∐
U ′6U IU ′ → DU is

a basis of DU , we see that DU is contained in the U -th layer of D. To prove
the other inclusion let x ∈ D be in the U -th layer. Since D = DV we can
write x =

∑
U ′∈C∗(V ) xU ′ where xU ′ ∈ span IU ′ . Since x is in the U -th layer

we have B(x, x) ∈ U . The right-hand side then gives∑
U ′,U ′′

B(xU ′ , xU ′′) ∈ U

and now (a) and (b) imply that x′U = 0 for U ′ > U thus x ∈ DU .
The other implication is trivial to prove. For U,U ′,W ∈ C∗(V ), an entry of

BW
U,U ′ is the vW -component of B(x, y) for x ∈ IU and y ∈ IU ′ . The layered

property of B immediately gives (a). This together with the fact that B is
positive-definite gives (b).

Remark 3.14. Under the notation of the above theorem, we note the follow-
ing.
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(a) If D is a layered space then for any U ∈ C(V ) the ordered basis
∐
U ′6U IU ′

→ DU of DU is layered.

(b) By theorem (2.25), any finite-dimensional ordered real vector space is anti-
lexicographically ordered so in the case we are most concerned with, namely
when F = R, we may drop this assumption from the theorem.

(c) The V -valued matrix

B = (BU,U ′)U,U ′∈C∗(V )

obtained as in the theorem above is none other than the Gram matrix of the
form B written in a block-wise manner. This makes it easy to see if B is
layered positive-definite.

(d) To elaborate on the former observation, define the F -valued matrices

BW =
(
BW
U,U ′

)
U,U ′∈C∗(V )

.

Then the theorem states that B is layered and positive-definite if and only if
these matrices have the following block shape:

BW =



0 0 0

0 BW
W,W ∗

0 ∗ ∗


W -th row

where ∗ stands for an arbitrary matrix of the appropriate dimension and with
BW
W,W positive-definite.

Example 3.15. Let E = R3, V = R2 and B(x, y) given by (xTB1y, xTB2y)
where B1 = diag(1, 1,−1), B2 = diag(0, 1, 1) and diag(a, . . . , z) denotes the
square diagonal matrix with diagonal entries a, . . . , z.

Denote the canonical basis of E by {e1, e2, e3} and the canonical basis of V
by {v1, v2}. Then C(V ) = {V0 = {0}, V1 = Rv1, V2 = V } in this order. Setting
I{0} = ∅, IV1

= {e1}, IV2
= {e2, e3} ordered as they are written and setting

Dk = span Ik for k ∈ {0, 1, 2}, we are under the hypotheses of the theorem
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and we obtain

B1 =


1 0 0

0 1 0
0 0 −1

 , B2 =


0 0 0

0 1 0
0 0 1


V1-th row

V2-th row.

So we see that (E, V,B) is a layered Euclidean space.

Notation. When dealing with a layered Euclidean space, following the stan-
dard notation used in the classical case, we will denote the inner-product by
〈·, ·〉.

3.2 Orthogonality

In this section, we generalize the concept of orthogonality to layered Euclidean
spaces. This generalization is straight-forward to define and one gets the feeling
that it is “the right one”, as many results are clear analogues of classical ones.
Nonetheless, there are differences, for example, layered orthogonality is not a
symmetric relation. We will show this after the following definition. On the
other hand, the main result of this section points to the similarities of these
two concepts: given any subspace of a layered Euclidean space, there exists
an orthogonal complement to this subspace, i.e., a complement consisting of
vectors orthogonal to that subspace. In the case of classical Euclidean spaces
this result is a particular instance of the decomposition theorem for Hilbert
spaces and it leads to the existence of orthogonal bases. The same is true in
the present case, as we will see in Chapter 5.

We recall the reader of definition (2.16) where we introduced various rela-
tions on an ordered F -vector space.

Definition 3.16. Let (D,V,B) be a layered space. Given x, y ∈ D we say x
is orthogonal to y and write x ⊥ y if y = 0 or both y 6= 0 and 〈x, y〉 � 〈y, y〉.
For subsets X,Y of D we say X is orthogonal to Y and write X ⊥ Y if for all
x ∈ X and all y ∈ Y we have x ⊥ y. Given a set X, the set

{y ∈ E : ∀x ∈ X, y ⊥ x}

we denote by X⊥. ♦

Remark 3.17. (a) Note that in a classical Euclidean space we have V = R

whose convex filtration is {(0),R} (in this order). Since 〈y, y〉 > 0 if y 6= 0 we
see that our definition amounts to the classical 〈x, y〉 = 0 as a condition for x
to be orthogonal to y.
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(b) Also note that if for two elements x, y ∈ D we have L(x) = L(y) then
x ⊥ y if and only if y ⊥ x. This is not true in general as the following example
illustrates.

(c) Orthogonality is not, in general, a symmetric relation. That this is the
case can be seen from the definition once we realize that if 〈x, x〉 and 〈y, y〉,
being elements of V , do not generate the same convex subspace, then orthog-
onality depends on the convex space generated by 〈x, y〉. The fact that 〈·, ·〉 is
layered only ensures that this space is contained in the minimum of the convex
subspaces generated by the norm of x and of y.

Example 3.18. The following example shows that the relation ⊥ defined
above is not, in general, symmetric in x and y. Let E = R2 and V = R2

and {u, v} be the canonical basis of V (it is an anti-lexicographic basis of V ).
Define the form B via (x, y) 7→ (xTB1y)u+ (xTB2y)v where

B1 =

(
1 1
1 1

)
,B2 =

(
0 0
0 1

)
.

Let I{0} = ∅, IRu = {e1} and IV = {e2} where {e1, e2} is the canonical basis
of E. By theorem (3.12), the triple (E, V,B) is a layered Euclidean space. It
is straightforward to see that e1 ⊥ e2 but e2 6⊥ e1.

Definition 3.19. Let (D,V,B) be a layered space. An ordered basis {bi}i∈I
of D is called an orthogonal basis if whenever i, j ∈ I with i < j we have
bj ⊥ bi. ♦

Proposition 3.20. Let X,X1, X2 ⊂ D be subsets of a layered space. Then
we have the following.

(a) X⊥ is a subspace of D.

(b) If 0 ∈ X then X⊥ ∩X = {0}.
(c) (X1 ∪X2)⊥ = X⊥1 ∩X⊥2 .

Proof.

(a) First note that 0 ∈ X⊥. If X ⊂ {0} then X⊥ = E and we are done. Now
let y1, y2 ∈ X⊥, x ∈ X with x 6= 0 and α ∈ R. We have

〈αy1 + y2, x〉 = α〈y1, x〉+ 〈y2, x〉.

Since the convex subspace generated by the latter is strictly contained in the
convex subspace generated by 〈x, x〉, this shows that αy1 + y2 ⊥ x. Since this
holds for any x ∈ X we have αy1 + y2 ∈ X⊥ and X⊥ is a subspace.

(b) Clearly 0 ∈ X⊥ ∩X. If x ∈ X⊥ ∩X with x 6= 0 then x ⊥ x, i.e., we have
〈x, x〉 � 〈x, x〉 which is an impossibility.
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(c) Obvious.

From now on we specialize to the case of layered Euclidean spaces. Nonetheless
we remark that all the results of this chapter still apply to the more general
case of arbitrary layered spaces.

The next result of this chapter establishes the existence of orthogonal com-
plements, i.e., given a subspace D of a layered Euclidean space the subspace
D⊥ is a complement for D in E. In chapter 4 we will use this theorem when
developing a Gram-Schmidt procedure for E, a concrete way of finding orthog-
onal bases of E.

Theorem 3.21. Let E be a layered Euclidean space and D be a subspace of
E. For each U ∈ C(V ) set DU = D ∩ EU and if U 6= {0} denote by U ′ the
predecessor of U in C(V ). Then the following holds.

(a) The map φ : E →
⊕

U∈C∗(V ) Hom (DU/DU ′ , U/U
′) given by

y 7→ (x+DU ′ 7→ 〈x, y〉+ U ′)U∈C∗(V )

is well-defined and linear.

(b) The kernel of φ is D⊥.

(c) The restriction φ|D is an isomorphism of vector spaces.

(d) The natural map D ⊕D⊥ → E is an isomorphism of vector spaces.

Proof. Since 〈·, ·〉 is layered, for each U ∈ C∗(V ) and for all y ∈ E, we have
〈DU ′ , y〉 ⊂ U ′. Also, for any x ∈ DU , we have 〈x, y〉 ∈ U . Thus the map
DU/DU ′ → U/U ′ given by

x+DU ′ 7→ 〈x, y〉+ U ′

is well-defined. It follows that the map φ is well-defined. That φ is linear is
clear so we have proven (a).

Let y ∈ E. Then we have y ∈ kerφ if and only if for all

(xU +DU ′)U∈C∗(V ) ∈
⊕

U∈C∗(V )

DU/DU ′

and all U ∈ C∗(V ) we have 〈xU , y〉 ∈ U ′. This holds if and only if for all
U ∈ C∗(V ) we have

∀x ∈ DU : 〈x, y〉 ∈ U ′.

This, in turn, is equivalent to the condition that for all x ∈ D one has y ⊥ x,
that is, to y ∈ D⊥. We have established that kerφ = D⊥ proving (b).

It now follows that

kerφ|D = (kerφ) ∩D = D⊥ ∩D = {0}
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so φ|D is injective. Further, we have

dim

 ⊕
U∈C∗(V )

Hom(DU/DU ′ , U/U
′)

 = dimD

so φ|D is surjective and we obtain (c).
Finally, item (d) follows since dimD⊥ = dim kerφ = dimE − dimD.

For the following theorem we recall, from section (1.2), that an ordered basis
{bi}i∈m of a vector space E induces a flag F0 $ · · · $ Fm of E via the formula
Fi = span{bj : j 6 i}.

Theorem 3.22. Let (E, V, 〈·, ·〉) be a layered Euclidean space with dimE = m.
Let {bi}i∈m be an ordered basis of E and F0 $ · · · $ Fm be the flag of E induced
by this basis. Then there exists a unique basis {b∗i }i∈m such that for all i ∈ m
we have b∗i ∈ F⊥i−1 and bi − b∗i ∈ Fi−1. Furthermore, this basis is orthogonal
and induces the same flag F0 $ · · · $ Fm of V .

Proof. Let i ∈ m. By theorem (3.21) we have that E = F⊥i−1 ⊕ Fi−1. Since
bi 6∈ Fi−1 there exists a unique non-zero b∗i ∈ F⊥i−1 such that bi − b∗i ∈ Fi−1.
From this we see that b∗i = bi − (bi − b∗i ) ∈ Fi. Hence, for each i ∈ m we have
b∗i ∈ Fi \ Fi−1. It is now clear that the two bases induce the same flag of E,
namely, F0 $ · · · $ Fm. Finally, since for any i ∈ m and any j < i we have
b∗j ∈ Fi−1 it follows that b∗i ⊥ b∗j so {b∗i }i∈m is an orthogonal basis of E.

The bases whose existence are guaranteed by the theorem above will be further
studied in chapter 5. For now, we use this theorem for the following result.

Corollary 3.23. Let (E, V, 〈·, ·〉) be a layered Euclidean space. Then E has
a layered, orthogonal basis. Let I → E be such a layered, orthogonal basis of
E. Denote the image of i ∈ I by xi ∈ E. Then for any i, j ∈ I, i 6= j we have
xi ⊥ xj and xj ⊥ xi.

Proof. The existence of layered orthogonal bases follows from applying the
theorem above to a layered basis, whose existence is trivial to prove (see remark
(3.10 (b))).

Let i, j ∈ I with i < j. If xi, xj are in the same layer, i.e., L(xi) = L(xj),
then orthogonality is symmetric for this pair of vectors (see remark (3.17)) so
we have xi ⊥ xj and xj ⊥ xi. If they are not in the same layer, the fact that
I → E is layered implies that L(xi) $ L(xj). By the layered property of the
inner-product we have 〈xi, xj〉 4 〈xi, xi〉 � 〈xj , xj〉 and thus xi ⊥ xj . Since
I → E is orthogonal we also have xj ⊥ xi.

Another useful result is the following.
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Proposition 3.24. Let (E, V, 〈·, ·〉) be a layered Euclidean space and {xi}i∈I ⊂
E an orthogonal basis. Then for all U ∈ C∗(V ), denoting its predecessor in
C(V ) by U ′, we have

#{xi : xi ∈ EU \ EU ′} = dimEU/EU ′ .

Proof. By induction it suffices to prove the case U = V . Let IV = {i : xi ∈
EV \ EV ′}. We clearly have

#IV > dimEV /EV ′

or else {xi}i∈I would not generate E. To show the equality suppose we had

#IV > dimEV /EV ′ .

Then there exists numbers λi ∈ R, for i ∈ IV , not all zero, such that

x =
∑
i∈IV

λixi ∈ EV ′ .

If i0 ∈ IV is any index with λi0 6= 0 then the orthogonality conditions xi0 ⊥ xi,
which hold for all i ∈ IV (see remark (3.17)), imply that

λi0〈xi0 , xi0〉 = 〈x, xi0〉 −
∑
i 6=i0

λi〈xi, xi0〉 ∈ V ′

contradicting the fact that xi0 ∈ EV \ EV ′ .

The proposition above tells us that an orthogonal basis is, up to a permutation
of its vectors, a layered basis. The following result will be used in chapter 5. It
establishes an important property of those bases that, after some permutation,
form a layered basis.

Proposition 3.25. Let (E, V, 〈·, ·〉) be a layered Euclidean space and D ⊂ E
be a subspace. Let c1, . . . , cm ∈ D be a linearly independent set of vectors
which, up to a permutation, form a layered basis of D. Then for any x ∈ E
we have that x ∈ D⊥ if and only if x ⊥ {c1, . . . , cm}.

Proof. It is clear that if x ∈ D⊥ then x ⊥ {c1, . . . , cm} holds. For the other
implication, note that for every U ∈ C∗(V ) a subset SU of {c1, . . . , cm} forms
a basis for DU = D ∩ EU . Denote by U ′ the predecessor of U in C(V ). Thus,
the linear map DU/DU ′ → U/U ′ given by y + DU ′ 7→ 〈x, y〉 + U ′ is zero if
and only if it is zero on SU . This is the case since we are assuming that
x ⊥ {c1, . . . , cm}. It follows that x is an element in the kernel of the map φ of
theorem (3.21). By item (b) of that theorem, we have x ∈ D⊥.
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3.3 Exterior powers of layered Euclidean spaces

In the final section of this chapter we prove that exterior powers of a layered
Euclidean space are layered Euclidean spaces. This result is important not
only in what we will do later but also if one would like to extend this theory
to manifolds, i.e., develop a generalized Riemannian geometry.

We briefly recall some definitions and results from chapter 2. Let V be an
ordered real vector space of finite dimension n ∈ Z>0. In (2.26) we introduced
the symmetric algebra S(V ) of V and in proposition (2.35) we saw that it is
an ordered graded ring with the order which, on each homogenous component
Sr(V ), r ∈ Z>0, is characterized by the following property. If {vi}i∈n is an
anti-lexicographic basis of V then the map P (r)→ Sr(V ) where

P (r) = {p = (p1, . . . , pn) ∈ (r0)n : p1 + · · ·+ pn = r},

given by p 7→ vp = vp11 . . . vpnn is an anti-lexicographic basis of Sr(V ). The
ring S(V ) is then ordered as the anti-lexicographic sum of the Sr(V ). Let
P0(r) = {0}

∐
P (r) ordered as a coproduct, i.e., 0 is the minimum of P0(r).

The convex filtration of Sr(V ) is given by C(Sr(V )) = {Srp(V ) : p ∈ P0(r)}
where Sr0(V ) = {0} and

Srp(V ) =
⊕
q6p

Sq1(V1)⊗ · · · ⊗ Sqn(Vn)

for p 6= 0.
If F is a field and D is an F -vector space, we denote by

∧r
D the r-fold

exterior power of D. We refer the reader to [7, Chapter XIX] for definitions
and basic properties of the exterior power.

Theorem 3.26. Let (E, V, 〈·, ·〉) be a layered Euclidean space and r ∈ Z>0. Let∧r
E be the r-fold exterior power of E and Sr(V ) the ordered r-th symmetric

power of V . Define 〈·, ·〉 :
∧r

E ×
∧r

E → Sr(V ) extending by bilinearity the
formula

〈x1 ∧ · · · ∧ xr, y1 ∧ · · · ∧ yr〉 = det(〈xi, yj〉)i,j=1,...,r.

Then (
∧r

E,Sr(V ), 〈·, ·〉) is a layered Euclidean space.
Let I → E be a layered basis of E and

r∧
I = {(i1, . . . , ir) ∈ Ir : i1 < · · · < ir} (3.27)

with the order induced by the anti-lexicographic order on Ir. Denote by xi the
image of i ∈ I in E. Then

∧r
I →

∧r
E given by

(i1, . . . , ir) 7→ xi1 ∧ · · · ∧ xir (3.28)

is a layered basis of
∧r

E.
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Proof. The map Er × Er → Sr(V ) given by

(x, y) 7→ det(〈xs, yt〉)s,t=1,...,r

is multilinear and alternating in the xs and in the yt and so factors through∧r
E×

∧r
E → Sr(V ). The resulting map is bilinear and symmetric and thus

an Sr(V )-valued form.
Let I → E be a layered basis of E. By definition, if F is the flag induced by

I → E, we have L(E) ⊂ F as ordered sets. Thus, every layer of E is generated
by a subset of the image of I → E. Denote by xi ∈ E the image of i ∈ I in E.
Then general results of multilinear algebra show that the map

∧r
I →

∧r
E

given by (3.28) is an ordered basis of
∧r

E.
The idea of the proof is to use theorem (3.12). We will introduce certain

subspaces of
∧r

E indexed by C(Sr(V )). To simplify notation we will use the
natural bijection p 7→ Srp(V ) between P0(r) and C(Srp(V )) to use the former
as the index set. Thus, for each p ∈ P0(r) let

Dp = span
{
xi : i ∈

∧r
I, 〈xi, xi〉 ∈ Srp(V )

}
⊂
∧r
E.

Clearly, we have D0 = {0}, DmaxP0
= D and whenever q 6 p, we have Dq ⊂

Dp as required in theorem (3.12). Let I0 = ∅ and, for p ∈ P (r), let

Ip =
{
i ∈
∧r
I : 〈xi, xi〉 ∈ Srp(V ) \ Srp−1(V )

}
. (3.29)

With these definitions we see that for all p ∈ P (r) the map
∐
q6p Iq → Dp is

an ordered basis of Dp, again, as required by theorem (3.12). Finally, let

Bp,p′ = (〈xi, xj〉)i∈Ip,j∈Ip′

and Bq
p,p′ as in equation (3.13) for p, p′, q ∈ P (r).

The proof will be complete once we show that the real matrices Bq
p,p′ satisfy

(a) and (b) of theorem (3.12). For this, we assume that I → E is not only
layered but also orthogonal. This can be done as the existence of such a
basis is guaranteed by (3.23), and since the conclusion that

∧r
E is a layered

Euclidean space does not depend on a choice of basis. We use the following
lemma.

Lemma 3.30. Let E be a layered Euclidean space with dimE = m and
{xi}i∈m be an orthogonal basis of E. Let

∧r
m = {(i1, . . . , ir) ∈ mr : i1 <

· · · < ir} with the order induced by mr. For each i = (i1, . . . , ir) ∈
∧r

m let
xi = xi1 ∧ · · · ∧ xir ∈

∧r
E. Then we have

〈xi, xi〉 '
r∏
s=1

〈xis , xis〉.

Furthermore, if j ∈
∧r

m is such that i < j then 〈xi, xj〉 � 〈xi, xi〉 holds.
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Proof. To prove the first statement we have to show that

〈xi, xi〉 −
r∏
s=1

〈xis , xis〉 �
r∏
s=1

〈xis , xis〉.

From a well-known formula for the determinant, we can rewrite the difference
on the left-hand side above as∑

σ∈Sym(r),σ 6=id

sgn (σ)

r∏
s=1

〈xis , xiσ(s)〉

where Sym(r) denotes the symmetric group on r. Hence, it is enough to show
that for each σ ∈ Sym, σ 6= id we have

r∏
s=1

〈xis , xiσ(s)〉 �
r∏
s=1

〈xis , xis〉. (3.31)

By the layered property of the inner-product on E we have 〈xis , xiσ(s)〉 4
〈xis , xis〉 for all s; and since the set {u ∈ r : iu < iσ(u)} is non-empty (here
we use that σ 6= id ), for such an u we have 〈xiu , xiσ(u)〉 � 〈xiu , xiu〉 by the
orthogonality condition xiσ(u) ⊥ xiu . Hence, by lemma (2.33), the relation
(3.31) indeed holds.

Now, to prove the second statement of this lemma, let j ∈
∧r

m with i < j.
By the definition of the order on

∧r
m, the set {u : iu < jσ(u)} is non-empty

for every σ ∈ Sym(r) including σ = id . By what we just proved it is enough
to show that for all σ we have

r∏
s=1

〈xis , xjσ(s)〉 �
r∏
s=1

〈xis , xis〉.

The rest of the proof is the same as in the first part.

End of the proof of (3.26). We now prove (a) and (b) of theorem (3.12)
for Bq

p,p′ . Let p, p′, q ∈ P (r) with p < q and i ∈ Ip, j ∈ Ip′ . By the lemma just
proven we have

〈xi, xj〉 � lt(〈xi, xi〉) ∈ Srp(V )

by definition of Ip. This implies 〈xi, xj〉 ∈ Srp(V ) and since p < q, in the
expansion of 〈xi, xj〉 in the anti-lexicographic basis {vp}p∈P (r), the q-th com-
ponent is zero. This, in other words, is nothing other than the fact that the
entry of Bq

p,p′ given by 〈xi, xj〉 is zero. Hence, Bq
p,p′ = 0. The case where

p′ < q follows from the symmetry of Bq
p,p′ , namely, Bq

p,p′ = (Bq
p′,p)

T = 0 by
the previous case. This proves (a).
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To prove (b), we note that for any q ∈ P (r) the diagonal entries of Bq
q,q are

the q-th components of 〈xi, xi〉 for i ∈ Iq. Since, by definition of Iq, we have
C(〈xi, xi〉) = Srq (V ), this q-th component is the leading coefficient of 〈xi, xi〉.
This fact and the lemma above imply that the diagonal entries of Bq

q,q equal{
lc

(
r∏
s=1

〈xis , xis〉

)}
i∈Iq

,

which are positive. To finish the proof we will show that the non-diagonal
entries of Bq

q,q are zero (since a diagonal matrix with positive diagonal entries
is positive-definite). A non-diagonal entry of Bq

q,q is the q-th component of
〈xi, xj〉 for i, j ∈ Iq and i 6= j. By the lemma, 〈xi, xj〉 � lt(〈xi, xi〉) ∈ Srq (V ).
Hence we have C(〈xi, xj〉) < Srq (V ) and this component is zero as was to be
shown.

We now know that
∧r

E is a layered Euclidean spaces with layers {Dp : p ∈
P0(r)}. Returning to the case where I → E is a layered basis of E but not
necessarily orthogonal, to finish the proof, we have to show that

∧r
I →

∧r
E

is a layered basis of
∧r

E. This was already shown: the flag induced by∧r
I →

∧r
E contains L(

∧r
E) = {Dp : p ∈ P0(r)}.

Corollary 3.32. Let I → E be a layered, orthogonal basis of a layered Eu-
clidean space (E, V, 〈·, ·〉). Then for any r ∈ Z>0 the basis

∧r
I →

∧r
E of∧r

E described in the theorem above is layered and orthogonal.

Proof. That
∧r

I →
∧r

E is layered is stated in the theorem. That this basis
is orthogonal is, since we now know that

∧r
E is a layered Euclidean space,

exactly the statement of lemma (3.30).





CHAPTER 4

Layered lattices

In this chapter we introduce and study the concept of a layered lattice. A
classical lattice is a discrete subgroup of a Euclidean space. This is equiv-
alent to being a group generated by a linearly independent set of vectors of
a Euclidean space. As we generalized Euclidean spaces and studied layered
Euclidean spaces in the last chapter, here we will generalize lattices to layered
lattices. These are subgroups of layered Euclidean spaces having a certain
“layer” property that is equivalent to being generated by a subset of a layered
basis (recall definition (3.9)).

We then give a more intrinsic definition of a layered lattice, which does not
refer to any ambient space. Of course, we prove the equivalence of the two
definitions.

4.1 Embedded layered lattices

We start by recalling a standard result about classical lattices.

Definition 4.1. Let E be a Euclidean space. An embedded lattice is a sub-
group L of E that is discrete with respect to the induced topology. We say L
is full in E if the R-span of L equals E. ♦

Proposition 4.2. A subgroup L ⊂ E of a Euclidean space is an embedded
lattice if and only if it is generated by a linearly independent set of elements
of E.

49
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Proof. This is proven in [9, Proposition 3.3]. Alternatively, see theorem (1)
and corollary (1) of [11, Chapter 2].

Remark 4.3. It is clear from the above proposition that a lattice is a finitely
generated, torsion-free abelian group and, hence, a free group of finite rank.

For the following we remind the reader of definitions (3.6) of a layered Eu-
clidean space and (3.9) of a layered basis.

Definition 4.4. Let (E, V, 〈·, ·〉) be a layered Euclidean space. An embedded
layered lattice is a subgroup L of E generated by a subset (of the image) of a
layered basis. We say that L is full in E if the R-span of L equals E. ♦

As before, for an ordered vector space V we denote by C(V ) the convex fil-
tration of V (see definition (2.16)), and by C∗(V ) the subset C(V ) \ {{0}}.
We remind the reader that by remark (3.8 (e)), the quotient of two successive
layers of a layered Euclidean space has the structure of a classical Euclidean
space.

Proposition 4.5. Let (E, V, 〈·, ·〉) be a layered Euclidean space and L ⊂ E
be a subgroup. For each U ∈ C(V ) let EU be the U -th layer of E and set
LU = L ∩ EU . Then L is an embedded layered lattice if and only if for each
U ∈ C∗(V ), denoting its predecessor in C(V ) by U ′, the quotient LU/LU ′ ⊂
EU/EU ′ is an embedded lattice in the Euclidean space (EU/EU ′ , 〈·, ·〉).

Proof. Suppose L is an embedded layered lattice. Replacing E by the R-span
of L we may suppose L is full. Let thus I → L ⊂ E be a layered basis of E
generating L. Let U ∈ C∗(V ). By definition, there is a subset IU ⊂ I such
that IU → EU is an ordered basis of EU and similarly for the predecessor U ′ of
U in C(V ). We clearly have IU ′ ⊂ IU and the map IU \ IU ′ → EU → EU/EU ′

is an ordered basis of EU/EU ′ . We saw in remark (3.8), that the latter is a
Euclidean space.

From LU = L ∩ EU we have that the image of IU \ IU ′ under this com-
position is contained in LU/LU ′ ⊂ EU/EU ′ and generates this subgroup. By
proposition (4.2) above LU/LU ′ ⊂ EU/EU ′ is an embedded lattice.

Now suppose that for any U ∈ C∗(V ) the subgroups LU/LU ′ ⊂ EU/EU ′

are embedded lattices. Using proposition (4.2), for each such U let IU ⊂
LU/LU ′ ⊂ EU/EU ′ be an linearly independent set of elements of EU/EU ′

generating LU/LU ′ . Let IU → LU/LU ′ be the standard inclusion and take
any lift IU → LU ⊂ EU of this map to LU . Now set I =

∐
U∈C∗(V ) IU , as

coproduct of sets, anti-lexicographically ordered with respect to C∗(V ) (see
the review and notation section of the Introduction). It is immediate to verify
that I → E is a layered basis of the R-span of L, i.e., L is generated by a
subset of a layered basis of E.
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4.2 Layered lattices

We start by recalling the definition of a classical lattice (see ([9, Section 4])).

Definition 4.6. A lattice is a pair (L, q) where L is a finitely generated abelian
group and q : L→ R is a map satisfying the following three conditions.

(i) For all x, y ∈ L we have

q(x+ y) + q(x− y) = 2q(x) + 2q(y).

(ii) For all x 6= 0 in L we have q(x) 6= 0.

(iii) For any real number λ the set {x ∈ L : q(x) 6 λ} is finite.

The map q is called the quadratic norm on L and (i) above is called the
parallelogram law. ♦
We generalize this as follows.

Definition 4.7. A layered lattice is a triple (L, V, q) where L is a finitely
generated abelian group, V is a finite-dimensional, ordered R-vector space
and q : L→ V is a map satisfying the following three conditions.

(i) For all x, y ∈ L we have

q(x+ y) + q(x− y) = 2q(x) + 2q(y).

(ii) For all x 6= 0 in L we have q(x) 6= 0.

(iii) The set q(L) is well-ordered as a subset of V .

The map q is called the quadratic norm on L and (i) above is called the
parallelogram law. ♦
Remark 4.8. We will show below that a layered lattice (L, V, q) with V one-
dimensional can be identified with a classical lattice, and that any two such
identifications differ by a uniform scaling of the lattice points. Thus, a layered
lattice is, in fact, a generalization of (4.6).

The following result is well-known in the theory of lattices. One of the main
results of this chapter is its generalization to layered lattices.

Proposition 4.9. Let (L, q) be a lattice. Then R ⊗Z L is a Euclidean space
with inner-product 〈·, ·〉 given on generators of the form α⊗x, with α ∈ R and
x ∈ L, by

〈α⊗ x, β ⊗ y〉 = αβ
q(x+ y)− q(x− y)

4
.

The injective homomorphism of groups ι : L→ E given by x 7→ 1⊗ x is such
that for all x ∈ L one has 〈ι(x), ι(x)〉 = q(x) and makes ι(L) into an embedded
lattice.
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Proof. This is proven in [9, Proposition 4.1, pg. 74].

Remark 4.10. We note, and this will be important later on, that the proof
of the above proposition remains valid if (iii) of definition (4.6) is replaced by
the condition that q(L) ⊂ R is well-ordered. In the proof one only uses that
q(L \ {0}) attains a minimum and that this minimum is positive.

Lemma 4.11. Let (L, V, q) be a layered lattice. Then L is a free abelian group
of finite rank. Furthermore the following holds.

(a) We have q(0) = 0.

(b) For all x ∈ L and all n ∈ Z we have q(nx) = n2q(x).

(c) For all x ∈ L we have q(x) > 0, and q(x) = 0 if and only if x = 0.

Proof. By first choosing x, y = 0, then x = y, and finally x = 0 in the
parallelogram law we conclude, in turn, that q(0) = 0, that q(2x) = 4q(x) and
that q(−y) = q(y). This establishes (a). An easy induction argument then
shows that for any n ∈ Z and any x ∈ L we have q(nx) = n2q(x) establishing
(b). Now suppose that for x ∈ L we have q(x) < 0. Then for all n ∈ Z>0

we obtain the inequalities q(nx) = n2q(x) < q((n − 1)x) < · · · < q(x) < 0
contradicting (iii) from the definition of q. Thus, q(x) > 0 for all x ∈ L. This
together with (ii) from the definition of a layered lattice proves (c) and, in
particular, that L is torsion-free. Since L is finitely generated we conclude
that L is a free abelian group of finite rank.

Lemma 4.12. Let (L, V, q) be a layered lattice and define the map
〈·, ·〉 : L× L→ V by

〈x, y〉 =
q(x+ y)− q(x− y)

4
. (4.13)

Then 〈·, ·〉 is a Z-bilinear, symmetric, positive-definite map on L×L such that
for all x, y ∈ L we have 〈x, x〉 = q(x) and 〈x, y〉 4 〈y, y〉.

Proof. Let x, y, z ∈ L. By (b) of the lemma (4.11) above we have q(x− y) =
q(y − x) and, hence, 〈x, y〉 = 〈y, x〉, which shows that the map is symmetric.
Using the parallelogram law we obtain the following equations:

q(x+ y + z) + q(x− y + z) = 2q(x+ z) + 2q(y) (I)
q(x+ y − z) + q(x− y − z) = 2q(x− z) + 2q(y) (II)
q(x+ y + z) + q(x− y − z) = 2q(x) + 2q(y + z) (III)
q(x+ y − z) + q(x− y + z) = 2q(x) + 2q(y − z) (IV).

Taking the alternating sum (I)−(II)+(III)−(IV) we get

2q(x+ y + x)− 2q(x+ y − z) = 2q(x+ z)− 2q(x− z) + 2q(y + z)− 2q(y − z),
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which upon division by 8 amounts to the identity

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

valid for all x, y, z ∈ L. Thus, 〈·, ·〉 is bilinear over Z.
Using the properties of q established in the previous lemma we have

〈x, x〉 =
q(2x)− q(0)

4
=

4q(x)

4
= q(x) (4.14)

establishing the desired formula. Since by the same lemma for all x ∈ L we
have q(x) > 0 with q(x) = 0 if and only if x = 0, this formula also establishes
that 〈·, ·〉 is positive-definite.

It remains to show that for all x, y ∈ L we have 〈x, y〉 4 〈y, y〉. Let x, y ∈ L
and S = {x + ny : n ∈ Z}. Since q(S) ⊂ q(L) and the latter is well-ordered,
there exists z = x+my ∈ S with q(z) = min q(S). Thus we have q(z) 6 q(z±y)
since z±y ∈ S. Using equation (4.14), the bilinearity of 〈·, ·〉 and the fact that
q(z) > 0 we obtain ∓2〈z, y〉 6 〈y, y〉. Thus we have

|〈z, y〉| 6 1/2〈y, y〉

and we conclude that 〈z, y〉 4 〈y, y〉. Since z = x + my we also have 〈x, y〉 4
〈y, y〉, as was to be shown.

Notation. From now on, whenever we have a layered lattice (L, V, q), we will
freely use 〈·, ·〉 to denote the associated bilinear symmetric map given by the
above lemma.

We recall from the review section of the introduction that a subgroup K of a
free group L is called a pure subgroup if the quotient L/K is free.

Lemma 4.15. Let (L, V, q) be a layered lattice and 〈·, ·〉 : L × L → V as in
the previous lemma. For each U ∈ C(V ) let LU = {x ∈ L : q(x) ∈ U}. Then
LU is a pure subgroup of L. Define q : L/LU → V/U by

q(x+ LU ) = q(x) + U. (4.16)

Then (L/LU , V/U, q) is a layered lattice.

Proof. Let U ∈ C(V ) and suppose x, y ∈ LU . Then a straight-forward
calculation gives

q(x+ y) = q(x) + 2〈x, y〉+ q(y) ∈ U (4.17)

since we have shown that 〈x, y〉 4 q(y) ∈ U . Since q(−y) = q(y) ∈ U we
conclude that LU is a subgroup of L. Now let x + LU ∈ L/LU and suppose
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there is n ∈ Z such that n(x+ LU ) = 0 in L/LU . This means that nx ∈ LU .
By lemma (4.11) we thus have n2q(x) = q(nx) ∈ U . From this we conclude
that either n = 0 or x ∈ LU . Hence, L/LU is torsion-free and LU is a pure
subgroup of L.

The map x+ LU 7→ q(x) + U is well defined since if x+ LU = y + LU then

q(x+ LU ) = q(x) + U = q(y + (x− y)) + U = q(y) + U

where the last equality can be seen by expanding q(y+(x−y)) like in equation
(4.17) above. This map satisfies (i) and (ii) of the definition of a layered lattice.
To see (iii) just note that, in general, if S is a well-ordered subset of an ordered
vector space V and U is a convex subspace of V , then the image of S in V/U
is well-ordered as well. This is an immediate consequence of the fact that
the quotient map V → V/U is a morphism of ordered vector spaces. This
concludes the proof.

Definition 4.18. Let (L, V, q) be a layered lattice over an ordered field F .
The subgroup LU = {x ∈ L : q(x) ∈ U} from the previous lemma is the U -th
layer of L. The set L(L) = {LU : U ∈ C(V )} is called the set of layers of L.

For an element x ∈ L, the set

L(x) =
⋂
{LU ∈ L(L) : x ∈ LU}

is called the layer of x. ♦

Remark 4.19. As in remark (3.4), the set of layers is totally ordered by
inclusion and, thus, a filtration of L. Note that the map C(V ) → L(L) given
by U 7→ LU is a morphism of ordered sets. Also, we have L(x) = LC(q(x))
where C(q(x)) denotes the convex subspace generated by q(x); see definition
(2.16).

We come to the first of the main results of this chapter.

Theorem 4.20. Let (L, V, q) be a layered lattice. Let 〈·, ·〉 : R⊗ZL×R⊗ZL→
V be the map given, on generators of the form α⊗ x, β ⊗ y with α, β ∈ R and
x, y ∈ L, by

〈α⊗ x, β ⊗ y〉 = αβ〈x, y〉. (4.21)

Then (R⊗ZL, V, 〈·, ·〉) is a layered Euclidean space. The injective map ι : L ↪→
R⊗ZL given by x 7→ 1⊗x is such that for all x ∈ L we have 〈ι(x), ι(x)〉 = q(x)
and makes ι(L) into an embedded layered lattice.

Proof. In what follows we also will identify L with the subgroup ι(L) since ι
is injective. The proof is done by induction on the dimension of V .

If dimV = 0 then L = E = {0} by the fact that 〈·, ·〉 is positive-definite
and we are done. If dimV = 1, proposition (4.9) together with remark (4.10)
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and an arbitrary chosen order isomorphism V ' R, shows that E is a classical
Euclidean space where L is an embedded classical lattice. By proposition (4.5),
L is an embedded layered lattice.

Now suppose n = dimV > 1 and let V ′ ∈ C(V ) with V ′ 6= {0}, V . Let L′

be the V ′-th layer of L and qV ′ be the restriction of q to L′. By lemma (4.15),
the triple (L′, V ′, qV ′) is a layered lattice with dimV ′ < n. By the induction
hypothesis, (R⊗ZL′, V ′, 〈·, ·〉V ′) is a layered Euclidean space with 〈·, ·〉V ′ given
by equation (4.21) and L′ ⊂ R⊗Z L′ is an embedded layered lattice. In what
follows we let E′ = R⊗Z L′.

Also by lemma (4.15), the triple (L/L′, V/V ′, qV/V ′) is a layered lattice
with qV/V ′ given by formula (4.16) and dimV/V ′ < n. By the induction
hypothesis this layered lattice is embedded in the layered Euclidean space
(R⊗ZL/R⊗ZL′, V/V ′, 〈·, ·〉V/V ′) with 〈·, ·〉V/V ′ again given by equation (4.21).
Let E = R⊗ZL and note that we can canonically identify E/E′ ∼= R⊗ZL/L′
by the flatness of R.

I claim that (E, V, 〈·, ·〉) where 〈·, ·〉 is given by formula (4.21) is a layered
Euclidean space. Our first observation is that the following diagram is com-
mutative. In the diagram, the horizontal arrows are the canonical maps (in-
clusions and projections) and the vertical arrows are the bilinear, symmetric,
positive-definite, layered maps defined on L,L′ and L/L′ respectively given by
lemma (4.12). Note that the morphisms on the second line are morphisms of
ordered vector spaces.

L′ × L′ L× L L/L′ × L/L′

V ′ V V/V ′

The commutativity of the left square is trivial. The commutativity of the right
square follows from a simple computation: given x, y ∈ L we have

〈x, y〉+ V ′ = (q(x+ y)− q(x− y))/4 + V ′

= (qV/V ′(x+ y + L′)− qV/V ′(x− y + L′))/4

= 〈x+ L′, y + L′〉V/V ′ .

Extending the map 〈·, ·〉 on L to E by bilinearity we obtain the following
diagram which again is commutative.
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E′ × E′ E × E E/E′ × E/E′

V ′ V V/V ′

(4.22)

In fact, the commutativity of the left square is again trivial to verify (〈·, ·〉V ′
is still the restriction of 〈·, ·〉). To verify the commutativity of the right square
we use the commutativity of the right square of the previous diagram together
with the fact that 〈·, ·〉V/V ′ on E/E′ is obtained by extending 〈·, ·〉V/V ′ on
L/L′ by bilinearity. The calculation is easy and we omit it.

Let x ∈ E. If x ∈ E′ then, by the induction hypothesis, 〈·, ·〉V ′ is positive-
definite and the above diagram shows that 〈x, x〉 > 0 with equality if and
only if x = 0. If x 6∈ E′ then since 〈·, ·〉V/V ′ is positive-definite and x + E′ is
non-zero we have 〈x, x〉V/V ′ > 0 in V/V ′ which implies that 〈x, x〉 > 0. Thus
〈·, ·〉 is positive-definite.

Next we show that 〈·, ·〉 is layered. To this end, note that the commutativity
of diagram (4.22) holds for every V ′ ∈ C(V ). In fact, although we fixed V ′

before, this choice was arbitrary. Furthermore, if we take either V ′ = {0} or
V ′ = V , the diagram collapses to a commutative square. Now, let x, y ∈ E
and take E′ = L(y) and V ′ = C(〈y, y〉). Then diagram (4.22) above gives

〈x, y〉+ V ′ = 〈x+ E′, y + E′〉V/V ′ = 〈x+ E′, E′〉V/V ′ = V ′.

Hence, 〈x, y〉 4 〈y, y〉 and the proof that 〈·, ·〉 is layered is complete.
Up to this point we have shown that (E, V, 〈·, ·〉) is a layered Euclidean space

with L ⊂ E and such that, for all U ∈ C∗(V ) with predecessor U ′ in C(V ),
one has LU/LU ′ ⊂ EU/EU ′ as an embedded (classical) lattice. By proposition
(4.5), the subgroup L ⊂ E is an embedded layered lattice.

Corollary 4.23. Let (L, V, q) be an R-layered lattice with dimV = 1. Then
any order isomorphism V → R makes L together with q : L → V ' R into a
(classical) lattice.

Proof. By the previous theorem (R⊗ZL, V, 〈·, ·〉) is a layered Euclidean space
into which L can be embedded. Since V is one-dimensional the result follows
immediately from proposition (4.5).

We recall definition (3.7) to the attention of the reader.

Remark 4.24. A classical lattice in a Euclidean space is a lattice in the sense
of definition (4.6) when equipped with the associated quadratic norm map
q(x) = 〈x, x〉. Axioms (i) and (ii) follow from the fact that the inner-product
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is bilinear, symmetric and positive-definite. Axiom (iii) follows immediately
from the discreteness of the embedded lattice.

The next theorem proves an analogue of the remark above. Namely, that
an embedded layered lattice is a lattice in the sense of definition (4.7) when
equipped with the associated quadratic norm. Recall that a set in a metric
space is bounded if it is contained in some ball of finite radius. We first prove
two lemmas.

Lemma 4.25. Let (E, 〈·, ·〉) be a Euclidean space and φ ∈ Hom (E,R) be a
linear functional on E. Then for every M ∈ R, the set {x ∈ E : 〈x, x〉+φ(x) <
M} is bounded.

Proof. As usual, we let q denote the quadratic norm associated to 〈·, ·〉. It is
enough to show that there exists N ∈ R positive, such that for all x ∈ E with

q(x) + φ(x) < M (4.26)

we have
√
q(x) 6 N . Since φ linear and E is finite dimensional, φ is continuous

and there exists C > 0 such that for all x ∈ E we have |φ(x)| < C
√
q(x). Then,

for x ∈ E satisfying (4.26) we have

q(x) < M − φ(x) < M + C
√
q(x).

If
√
q(x) > 1 then the above inequality implies

√
q(x) 6

M√
q(x)

+ C 6 |M |+ C.

If, on the other hand,
√
q(x) < 1 then we obtain√

q(x) <
√
|M |+ C < max{|M |+ C, 1}.

In either case, taking N = max{|M |+ C, 1} establishes the result.

Lemma 4.27. Let (E, V, 〈·, ·〉) be a layered Euclidean space with dimV > 0
and L ⊂ E be an embedded layered lattice. Let U ∈ C(V ) be the unique
one-dimensional convex subspace of V , let EU be the U -th layer of E and let
LU = L ∩ EU . Then for all x ∈ L, the function fx : EU → U given by

fx(y) = q(x+ y)− q(x)

has the following property. The set fx(LU ) ⊂ U is well-ordered and for any
non-empty subset S ⊂ fx(LU ) the set f−1x (minS) ∩ LU is finite.
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Proof. Fix x ∈ L. First note that for all y ∈ EU we have

fx(y) = q(x+ y)− q(x) = q(y) + 2〈x, y〉 ∈ U

since the inner-product is layered. Thus fx is well-defined.
Let s ∈ S be arbitrary. Let φ : EU → R be the map φ(y) = 2〈x, y〉. This

is a linear functional on EU and (EU , U, 〈·, ·〉) is a classical Euclidean space,
hence, by lemma (4.25), the set Y = {y ∈ EU : fx(y) 6 s} is bounded. Since
LU ⊂ EU is an embedded (classical) lattice it is discrete and closed, hence, it
intersects Y in a finite, non-empty, set. Going through every element of this
set we conclude that S has a minimum and since we have f−1x (minS)∩LU ⊂
Y ∩ LU the former is finite.

We come to the second main result of the chapter.

Theorem 4.28. Let L ⊂ E be an embedded layered lattice in the layered
Euclidean space (E, V, 〈·, ·〉). Define q : L → V by q(x) = 〈x, x〉. Then
(L, V, q) is an R-layered lattice.

Proof. It is easy to verify that the map q satisfies axioms (i) and (ii) from
the definition (4.7) of a layered lattice. Let S ⊂ q(L) with S 6= ∅. We will
prove that minS exists and that the set q−1(minS) ∩ L is finite. We proceed
by induction on the dimension of V . If dimV = 0 then q(L) = {0} and there
is nothing to prove.

Now suppose V has dimension n > 0. Denote by U the unique one-
dimensional convex subspace of V . Let EU denote the U -th layer of E and
LU = L∩EU . We saw that (E/EU , V/U, 〈·, ·〉V/U ) is a layered Euclidean space
and it is easy to check from the definition, that L/LU ⊂ E/EU is an embedded
layered lattice. Let S be the image of S under the projection V → V/U and
note that S ⊂ qV/U (L/LU ) where qV/U is the quadratic norm associated to

the inner-product 〈·, ·〉V/U . By the induction hypothesis, S has a minimum

minS and the set X = q−1V/U (minS) ∩ (L/LU ) is finite.

Fix a set X ⊂ L∩q−1(S) of representatives for X. Let x ∈ X. The translate
S − q(x) ⊂ V is non-empty since S is non-empty. Let fx : EU → U denote
the function y 7→ q(x + y) − q(x). Since q(x) ∈ S we see that 0 ∈ S − q(x)
and, hence, that fx(LU ) ∩ (S − q(x)) 6= ∅ (note that fx(0) = 0). By the
previous lemma, the set fx(LU ) ∩ (S − q(x)) has a minimum and the set
Yx =

{
y ∈ LU : fx(y) = min

(
fx(LU ) ∩ (S − q(x))

)}
is finite. In particular,

the set
⋃
x∈X(x+ Yx) is finite.

Let
m = min

x∈X

{
min

(
fx(LU ) ∩ (S − q(x))

)
+ q(x)

}
∈ V.

To finish the proof it suffices to show that m = minS and that if z ∈ L is such
that q(z) = m then z ∈ x+ Yx for some x ∈ X.
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First note that m ∈ S and that m = fx′(y
′) + q(x′) = q(x′ + y′) for some

x′ ∈ X and y′ ∈ LU . Thus m projects to minS under V → V/U . Let s ∈ S.
We will show that m 6 s. Looking modulo U we have that minS 6 s + U
thus unless s−m ∈ U we have m < s. So suppose s−m ∈ U . Let w ∈ L be
such that q(w) = s. Then w ∈ X and there is x ∈ X such that w − x ∈ LU .
Then we have

fx(w − x) = q(x+ w − x)− q(x) = q(w)− q(x) ∈ S − q(x)

from which it follows that

fx(w − x) ∈ fx(LU ) ∩ (S − q(x)).

Thus we have m 6 fx(w − x) + q(x) = q(w) = s by construction.
Now let z ∈ L such that q(z) = m ∈ S. The argument of the last paragraph

(with s = m) shows that z ∈ X and that there is x ∈ X such that z−x ∈ LU .
Again, a straight-forward computation gives

fx(z − x) = q(z)− q(x) = minS − q(x) = min(S − q(x)).

Thus, z − x ∈ Yx, i.e., z ∈ x+ Yx.

Remark 4.29. Proposition (4.2) says that a finitely generated subgroup of
a Euclidean space is an embedded lattice if and only if it is generated by a
linearly independent set. In the context of embedded layered lattices this is no
longer the case. The following example illustrates that the group generated by
an arbitrary set of linearly independent vectors of a layered Euclidean space
does not need to be an embedded layered lattice.

Let E = R2, V = R2 with the anti-lexicographic order and denote by
{e1, e2} the canonical basis of E. Let

B1 =

(
1 0
0 0

)
, B2 =

(
0 0
0 1

)
and define 〈·, ·〉 on E by (x, y) 7→ (xTB1y, xTB2y) where x, y ∈ E. The vectors
b1 = e2 and b2 =

√
2e2 + e1 form a basis of E but their Z-span is not a layered

lattice since
q(mb1 + nb2) = (n2, (m+ n

√
2)2)

thus {q(mb1 + nb2) : n 6= 0} ⊂ q(L) has no minimal element. One also sees
that L/L1 = L ⊂ E/E1 is not a lattice since rank L = 2 while dimE/E1 = 1.

Despite the above counter-example, we have the following very useful result. It
tells us that bases of layered Euclidean spaces which are rational, in a precise
sense to be described below, generate layered lattices. We recall definition
(3.1) where we introduced the Gram-matrix associated to a bilinear form.
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Proposition 4.30. Let (E, V, 〈·, ·〉) be a layered Euclidean space and let n =
dimV and m = dimE. Let {vk}k∈n be an anti-lexicographic basis of V and
{bi}i∈m be a basis of E. Suppose that the Gram matrix of 〈·, ·〉 with respect to
{bi}i∈m has values in the rational subspace

∑
k∈nQ · vk of V . Then the group

generated by {bi}i∈m is a layered lattice.

Proof. Let {v∗k}k∈n be the dual basis of {vk}k∈n. This induces an order-
isomorphism V ' Rn given by v 7→ (v∗k(v))k∈n. Let L be the group generated
by {bi}i∈m.

Let U ′ ∈ C(V ). Let EU ′ be the U ′-th layer of E and LU ′ = EU ′ ∩ L. This
is a subgroup of L and the map

〈·, ·〉U ′ : E/EU ′ × E/EU ′ → V/U ′ '
∑
k>dimU ′ R · vk

given by

(x+ EU ′ , y + EU ′) 7→ 〈x, y〉+ U ′ 7→
∑
k>dimU ′ v

∗
k(〈x, y〉)vk

is well-defined since 〈·, ·〉 is a layered form. I claim that L/LU ′ ⊂ E/EU ′ is an
embedded layered lattice. If U ′ = V then E/EU ′ and L/LU ′ equal {0} and
we are done. Now suppose U ′ 6= V and let U ∈ C(V ) be the successor of U ′ in
C(V ). By induction, we assume that L/LU ⊂ E/EU is an embedded layered
lattice.

By (3.8), the pair (EU/EU ′ , 〈·, ·〉U ′) with 〈·, ·〉U ′ restricted to EU is a (clas-
sical) Euclidean space once we identify U/U ′ ' R via the order-isomorphism
V ' Rn described above. So, by proposition (4.5), to show that L/LU ′ ⊂
E/EU ′ is an embedded layered lattice is suffices to show that LU/LU ′ ⊂
EU/EU ′ is an embedded classical lattice.

The hypothesis on the Gram-matrix with respect to {bi}i∈m implies that
〈L/LU ′ , L/LU ′〉 ⊂

∑
k>dimU ′ Q · vk ⊂ V . In particular, the restriction of this

map to LU/LU ′ ×LU/LU ′ satisfies 〈LU/LU ′ , LU/LU ′〉 ⊂ Q · vk for k = dimU .
Since LU/LU ′ is finitely generated, there exists p ∈ Z>0 such that, in fact, we
have

〈LU/LU ′ , LU/LU ′〉 ⊂
1

p
Z · vk.

In particular, there exist ε ∈ R>0 and a ball B ⊂ EU/EU ′ with center 0 and
radius ε such that (LU/LU ′) ∩ B = {0}. Thus LU/LU ′ is a discrete subset
of EU/EU ′ and LU/LU ′ ⊂ EU/EU ′ is an embedded classical lattice. This
completes the induction.

Up to this point we have shown that L ⊂ E is an embedded layered lattice.
By theorem (4.28), we conclude that (L, V, q) is a layered lattice with the
quadratic norm induced by 〈·, ·〉.
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4.3 Exterior powers of layered lattices

In this short section we prove that exterior powers of layered lattices are layered
lattices. In a classical lattice, given a positive real number λ, there are only
a finite number of sublattices with discriminant smaller than λ. We will use
the result of this section to establish an analogue of this statement for layered
lattices.

Theorem 4.31. Let (L, V, q) be an layered lattice. Let r ∈ Z>0. Let 〈·, ·〉 :
L×L→ Sr(V ) be the Z-bilinear map which is given on generators x1∧· · ·∧xr,
y1 ∧ · · · ∧ yr ∈

∧r
L by the formula

〈x1 ∧ · · · ∧ xr, y1 ∧ · · · ∧ yr〉 = det(〈xi, yj〉)i,j∈r.

Then the triple (
∧r

L, Sr(V ), q) where q :
∧r

L → Sr(V ) is given by q(x) =
〈x, x〉 is a layered lattice.

Proof. By theorem (4.20), the lattice L can be embedded in a layered Eu-
clidean space (E, V, 〈·, ·〉) of dimension equal to the rank of L. Take a layered
basis I → L ⊂ E of E that generates L as a group. In theorem (3.26), we
saw that defining 〈·, ·〉 :

∧r
E ×

∧r
E → Sr(V ) by bi-linearly extending the

formula
〈x1 ∧ · · · ∧ xr, y1 ∧ · · · ∧ yr〉 = det(〈xi, yj〉)i,j∈r

makes the triple (
∧r

E,Sr(V ), 〈·, ·〉) into a layered Euclidean space. Fur-
thermore, we saw that I → E induces in a canonical way a layered basis∧r

I →
∧r

E. The subgroup of
∧r

E generated by this basis equals
∧r

L and,
hence,

∧r
L ⊂

∧r
E is an embedded layered lattice. By theorem (4.28),

∧r
L

is a layered lattice.

4.4 The discriminant

In this section we prove that the set of “sizes” of sublattices of a layered
lattice is well-ordered. The idea of “size” is captured by the concept of the
discriminant of a lattice. Our definition will coincide with the definition of
discriminants of classical lattices whenever we have a layered lattice (L, V, q)
where V ' R as ordered vector spaces.

Proposition 4.32. Let (L, V, q) be a layered lattice of rank r ∈ Z>0 and
{bi}i∈r be an ordered basis of L. Then the quantity

D(L) = det(〈bi, bj〉)i,j∈r ∈ Sr(V )

does not depend the basis chosen to calculate it.
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Proof. The result follows exactly as in the classical case. Let S(V ) denote
the symmetric algebra of V . If {cj}j∈r is another ordered basis for L then
there exists a matrix

(αij)i,j∈r ∈ GLr(Z) ⊂ GLr(S(V ))

satisfying bi =
∑
j αijcj and we have

det(〈bi, bj〉) = det(αij) det(〈ci, cj〉) det((αij)
T ) = det(αij)

2 det(〈ci, cj〉).

Since the determinant of (αij) equals ±1 this equation proves the result.

Definition 4.33. Let (L, V, q) be a layered lattice. The quantity D(L) intro-
duced above is called the discriminant of L.

Remark 4.34. If (L, V, q) is a layered lattice with V one-dimensional then
any order isomorphism V ' R allow us view it as a classical lattice. In this
case, this isomorphism induces an isomorphism Sr(V ) ' R. The discrimi-
nant of (L, V, q) as a layered lattice corresponds, via this chosen isomorphism,
to the discriminant of (L, q) as a classical lattice. As the choice of another
order isomorphism V ' R has the effect of scaling the classical lattice, the
discriminant will be scaled by the corresponding r-th power.

The main result of this section is the following.

Theorem 4.35. Let (L, V, q) be a layered lattice of rank r ∈ Z>0. Then for
all s ∈ Z>0 with 0 6 s 6 r the set

{D(K) : K ⊂ L a sublattice or rank s} ⊂ Ss(V )

is well-ordered.

Proof. The theorem is trivially true if s = 0. Suppose s = 1. Then all
sublattices of L of rank s are of the form K = Zx for some x ∈ L, x 6= 0. Thus
we have

{D(K) : K ⊂ L a sublattice of rank 1 } = q(L) \ {0},

which is well-ordered.
For s > 1, if K = Zx1 + · · ·+ Zxs ⊂ L is a sublattice of rank s, then

∧s
L

is a layered lattice by theorem (4.31) and
∧s

K ⊂
∧s

L is a sublattice of rank
1. Then we have

D

(
s∧
K

)
= q(x1 ∧ · · · ∧ xs) = D(K)

and by the case s = 1 above we conclude that the theorem holds for general s
as well.



CHAPTER 5

The layered Gram-Schmidt procedure

In this chapter we introduce the Gram-Schmidt procedure: a way of obtain-
ing, from a given basis of a layered Euclidean space, an orthogonal basis of
that space (see definition (3.19)). The procedure generalizes the usual Gram-
Schmidt procedure for Euclidean spaces. At the end of the chapter we give
two ways of computing those bases. These results will be used in chapter 6.

5.1 Associated Gram-Schmidt bases

We start by restating theorem (3.22) from chapter 3.

Theorem 5.1. Let (E, V, 〈·, ·〉) be a layered Euclidean space with dimE = m.
Let {bi}i∈m be an ordered basis of E and F0 $ · · · $ Fm be the flag of E
induced by this basis. Then there exists a unique basis {b∗i }i∈m such that for
all i ∈ m we have b∗i ∈ F⊥i−1 and bi − b∗i ∈ Fi−1. Furthermore, this basis is
orthogonal and induces the same flag F0 $ · · · $ Fm of V .

Definition 5.2. Let I → E be an ordered basis of a layered Euclidean space.
The basis given by the theorem above is called the Gram-Schmidt basis asso-
ciated to I → E and we denote it by (I → E)∗. ♦

Notation. As written above, if I → E is a basis of a layered Euclidean space
E, its associated Gram-Schmidt is denoted by (I → E)∗. If bi is the image of
i ∈ I in E we will denote its corresponding Gram-Schmidt vector by b∗i .

63
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Remark 5.3. Note that by remark (3.10 (b)), the Gram-Schmidt basis asso-
ciated to a layered basis is still layered. Thus, it is a layered, orthogonal basis.
In particular, the conclusion of corollary (3.23) holds for those bases.

Before showing how to compute a Gram-Schmidt basis from a given basis we
give the following definition, which introduces a handy notation. We remind
the reader of definition (2.16).

Remark 5.4. Note that if (E, V, 〈·, ·〉) is layered Euclidean space, then the
choice of an anti-lexicographic basis {vk}k∈n of V induce order-isomorphisms
U/U ′ ' R for every U ∈ C∗(V ) and its predecessor U ′ ∈ C(V ). These isomor-
phisms are all characterized as the linear maps induced by vk 7→ 1 for each
k.

We recall some notation from the review section of the introduction: for an
ordered set S and s ∈ S, whenever it exists, we denote the predecessor of s by
s′.

Definition 5.5. Let (E, V, 〈·, ·〉) be a layered Euclidean space with n = dimV
and let {vk}k∈n be an anti-lexicographic basis of V . For each x ∈ E\{0} define
the linear map (·, x) : E → R as the composition

E → C(q(x))→ C(q(x))/(C(q(x))′) ' R

given by
y 7→ 〈y, x〉 7→ 〈y, x〉+ (C(q(x))′) 7→ (y, x)

and the order-isomorphism C(q(x))/C(q(x) − 1) ' R obtained as in remark
(5.4). For x = 0 we define (·, x) : E → V to be the zero map. ♦

Remark 5.6. Let (E, V, 〈·, ·〉) be a layered Euclidean space and fix an anti-
lexicographic basis of V . We note the following properties of the linear map
(·, x) defined above. All of these follow directly from the definition and are
straight-forward to prove.

(a) Let x, y ∈ E. If x and y have the same layer then (x, y) = (y, x) since,
then, C(q(x)) = C(q(y)).

(b) For any x ∈ E \ {0} we have (x, x) = lc(〈x, x〉) > 0 where lc(·) is the
leading coefficient function we defined in (2.31).

(c) Let x, y ∈ E. If y ⊥ x then (y, x) = 0.

Proposition 5.7. Let (E, V, 〈·, ·〉) be a layered Euclidean space with dimV = n
and dimE = m. Fix an anti-lexicographic basis {vk}k∈n of V and let {bi}i∈m
be an ordered basis of E. Then the Gram-Schmidt basis associated to {bi}i∈m
satisfies the equations

b∗i = bi −
∑
r<i

λi,rb
∗
r , i ∈ m (5.8)
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with λi,1, . . . , λi,i−1 ∈ R determined as the unique solution of the linear system∑
r6j

λi,r(b
∗
r , b
∗
j ) = (bi, b

∗
j ), j < i (5.9)

and where (·, b∗j ) is as in the previous definition.

Proof. Let {Fi}i∈m be the flag induced by {bi}i∈m and let {b∗i }i∈m be its
associated Gram-Schmidt basis. Fix i ∈ m. Since bi − b∗i ∈ Fi−1 we can write

bi − b∗i =
∑
r<i

λi,jb
∗
r ∈ Fi−1.

This is equation (5.8). It remains to show that the numbers λi,1, . . . , λi,i−1 ∈ R
form the unique solution to the linear system (5.9).

To this end we take the image of equation (5.8) under (·, b∗j ) for each j < i
to obtain the system∑

r<i

λi,r(b
∗
r , b
∗
j ) = (bi, b

∗
j )− (b∗i , b

∗
j ), j < i.

By orthogonality and remark (5.6 (c)), for all r > j we have (b∗r , b
∗
j ) = 0 and

for all i > j we have (b∗i , b
∗
j ) = 0. We thus obtain the linear system (5.9);

it has a unique solution since it is a triangular system with diagonal entries
equal to (b∗j , b

∗
j ) > 0 by (5.6 (b)).

Remark 5.10. (a) Following the notation of the proposition above, for each
1 6 i 6 m and 1 6 j < m define

αi,r =
(bi, b

∗
r)

(b∗r , b
∗
r)
, r ∈ i− 1 βj,r =

(b∗r , b
∗
j )

(b∗j , b
∗
j )
, r ∈ j − 1

(so there is no α1,r and no β1,r). Then solving the triangular system (5.9) we
obtain, for each i ∈ m and each j < i,

λi,j = αi,j −
∑
r<j

λi,rβj,r. (5.11)

Note that whenever b∗r and b∗j have the same layer, by remark (5.6 (a),(c)), we
have βj,r = 0. In particular, in the classical case where V is one-dimensional,
we obtain the usual Gram-Schmidt procedure.

(b) Since the Gram-Schmidt basis associated to a given basis does not change
the induced flag, there exist constants {νi,j}16j<i6m such that b∗i = bi −∑
j<i νi,jbj . Since b∗i ∈ F⊥i the same steps of the proof above give us the

system ∑
r<i

νi,r(br, bj) = (bi, bj), j < i. (5.12)
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This system is not necessarily triangular, in fact, it might even be singular.
Thus, it is possible that we are unable to calculate {νi,j}16j<i6m from it. We
will show later on that by first applying a “layering” procedure to the {bi}i∈m,
we arrive at an intermediate basis for which the system above is invertible.
The advantage of (5.12) lies in the fact that it is much easier to give good
bounds for the arithmetical operations involved in solving it, compared to the
system (5.9) of the last proposition. We will return to this point later.

Next, we give some formulae establishing the effects on the associated Gram-
Schmidt basis and to the change of basis matrix, when the original basis is
subjected to certain “elementary” transformations. We remind the reader of
definition (2.16) where we introduced the relations�, ∼ and ' on an ordered
vector space and of definition (5.5) where we introduced the functional (·, x)
for an element x of a layered Euclidean space.

Proposition 5.13. Let (E, V, 〈·, ·〉) be a layered Euclidean space with dimV =
n and dimE = m. Let {bi}i∈m be an ordered basis of E, let {b∗i }i∈m be its
associated Gram-Schmidt basis and {λi,j}16j<i6m be the numbers such that
bi = b∗i +

∑
j<i λi,jb

∗
j for all i ∈ m (see proposition (5.7)).

Let furthermore k, l ∈ m, l < k, and γ ∈ R. Define the vectors {ci}i∈m
by ci = bi for i 6= k and ck = bk + γbl. Then {ci}i∈m is a basis of E and
its associated Gram-Schmidt basis equals {b∗i }i∈m. The corresponding set of
numbers {µi,j}16j<i6m obtained from (5.9) with the basis {ci}i∈m in place of
{bi}i∈m are given by the equations

µi,j = λi,j, if i 6= k, 1 6 j < i,
µk,j = λk,j + γλl,j, if j < l,
µk,l = λk,l + γ,
µk,j = λk,j, if l < j < k.

Proof. It is clear that {ci}i∈m is a basis of E and that the flags induced by
{bi}i∈m and {ci}i∈m are the same. Let {Fi}i∈m be this flag. Note that for
any i ∈ m, we have

ci − b∗i = ci − bi + bi − b∗i ∈ Fi−1.

Since by definition we have that c∗i ∈ F⊥i−1 ∩ Fi is unique with the property
that ci − c∗i ∈ Fi−1, we conclude that c∗i = b∗i . Using this fact we have that,
for i 6= k,

ci = bi = b∗i +
∑
j<i

λi,jb
∗
j = c∗i +

∑
j<i

λi,jc
∗
j

which implies µi,j = λi,j for i 6= k and j < i. Similar reasoning gives us

ck = bk + γbl = c∗k +
∑
j<l

(λk,j + γλl,j)c
∗
j + (λk,l + γ)c∗l +

∑
l<j<k

λk,jc
∗
j
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which implies the remaining formulae.

In figure (5.14) below we exemplify proposition (5.13) in a simple case.

0

c1 = b1 = b∗1

b2

λ2,1b
∗
1

µ2,1b
∗
1

b∗2 = c∗2 c2 = b2 + γb1

Figure 5.14: We have a basis {b1, b2} of a two-dimensional layered Euclidean space

and its associated Gram-Schmidt basis. The effect of adding a multiple γb1 of the

first basis vector to b2 is reflected in the identity µ2,1 = λ2,1 + γ.

Proposition 5.15. Let (E, V, 〈·, ·〉) be a layered Euclidean space with dimV =
n and dimE = m. Let {bi}i∈m be an ordered basis of E, let {b∗i }i∈m be its
associated Gram-Schmidt basis and {λi,j}16j<i6m be the numbers such that
bi = b∗i +

∑
j<i λi,jb

∗
j for all i ∈ m (see proposition (5.7)).

Let furthermore k ∈ {2, . . . ,m} and define the vectors {ci}i∈m by ci = bi
for i 6= k, k − 1 and ck−1 = bk and ck = bk−1. Then {ci}i∈m is a basis of E.
Denoting its associated Gram-Schmidt basis by {c∗i }i∈m and the corresponding
set of numbers {µi,j}16j<i6m obtained from (5.9) with the basis {ci}i∈m in
place of {bi}i∈m, we have the following.

(a) For all 1 6 i < k − 1 we have c∗i = b∗i and µi,j = λi,j for all j < i.

(b) We have c∗k−1 = b∗k + λk,k−1b
∗
k−1 and for 1 6 j < k − 1 we have µk−1,j =

λk,j.

(c) We have c∗k = −µk,k−1b∗k + (1− µk,k−1λk,k−1)b∗k−1 where

µk,k−1 = 0, if q(b∗k−1)� q(b∗k),

µk,k−1 = λk,k−1
(b∗k−1,b

∗
k−1)

(c∗
k−1

,c∗
k−1

) , if q(b∗k−1) ∼ q(b∗k),

µk,k−1 = λ−1k,k−1, if q(b∗k)� q(b∗k−1) and λk,k−1 6= 0,

µk,k−1 =
(b∗k−1,b

∗
k)

(b∗
k
,b∗
k
) , if q(b∗k)� q(b∗k−1) and λk,k−1 = 0,
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and for 1 6 j < k − 1 we have µk,j = λk−1,j.

(d) For all k < i 6 m we have c∗i = b∗i and

µi,j = λi,j, for all j < i with j 6= k − 1, k,
µi,k−1 = µk,k−1λi,k−1 + (1− λk,k−1µk,k−1)λi,k,
µi,k = λi,k−1 − λk,k−1λi,k.

Proof. Let {Fi}i∈m
0

and {Gi}i∈m
0

be the flags of E induced by the bases
{bi}i∈m and {ci}i∈m respectively.

(a) This is trivial since ci = bi for 1 6 i < k − 1.

(b) Since Fi = Gi for i 6= k − 1, in particular for i = k − 2, we have that
c∗k−1 ∈ G⊥k−2 = F⊥k−2 is the unique vector such that

bk − c∗k−1 = ck−1 − c∗k−1 ∈ Fk−2.

Since b∗k + λk,k−1b
∗
k−1 fulfills these requirements we have

c∗k−1 = b∗k + λk,k−1b
∗
k−1. (5.16)

Now, from (5.8) for i = k and adding λk,k−1b
∗
k−1 we obtain

b∗k + λk,k−1b
∗
k−1 = bk −

∑
r<k−1

λk,rb
∗
r .

Using (a) and (5.16) we obtain c∗k−1 = ck−1 +
∑
r<k−1 λk,rc

∗
r from which we

conclude that µk−1,j = λk,j for 1 6 j < k − 1.

(c) By (b) applied to the bases {bi}i∈m and {ci}i∈m with their roles inter-
changed, we obtain

b∗k−1 = c∗k + µk,k−1c
∗
k−1 (5.17)

and µk,j = λk−1,j for j < k − 1. Substituting (5.16) in (5.17) we obtain
the equation for c∗k stated in the proposition. It remains to calculate µk,k−1.
Taking the image of both sides of equation (5.17) under the functional (·, c∗k−1)
we obtain

(c∗k, c
∗
k−1) + µk,k−1(c∗k−1, c

∗
k−1) = (b∗k−1, c

∗
k−1).

Since c∗k ⊥ c∗k−1 we have (c∗k, c
∗
k−1) = 0, which gives

µk,k−1(c∗k−1, c
∗
k−1) = (b∗k−1, c

∗
k−1). (5.18)

If q(b∗k−1) � q(b∗k), then (5.16) implies that (·, c∗k−1) = (·, b∗k) and the right-
hand side of equation (5.18) will equate to zero thus implying µk,k−1 = 0.
Figure (5.19) below exemplifies this situation.
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�
c2 = b1 = b∗1 = c∗2

λ2,1b
∗
1

b∗2
b2 = c1 = c∗1

Figure 5.19: Here we represent the effect of swapping two basis vectors b1 and b2
with the property that q(b∗1) � q(b∗2). The � symbol beside the horizontal axis

symbolizes the fact that this subspace is a lower layer. By (c) of proposition (5.15)

we have µ2,1 = 0 and c∗2 = b∗1.

0 c2 = b1 = b∗1

λ2,1b
∗
1

b∗2
µ2,1c

∗
1b2 = c1 = c∗1

c∗2

Figure 5.20: Swapping two basis vectors of the same layer has the effect described

above on the associated Gram-Schmidt basis. It is analogous to the classical case.

Item (c) of proposition (5.15) gives µ2,1 = λ2,1
(b∗k−1,b

∗
k−1)

(c∗
k−1

,c∗
k−1

)
.

Similar to equation (5.18), by symmetry we have

λk,k−1(b∗k−1, b
∗
k−1) = (c∗k−1, b

∗
k−1). (5.21)
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Now suppose q(b∗k−1) ∼ q(b∗k). Then b∗k−1 and b∗k have the same layer, which
has to be the layer of c∗k−1 as well (to see this compute q(c∗k−1) using (5.16)).
By remark (5.6), we have (b∗k−1, c

∗
k−1) = (c∗k−1, b

∗
k−1). Combining (5.18) with

(5.21) we arrive at the desired expression for µk,k−1. This situation is exem-
plified in figure (5.20) above.
Finally, suppose q(b∗k)� q(b∗k−1). Equation (5.16) implies

(·, c∗k−1) = (·, b∗k), if λk,k−1 = 0,
(·, c∗k−1) = λk,k−1(·, b∗k−1), if λk,k−1 6= 0.

In the first case, equations (5.18) and (5.16) give

µk,k−1 =
(b∗k−1, b

∗
k)

(b∗k, b
∗
k)

as before, but now the numerator might be non-zero by the non-symmetry of
the orthogonality relation (this is the case in figure (5.22) below). If λk,k−1 6= 0
we obtain

µk,k−1 =
λk,k−1(b∗k−1, b

∗
k−1)

λ2k,k−1(b∗k−1, b
∗
k−1)

= λ−1k,k−1

which is exemplified in figure (5.23).

� 0

c∗1 = c1 = b2 = b∗2

b1 = b∗1

(b∗2, b
∗
2)µ2,1b

∗
2

c∗2 = b∗1 − µ2,1b
∗
2

Figure 5.22: The effect of swapping basis vectors b1, b2 such that q(b∗2)� q(b∗1) and

λ2,1 = 0. Again, we draw the axes non-perpendicularly to illustrate the possibility

that b∗1 6⊥ b∗2. The symbol � beside the horizontal axis symbolizes the fact that that

subspace is a lower layer. By (c) of proposition (5.15) we have µ2,1 = (b∗1, b
∗
2)/(b∗2, b

∗
2)

and c∗2 = b∗1 − µ2,1b
∗
2. Although in this two-dimensional case we have b∗2 = b2 this is

not the case in general.
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�
0 b∗2

b1 = b∗1

λ2,1b
∗
1 b2 = c1 = c∗1

c∗2 = −λ−12,1b
∗
2

Figure 5.23: The effect of swapping basis vectors b1, b2 such that q(b∗2) � q(b∗1)

and λ2,1 6= 0. We chose to draw the axes non-perpendicularly to illustrate the non-

symmetry of the orthogonality relation, i.e., here we might have b∗1 6⊥ b∗2. The symbol

� beside the horizontal axis symbolizes the fact that that subspace is a lower layer.

By (c) of proposition (5.15) we have µ2,1 = λ−1
2,1 and c∗2 = −λ−1

2,1b
∗
2.

(d) For i > k, following the same argument as in (b) we have Fi−1 = Gi−1,
which together with bi = ci immediately implies c∗i = b∗i . From this and
equation (5.8) we obtain

∑
r<i µi,rc

∗
r =

∑
r<i λi,rb

∗
r , which we can rearrange

using that c∗r = b∗r for r 6= k, k − 1 to∑
r 6=k−1,k

(µi,r − λi,r)b∗r =
∑

r=k−1,k

(λi,rb
∗
r − µi,rc∗r) ∈ span{b∗k−1, b∗k}.

By the linear independence of the vectors {b∗i }i∈m we obtain µi,r = λi,r for
r 6= k, k − 1 and

λi,k−1b
∗
k−1 + λi,kb

∗
k = µi,k−1c

∗
k−1 + µi,kc

∗
k.

Now using the (b) and (c) to write b∗k−1 and b∗k in terms of c∗k−1 and c∗k, and
substituting in the equation above we obtain, after comparing coefficients:

µi,k−1 = µk,k−1λi,k−1 + (1− λk,k−1µk,k−1)λi,k,
µi,k = λi,k−1 − λk,k−1λi,k

which are the remaining equations stated in (d).

5.2 Relation to the discriminant of lattices

In this short section we relate the discriminant (see definition (4.33)) of a
lattice to the norms of the Gram-Schmidt vectors associated to any basis of
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that lattice. Recall that in chapter 2, proposition (2.35), we showed that the
symmetric algebra S(V ) of V is an ordered graded ring. We also remind the
reader of definition (2.16) where we introduced the “infinitely close” relation
' on an arbitrary ordered vector space.

Proposition 5.24. Let (E, V, 〈·, ·〉) be a layered Euclidean space with dimE =
m. Let L ⊂ E be an embedded layered lattice of rank m and {bi}i∈m be an
ordered basis of L. Then this is also a basis of E and, as such, its associated
Gram-Schmidt basis satisfies

D(L) '
∏
i∈m

q(b∗i ) ∈ Sm(V ). (5.25)

Proof. We first establish that det(〈b∗i , b∗j 〉)i,j = D(L). The proof of this
fact is the same as in the classical case since it depends only on the abstract
properties of the determinant and on the fact that the matrix M giving the
change of basis b∗i → bi is lower triangular with diagonal entries equal to 1.
This can be seen from the equations in (5.8).

Let B denote the Gram-matrix of L with respect to the given basis. We
may view it as an element of Mm(S(V )), the ring of m×m matrices over the
symmetric algebra of V . Then we have

det(〈b∗i , b∗j 〉)i,j = det(MTBM) = (det M)2 det B = det B = D(L)

since det M = 1. The left-hand side equals 〈b∗, b∗〉, where b∗ = b∗1∧· · ·∧b∗m and
〈·, ·〉 :

∧m
E×

∧m
E → Sm(V ) is the inner-product on the m-th exterior power

of E (see theorem (3.26)). The result now follows from lemma (3.30).

5.3 A polynomial-time algorithm

In this section we describe an algorithm for calculating the associated Gram-
Schmidt basis from a given basis of a layered Euclidean space in polynomial
time, i.e., with the number of binary operations polynomially bounded by
the length of the input. In (A.1) of the appendix we used proposition (5.7)
to implement an algorithm that computes Gram-Schmidt bases, but we were
not able to show that this would give rise to a polynomial-time algorithm.
It is not hard to show that the procedure performs a number of arithmetical
operations that is bounded by a polynomial in the dimension of the layered
Euclidean space and its number of layers. Keeping control over the growth of
the numbers involved in the calculations proved to be harder.

In a nutshell, the linear system (5.9) we solve in the “straight-forward”
algorithm is simpler but recursive of depth equal to the the dimension of the
space. The algorithm we now describe is of bounded depth but we calculate,
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as an intermediate step, a basis for the space that, up to a permutation of the
vectors, is a layered basis. This is done by solving a large number of linear
systems. The solutions of these systems can be found with the number of
binary operations bounded by a polynomial in the input.

Which of those two algorithms performs better is practice remains to be
seen. It is the belief of the author that, with the clever use of the extended
Euclidean algorithm to bound all numerators and denominators of the numbers
involved, one can develop a polynomial-time version of the “straight-forward”
algorithm.

We now refer the reader to the review section in complexity theory presented
in the introduction. We will freely use the concepts introduced there.

Let (Rm,Rn, 〈·, ·〉) be an m-dimensional layered Euclidean space with m >
0. Although the Gram-Schmidt procedure was formulated for layered Eu-
clidean spaces (thus the vector spaces involved where real vector spaces), we as-
sume those spaces are given by rational data, i.e., a rational Gram-matrix spec-
ifying the inner-products of the elements of the canonical basis of Qm ⊂ Rm.
Let B be this Gram-matrix of 〈·, ·〉 (see definition (3.1)). This is an Qn -valued
matrix that can be decomposed in n rational matrices B1, . . . ,Bn ∈ Mm(Q)
with respect to the canonical basis of Qn (which is also an anti-lexicographic
basis of this subspace of Rn). To be precise, let {ei}i∈m be the canonical basis
of Qm ⊂ Rm. Then the inner-product is determined by

〈ei, ej〉 = (B1
i,j , . . . ,B

n
i,j) ∈ Qn.

We are interested in computing the Gram-Schmidt basis associated to {ei}i∈m
whose inner-products are specified as above.

Until the end of this section we denote the layered Euclidean space Rm by
E and its layers by Ek, for k ∈ n0. We also denote the canonical basis of E
by {ei}i∈m and the flag it induces by {Fi}i∈m

0
; thus we have Fi = span{ej :

j 6 i}.

Lemma 5.26. Notation being as described above, for each i ∈ m let k(i) be the
minimal index k for which the intersection (ei +Fi−1)∩Ek is non-empty and
let ci be a vector in this intersection. Then {ci}i∈m is a basis of E inducing the
flag {Fi}i∈m

0
. Furthermore, the matrix (ci, cj)i,j∈m ∈ Mm(R), where (·, x) is

the functional of definition (5.5), is non-singular.

Proof. Since En = E it is clear that, for each i ∈ m, there exists a number
k(i) ∈ n and a vector ci as claimed in this lemma. Since ei ∈ Fi \ Fi−1,
we have Fi−1 ∩ (ei + Fi−1) = ∅ and ei + Fi−1 ⊂ Fi. We conclude that
ci ∈ (Fi \ Fi−1) ∩ Ek(i). In particular, we have Fi = span{cj : j 6 i}. Thus,
{ci}i∈m induces the same flag as {ei}i∈m.

I claim that, for all k ∈ n0, we have

span{ci : k(i) 6 k} = Ek.
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We clearly have the ⊂ containment by construction, so to show equality we
prove that their dimensions are equal. Let k ∈ n. First, note that F0 ∩ Ek ⊂
· · · ⊂ Fm ∩ Ek is a filtration of Ek with the property that each successive
quotient has dimension at most one. Thus, exactly dimEk of these inclusions
are proper inclusions. Now, the set of indices i such that (Fi∩Ek) $ (Fi−1∩Ek)
is equal to the set {i : (Fi \Fi−1)∩Ek 6= ∅} and the latter is, of course, equal
to

#{k(i) : k(i) 6 k} = dim(span{ci : k(i) 6 k}).
This proves the claim. It follows that, up to a permutation of the ci, the
ordered basis {ci}i∈m is layered.

We now show that the matrix (ci, cj)i,j∈m is non-singular. This is the case if
and only if its rows are linearly independent. Thus let λ1, . . . , λm ∈ R be such
that for all j ∈ m we have

∑
i λi(ci, cj) = 0 (this is a linear combination of

the rows resulting in the zero vector). To show that the matrix (ci, cj)i,j∈m is
non-singular it is enough to show that this implies λi = 0 for all i. Setting x =∑
i λici ∈ E we see that, for all j ∈ m, we have (x, cj) = 0. Since we also have

〈x, cj〉 4 〈cj , cj〉, this implies that 〈x, cj〉 � 〈cj , cj〉, i.e., x ∈ {c1, . . . , cm}⊥.
We showed before that, up to a permutation of its vectors, the basis {ci}i∈m is
layered, so by proposition (3.25) we have x ∈ E⊥ = {0}. This implies λi = 0
for all i ∈ m.

Lemma 5.27. There exists a polynomial-time algorithm that given a layered
Euclidean space E, specified by matrices B1,. . . ,Bn ∈ Mm(Q) as described
above, computes a basis {ci}i∈m of E as in the previous lemma and with each
ci ∈ Qm.

Proof. From the definition of the {ci}i∈m, it is enough for us to compute, at
most, mn intersections of affine subspaces of the form ei+Fi−1 and layers Ek.
More precisely, it is enough to decide if such an intersection is empty, and, if
not, to calculate an element of it.

Fix i ∈ m and k ∈ n. By theorem (3.5), the subspace Ek is the radical (see
definition (3.1)) of the positive semi-definite layered form specified by

(x, y) 7→ (0, . . . , 0, xTBk+1y, . . . , xTBny) ∈ Rn.

Thus the condition that an element x ∈ E is in the k-th layer holds if, and
only if, for all l > k and for all y ∈ E we have xTBly = 0. This, in turn, is
equivalent to the condition that

∀l > k,∀h ∈ m, xTBleh = 0.

Let x = ei +
∑
j<i αjej ∈ ei + Fi−1 for unknown αj . The equation above

can now be written as

∀l > k,∀h ∈ m,
∑
j<i

αjB
l
j,h = −Bl

i,h.
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This is a rational linear system of dimensions, at most, (n − k)(i − 1)m <
nm2 and whose entries are a subset of the entries of the matrices B1, . . . ,Bn.
Solving such systems can be done in polynomial time (this can be found, for
example, in [13, Chapter 3, Theorem 3.3]). Thus, to decide if (ei +Fi−1)∩Ek
is non-empty and, if so, find an element ci of this intersection is a problem
solvable in polynomial time. Note that we have ci ∈ Qm since ci is a solution
of a rational linear system.

We come to the main result of this section: a polynomial-time layered Gram-
Schmidt algorithm. Recall definition (1.9).

Theorem 5.28. There exists a polynomial-time algorithm that, given m ∈
Z>0 and matrices B1, . . . ,Bn ∈ Mm(Q) specifying the inner-products of the
canonical basis of an m-dimensional layered Euclidean space (Rm,Rn, 〈·, ·〉),
computes the Gram-Schmidt basis associated to the canonical basis of Rm.

Proof. Let {Fi}i∈m be the flag induced by the canonical basis {ei}i∈m of
Rm. By lemmas (5.26) and (5.27), we can compute, in polynomial time, a
basis {ci}i∈m inducing this same flag and with the property that the matrix
(ci, cj)i,j∈m is invertible and rational.

Let i ∈ m and let e∗i be the Gram-Schmidt vector associated to ei. Since
e∗i ∈ ei + Fi−1 we can write e∗i = ei +

∑
j<i γi,jcj . Taking the image of this

equation under the functional (·, ch) for each h < i (see definition (5.5)) and
using that (e∗i , ch) = 0 by orthogonality (recall that e∗i ∈ F⊥i−1), we obtain∑

j<i

γi,j(cj , ch) = −(ei, ch).

This is a rational linear system. By [13, Chapter 3, Theorem 3.3]), we can
solve it in polynomial time to obtain e∗i .





CHAPTER 6

Layered lattice basis reduction

6.1 LLL reduction

In this section we introduce the concept of LLL-reduced bases for layered
lattices and investigate some of the properties of such bases. A procedure for
computing reduced bases is given in the next section and a polynomial-time
variant in the third and last section. We refer the reader to [8] for the definition
and properties of classical LLL-reduced bases and to (3.6) and (4.4) to review
the definitions of a layered Euclidean space and of an embedded layered lattice.
We also recall definition (2.31) from chapter 2 where we defined the leading
term function lt : S(V ) → S(V ) for a fixed anti-lexicographic basis of an
ordered real vector space V .

Definition 6.1. Let L ⊂ E be a layered lattice of rank m embedded in a
layered Euclidean space (E, V, 〈·, ·〉) of the same dimension. Let {bi}i∈m be
an ordered basis of L and {b∗i }i∈m be its associated Gram-Schmidt basis. Let
furthermore c ∈ R, c > 1, and {λi,j}16j<i6m be the set of real numbers such
that bi = b∗i +

∑
j<i λi,jb

∗
j . We refer the reader to (5.7) for details.

(i) The basis {bi}i∈m is called size-reduced if for all i ∈ m and all j < i we
have |λi,j | 6 1/2.

(ii) The basis {bi}i∈m satisfies the Lovász condition for c if for all i ∈ m, i > 1,
we have lt(q(b∗i−1)) 6 c · lt(q(b∗i )).

(iii) A basis satisfying (i) and (ii) above is called c-reduced. ♦

77
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Remark 6.2. (a) Condition (ii) of the definition above does not depend on
the choice of an anti-lexicographic basis for V used for defining the leading
term function and it agrees with (ii) of definition (1.6) of the introduction.

(b) It is worth comparing the notion of reduced bases from [8, page 516, (1.4)
and (1.5)] with our own. Under the assumption that for a layered lattice
(L, V, q) we have an order isomorphism V ' R, so that L can also be seen as
a classical lattice, the following holds: if a basis of L is reduced in the sense
of the original paper then it is c-reduced according to definition (6.1) for any
c > 2. On the other hand, if a basis is 4/3-reduced according to our definition
then it is reduced according to [8]. Our definition is, in fact, inspired by the
weaker notion of “reducedness” given in [5].

The main result of this section establishes relations between bases satisfying
some of the items of definition (6.1) and the corresponding properties of the in-
duced bases in each layer. To be precise, we introduce the following definition.
We recall remark (3.10 (a)).

Definition 6.3. Let P be a property of bases of (classical) Euclidean spaces
and let I → E be a basis of a layered Euclidean space E. We say I → E
has property P layer-wise if this basis is layered and for all U ∈ C∗(V ) with
predecessor U ′ in C(V ), the basis of EU/EU ′ induced by I → E has property
P . ♦

Note that a basis of a layered lattice is also a basis of the layered Euclidean
space it generates as an embedded layered lattice (see theorem (4.20)).

Theorem 6.4. Let c ∈ R, c > 1. Let {bi}i∈m be an ordered basis of a layered
lattice L of rank m embedded in the layered Euclidean space (E, V, 〈·, ·〉) of
dimension m. Then the following holds.

(a) The basis {bi}i∈m is layered if and only if its associated Gram-Schmidt
basis is layered.

(b) The basis {bi}i∈m satisfies the Lovász condition for c if and only if it
satisfies the Lovász condition for c layer-wise.

(c) If the basis {bi}i∈m is layered and size-reduced then it is size-reduced layer-
wise.

Proof. Let {b∗i }i∈m be the Gram-Schmidt basis associated to {bi}i∈m.
Item (a) is trivial since a basis and its associated Gram-Schmidt basis induce

the same flag (see remark (3.10)).
For (b), let i ∈ m, i > 1, and let U ∈ C(V ) be the predecessor of C(q(b∗i )). I

claim that lt(q(b∗i−1)) 6 c · lt(q(b∗i )) holds if and only if we have the inequality
q(b∗i−1) +U 6 c · q(b∗i ) +U in V/U . In fact, note that we have lt(q(b∗i )) +U =
q(b∗i ) +U in V/U . If q(b∗i−1) 6∈ U then C(q(b∗i−1)) = C(q(b∗i )) and we can apply
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the same reasoning to conclude that lt(q(b∗i−1)) + U = q(b∗i−1) + U in V/U .
The claim is then clear in this case. The case when q(b∗i−1) ∈ U is trivial as
the equivalence reduces to 0 6 c · lt(q(b∗i )) +U if and only if 0 6 c · q(b∗i ) +U .
Thus the claim is proven.

Now assume that {bi}i∈m satisfies the Lovász condition for c and let U ∈
C(V ). The hypothesis on {bi}i∈m implies, in particular, that for all i ∈ m,
i > 1, we have L(b∗i−1) ⊂ L(b∗i ). Furthermore, since Gram-Schmidt bases are
orthogonal, by proposition (3.24), for exactly dimEU of the elements of m the
corresponding vector b∗i satisfies L(b∗i ) = EU . It follows that

span{b∗i : 1 6 i 6 dimEU} = EU

and, thus, EU ∈ F({b∗i }i∈m). By remark (3.10 (b)), also {bi}i∈m is layered.
Thus if {bi}i∈m satisfies the Lovász condition for c, then this basis is lay-
ered. Furthermore, for any U ∈ C∗(V ) with predecessor U ′, the claim proven
above implies that the basis of LU/LU ′ induced by {bi}i∈m is c-reduced. Thus
{bi}i∈m satisfies the Lovász condition for c layer-wise.

We now prove the converse. Let i ∈ m, i > 1 and let U be the predecessor
of C(q(b∗i )) in C(V ). The hypothesis gives q(b∗i−1) + U 6 c · q(b∗i ) + U in V/U
which, by the claim proven above, lifts to lt(q(b∗i−1)) 6 c · lt(q(b∗i )) in V .

Finally we show (c). Let i ∈ m, i > 1 and let λi,1, . . . , λi,i−1 be the real
numbers such that bi = b∗i +

∑
j<i λi,jb

∗
j . Let U ∈ C(V ) be the predecessor

of C(q(bi)) and EU be the U -th layer of E. Then since {bi}i∈m is layered we
have EU = span{b∗j : j 6 dimEU} and thus

bi + EU = b∗i +
∑

dimEU<j<i

λi,jb
∗
j + EU

in E/EU . This is immediately seen to be equation (5.8) for the vector bi+EU
of E/EU . By hypothesis we have |λi,j | 6 1/2 for all j < i thus giving the
result.

The next proposition describes a procedure that “size-reduces” a given basis.
Together with the above theorem, is enables us to compute a c-reduced basis
from a basis that is just layer-wise c-reduced.

Notation. In the proposition below, since we proceed in successive steps that
change the given basis, we use the notation a ← b to mean that we copy the
value of b to a. This is not a mathematical equality as a← b followed by b← c
does not imply a = c.

Proposition 6.5. Let {bi}i∈m be a basis of an embedded layered lattice L ⊂ E.
Let {b∗i }i∈m be its associated Gram-Schmidt basis and let {λi,j}16j<i6m be the
sequence of numbers such that bi = b∗i +

∑
i<j λi,jb

∗
j .
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Set µi,j ← λi,j for all i ∈ m and all j < i. For each i ∈ m perform the
following substitution steps for each j = i− 1, i− 2, . . . , 1 in sequence.

µ ← bµi,j + 1/2c
µi,j ← µi,j − µ,
µi,h ← µi,h − µλj,h, for h < j.

Finally, after these steps, let ci = b∗i +
∑
j<i µi,jb

∗
j . Then the set of vectors

{ci}i∈m so obtained is a size-reduced basis of L with the same associated Gram-
Schmidt basis.

Proof. The main point of the proof is noticing that for each i ∈ m and
j < i, by proposition (5.13) we are performing the updates to the numbers
µi,i−1, . . . , µi,1 corresponding to the substitution bi ← bi − µbj ∈ L. By the
same proposition, this does not change the associated Gram-Schmidt basis.

Each of the numbers µi,h will be updated exactly i−h times and note that,
from the order in which we are performing the substitutions, the last time µi,h
will be updated corresponds exactly to the step where j = h. At this step we
subtract µ = bµi,j + 1/2c from µi,j . Hence, at the end of this step we have
|µi,j | 6 1/2. It follows that the basis {ci}i∈m is size-reduced.

Remark 6.6. Note that, in particular, if {bi}i∈m satisfies the Lovász condition
for some c > 1 then the basis {ci}i∈m obtained from the above proposition
will be a c-reduced basis of L.

Using the above theorem and remark (6.2) we establish a link between c-
reduced bases of layered lattices and classical “LLL-reducedness” of the bases
induced on the quotients of successive layers. This proves particularly useful
as the following examples show. In fact, the shortcomings of the classical
LLL algorithm alluded to in the introduction, has motivated us to generalize
lattices and lattice basis reduction to better suit problems like (the ones found
while) doing linear algebra over Z. Below we show how to compute kernels
and solving integral linear systems using layered lattice basis reduction and
the above theorem. The second part of our work consists of showing that there
is an algorithm, very much like the classical LLL algorithm, that computes a
c-reduced basis given an arbitrary basis for a layered lattice. This will be the
content of the next section.

Example 6.7. Let f : Zn → Zm be a homomorphism of abelian groups. We
want to compute the kernel and image of f , i.e., bases for the free abelian
groups ker f and f(Zn). Let L = Zn and q : L→ R2 given by

q(x) = (||x||2, ||f(x)||2)

where || · || denotes the standard Euclidean norm on Zn and Zm.
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To see that (L, V, q) is a layered lattice, we notice that L ⊂ Rn and that
q is the quadratic norm associated to an bilinear form 〈·, ·〉 defined by (4.13)
and (4.21). It is easy to see that 〈·, ·〉 is positive-definite and layered, so
(Rn,R2, 〈·, ·〉) is a layered Euclidean space. The Gram matrix associated to
the canonical basis of Rn is rational so proposition (4.30) tells us that L is a
layered lattice.

Back to our example, by theorem (6.4), a c-reduced basis of L will give us
a c-reduced basis of the first layer of L, which is ker f , and the images of the
remaining vectors form a c-reduced basis of f(Zn).

Example 6.8. As in the previous example, let f : Zn → Zm be an homomor-
phism of abelian groups. Let b ∈ Zm. We want to find all x ∈ Zn such that
f(x) = b. Let L = Zn × Z and q : L→ R3 given by

q(x, z) = (||x||2, ||z||2, ||f(x)− z · b||2)

where || · || denotes the usual Euclidean norm. Again, using proposition (4.30),
one shows that L is a layered lattice. A c-reduced basis of L will encode all
information we want. Namely, the basis for the first layer will be a c-reduced
basis for ker f . The second layer will equal the first one if the system has no
rational solution and will have rank 1 otherwise. In the latter case, a basis for
this second layer will be a pair (x, z) such that f(x) = z · b. If z = ±1 we have
a solution as wanted (after, possibly, taking −(x, z) instead). By adding an
arbitrary element of ker f we have all solutions. If z 6= 1 we know that there
are no solutions to the original system, but we have computed the minimal
(in absolute value) z such that there is a solution 1

zx ∈
1
zZ, i.e., a solution

vector whose entries are rational numbers with the same denominator.

Example 6.9. Let L ⊂ Zm be a subgroup of rank m. Let {ei}i∈m be the
canonical basis of Zm and {Fi}i∈m be the flag induced by {ei}i∈m. From a
basis {bi}i∈m of L we obtain a matrix (mi,j)i,j∈m ∈ Mm(Z) whose rows give
the coefficients of the vectors bi when written in terms of the basis {ei}i∈m.
It is well-known that there exists a unique basis of L such that this matrix
satisfies the following.

(a) For all i ∈ m one has mi,i > 0.

(b) For all i ∈ m and j < i one has 0 6 mi,j < mi,i.

(c) For all i ∈ m and j > i one has mi,j = 0.

This unique basis is called the Hermite normal form of L. We refer the reader
to [3, §2.4] for details and a generalization to subgroups of Zm of lower rank.

We will now show how to use layered lattices to find the Hermite normal
form of L. Let q : Zm → Rm be the map given by (xi)i∈m 7→ (||xi||2)i∈m. As
before, proposition (4.30) tells us that (Zm,Rm, q) is a layered lattice. With
this quadratic norm it is easy to see that the set of layers of Zm is exactly
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{Fi}i∈m. Furthermore, it is also clear that in this case {ei}i∈m is a orthogonal
basis of Zm. As such, {ei}i∈m is its own associated Gram-Schmidt basis, i.e.,
e∗i = ei for all i ∈ m. Note that since L ⊂ Zm is a subgroup, it is also a layered
lattice.

Let c > 1 and suppose that {bi}i∈m is a c-reduced basis of L. By theorem
(6.4 (b)), the basis {bi}i∈m is layered. Thus, we have bi ∈ Fi \ Fi−1 for all
i ∈ m. This implies that the matrix (mi,j)i,j∈m associated to this basis satisfies
(c) above. We can arrange that (a) is also satisfied by, if necessary, taking the
negative of some of the vectors of the basis. An easy induction argument then
shows that for all i ∈ m we have b∗i = mi,ie

∗
i = mi,iei. The induction uses the

equation

mi,iei +
∑
j<i

mi,jej = bi = b∗i +
∑
j<i

λi,jb
∗
j ,

which holds for all i ∈ m, together with the observation we made previously
that {ei}i∈m is layered and orthogonal. With little more work we also obtain
|mi,j | = λi,jmj,j for all i ∈ m and all j < i; since we have |λi,j | 6 1/2, we
obtain |mi,j | 6 mj,j/2. From these inequalities it is easy to find the Hermite
normal form of L.

We refer the reader to [8] and [11] for the various useful properties of classical
LLL-reduced bases.

6.2 The layered LLL algorithm

We now present a procedure for computing reduced bases of layered lattices.
This will be done in a conceptual manner to highlight its resemblance with
the classical LLL algorithm of [8]. In the appendix we give an implementation
of this procedure in pseudo-code.

The input of this procedure consists of a real number c > 4/3, and a layered
Euclidean space (Rm,Rn, 〈·, ·〉). The layered Euclidean space is specified via
a sequence of matrices B1, . . . ,Bn ∈ Mm(R) such that, given x, y ∈ Rm, we
have

〈x, y〉 = (xTB1y, . . . , xTBny) ∈ Rn.

Note that these matrices are the components of the Gram-matrix of the inner-
product with respect to the canonical basis of Rn (which is also an anti-
lexicographic basis). We assume that the group Zm ⊂ Rm is a layered lattice,
which we denote by L. If m < 2 then any basis of L is automatically c-reduced
so we assume from here on that m > 2.

The procedure consists of repeating iterations whose input is a basis {bi}i∈m
of L and an index k ∈ m, k > 1, such that {b1, . . . , bk−1} is a c-reduced basis
for the layered lattice it generates. The initial iteration of the procedure has
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{bi}i∈m equal to the canonical basis of Rm and k = 2 (note that b1 is a c-
reduced basis of the lattice it generates). At the end of each iteration we have
a new index l ∈ m+ 1 and a new basis {ci}i∈m of L such that {c1, . . . , cl−1}
is a c-reduced basis for the layered lattice it generates. Either l = m + 1, in
which case we terminate and output the basis {ci}i∈m, or l ∈ m, in which case
we start a new iteration with input {ci}i∈m as basis and index max{l, 2}.

We now describe an iteration in full detail. Let thus {bi}i∈m and k ∈ m,
k > 1 be given and let {b∗i }i∈m be the associated Gram-Schmidt basis. By
assumption, {b1, . . . , bk−1} is a c-reduced basis for the lattice it generates. The
first part of the iteration is a size reduction. If λk,j ∈ R are the (unique) real
numbers satisfying

bk = b∗k +
∑
j<k

λk,jb
∗
j ,

we let λ be a nearest integer to λk,k−1 and let b′k = bk − λbk−1. We note
that if |λk,k−1| < 1/2 then λ = 0 and we do nothing. We repeat the same
procedure to λk,l for l = k− 2, k− 3, . . . , 1 in this order. By proposition (6.5),
we end the first part of the iteration with a vector b′k such that {b1, . . . , b′k} is
a size-reduced basis of the lattice it generates with the same associated Gram-
Schmidt basis. Thus, if lt(q(b∗k−1)) 6 c · lt(q(b∗k)) then this basis is c-reduced.
The final part of the iteration consists of testing this condition.

We set ci = bi for i 6= k, k − 1. If

lt(q(b∗k−1)) 6 c · lt(q(b∗k)) (6.10)

we also set ck−1 = bk−1, ck = b′k and select l = k+ 1 for the next iteration. If,
on the other hand, we have

lt(q(b∗k−1)) > c · lt(q(b∗k)) (6.11)

then we set ck−1 = b′k, ck = bk−1 and set l = k−1. This finishes the description
of an iteration and, thus, of the whole algorithm.

Before we prove the next result, we remind the reader of the definition of
a flag of a vector space (see the review section of the introduction), of the
equivalence relation ', defined on an ordered vector space, that we gave in
(2.16) and of the discriminant of a layered lattice given in definition (4.33).
We freely use the notation introduced in the present section.

Lemma 6.12. In the notation above, the vectors {c1, . . . , cl−1} form a c-
reduced basis for the layered lattice they generate. Let K0 ⊂ · · · ⊂ Km be the
flag of Rm induced by the basis {bi}i∈m and, similarly, K ′0 ⊂ · · · ⊂ K ′m be the
flag induced by the basis {ci}i∈m. Then for all i 6= k − 1 we have K ′i = Ki.
If l > k then we have K ′k−1 = Kk−1 as well. If, on the other hand, we have
l 6 k then D(K ′k−1) < D(Kk−1).
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Proof. The first statement of the lemma is clear. If we have an iteration for
which l > k, then it is immediately clear that K ′i = Ki for all i ∈ m0.

Now suppose that we have instead l 6 k. Then it is clear that K ′i = Ki for
all i 6= k− 1. Let {b∗i }i∈m and {c∗i }i∈m be the Gram-Schmidt bases associated
to {bi}i∈m and {ci}i∈m respectively. By proposition (5.15 (b)) and proposition
(6.5), we have

c∗k−1 = b∗k + λk,k−1b
∗
k−1

with |λk,k−1| 6 1/2. Thus we obtain

〈c∗k−1, c∗k−1〉 = 〈b∗k, b∗k〉+ 2λk,k−1〈b∗k−1, b∗k〉+ λ2k,k−1〈b∗k−1, b∗k−1〉.

Since 〈b∗k−1, b∗k〉 � 〈b∗k−1, b∗k−1〉 by orthogonality, inequality (6.11) together
with c > 4/3 gives

〈c∗k−1, c∗k−1〉 <
3

4
〈b∗k−1, b∗k−1〉+

1

4
〈b∗k−1, b∗k−1〉 = 〈b∗k−1, b∗k−1〉.

By proposition (5.24) we have

D(Kk−1) '
∏

i6k−1

q(b∗i ) ' D(Kk−2)q(b∗k−1)

where D(·) denotes the discriminant of a layered lattice. Similarly, we have
D(K ′k−1) ' D(K ′k−2)q(c∗k−1). We noted before that K ′k−2 = Kk−2, thus we
conclude that D(K ′k−1) < D(Kk−1).

Theorem 6.13. The procedure described above terminates and the output is
a c-reduced basis for the layered lattice Zm ⊂ Rm.

Proof. The procedure terminates if and only if l = m + 1 is achieved at the
end of an iteration. By the previous lemma, if this happens, the output of the
algorithm will be a c-reduced basis for Zm.

Also from the previous lemma it follows that, for iterations where l = k+ 1,
the quantities D(Ki) remain unchanged for all i ∈ m0. Furthermore, for
iterations where l 6 k only D(Kk−1) is decreased, the rest remaining the
same.

In theorem (4.35) we saw that the set {D(K) : K ⊂ L a sublattice of rank k}
is well-ordered. It follows that iterations for which l 6 k, i.e., for which equa-
tion (6.11) holds, can occur only a finite number of times. After that, only
iterations for which l > k will occur. Eventually l = m+ 1 is attained and the
procedure finishes.
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6.3 A polynomial-time reduction algorithm

In this section we fill an important gap: we were unable to prove that the lay-
ered LLL procedure of the last section is polynomial-time when given rational
input.

We will give a polynomial-time algorithm that given a rational number
c > 4/3 and a layered lattice specified as described below, computes a c-
reduced basis of this lattice. This algorithm relies, mainly, on several applica-
tions of the standard LLL algorithm. In some of these applications, the LLL
algorithm is used in the form of the kernel and image algorithm explained in
[10, pg. 163], which we briefly described in the introduction and in (6.7). In this
case, “weight” constants are used and, as we pointed out in the introduction,
this was something we intended to avoid by developing the theory of layered
lattices. This is a step forward to our goal since it implies the following. If
it is possible to compute c-reduced bases of layered lattices with two layers in
polynomial time and without the use of weight constants, then it is possible
to compute c-reduced basis of general layered lattices also in polynomial time
and without the use of weight constants.

We start by gathering some results on the theory of classical lattices that
we will be using shortly. We remind the reader that a sublattice is called pure
if the quotient of the lattice by this sublattice is free; a lattice embedded in a
Euclidean space is called full if its rank equals the dimension of the Euclidean
space.

Proposition 6.14. Let (E, 〈·, ·〉) be a Euclidean space, L ⊂ E be a lattice in
E and M ⊂ L be a sublattice of L. Then there is a unique pure sublattice
K ⊂ L of L such that M ⊂ K and rankM = rankK. This lattice equals
(R ·M) ∩ L.

Proof. Let F = R · M be the subspace generated by M . Since L/(F ∩
L) ⊂ E/F we see that F ∩ L is pure and dimension counting shows that
rank (F ∩ L) = rankM . We have to show uniqueness, so let K ⊂ L be a
sublattice with the properties stated above. Then, clearly, we have K ⊂ F ∩L
and they have the same rank. It follows that (F ∩L)/K is a torsion subgroup
of the free group L/K. Thus, we have K = F ∩ L.

Definition 6.15. The unique pure sublattice K of the proposition above is
called the purification of M in L.

Definition 6.16. Let L ⊂ E be a full lattice in a Euclidean space (E, 〈·, ·〉)
and let M ⊂ L be a sublattice. We define the following subsets of E:

L† = {x ∈ E : 〈L, x〉 ⊂ Z}
M⊥ = {x ∈ E : 〈M,x〉 = {0}}.
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The set L† is called the dual of L and M⊥ is called the orthogonal complement
of M in E. ♦

Proposition 6.17. Let (E, 〈·, ·〉) be a Euclidean space, L ⊂ E be a full lattice
in E and M ⊂ L be a sublattice of L of rank r. Then we have the following.

(a) The dual L† is a full lattice in E and L†† = L.

(b) M⊥ is a subspace of E and we have M⊥⊥ = R ·M .

(c) L† ∩ M⊥ is a pure sublattice of L† and equals the kernel of the group
homomorphism L† → Hom (M,Z) given by x 7→ (m 7→ 〈m,x〉).

Proof. Items (a) and (b) are well known and we omit the proof. For (c), it
is straight-forward to check that L† ∩M⊥ is the kernel of the homomorphism
L† → Hom (M,Z) stated above and this implies that L†/L† ∩M⊥ is torsion-
free, i.e., L† ∩M⊥ is pure.

Definition 6.18. By a kernel and image algorithm we mean an algorithm that
given an homomorphism Zq → Zp of free groups, specified by some integral
matrix F ∈ Mp×q(Z), computes r ∈ Z>0 and a basis of Zq of which the first r
vectors form a basis for the kernel of this homomorphism. ♦

Remark 6.19. The algorithm given in [10, pg. 163] is a polynomial-time ker-
nel and image algorithm that uses the classical LLL algorithm as we briefly
described in the introduction.

From now on and until the end of this section, we let (Rm,Rn, 〈·, ·〉) be a
layered Euclidean space; we let {Vk}k∈n denote the convex filtration of V = Rn

and {Ek}k∈n
0

denote the layers of E = Rm. We assume L = Zm ⊂ E is an
embedded layered lattice, and denote the layers of L by {Lk}k∈n

0
. For each

k ∈ n0 we denote by m(k) the dimension of Ek, which is also the rank of Lk.
Finally, we let {ei}i∈m be the canonical basis of L ⊂ E and define matrices
B1, . . . ,Bn ∈ Mm(R) by the formula

〈ei, ej〉 = (B1
i,j , . . . ,B

n
i,j).

We denote by q the quadratic norm associated to 〈·, ·〉.
As in chapter 5, where we described a polynomial-time algorithm to compute

Gram-Schmidt bases, for the purpose of defining and analyzing an algorithm,
it is important that our input is rational. In the present case, this amounts to
the extra assumption that the matrices Bk are rational, i.e., Bk ∈ Mm(Q).

We now show that size-reducing a basis can be done in polynomial time.
We recall definition (1.9) from the introduction.

Lemma 6.20. There exists a polynomial-time algorithm that given a basis
{bi}i∈m of L = Zm specified in terms of its canonical basis, and matrices
B1, . . . ,Bn ∈ Mm(Q) as above, outputs a size-reduced basis of L with the
same associated Gram-Schmidt basis.
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Proof. Let {b∗i }i∈m be Gram-Schmidt basis associated to the input basis
and {λi,j}16j<i6m be the rational numbers such that bi = b∗i +

∑
j<i λi,jb

∗
j .

By theorem (5.28) we can compute them in polynomial time with this input.
Applying the substitution steps of proposition (6.5), we obtain the desired
size-reduced basis. We will prove the lemma by giving a polynomial upper-
bound for the number of bits necessary to represent the numbers µi,j appearing
throughout the steps of that proposition, and a polynomial upper-bound for
the number of arithmetical operations performed (both in terms of the input).

We start with the number of arithmetical operations. For each i ∈ m,
we perform i − 1 steps and for each of those, 4 arithmetical operations are
performed. The total number of arithmetical operations is therefore less than
4m2.

To bound the numbers involved, let r0 ∈ Z>0, r > 1, be an upper-bound
for all the |λi,j | ∈ Q and q0 ∈ Z>0, q > 1, be an upper-bound for the absolute
value of their denominators (note that their numerators are thus bounded, in
absolute value, by r0q0). The number of bits sufficient to represent the λi,j is
then bounded by log2 q0 + log2(r0q0) = log2(r0q

2
0). The bound we give below

is in terms of m, log2 r0 and log2 q0.
Let i ∈ m and suppose we finished substitution step j > 1. Let r ∈ Z, r > 1,

be an upper-bound for the numbers µi,j at this point and q ∈ Z, q > 1, an
upper-bound for their denominators. After substitution step j − 1 we have:

|µ| 6 r + 1,

|µi,j | 6 r + |µ| 6 2(r + 1),

|µi,h| 6 r + µr0 6 (r + 1)(r0 + 1).

Thus, r′ = (r+1)(r0+1) is an upper-bound for the |µi,j | after this substitution
step. The denominators of these numbers are clearly bounded by q′ = qq0. By
induction, we see that all the numbers µi,j appearing throughout the substitu-
tions steps are bounded, in absolute value, by (r0 + 1)i 6 (r0 + 1)m. Similarly
their denominators are bounded, in absolute value, by qm0 . It follows that their
numerators are bounded, in absolute value, by qm0 (r0 + 1)m. The number of
bits sufficient to represent all these numbers is thus bounded by

log2(qm0 ) + log2(qm0 (r0 + 1)m) = m log2(q20(r0 + 1)).

The proof is complete since performing 4m2 arithmetical operations with num-
bers of this size can be done in polynomial time. We refer the reader to [13,
§2.1].

We now describe an algorithm to compute reduced bases of layered lattices.
The input of this algorithm is comprised of a parameter c ∈ Q, c > 4/3, the
rank m of L = Zm and a sequence of rational matrices B1, . . . ,Bk ∈ Mm(Q)
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specifying the inner-product in E = Rm in terms of the canonical basis of E.
The algorithm is described in six steps enumerated as (a) through (f) below.

(a) The first step is to compute the Gram-Schmidt basis associated to the
canonical basis {ei}i∈m of L ⊂ E, denoted by {e∗i }i∈m, and the numbers
{λi,j}16j<i6m such that for all i ∈ m we have ei = e∗i +

∑
j<i λi,je

∗
j . We also

let d ∈ Z>0 be a common multiple of the denominators of all the λi,j . Note
that de∗i ∈ L holds for all i ∈ m. This is done using the algorithm of theorem
(5.28).

(b) Next, for each k ∈ n let

Mk =
∑
e∗
i
∈Ek

Z de∗i ⊂ Lk

and Fk be the matrix ((de∗i )
T ej){i:e∗

i
∈Ek},j∈m. This matrix specifies the group

homomorphism
fk : L† → (Mk,Z) ' Zm(k)

given by x 7→ (z 7→ zTx). Using a kernel and image algorithm, compute a
basis {dki }i∈m of L† such that its first r(k) = m −m(k) vectors form a basis
for ker fk. Note that, by proposition (6.17), we have ker fk = L† ∩M⊥k .

(c) Next, for k ∈ n, let F′k be the matrix ((dki )T ej)i∈r(k),j∈m which specifies

the group homomorphism

f ′k : L†† → Hom (ker fk,Z) ' Zr(k)

given by x 7→ (z 7→ zTx). Again using a kernel and image algorithm compute a
basis {aki }i∈m of L whose first m−r(k) = m(k) vectors form a basis for ker f ′k.
Again, by proposition (6.17), we have ker f ′k = L††∩M⊥⊥k = L∩(R·Mk) = Lk.

(d) For each k ∈ n, the homomorphism Lk → L→ Hom (ker fk−1,Z) specified
by the m ×m(k) matrix whose j-th column is given by F′k−1 · akj has kernel
Lk−1. Using a kernel and image algorithm, compute a basis for Lk such that
the last m(k)−m(k− 1) vectors form a basis for a complement of this kernel.
Note that m(0) = 0 as this equals the rank of L0. Denote this basis by
{ai : m(k − 1) < i 6 m(k)}.
(e) For each k ∈ n let Nk be the group generated by the vectors {ai : m(k −
1) < i 6 m(k)} and define qk : Nk → Q by x 7→ xTBkx. Apply the classical
LLL with “reducedness” parameter c to {ai : m(k − 1) < i 6 m(k)}. Denote
the output by {bi : m(k − 1) < i 6 m(k)}.
(f) Size-reduce the sequence of vectors {bi}i∈m obtained from (e) using propo-
sition (6.5). Output the sequence {ci}i∈m from that proposition.

This finishes the description of the algorithm. We come to the main theorem
of this section. We remind the reader of definition (4.7).
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Theorem 6.21. For each c > 4/3, c ∈ Q, there is a polynomial-time algorithm
that given a layered lattice (Zm,Rn,B1, . . . ,Bk) of rank m, specified as above,
computes a c-reduced basis of this lattice.

Proof. The algorithm is the one described in steps (a) through (f) above. We
start by showing the correctness of the algorithm. This also entails showing
that whenever we call an algorithm to perform a computation we are giving
valid input. For step (a), this is clear. In steps (b) and (c) note that L† = L =
L†† and that ker fk = M⊥ ∩L† by proposition (6.17). Thus we are computing
a basis {bki }i∈m of L whose first m(k) vectors form a basis of M⊥⊥ ∩ L†† =
(Q ·Mk) ∩ L = Lk for each k ∈ n.

In step (d), note that the kernel of Lk → L → Hom (ker fk−1,Z) equals
Lk−1. So using the family of bases from step (c), we compute a basis for Lk
whose first vectors form a basis of Lk−1. At the end of step (d) we thus have
a layered basis {ai}i∈m of L.

In (e), for each k ∈ n, the group Nk generated by {ai : m(k − 1) < i 6
m(k)} is a classical lattice when equipped with the quadratic map determined
by x 7→ xTBkx. In fact, this pair is none other than the layered lattice
(Lk/Lk−1, Vk/Vk−1, q) with q : Lk/Lk−1 → Vk/Vk−1 ' R of lemma (4.15)
(recall that {Vk}k∈n is the convex filtration of Rn). By corollary (4.23) this is
a classical lattice. Applying the classical LLL algorithm with parameter c we
compute a c-reduced basis for this lattice.

The output of step (e) is thus a layered basis of L that satisfies the Lovász
condition for c (although it is not necessarily size-reduced). Thus the substi-
tution steps from lemma (6.5) give a c-reduced basis for the (layered) lattice
L. This finishes the proof of the correctness of the algorithm.

It remains to show that the algorithm is polynomial-time. Step (a) is done
in polynomial time by theorem (5.28). In particular, finding d ∈ Z>0 that
is a common multiple of the denominators of the µi,j can also be done in
polynomial time. For each k ∈ n, steps (b) and (c) are done in polynomial time
since the kernel and image algorithm used is assumed to be polynomial-time.
Since performing these steps for different k, l ∈ n can be done independently,
we conclude that computing the family of bases {aki }i∈m is done in polynomial
time. The input of step (d) is thus bounded by a polynomial in the input
and it involves another application of a (polynomial-time) kernel and image
algorithm. The same reasoning establishes that (e) is also done in polynomial
time and, by lemma (6.20), step (f) too.
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In this short appendix we present two algorithms of our work in pseudocode.
We start with an algorithm for the Gram-Schmidt procedure which can be
derived from proposition (5.7).

input :A sequence of rational matrices {B1, . . . ,Bn} ∈ Mm(Q)
specifying the inner-product of the layered Euclidean space
(Rm,Rn, 〈·, ·〉) with respect to the canonical basis.

output:The Gram-Schmidt basis {e∗i }mi=1 associated to the canonical
basis {ei}i∈m of Qm viewed as a subspace of the layered
Euclidean space and the numbers {λi,j}16j<i6m, λi,j ∈ Q given
by equations (5.9) which specify the canonical basis in terms of
its associated Gram-Schmidt basis.

1 for i = 1 to m do
2 e∗i ← ei;
3 for j = 1 to i− 1 do

/* Compute λi,j inductively. */

4 λi,j ← (e∗Ti · e′j)/(e∗Tj · e′j);
/* Update e∗i . */

5 e∗i ← e∗i − λi,j · e∗j ;
6 end for

/* Compute the o(i). */

7 o(i)← n+ 1;
8 repeat
9 o(i)← o(i)− 1;

10 e′i ← Bo(i) · e∗i ;
11 until e∗Ti · e′i 6= 0;

12 end for

Algorithm A.1: Gram-Schmidt algorithm

We now give a quick description of the layered LLL algorithm. This is a
simplified version based on the algorithm of section (6.2). We chose to de-
scribe the algorithm in this way for clarity. By GS({ei}mi=1, k) we mean a
call to a sub-procedure computing the first k vectors of the Gram-Schmidt
basis associated to the basis {ei}mi=1 and the numbers λi,j , 1 6 j < i 6 k
expressing the vectors ei in terms of its associated Gram-Schmidt basis.
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input :A rational number c > 4/3 and an ordered sequence of rational
matrices {B1, . . . ,Bn} ⊂ Mm(Q) specifying the inner-product
of the layered Euclidean space (Rm,Rn, 〈·, ·〉) with the property
that the group generated by the canonical basis {e1, . . . , em} of
Rm is a layered lattice.

output:A c-reduced basis {ei}mi=1 of the same layered lattice.

1 k ← 2;

2 {e∗i }ki=1, {λi,j}16j<i6k ← GS({ei}mi=1, k);
3 for j = k − 1 to j = 1 do
4 if |λk,j | > 1/2 then

/* Size-reduce λk,j. [·] denotes the nearest integer

function. */

5 λ← [λk,j ];
6 ek ← ek − λ · ej ;
7 {e∗i }ki=1, {λi,j}16j<i6k ← GS({ei}mi=1, k); /* Update the

Gram-Schmidt basis. */

8 end if

9 end for
10 if lt(q(e∗k−1)) 6 c · lt(q(e∗k)) then

/* To this point we have a c-reduced basis up to level k.
*/

11 if k < m then
12 k ← k + 1;
13 GOTO 2;

14 end if
15 EXIT;

16 else
17 e← ek, ek ← ek−1 and ek−1 ← e; /* Swap ek−1, ek */

18 if k > 2 then
19 k ← k − 1;
20 end if
21 GOTO 2;

22 end if

Algorithm A.2: Layered LLL algorithm





Samenvatting

Een rooster is een discrete ondergroep van een Euclidische ruimte. Elk rooster
wordt voortgebracht door een stelsel lineair onafhankelijke vectoren. Zo een
stelsel noemt men een basis voor het rooster. Dit proefschrift betreft het
probleem om voor een gegeven rooster een goede basis te vinden. Algorit-
misch gezien wordt een rooster gegeven door een basis, en het probleem kan
dus geformuleerd worden als het vinden van een aantal transformaties dat de
gegeven basis in een betere basis verandert. Men spreekt van een basisreductie-
algoritme. Goede bases worden gereduceerde bases genoemd.

Basisreductie heeft een lange geschiedenis en het eerste algoritme, voor wille-
keurige roosters, dat in polynomiale tijd eindigt, is pas in 1982 beschreven in
[8]. Dit algoritme is nu bekend als het LLL-algoritme. In dit proefschrift wordt
de theorie van gelaagde roosters ontwikkeld en het basisreductie-probleem voor
gelaagde roosters bestudeerd en opgelost. Een gelaagd rooster is een rooster
waar de lengtes van vectoren verschillende ordes van grootte kunnen hebben.
Dit concept vindt zijn oorsprong in situaties zoals de volgende.

Zij f : Zn → Zm een homomorfisme van vrije abelse groepen. Men wil
een basis voor de kern van f bepalen. In [10] lost de auteur dit probleem op
met behulp van roostertheorie. Hij introduceert het rooster (Zn, qM ) waar de
lengtefunctie qM : Zn → R gegeven is door

qM (x) = ||x||2 +M · ||f(x)||2

voor een groot positief getal M (met || · || noteren we de gebruikelijke Euclidis-
che norm). Zij BM de verzameling punten van Zn met lengte kleiner dan M
ten opzichte van de lengtefunctie qM . Het is makkelijk in te zien dat BM in
ker f bevat is en dat, naarmate groter M gekozen wordt, er meer punten uit de
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0 a

b

0

c

d

Figure 1.1: Twee bases voor hetzelfde rooster. Elk punt in het rooster wordt gere-

presenteerd als m · a + n · b of p · c + q · d voor gehele getallen m,n, p, q ∈ Z. De

basis links is een “goede” basis omdat punten dicht bij 0 worden gerepresenteerd met

kleine getallen m,n. De basis rechts, daarentegen, is een slechte basis; punten dicht

bij 0 hebben grote getallen p, q nodig om beschreven te worden. Het verschil tussen

beide is gerelateerd aan de vorm van de driehoeken in de figuur.

kern van f in BM zullen liggen. Men kan bewijzen dat voor M groter dan een
bepaalde grens, die afhankelijk is van f , het LLL-algoritme een basis van Zn

vindt zodanig dat de eerste n− rang f vectoren de kern van f voortbrengen.
De theorie van gelaagde roosters beschrijft wat er gebeurt als we M “onein-

dig” laten worden. Dat wil zeggen, M is nu een symbool∞ met de eigenschap
dat voor alle positieve reële getallen λ en µ de ongelijkheid λ < µ · ∞ geldt.
De nieuwe lengtefunctie q∞ : Zn → R⊕R · ∞ met

q∞(x) = ||x||2 + ||f(x)||2 · ∞

neemt vectoren als waarden aan. Merk op dat de kern van f nu precies gelijk is
aan B∞, de verzameling vectoren van lengte kleiner dan∞. Deze verzameling
is dus een deelrooster van Zn dat een orde van grootte ligt onder de rest
van het rooster; het is een voorbeeld van wat we een laag van het gelaagde
rooster noemen. In dit proefschrift definiëren we wat een gereduceerde basis
van een gelaagd rooster is, en we laten zien dat zo’n basis in polynomiale
tijd berekend kan worden.1 We laten ook zien dat een gegeneraliseerde LLL-
algoritme bestaat voor gelaagde roosters dat termineert, en dat gereduceerde
bases kan vinden zonder gebruik te maken van “gewichten” zoals M hierboven.
Dit is van praktisch belang, zoals het voorbeeld hierboven laat zien.

1Een gereduceerde basis is, in het bijzonder, gelaagd. Dat wil zeggen, alle lagen van het
gelaagde rooster worden opgespannen door deelverzamelingen van deze basis.
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