
VU Research Portal

Coherence in Synchronous Shared Experiences

Vaishnavi, I.

2011

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Vaishnavi, I. (2011). Coherence in Synchronous Shared Experiences. [PhD-Thesis – Research external,
graduation internal, Vrije Universiteit Amsterdam].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. Nov. 2024

https://research.vu.nl/en/publications/8a3f8778-c68b-43c7-ae5c-464633845c6a

VRIJE UNIVERSITEIT

Coherence in Synchronous
Shared Experiences

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. L.M. Bouter,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen

op vrijdag 24 juni 2011 om 9.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Ishan Vaishnavi

geboren te Jammu Tawi, India

promotoren: prof.dr. D.C.A. Bulterman
prof.dr.ir. M.R. van Steen

promotiecommissie: prof. K. Nahrstedt
prof. K. Meyer-Patel
prof.dr.ir. H.E. Bal
prof.dr. R.D. van der Mei

Printed by: Ridderprint BV, Ridderkerk, The Netherlands

©2011 by Ishan Vaishnavi, Munich, Germany.
Contact: ishan.vaishnavi@gmail.com

All rights reserved. No part of this work may be reproduced by print, photocopy
or any other means without prior written permission of the author.

ISBN 978-90-5335-418-6

To Akshay and Ritwik...

vi

Acknowledgements

The year 2005 was one of great dilemma for me. I stood at the proverbial cross-roads
of deciding what I wished to do with life. Long discussions with members of a very
innocently named group “sister14”, my hostel mates from IIT, followed. It turned out
we all stood at the same point. All indecisive 20-something lads trying to figure what
the answer to life, universe and everything else would be for each of us. As in the Holy
Book1 it was not the answer but the question that we were looking for. The question,
as it turned out, was merely figuring out “What do you enjoy doing?” In my case this
was research.

It, however, took a lot of time and discussions and practical experiments to figure
the question out. For those long discussions over chai (and in most cases whiskey), I
thank the members of sister14 and in particular, Masti, Khanna, Guru, Chacha, Manki,
Bapu and Mulls. My gratitude to Aparna, for just being around and helping me identify
my personality. And most importantly, the work I did with Dr. Greg Bollella in Real
Time Java was the final nail that sealed the deal for research. Thank you Greg for
introducing me to the research world.

Within months of making my decision, I found myself sitting at an office at CWI
Amsterdam in presence of a friendly Spanish guy trying hard to make me feel welcome.
Little was I to know then that this Spanish guy, more officially called Pablo, was going
to form the main back bone of my entire time as a PhD student. Pablo was just always
there, irrespective of the time and irrespective of the problem, for the entire time as a
PhD student. I attribute more than half of what I now know in terms of research to

1Douglas Adams: Hitch Hiker’s Guide to the Galaxy

vii

Pablo. He also immensely helped in shaping my character to adapt to the needs of the
research environment.

Parallel to Pablo my advisor Prof. Dick Bulterman was almost always around.
Without his long term vision, direction and advice it would have been impossible to
get so far. At various points during the PhD his help was invaluable in improving my
ability to communicate ideas, both while presenting and in writing. I am also grateful
to Dick for introducing me to most of the other researchers who could help directing
me, in particular, Prof. Maarten van Steen, Prof. Klara Nahrstedt and Prof. Ketan M.
Patel. Thanks to each one of them for guiding me at various stages of my PhD. I would
also like to thank my review committee for their time and effort.

Professionally, the members of CWI’s SEN-5 research group are some of the best I
have seen. The experience and alertness of Jack both in technology as well as in table
tennis and the long discussions with Bo and Kees on just about every topic under the
sun kept my brain active on those dull rainy Dutch days. My gratitude goes to people
working at CWI as well. Susanne, Nada and Mike for helping me with everything
administrative. Aad, Maarten and Henk for their tremendous support in setting up all
my experiments.

During thesis years, the support of friends is of utmost importance, especially, their
ability to buy you beers when papers get rejected. Rodrigo and I shared the experience
of going through our PhDs together over beers, pool, football games, table tennis and
Fata Morgana kip sates sometimes joined by Pablo. Thanks to them for the beers and
to Rodrigo for losing all those pool and table-tennis contests. On a personal front,
Anna was there almost throughout my time as a PhD student. With her there was
always something to look forward to after work. I got to taste the real Dutch way of
life because of her. Without this, Amsterdam would not have been one of my favorite
cities and my PhD experience not as pleasant. I personally hold her responsible for all
inaccuracies in Dutch in the Nederlandse Samenvatting. Thanks for tolerating all the
kip gung paos that you were and will be forced to eat.

Without my family I would have been nowhere close to beginning a PhD. I thank
them for life in general. First and foremost my father who continues to inspire and
motivate me even today. His unending dedication towards me when I was younger
is unparalleled. It is under his ideals that I became as open-minded and adaptable to
situations as I am today. He was of-course complimented every step of the way by
my mother. She would always take my side in my arguments with my father and that
helped me a great extent in believing in myself. She was also the other end of the
horizon from the otherwise military discipline that my father could sometimes impose.
To Akshay and Ritwik I dedicate this thesis. They are and probably will be the dearest
people to me throughout my life. A big hug to Naniji for taking care of me during
my days at IIT and for feeding me all that deliciously cooked food. I wouldn’t have

viii

survived outside India without learning to cook tamatar oulu from her. Lastly, my
sister14 group is nothing short of a Band of Brothers. All these people are my identity
in life.

I would also like to express my gratitude to the Dutch government, in particular
NWO, for funding my work primarily under the Bricks consortium. My heart felt
dankjewels to the people of Amsterdam who make it such a special city to live in and a
special mention for the bicycle thief who made the experience genuine.

ix

x

Contents

Nederlandse Samenvatting 1

1 Introduction 5
1.1 Research Area . 7
1.2 Research Questions . 8

1.2.1 Time-Bounded Delivery . 9
1.2.2 Distributed Media Synchronization 11
1.2.3 User Mobility . 12
1.2.4 Time Synchronization . 12
1.2.5 Other Issues . 13

1.3 Contributions . 14
1.4 Organization . 19

2 Generic Architecture and State of the Art 21
2.1 Generic Architecture . 22
2.2 Multimedia Quality . 26

2.2.1 Quality of Service . 26
2.2.2 Bandwidth Adaptation . 29

2.3 Distributed Synchronization . 32
2.3.1 Media Synchronization Across Domains 35

2.4 User Mobility . 36
2.5 Time Synchronization . 37

xi

2.6 Summary . 39

3 Quality of Service: Estimated Service 41
3.1 Generic Test Scenario . 46

3.1.1 Test Network Setup . 47
3.1.2 Transport Protocol Used . 48
3.1.3 Bandwidth Adaptation Mechanism 50

3.2 Performance of Diffserv-EF in non-overprovisioned links 50
3.2.1 Setting up Diffserv EF - Short Queue Lengths 51
3.2.2 Results . 52

3.3 Estimated Service . 55
3.3.1 Theory . 56
3.3.2 Scheduling . 57
3.3.3 Estimation . 58
3.3.4 Implementation . 61
3.3.5 Results . 65
3.3.6 Connection Admittance and Scalability 66
3.3.7 Backward Compatibility and the Internet. 67
3.3.8 DCCP . 69
3.3.9 Overhead . 70

3.4 Summary . 71

4 Media Synchronization Over The Internet 73
4.1 Media Synchronization . 76

4.1.1 Signaling Architectures . 78
4.1.2 Execution . 79
4.1.3 Implementation and Validation 79

4.2 User Perception . 81
4.2.1 Setup . 82
4.2.2 Measurement Error Bounds 83
4.2.3 Results . 83

4.3 Summary . 86

5 User Mobility 89
5.1 Assumptions . 92

5.1.1 Architecture . 93
5.2 Presentation-Layer Continuity . 95

5.2.1 Presentation Adaptation Mechanism 95
5.2.2 Network Details . 97
5.2.3 Limitations . 101

xii

5.3 Implementation and Results . 101
5.4 Summary . 104

6 Time Synchronization: Accuracy in the NTP Network 107
6.1 Spidering . 108
6.2 Implementation . 110
6.3 Results . 110

6.3.1 Offset . 111
6.3.2 Dispersion . 112

6.4 Summary . 115

7 Conclusions 117
7.1 Summary . 119
7.2 Future Work . 123

7.2.1 The Future Internet . 123
7.2.2 QoS . 124
7.2.3 Media Synchronization . 124
7.2.4 Mobility . 125

7.3 Final Remarks . 125

A Measuring bandwidth usage with EUREKA 127
Abstract . 129
A.1 Introduction . 129
A.2 Related Work . 130
A.3 Eureka . 131

A.3.1 Nuttcp . 132
A.3.2 Hierarchical Token Bucket Queuing Discipline 132
A.3.3 Basic Methodology and Setup 133

A.4 Results . 134
A.4.1 Games . 134
A.4.2 Tele - Immersive Environment 138

A.5 Conclusions . 141

B Cross Domain Time Synchronization 143
Abstract . 145
B.1 Introduction . 145
B.2 Requirements and Related Work . 146

B.2.1 Requirements . 146
B.2.2 Related Work . 146

B.3 NeighbourCast Algorithm . 147

xiii

B.3.1 Time . 147
B.3.2 Packet exchange and Calculation Method 148
B.3.3 NeighbourCast Algorithm 149

B.4 NeighbourCast-NM (Non-Monolithic) 150
B.4.1 Media Priority . 150
B.4.2 Assumptions . 150
B.4.3 Algorithm . 151
B.4.4 Observations and advantages 152
B.4.5 Limitations . 153

B.5 Simulation . 153
B.5.1 Simulation setup . 153
B.5.2 Results and Analysis . 154

B.6 Conclusions . 157

xiv

Nederlandse Samenvatting

De afgelopen decennia zijn er applicaties verschenen waardoor het mogelijk wordt om
ervaringen met media play-out (media stream) met elkaar te delen. Dit kan middels
tekst/audio of video communicatie (communication stream). Voorbeelden van derge-
lijke applicaties zijn gedistribueerde online spellen (distributed games), Yahoo Zync
en recente producten zoals Boxee Box. Dit proefschrift analyseert de eisen die zogehe-
ten shared experiences (gedeelde ervaringen) stellen met betrekking tot synchronisatie,
alsmede de implicaties die deze eisen hebben voor de inrichting van het toekomstige
Internet. In vergelijking met traditioneel onderzoek naar synchronisatie, vereist onder-
zoek naar de synchronisatie van deze shared experiences enkele additionele elementen:
(i) ongehinderde communicatie tussen de gebruikers (ii) gedistribueerde media syn-
chronisatie en (iii) synchronisatie voor mobiele gebruikers. Wanneer het gaat over de
synchronisatie van shared experiences wordt in dit proefschrift gesproken over cohe-
rentie (coherence). De invloed van elk van deze additionele elementen op de inrichting
van het Internet wordt onderzocht, alsmede de invloed van elk van deze additionele
elementen op de shared experience applicatie.

Ten eerste, voor ongehinderde communicatie tussen gebruikers zijn kwaliteitsga-
ranties (ook wel garanties met betrekking tot quality of service, of QoS geheten) over
het Internet nodig. De inrichting van het huidige Internet is echter gericht op schaal-
baarheid en best mogelijke communicatie (best effort), en niet op QoS. De uitdaging is
dan ook om tijd-gegarandeerde communicatie (time-bounded delivery) over het Inter-
net te bieden en tevens haar gerichtheid op best mogelijke communicatie te behouden.
Deze twee doeleinden zijn per definitie conflicterend. De huidige aanpak met betrek-
king tot de zogeheten Differentiated service network architecture (Diffserv), lost dit

1

2

probleem op middels de creatie van een virtueel circuit-switched netwerk voor real-
time verkeer over het packet-switched Internet. Deze oplossing leidt echter tot het
verlies van een aantal voordelen van packet-switching, wanneer toegepast op real-time
applicaties. Specifiek, optimaal bandbreedte gebruik en schaalbaarheid raken verlo-
ren. Daarnaast behoort data van real-time applicaties tot het inelastic verkeer, dit in
tegenstelling tot elastic data verkeer gebaseerd op TCP. Dit betekent dat real-time ap-
plicaties, over het algemeen, hun bandbreedte behoefte niet zo gemakkelijk aan kunnen
passen aan variërende netwerk condities. Hierdoor ontstaat er behoefte aan een mecha-
nisme om van te voren connecties te regelen, voor die gevallen waarin het netwerk fors
belast dreigt te raken. Traditionele invalshoeken met betrekking tot connectiebeheer
(connection admitance), in het bijzonder RSVP, worden niet in staat geacht schaalbaar
genoeg te zijn om te kunnen functioneren in het huidige Internet. Het toegangsmecha-
nisme moet namelijk ook passen binnen de aanpak van best mogelijke communicatie
van het Internet. Dit proefschrift presenteert Estimated service (Estserv), een extensie
van de Diffserv architectuur. Estserv brengt de mogelijkheid voor real-time transport
over het Internet, middels het deadline-gebaseerd scheduling mechanisme. Experimen-
ten met Estserv, tonen een verbeterd bandbreedte gebruik in vergelijking met Diffserv,
terwijl tegelijkertijd de schaalbaarheid behouden blijft. Daarnaast wordt er een best
mogelijke connectie toegangsmechanisme gepresenteerd binnen de Estserv architec-
tuur. De werking van dit mechanisme wordt aangetoond door middel van verschillende
experimenten.

Ten tweede dient een applicatie voor shared experiences, gedistribueerde media
synchronisatie te waarborgen, gegeven het bestaan van ongehinderde communicatie.
Dit is nodig om in een consistente context van media stromen te voorzien om zodoende
de communicatie tussen gebruikers te faciliteren. Exacte synchronisatie is onmoge-
lijk te bereiken. Het is echter wel mogelijk om een systeem te ontwerpen waarin de
play-out van mediastromen binnen bepaalde grenzen blijft. De uitdaging hier is om
acceptabele grenzen vast te stellen. Met andere woorden, op welk punt begint een ge-
brek aan synchronisatie in de mediastroom de ervaring van de gebruiker in een shared
experience te beı̈nvloeden. De waarde van deze grens hangt van een aantal factoren
af, waaronder de applicatie zelf, de gebruikers en het soort mediastroom. In dit proef-
schrift zijn er gebruikersexperimenten uitgevoerd om deze grens vast te stellen voor
een specifieke applicatie. Om een dergelijk experiment uit te kunnen voeren is het
echter noodzakelijk dat er een werkend systeem is dat de mediastromen kan synchro-
niseren. Dit proefschrift analyseert eerder werk met betrekking tot het synchroniseren
van gedistribueerde online spellen applicaties. Deze applicaties waren de eerste syn-
chrone shared experiences over het Internet. Richtlijnen over hoe dit eerdere werk
toegepast kan worden op shared experiences in zijn algemeen worden in dit proef-
schrift besproken. Een voorbeeld implementatie wordt gegeven en de nauwkeurigheid

3

van de synchronisatie die bereikt wordt binnen deze implementatie is berekend. De
implementatie is getest met gebruikers in Amsterdam en Seoul. De bevinding is dat de
bereikte synchronisatie grens binnen de door gebruikers acceptabel geachte grens ligt.

Een derde eis voor coherentie is dat de shared experience zich synchroon met de
gebruiker moet verplaatsen. Synchrone verplaatsing betekent dat de staat van de shared
experience op de originele locatie consistent dient te zijn met de staat van de shared
experience op de doellocatie. Dit werk onderscheidt het verschil tussen zogeheten
state-full en stateless stromen. Specifiek, communicatiestromen kunnen gezien wor-
den als stateless (bijvoorbeeld, gesprekken via Skype hebben geen state), terwijl media
stromen state-full kunnen zijn (bijvoorbeeld, de state van een film is de laatst afge-
speelde scene). Een traditionele aanpak van verplaatsing van shared experiences neemt
deze verschillen niet in overweging. Daarnaast zal de traditionele aanpak het verzoek
tot verplaatsing van de shared experience in individuele media verplaatsing opbreken.
Doordat de shared experience opgebroken is, moet dezelfde verplaatsingsactie steeds
opnieuw ondernomen worden voor iedere afzonderlijke media stroom. Deze aanpak
wordt dan ook gekenmerkt door herhaling in de signalling plane en is daarmee inef-
ficiënt. Andere nadelen, zoals de onmogelijkheid om de optimale gebruikerservaring
te garanderen, worden eveneens besproken in dit proefschrift. Dit werk presenteert
een mechanisme dat de status van de state-full media items in de shared experience
opslaat. Dit gebeurt gezamelijk met de andere (stateless) items. Vervolgens wordt de
opgeslagen data getransporteerd en herstart de shared experience op de doellocatie.
Hierbij wordt de opgeslagen status opnieuw toegepast op de state-full media. Deze
manier heeft als voordeel dat de presentatie heronderhandeld wordt op de doellocatie,
waardoor een optimale gebruikerservaring geboden kan worden. De opgeslagen data,
gezamenlijk met de shared experience, wordt nu slechts eenmaal verplaatst, waardoor
herhaling in de signalling plane voorkomen wordt.

Als laatste, gaat een aantal oplossingen, gepresenteerd in dit proefschrift, uit van de
assumptie van variërende niveaus van tijd synchronisatie. Het algemene protocol voor
tijd synchronisatie op het Internet is het Network Time Protocol (NTP). Onontkoom-
baar is de vraag of de assumpties wat betreft tijd synchronisatie, die in dit proefschrift
gemaakt zijn, valide zijn. Dit proefschrift analyseert de bestaande NTP netwerken,
waarbij een aanpak, genaamd spidering, gebruikt wordt. Spidering is feitelijk een zoge-
heten breadth first zoektechniek, waarbij de actuele status van iedere knoop onderzocht
wordt. Zodra het gehele netwerk gescand is, kan een beeld gevormd worden over de al-
gemene status van het NTP netwerk. Onderzoeken, die in dit proefschrift gepresenteerd
worden, tonen aan dat meer dan 98 procent van de knopen in het NTP netwerk binnen
128ms van elkaar opereren. Ondanks het feit dat deze waarde acceptabel is voor oplos-
singen voor gebruikersmobiliteit en media synchronisatie, dient er meer werk gedaan
te worden om het vereiste niveau van tijd synchronisatie voor een niet-gemodificeerde

4

versie van Estserv te realiseren. Dit proefschrift presenteert daarom een oplossing om
Estserv in een on-gesynchroniseerde Internet omgeving toe te passen.

Concluderend, dit proefschrift beargumenteert dat het ontwerp van het huidige In-
ternet aangepast dient te worden, zodat synchrone shared experiences op een efficiënte
manier gefaciliteerd kunnen worden. Meer efficiënte QoS technieken, zoals Estserv,
die niet in strijd zijn met de basis principes van Internetcommunicatie, moeten ont-
wikkeld worden vanuit het huidige Internet. Daarnaast moeten alle ontwerpen van het
Internet zich verantwoorden over de manier waarop zij beheerd worden, zowel admi-
nistratief als economisch. Tijd synchronisatie mechanismen zouden inherent moeten
zijn aan het ontwerp van het toekomstige Internet. Hierdoor kunnen technieken, zoals
synchrone gebruikersmobiliteit en gedistribueerde media synchronisatie, gefaciliteerd
worden. Tot slot, worden er een aantal richtingen voor vervolgonderzoek besproken
die logisch voortvloeien uit dit proefschrift.

CHAPTER 1

Introduction

The convergence of synchronous communication, media broadcast and playback mech-
anisms on the Internet can create innovative forms of shared experiences. The prelimi-
nary steps towards such innovative shared experiences can already be seen in services,
such as Yahoo Zync. In Zync two users situated at different locations can watch a
YouTube video together while chatting. The play out of the videos at both ends is
synchronized. In this way Zync integrates instant messaging with video playback, en-
abling users to share their experiences about the video. A generic scenario, which
identifies with such shared experiences, consists of the following two features: primar-
ily, the users are connected to each other via an IP based network over which they can
synchronously communicate. This communication can be done via applications, such
as text messaging, audio or video conferencing or in the future 3D immersion [103].
The data sent over the network by these applications is named communication stream.
Secondly, the users consume on demand or broadcast media presentations, which can
originate from different sources depending on their service providers. Each of these
media presentations can be composed of a primary media stream and multiple sec-
ondary media streams. The play out of the primary media streams must be temporally
related across the participants, while the secondary streams may or may not have a
temporal relation with their respective primary stream. Figure 1.1 presents a network
abstracted, application level view of this scenario.

This combination of various communication streams over the Internet, with differ-

5

6 Introduction

Figure 1.1: Scenario as seen by the application

ent types of on demand or broadcast media presentations can be used to create inno-
vative shared experiences as shown in Figure 1.2. The figure demonstrates how newer
shared experience applications can be created by the combination of synchronous com-
munication with media streaming. Thus, using this definition for shared experiences,
as demonstrated in Figure 1.2, distributed games become the first shared experiences
to have existed over the Internet. However, to realize these yet to appear shared expe-
riences it is important that appropriate synchronization mechanisms exist. Compared
to traditional synchronization research, synchronization of shared experiences requires
additional elements. This work therefore adopts the term coherence when referring to
synchronization of these shared experiences.

Traditional media synchronization research refers only to orchestrating the play
out of within (intra-media) or across (inter-media) streams. Synchronization across
streams can further be classified on the basis of a number of factors, such as media
sources as shown in Figure 1.3. In addition to orchestrating media play out of the pri-
mary media streams across users, coherence also refers to the unhindered interaction
of users over the communication stream, in addition to the seamless motion of user
presentations to other devices or locations. If users cannot interact with each other then
there is little use of a distributed synchronization mechanism. It is in fact unhindered
user interaction that creates the requirement of distributed media synchronization. Fur-

Research Area 7

ther, the ubiquitous connectivity of newer devices at all times to the Internet will mean
that these sessions need to seamlessly move and adapt from one device to another and
from one network to another as the user moves.

Chat Video

Conferencing
Audio

Conferencing

3D Tele

immersion

Communication Streams

Single Player

Games

Internet Video

Broadcast and

On demand Video

Virtual

Models

M
e
d

ia
 S

tr
e
a
m

in
g

/
R

e
n

d
e
ri

n
g

S
in

g
le

 U
s
e
r

Virtual Worlds:

Second Life

Distributed

Gaming:

Age of Empires

Virtual Worlds:

Second Life

Virtual Gaming:

World of Warcraft

Yahoo Zync

Figure 1.2: Existing and yet to appear shared experiences

1.1 Research Area
The three identified elements of coherence impose a number of requirements on the
existing Internet: Firstly, the element of unhindered inter-user interaction places a re-
quirement of time-bounded deliveries of the shared experience stream. Secondly, the
element of orchestration of play out of the primary media stream across locations places

8 Introduction

a requirement of the existence of a distributed media play-out synchronization on the
Internet. Lastly, the element of user mobility requires that when users change their
location they must be able to restart their presentations optimized to the new location
and in the same state as they left it. It is a widely held opinion that the current Internet
cannot support all these demands efficiently. This is demonstrated by various projects
that have recently started to appear on designing the new Internet: NetSE1 is the USA,
in Japan AKARI2, Program Future Internet3 in Korea and a proposal of future Internet
architectures [93] by the European Commission. This leads to the question:

Main Question: What is the design for the future Internet that can provide efficient
technical support to coherence in new shared experiences, while sustaining the scala-
bility and maintainability of the existing network?

The designs conceived in the projects mentioned above are broadly split into two
categories: revolutionary or clean slate architectures and evolutionary architectures.
It is a widely held opinion that no successful approach can be completely clean slate
owing predominantly to economic factors. This work, thus, also adopts an evolutionary
approach to future Internet design.

In the next section the main question is split into a number of sub questions based on
the previously identified requirements on the Internet, namely: time-bounded delivery,
distributed media synchronization and user mobility. The questions related to these
areas form the main focus of this thesis. Other complementary issues which are not
directly addressed in this work are presented in section 1.2.5. The contributions of this
work towards these sub questions are highlighted in Section 1.3. This is followed by
the organization of this thesis is Section 1.4.

1.2 Research Questions
The previous section enlisted three main requirements that coherence in shared expe-
rience would impose on the Future Internet: time-bounded delivery, distributed media
synchronization and user mobility. In addition distributed media synchronization will
internally require time synchronization. The key research questions emerging from
each of the three requirements, further supplemented by questions due to the require-
ment of time synchronization, are presented in the following subsections.

1www.geni.net/netse about.html
2akari-project.nict.go.jp/eng/overview.htm
3mmlab.snu.ac.kr/fiw2007/presentations/architecture tschoi.pdf

Research Questions 9

Figure 1.3: Overview of media synchronization research

1.2.1 Time-Bounded Delivery
The communication streams such as conferencing streams require time-bounded de-
livery, with bounds of the order of 150ms, for coherence in shared experiences. The
future Internet must stay best effort and therefore these bounds cannot be guaranteed.
However, the architecture can be made more efficient. Time-bounded delivery, also
referred to as real-time delivery, falls in the traditional field of multimedia delivery
research: quality of service (QoS). The current state of the art in quality of service ar-
chitectures, differentiated services [36](Diffserv), provides service class differentiation
of packets based on the required quality of service. For time-bounded delivery its expe-
dited forwarding(EF) class provides the highest priority over all other service classes,
with the assumption of over-provisioning. This thesis looks at the efficiency, in terms
of bandwidth utilization, of this architecture and examines how it can be extended to
the future Internet. The research questions are:

Research Question 1.1 How efficient is the Diffserv network towards communication
streams, such as video conferencing, in networks that are not overprovisioned?

10 Introduction

This assumption of over-provisioning cannot always be practically ensured. This
is especially true across cross-domain links and in the face of bandwidth heavy com-
munication applications, such as video conferencing and 3D immersion [69]. Thus for
practical usability the performance of all QoS architectures must be studied in links
which are not overprovisioned. In fact the assumption of sufficient and overprovi-
sioned links in the design of Diffserv serves in effect as a deterrent to its acceptance.
This is because QoS mechanisms are unimportant to administrators of overprovisioned
networks and non-overprovisioned networks violate the assumption. The in between
sweet spot is hard to find in practical networks. Further, newer applications such as high
definition video conferencing and 3D tele-immersion use large and varying amounts
of bandwidth. Over provisioning becomes an unreasonable assumption for these large
bandwidths. It is therefore important to examine how Diffserv performs over under-
provisioned links.

Research Question 1.2 How can Diffserv-EF be extended to ensure efficient behavior
of the future Internet in links that are not overprovisioned while maintaining scalability
provided by the Diffsev architecture?

Efficient behavior here means that if, say, 5Mbps of bandwidth is available to an
under-provisioned link then all of that 5Mbps is actually utilized to send data to achieve
the best possible quality for the communication stream in the shared experience. The
loss of throughput due to congestion control, flow control, reliable delivery and ap-
plication level bandwidth adaptation mechanisms is well understood [22, 67]. These
mechanisms are however, the lifeline keeping the Internet running today and cannot be
wished away. The idea is to try to provide a QoS infrastructure within the Diffserv ar-
chitecture, such that these mechanisms do not result in underutilization of the available
bandwidth.

Research Question 1.3 Is it possible to provide connection admittance control in the
future architecture, while still maintaining scalability provided by the Diffsev architec-
ture?

Efficient utilization, however, is not enough to ensure a good quality of experience
to users. For example: 500 video conferencing connections through a 5Mbps link re-
sult in 0.01Mbps per-connection. Even though the entire capacity of the link may be
utilized, the user experience of the quality of communication stream will not be satis-
factory. Prior to Diffserv, Integrated services architecture [8](Intserv) was proposed to
ensure end-to-end time-bounded delivery. Due to scalability and economic issues [3]

Research Questions 11

Intserv has not been widely accepted. The Intserv architecture also provided a connec-
tion admittance mechanism, which was based on each router being successfully able
to calculate a specific time for the delivery of data packets of the requested connection.
Such an architecture cannot be used in the future Internet since it is not best effort.
Best effort delivery is considered to be the single most salient feature responsible for
the scalability and therefore the success of Internet today. In an evolutionary approach,
thus, at no point must a router have to create persistent memory structures or queues on
a per-connection basis. Thus an innovative approach is required, which automatically
informs the requesting client application that a connection is infeasible.

1.2.2 Distributed Media Synchronization
Media synchronization is important for coherence. Research in this area has so far
primarily focused on synchronization of streams to a single client. This includes both
intra-media synchronization and certain types of intermedia synchronization. Intra-
media synchronization refers to the temporally correct play out of parts of a stream
itself, such as the play out of frames of a video. Inter-media synchronization to a single
client refers to the correct play out of related streams, such as lip synchronization [57]
between audio and video stream of a movie. Distributed synchronization, where media
streams across multiple clients need to be orchestrated are less studied, in particular in
cases where no assumption on the media sources is made. This is shown in Figure1.3.
This thesis examines how newer shared experiences can readapt the synchronization al-
gorithms that have existed in older shared experiences, in particular distributed gaming
Figure 1.2. The questions are:

Research Question 1.4 What levels of distributed play out synchronization does a dis-
tributed media system need to achieve?

Studying distributed media synchronization for future shared experiences as in Fig-
ure 1.2 is incomplete, without first knowing the required level of synchronization ac-
cording to user perception. This question has not previously been studied in research.
Currently, as a rule of thumb of 150 - 200ms is assumed. This value emerges from lip
synchronization [57] and communication industry research.

Research Question 1.5 Can event synchronization, as used in gaming, be extended to
synchronize user actions and to achieve distributed media play out synchronization in
synchronous shared experiences?

User actions such as “pause”, “play” or “jump to scene” should be executed across
all participants in a synchronized manner. Figure 1.2 shows that shared experiences

12 Introduction

include distributed gaming. Distributed games over the Internet have existed and been
successful for about little over a decade. Just as all future shared experiences, dis-
tributed games too require distributed synchronous play out of the game. In the gaming
community this is termed event synchronization. The concept of event synchronization
is that user actions (events) performed at one location of the game must execute si-
multaneously at all other participating users for the game to be fair. It should then be
possible to use the same algorithms, as used in games for event synchronization, to
synchronize user actions in future shared experiences. Further, by classifying play-out
position update packets as periodic pseudo user events it should also be possible to
achieve distributed media play out synchronization using the same algorithms.

1.2.3 User Mobility
Another aspect of providing coherent shared experiences is synchronous user mobility.
User mobility refers to the capability of the system to move the user’s presentation in
a synchronized manner between two locations. Here synchronization means that the
users can retrieve their media presentations in the same state as they left them, and
adapted to the new context. It is different from session mobility in which the user
may stay in the same environment and move only one session of the presentation to
another device. Traditionally user mobility is achieved as a composite functionality of
the comprising sessions’ mobility as in [14], using SIP-refer [82]. This is inefficient in
the signaling plane since it involves the repeated execution of almost identical session
mobility requests. The question then arises:

Research Question 1.6 Can user mobility be more efficient in the signaling plane,
than being considered as a collection of individual session mobility request?

This SIP based session mobility mechanism is intended for communication streams
so that the call need not be dropped. However, for media presentation mobility more
coordination between devices is required to transfer state information, which does not
exist in conferencing-like real-time applications. Furthermore, this mechanism is inef-
ficient in the control plane as the presentations in the future shared experiences become
more complex. Each and every session needs to be renegotiated to the new user context
and transformed accordingly. Thus, a new mechanism for user mobility is required.

1.2.4 Time Synchronization
Distributed media synchronization mechanism assumes time synchronization. The
question then arises:

Research Question 1.7 How accurate are the clocks synchronized using NTP?

Research Questions 13

As mentioned above time-bounded delivery can never be guaranteed in best effort
future networks. In such cases validation of play out position update packets requires
that the different participating nodes speak of the same time-stamps. It is then impor-
tant to examine the efficiency of the existing solution for time synchronization in the
Internet, Network Time Protocol [60]. Previous similar surveys, conducted about two
decades ago on the performance of NTP [61], [68] found that over 95% of the nodes
in the NTP network are within 128ms of each other. The surveys also found that level
1 servers are heavily loaded with in some cases up to 30000 computers connecting to
a single server. The aim of this survey is to update the time synchronization accuracy
results for the current network. Further, a number of existing devices may not have the
capability to run NTP, we also examine what other alternatives exist in such cases.

1.2.5 Other Issues
This section presents other related issues of future shared experiences, which are, for
various reasons, not handled in this thesis.

Reliable Delivery of the primary and secondary media streams is required for the
shared experiences to be meaningful. Transmission control protocol, TCP, is the main-
stay of the Internet since its inception. TCP provides best effort, yet reliable, end-to-end
transfer of data. TCP is well studied in literature, has stable implementations in all op-
erating systems and provides reliable delivery. Thus, TCP will continue to be a part of
evolutionary future Internet architectures. While this reliable delivery is important it is
not critical to provide coherence to shared experiences. Instead, distributed synchro-
nization mechanisms have to account for buffer underflow, overflow or loss in delivery
conditions of the primary and secondary streams.

Causality is the knowledge of the correct chronological order of actions. It is re-
quired by shared experiences to maintain correct ordering over the distributed events
and is very important for coherence. In a distributed system causality is trivial to
achieve if absolute time synchronization can be achieved. However, due to the phe-
nomenon of time dilation we know that absolute time synchronization is a theoretical
impossibility. This of course implies that absolute causality cannot be achieved.

A good approximation is however possible. Each physical system is limited within
certain discrete blocks of time within which the correct order of events is impercepti-
ble or unimportant, including the human brain. Mathematically, if events P1 and P2

happen in between time t1 and t1 + δ then, for each perceptual system there exists a ψ,
such that ∀δ < ψ, the correct chronological ordering over P1 and P2 cannot be seen by
the system. Thus, if P1 and P2 happen within ψ we can say that P1 and P2 happened at
the same time. If a distributed system can be time synchronized to within γ << ψ then
an approximate order over these events can be achieved by assuming all events that

14 Introduction

happen within ψs of each other to have happened together. This principle is behind the
design of time triggered architectures [53] where all nodes in a distributed system will
send out a status report/ position update every ψs intervals at the same time. The values
of the system in between these updates is calculated using dead-reckoning and conflicts
need to be resolved using the application logic at higher layers. The assumption is that
the systems are synchronized to within γ << ψ. All events that have occurred be-
tween consecutive events are said to have occurred at the same time. Causality is thus
well understood in literature and the principle of time-triggered architectures is used in
systems from air traffic radars to embedded system design and thus not addressed by
this work.

Synchronous relations of secondary streams with the primary stream needs to be
expressed and executed accordingly. These synchronization relations can be expressed
in descriptive languages, such as SMIL4 or NCL [86] and executed using compatible
players, such as Ambulant5. These relationships affect the coherence of a single user
more than the overall coherence of the shared experience, and thus are considered out
of the scope of this thesis.

1.3 Contributions
In the last section we identified the seven main questions this thesis addresses. Ques-
tions 1.1, 1.2, 1.3 relate to time-bounded delivery of the communication stream and
are handled in Chapter 3. To answer Question 1.1 this thesis in Chapter 3 examines
the bandwidth efficiency of real-time transmission in Diffserv in experiments over a
replicated edge router setup, using a video conferencing application. The experiments
show that the real-time links using Diffserv can underutilize available provisioned
bandwidth. The future Internet must then ensure efficient behavior of the network
even when not overprovisioned. Which in essence is Question 1.2. Chapter 3 further
presents Estimated Service, an adaption of the deadline-based scheduling mechanism
to multi-hop networks that extends the differentiated networks framework. Using this
deadline-based scheduling mechanism we demonstrate an improved bandwidth utiliza-
tion, while maintaining end-to-end delays, over under-provisioned Diffserv Expedited
Forwarding (EF) [19] links in an Estserv network over the traditional Diffserv archi-
tecture. The experiments are performed using traffic performance generation and mea-
surement tools as well as the video conferencing applications over a controlled net-
work. This work is then extended to the current Internet with similar results. Lastly,
regarding Question 1.3, a best effort mechanism for connection admittance using the

4http://www.w3.org/AudioVideo
5http://www.ambulantplayer.org/

Contributions 15

User Event
Transmission

Display

Event

Execution

Node 1 Node 2 Node 3

enqueue event

to execute at

(t + t')

enqueue event
to execute at

(t + t')
enqueue event
to execute at

(t + t')t + t'

t

Execution without local lag

Execution with local lag

Figure 1.4: Figure demonstrating the concept of local lag algorithm

estimation mechanism is presented. The work presented in Chapter 3 consists of ex-
tracts from the following publications:

• Ishan Vaishnavi, P.S. Cesar, Dick C. A. Bulterman, Oliver Friedrich, From IPTV

16 Introduction

Services to Shared Experiences: Challenges in Architecture Design. Proceedings
of the IEEE Conference on Multimedia and Expo, in IWITMA 2010, Singapore.

• Ishan Vaishnavi, Dick C.A. Bulterman. Estimate and serve: scheduling soft real-
time packets for delay sensitive media applications on the Internet. June 2009,
NOSSDAV ’09: Proceedings of the 18th international workshop on Network and
operating systems support for digital audio and video.

The next two questions 1.4, 1.5 refer to distributed media play out and are handled
in Chapter 4. Responding to Question 1.4 requires that some implementation of a
synchronization algorithm exists, which in essence is Question 1.5. Thus in Chapter
4 a temporary and static mechanism for achieving media synchronization in a given
environment is described. This system is validated to be accurate within 150ms. Thus
using this system with regards to Question 1.4, Chapter 4 reports on results of user
tests conducted to determine the extent of user tolerance to out of sync videos while
audio conferencing or text chatting with each other using this implementation. With
regards to Question 1.5 the problem with implementing event synchronization is that
in a distributed system events will always take a finite time to travel from one location
to another, and therefore cannot be perfectly simultaneous. During this elapsed time
various actions may occur at the other end, which may conflict with the original events.
For distributed games this problem has been addressed by a technique called local lag
and time warp [59]. Figure 1.4 demonstrates this technique. When the user performs
an action at one end, it is not executed simultaneously at his end. Instead each event
is associated with a global execution time stamp in the future tnow + test, where test

is the worst-case network delay estimate to other participating nodes. This technique
tries to ensure that almost all nodes receive the event before being executed. The same
concept can be extended to other forms of user interaction with distributed media. In
particular the work demonstrates how in distributed media presentations user actions
such as “pause”, “play” or “jump to scene” can be executed across all participants
in a synchronized manner. Further, by classifying play-out position update packets
as periodic events, Chapter 4 shows how distributed media synchronization can be
achieved using this event synchronization infrastructure. An implementation of this
synchronization algorithm is presented. Chapter 4 contains extracts from the following
documents

• I. Vaishnavi, , P. Cesar, O. Friedrich, S. Gunkel and D. Geerts. From IPTV
to Synchronous Shared Experiences: Challenges in Design: Distributed Media
Synchronization. Accepted for publication in Elsevier Journal of Signal Process-
ing: Image Communication, 2011.

• D. Geerts, I. Vaishnavi, R. Merkuria, P. Cesar, and O. van Deventer. Are we

Contributions 17

in Sync? Synchronization Requirements for Watching Online Video Together.
Accepted for publication at CHI 2011, Vancouver.

Work done in Chapter 4 also contributed to IETF draft:

• H. Stokking, M. van Deventer, O. Niamut, F. Walraven, R. van Brandenburg, I.
Vaishnavi, F. Boronat, M. Montagud. RTCP-XR block type for inter-destination
media synchronization. IETF Draft, 2011

Both Estimated service and the synchronization algorithm assume clock synchro-
nization. As mentioned in Section 1.2.5, to align with the principles of time triggered
architectures [53] the upper bounds on the errors in time synchronization, γ, must be
much less than the required perception, ψ. We know that for time-bounded delivery
the value of ψ is 150ms [46], while for distributed media synchronization ψ is mea-
sured by the user tests. The accuracy of time synchronization must be guaranteed to be
within 20ms. This raises Question 1.7 which is handled in Chapter 6. This thesis in
Chapter 6 surveys the health of today’s NTP network similar to the surveys [61], [63].
These surveys were performed about twenty years ago. Since then a lot has changed in
the network and even with NTP. Thus a more recent survey is beneficial. The results of
our survey demonstrate that 60% of the nodes in the NTP network are within 20ms of
each other. This implies that the Internet of today can be synchronized to a reasonably
high level of accuracy provided the nodes are properly administered.

Lastly with regards to Question 1.6 in Chapter 5, recognizing the one to one associ-
ation of presentations with users leads us to propose a presentation layer mechanisms
for user mobility. The idea is to store user’s current presentation state in a descrip-
tive language, such as SMIL, on the service provider’s server when the user indicates
he wants to move from one location to another. At the new location this session is
retrieved, and various optimization decisions on device, network, user context are per-
formed. Then the last saved state is retrieved from the stored file and applied to this new
connection, thereby restoring the old session. In this way the presentation is already
optimized to the new context while preserving synchronous user mobility.

This method helps in re-negotiating all the QoS and synchronization requirements
presented above at the new location independent of the previous location, which could
not be done with session mobility. This improves performance, does not require addi-
tional implementation overhead and provides better user experience. The chapter is an
overview of the following publications:

• I. Vaishnavi, P. S. Cesar, A. J. Jansen, B. Gao, Dick C. A. Bulterman. A pre-
sentation layer mechanism for multimedia playback mobility in service oriented
architectures. December 2008, MUM ’08: Proceedings of the 7th International
Conference on Mobile and Ubiquitous Multimedia

18 Introduction

• Pablo Cesar, Ishan Vaishnavi, Ralf Kernchen, Stefan Meissner, Cristian Hes-
selman, Matthieu Boussard, Antonietta Spedalieri, Dick C.A. Bulterman, Bo
Gao.Multimedia adaptation in ubiquitous environments: benefits of structured
multimedia documents. September 2008, DocEng ’08: Proceeding of the eighth
ACM symposium on Document engineering

• R. Kernchen, K. Moessner, P. Cesar, I. Vaishnavi, S. Meissner, M. Boussard, C.
Hesselman, Intelligent Multimedia Presentation Delivery in Ubiquitous Multi-
Device Scenarios. IEEE MultiMedia (IEEE MM), 17(2), April-June, 2010.

There are three other supporting contributions required for the completeness of
this thesis. Firstly, in Chapter 2 the thesis explains a generic architecture for shared
experiences in detail. Second, as a supporting contribution to Chapter 3, an efficient
bandwidth measurement methodology is reported in Appendix A. Third, as a support-
ing contribution to Chapter 4, a distributed time synchronization algorithm is presented
in Appendix B. This algorithm, called neighbourCast, handles cross-domain time syn-
chronization cases for shared experiences where one or more of the user is unable to
access an NTP server. These peripheral issues are also presented in the following pub-
lications:

• Ishan Vaishnavi, P.S. Cesar, Dick C. A. Bulterman, Oliver Friedrich, From IPTV
Services to Shared Experiences: Challenges in Architecture Design. Accepted
for Publication in IWITMA 2010, Singapore.

• Ishan Vaishnavi, Ahsan Arefin, Dick C. A. Bulterman, Klara Nahrstedt, Raoul
Rivas, Eureka: A Methodology for Measuring bandwidth usage of networked
games, environments and applications. Proceedings of International Conference
on Multimedia and Expo 2010, Singapore.

• Ishan Vaishnavi, Dick Bulterman, Pablo Cesar, Bo Gao. Media Presentation
synchronization for Non-monolithic Rendering Architectures. December 2007,
ISMW ’07: Proceedings of the Ninth IEEE International Symposium on Multi-
media Workshops.

In conclusion, this work argues that the design of the existing Internet has to evolve
further to facilitate the acceptance of synchronous shared experiences in an efficient
manner. More efficient QoS techniques, such as Estimated service presented in this
thesis, that do not violate the best-effort principles should be evaluated and accordingly
deployed on the existing Internet. Further, all designs for the Internet must account for
the way it is managed, both, administratively and economically. Time synchroniza-
tion mechanisms should be inherent to the design of the future Internet to facilitate
synchronous user mobility and distributed media synchronization mechanisms.

Organization 19

CHAPTER 1
Introduction

CHAPTER 4
Media

Synchronization

CHAPTER 3
Quality of Service:
Estimated Service

CHAPTER 6
Time Synchronization

CHAPTER 5
User Mobility

CHAPTER 2
Generic Architecture

and SOA

CHAPTER 7
Conclusions

Figure 1.5: Organization of the thesis

1.4 Organization
Figure 1.5 shows the overview of the organization of the chapters. The next Chap-
ter presents the generic architecture of synchronous shared experiences. Therein high
level components are identified and their responsibilities, in terms of the questions pre-
sented in this chapter, are specified. We identify four main topics: quality of service,
distributed media synchronization, user mobility and time synchronization. As can be
seen in Figure 1.5, Chapters 3 through 6 deal precisely with these with these four top-
ics, individually. Each of these four chapters answers the respective questions assigned
to it. A brief summary section is presented at the end of every chapter to highlight
its contributions, with regards to the questions identified in this chapter. Chapter 7
summarizes all the results of this work, presents future opportunities in the area of syn-
chronous shared experiences, and finally presents some personal concluding remarks.

20 Introduction

CHAPTER 2

Generic Architecture
and State of the Art1

This chapter presents a conceived generic architecture for synchronous shared expe-
riences used in this thesis. A synchronous shared experience for the purposes of this
work is defined as a media experience shared between geographically distributed users
communicating with each other synchronously. Application and network level views
for synchronous shared experiences are represented in Figure 2.1. The figure goes a
step further than the integration of the user’s home network to the public Internet as
presented in [66]. This chapter defines an architecture that is used throughout this the-

1Part of the work done in this chapter is published in

• I. Vaishnavi, P. Cesar, D. C. A. Bulterman, and O. Friedrich. From iptv services to shared expe-
riences: Challenges in architecture design. Proceedings of IEEE Conference on Multimedia and
Expo, 2010.

• R. Kernchen, K. Moessner, P. Cesar, I. Vaishnavi, S. Meissner, M. Boussard, C. Hesselman, In-
telligent Multimedia Presentation Delivery in Ubiquitous multiDevice Scenarios. IEEE Journal of
MultiMedia, 17(2), April-June, 2010.

• C.Hesselman, Daniele Abbadessa, Wouter van der Beek, Daniel Gorgen, Keir Shepherd, Sander
Smit, Mark Gulbahar, Ishan Vaishnavi, Josip Zoric, Dietwig Lowet, Robert de Groote, John O Con-
nell, Oliver Friedrich. Sharing Enriched Multimedia Experiences across Heterogeneous Network
Infrastructures. Published in IEEE Communications Magazine, Volume 48 Issue 6, June 2010 .

21

22 Generic Architecture and State of the Art

sis to help achieving the requirements for coherent synchronous shared experiences,
namely: an efficient quality of service over the communication stream, distributed syn-
chronization of the media experience, the capability of users to move from one device
to another, and time synchronization. Components within this architecture are identi-
fied with various responsibilities towards achieving coherence. To further clarify these
responsibilities, this chapter reviews the current state of the art in each of the require-
ment areas. It identifies relevant shortcomings that lead to the questions of this thesis.

The challenges to achieve coherence can be highlighted using Figure 2.1. The fig-
ure firstly draws attention to the communication streams, which travel through various
domains across the Internet and require meeting the 150ms end-to-end deadline. There-
fore these domains must agree on common QoS semantics such as those provided by
the differentiated service architecture [36]. Further, even though the service and con-
tent providers for the TV service may be different than the one for mobile service, they
still need to achieve distributed media synchronization over the relevant media streams.
Lastly, to give the user a feeling of continuity, when the user leaves one domain and
joins the other his presentation must move between these domains in a synchronous
manner. An example of such a move can be from a cable network to a 3G domain.
Lastly, a time-synchronized Internet is important for these operations.

In this chapter our client architecture is presented in Section 2.1 that helps meet
these challenges. The section explains the functionality of the various important com-
ponents of our architecture. The relevant portions of this architecture will be re-
referenced later throughout this thesis. The Section 2.2 through 2.2 then identify the
state of the art of the various requirements for coherence and how they influence the
architecture. Section 2.6 then presents a brief summary of the chapter.

2.1 Generic Architecture
Our generic architecture for shared experiences is shown in Figure 2.2. It includes a
number of servers (session, presence, and media servers). Just two cross-domain clients
are shown for clarity. A number of needed blocks have deliberately been skipped (e.g.,
conditional access) in order to better scope our contribution. Each client includes a
number of major components: the parent renderer, the session manager, the media
(primary/secondary) content renderer, the shared experience renderer and the synchro-
nization agent. Two of the software enablers, the synchronization agent and the parent
renderer, must be implemented in-house. The rest are plug-able and can be provided
by the appropriate (other) service providers, as far as they conform to the interface
required by the parent renderer and the synch agent. As part of this work one such

Generic Architecture 23

3G Provider

Network

3G Network

Media

Servers

CABLE

Provider

Network

User 1 User 2

User 5User 4

User 3

Gateways

 Primary Media

Stream (Optional)

Communication

Stream

Actual Physical

Connections

High Level View

Internet

Physical View

Figure 2.1: Network and application level views

interface was defined within the iNEM4u project2. Each of these software components
has a certain set of responsibilities as discussed in the following paragraphs.

2www.inem4u.eu

24 Generic Architecture and State of the Art

Figure 2.2: A generic architecture for shared synchronous experiences

The parent renderer, in Figure 2.2, is the overall composite renderer that manages
and provides user interface/interaction. It is, firstly, responsible for the final dynamic
layout of all the media elements and communication streams that compose the shared
experience. This may depend on a number of factors, such as screen size, and resolu-
tion depth. The parent renderer is also responsible for automatically handling media
priorities. For example, prioritizing an incoming call over an existing video playback.
The parent renderer may use initiatives in structured content modeling such as SMIL3

and MPEG-4 [73] to express these complex intermedia relationships. Structured con-
tent modeling provides a high-level set of constructs for describing the temporal and
spatial relationship of the elements, allowing for efficient content control and adapta-
tion mechanisms. A recent further extension provided in [49] was the concept of a state
of presentation. While this is not directly relevant to the work done in this thesis, it is
nonetheless utilized later in Chapter 5 for synchronized user mobility.

The session manager’s role is more than that just of a presence client. Besides pres-
ence, it maintains the other media content and shared session details. It must also be

3http://www.w3.org/AudioVideo

Generic Architecture 25

cross-domain identifiable, i.e. accessible throughout a generic API providing interfaces
for multiple protocols as SIP. It also acts as mediator between users from different net-
work domains (e.g. managed Telco IPTV and Over-The-Top Portals) and allows them
to share contents transparently of their access network or use various video-streaming
standards. Sessions for shared experiences extend the basic multimedia session con-
cepts towards a multiuser, multicontent approach. One such solution is the iSession
[34], which provides a logical representation of interactive multimedia sessions that
span across multiple domains. An iSession contains all the information that is required
by a client to connect to an existing session and to replay an archived session. It in-
cludes information on the services and the content that are consumed and on the users
who participate in the session. It also contains metadata information that may be re-
quired for synchronization of media streams across domains and layout information to
create a common experience at the parent renderer across devices. While the session
description is domain-independent, clients use domain-specific technology to establish
connections to the content sources that are described in the session description.

The media content renderer is a plug-able component such as an IPTV service
client, an RTSP client or Internet Video client. It is responsible for handling the pri-
mary media stream in accordance with the synchronization agent’s control. The shared
experience renderer is responsible for rendering the shared session stream and is a plug-
able component provided by the shared session service, such as, the Skype client for
video/audio conferencing.

The synchronization agent is responsible for a distributed synchronous play-out of
the media stream in accordance with the communication stream. This may involve
maintaining time synchronization, synchronized play-out of the media content across
the network and provide synchronous user mobility in cooperation with the session
manager. It is the component responsible for coherence of the shared experience.

Further, each component is responsible for maintaining the QoS semantics of re-
spective data. For example, the synchronization agent must mark the synchronization
position updates presented later in Chapter 4 as control, while the shared experience
renderer must mark its data packets as requiring real-time transmission, and the media
renderer must mark its data for reliable delivery.

Coherence over this architecture requires: (1) Efficiency while providing QoS to the
communication channel, the media play-out and the control messages, (2) Synchronous
play out of the shared multimedia content and (3) restoration of user content in case
of user or device mobility. The following sections study each of these requirements
and how they relate to the architecture in more detail. The shortcomings in the relevant
state of the art are presented to highlight the questions raised in Chapter 1. This thesis
will address the questions raised in each one of these requirements in their respective
chapters, culminating in an overall discussion in Chapter 7.

26 Generic Architecture and State of the Art

2.2 Multimedia Quality
Research in media quality has broadly been divided into two distinct and partly exclu-
sive fields: network based quality of service (QoS) mechanisms and bandwidth adap-
tation mechanisms. While network QoS research has focused on providing end-to-end
service guarantees, bandwidth adaptation mechanisms have focused on achieving the
best possible performance under the given network circumstances. This section focuses
on the work done in the network research. We argue that one of the major reasons in
the lack of wide scale acceptance of network based QoS solutions stem from the fact
that interoperability between bandwidth adaptation mechanisms and network mecha-
nisms. This is because each treats the other as a black box and their interoperation has
not been taken into consideration in either of their designs.

2.2.1 Quality of Service
The QoS guarantees required by our architecture can be split into three different cat-
egories. The QoS guarantees required by the (1) communication stream, (2) media
content and the (3) control flow including synchronization control messages presented
later in Chapter 4. Each has different requirements.

For communication streams, the QoS guarantees depend significantly on the shared
experience itself. While conferencing-like applications require immediate time-bounded
delivery, chat-like applications require reliable causal delivery. In this thesis we focus
on conferencing-like applications, which include audio conferencing, video confer-
encing and 3D tele-immersion [69]. The idea of conferencing-like distributed shared
experiences is to be able to feel like you are in the same physical space. This means
that every action that a user makes at one end must appear immediate to the other
users. From a network designer’s perspective this implies immediate delivery of ac-
tions. However, how fast is immediate? A value of 150ms is used in communication in
the telecom industry and is considered appropriate here [46]. These values have been
verified by user studies such as [21].

In the early 90s the integrated services architecture was designed to achieve end-
to-end delay predictability. Intserv [8] aims to achieve hard RT characteristics over the
Internet traffic by restricting excess traffic and policing the accepted traffic. Intserv has
not been widely deployed due to economic, maintenance and scalability issues [3]. An
understanding of Intserv concepts, in particular connection admittance, is important
for the purposes of this thesis. Intserv recommended the resource reservation protocol,
(RSVP) [99] to reserve resources along an optimal path before the connection could
begin. If it is not possible to reserve these required resources along the complete path
then the connection is said to have been rejected by the network. Thus each new con-
nection is required to pass through a connection admittance round before it was allowed

Multimedia Quality 27

to transmit data onto the network.

THE INTERNET

DIFFSERV

DOMAIN

ACCESS

NETWORK

ER

ADSL/

CABLE

Router

ER

ER

Non Diffserv

DOMAIN

Other

DIFFSERV

DOMAIN

ER

Other

DIFFSERV

DOMAIN

ER

CR
CR

CR
CR

ER

Non

DIFFSERV

DOMAIN

ER

Other

DIFFSERV

DOMAIN

ER

ER

ER

ACCESS

NETWORK

ADSL/

CABLE

Router

ERER

ACCESS

NETWORK

ADSL/

CABLE

Router

ER

ER

ER

ER

ER

ER

ER

ER

Figure 2.3: Internet architecture: ER = Edge Router, CR = Core Router

The current standard for providing these QoS guarantees is the Differentiated Ser-
vice networks architecture [36]. Differentiated networks work by classifying packets
into behavior classes, known as per hop behaviors. The classification is based both on
business as well as technical models. From a business perspective, this classification
helps ISPs charge users (or other ISPs) based on the type of service they require while
on the technical side it splits the networks into distinct unrelated parts that are easier to
manage. This is explained in what follows.

The current Internet is split into domains show in Figure 2.3. Typically each of
these domains is maintained by a company or a public institution and is connected to
other domains or access networks via edge routers (ER). The wireless/ADSL network
at our homes is an access network. This classification, while making maintenance eas-
ier, also creates a number of business and technical issues. From a business viewpoint,
domains that are connected to each other, need to negotiate service level agreements
(SLA). Thus, for example, a user, say Caroline, has a service level agreement with an
ISP to provide (say a) 5 Mbps connection to her home. The system administrators at
the ISP will configure the edge router in their domain to police the incoming traffic to
ensure Caroline does not use more than 5Mbps. Further, the ISP will negotiate a SLA

28 Generic Architecture and State of the Art

with other domains they are connected to, based on estimates on aggregates from other
existing or expected users. These estimates may of course be incorrect or financially
infeasible for the ISP. Thus, even if the networks continue to become faster at the core
router (CR Figure 2.3) many business driven bottlenecks will continue to exist at edge
routers (ER). In general, it is these ERs which determine the end-to-end bandwidth
availability for users.

In our architecture there are other characteristics of data besides bandwidth, in
particular, delay and reliability of delivery. The current standard to provide appropriate
types of service and priority to appropriate types of traffic is the Differentiated service
(Diffserv) architecture. Diffserv recommends a number of per hop behaviors (PHBs)
based on the required type of service. Each ISP may define its own PHBs within its
Internet domain. Based on the bandwidth-PHB combination(s) in the SLA, the price
between domains is negotiated. The edge routers do this re-mapping of PHBs when a
packet crosses domains. The PHBs are marked in the IP header’s type of service (TOS)
field. Diffserv related IETF standards define a number of standard PHBs: expedited
forwarding (EF [19]) for real-time delivery and assured forwarding (AF [18]). Af
further consists of various subclasses. This makes it easier for various domains to
come to a universal mapping from a PHB in one domain to another, so that the end
users may get consistent service. Packets within the network are prioritized based on
these PHBs, EF having strict priority. In practice, however, EF class cannot be given
absolute priority since users today are more tolerant to errors in their real-time Skype
conferencing sessions as compared to their best effort e-mail service not working. Thus
most implementations use a sort of weighted fair queuing between the various per-hop
behaviors [64]. This implies that the entire channel outgoing bandwidth is not available
to the EF channel at all times and certain packets may need to be queued.

However, to ensure end-to-end predictability, the Diffserv-EF standard recommends
short queue lengths for the EF class. This is done under the assumption of correct pro-
visioning. There are two problems with this assumption in practice: a) it is difficult
to correctly provision networks and b) users, especially in multimedia, do not always
transmit at a constant bandwidth. Thus for practical applications, analysis of how the
architecture behaves under non-overprovisioned conditions is also important. We for-
mulated this as Question 1.1. As a reply to this question, Chapter 3 shows that Diffserv-
EF in non-overprovisioned networks leads to inefficient utilization of available band-
width, leading to Question 1.2. Chapter 3 proposes Estimated service networks which
utilizes the time bounds on the data it delivers to realize a more efficient bandwidth
utilization. Lastly, as already pointed out in Chapter 1, efficient bandwidth utilization
is not enough, connection admittance, addressed as Question 1.3, is also required to
maintain a minimum quality level of the communication streams.

Connection admittance is an important aspect for real-time multimedia communi-

Multimedia Quality 29

cation. Unlike downloading a file, media-based communication is worthless if a certain
lower limit of bandwidth availability cannot be met. Thus scalability and fairness of a
connection alone are not enough for real-time communication. A minimum bandwidth
availability “guarantee” for existing connections is also required. Chapter 3 proposes a
scalable method to achieve connection admittance which is somewhat similar to RSVP
[99], but does not require any router to maintain any connection-based data structures.

The media content itself requires reliable as well as time-bounded delivery. The
bounds in time here are larger than those of a conferencing stream and depend on other
factors, such as, buffering. Diffserv architectures provide a reliable delivery group
(Assured Forwarding Class) with subclasses with various parameters, which include
low delay. This is suitable for the low delay assured forwarding the primary media
stream requires.

Finally, control flow semantics are required to assure prioritized delivery of control
packets such as the synchronization packets. These semantics can also be achieved us-
ing Diffserv based classification by giving control flow priority over all other classes.
The control flow class needs to be overprovisioned and since this bandwidth require-
ment for control packets is limited. The real-time class expedited forwarding comes
next and is used for the shared experience traffic. Lastly, the media content can be sent
via the assured forwarding with low delay class.

There is a considerable body of concern on the acceptance of QoS solutions in
practice [3], including Diffserv. A number of papers argue that it is due to economic
factors [9, 17], while some others cite technical scalability and maintenance issues and
even security [83] for ISPs. However, in recent years QoS, especially Diffserv-EF is
beginning to be accepted: routers such as Cisco NBAR and solutions such as Cisco
AutoQOS [15] can prioritize and mark packets from VoIP solutions as EF. Diffserv is
also used in smaller networks and specific VoIP solutions [17]. Thus in the design of
future networks Diffserv will play an important role.

2.2.2 Bandwidth Adaptation
Bandwidth adaptation is required in our architecture for the communication streams
to adapt to existing network conditions. Work in bandwidth adaptation can be broadly
classified based on the level in the OSI stack it belongs to: application layer or transport
layer. Application layer mechanisms have the advantage of knowing semantic details
of the application absent at the transport layer. Here we look at some important work
that will be referred to during the course of this thesis.

Transport layer bandwidth mechanisms mostly evolve around congestion control
[1]. Congestion control mechanisms are a central feature to the stability of the Internet.
While reliable delivery was the main focus of the initial TCP design, congestion control

30 Generic Architecture and State of the Art

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35B
a
n
d
w

id
th

(
M

b
p
s
)

Time(s)

a) Low motion video conferencing session (used for experiments in this work)

BW required

 0

 2

 4

 6

 8

 0 20 40 60 80 100 120B
a
n
d
w

id
th

(
M

b
p
s
)

Time(s)

b) Bandwidth usage in tele-immersive environment (developed by UIUC) with multiple users

No user Single user Two users Three users

BW required by 1 3D camera

 0

 1

 2

 3

 4

 0 20 40 60 80 100 120B
a
n
d
w

id
th

(
M

b
p
s
)

Time(s)

c) BW usage by World of Warcraft during normal play high poulation realm

Character in
 busy area

Quiet area

BW used

Figure 2.4: Bandwidth requirements for various real-time multimedia applications.

was retrofitted in 1988 [97]. This was appropriate as TCP flows were the major share of
the Internet traffic. In recent years UDP traffic due to applications, such as IP telephony
and gaming, is beginning to claim more and more share of the bandwidth.

Newer protocols have been designed and implemented to fit UDP with congestion

Multimedia Quality 31

control, to improve performance for traffic classes, which prefer timeliness to reliabil-
ity (real-time traffic). A prime example is the Datagram Congestion Control Protocol
(DCCP) [22]. However, DCCP has changed very little in terms of congestion con-
trol itself. The same TCP models Additive Increase Multiplicative Decrease (AIMD)
and TCP Friendly Rate Control (TFRC) have been re-adopted as CCID2 and CCID3,
respectively. As the authors of DCCP in [22] themselves acknowledge, these conges-
tion control models were originally designed for best effort traffic and have issues with
respect to real-time packet delivery. These issues include inability to handle changes
in bandwidth requirements due to codec artifacts, inability to start up rapidly after idle
periods, and inability to utilize the best available bandwidth even though it may already
be provisioned.

Furthermore, the forthcoming class of applications such as, video-conferencing and
tele-immersion [69] require real-time transmission as well as large and significantly
varying amounts bandwidth as shown in Figure 2.4. This creates two issues in the cur-
rent design of congestion control mechanisms. Firstly, the assumption that the situation
of traffic from one instant to the next will not change significantly is now incorrect.
Figure 2.4 shows the bandwidth requirement of a video conferencing session and tele-
immersive session with a single 3D camera. The graph shows that there can be bursts
in the data that last for very small instants. Owing to these variations in data (or bursts)
the network traffic condition may vary significantly from one time instant to the next.

While congestion control mechanisms are important to the work presented in Chap-
ter 3, they are not the focus. Thus Chapter 3 will only briefly look at the performance of
congestion control mechanisms, in particular DCCP, with the current QoS architecture
Diffserv.

In the application layer work has been done to ensure best performance under the
available bandwidth conditions. This includes work, such as scalable video codec
[71], progressive meshing [65], bandwidth reduction techniques for tele-immersion
[103], and frame skipping [38] amongst others. These solutions provide a prioritiza-
tion scheme over the data. For example, it is more important to send I frames than B/P
frames. Thus, under low bandwidth conditions the higher priority data alone is sent
to conserve bandwidth. However, these approaches make similar assumptions about
the behavior of the network as congestion control, such as inexistence of short-lived
bursts. Further, their interactivity with QoS mechanisms has not been studied and is
inefficient, as this thesis will demonstrate inefficient.

A major part of the inefficiency is because there is no way the application can
communicate this prioritization to the network. Thus, a network error has to be first
communicated back to the application, which then reacts to it. They may therefore
adapt to congestion situations that may no longer be present, thereby causing an under-
utilization of the available provisioned bandwidth. Chapter 7 hints at how the architec-

32 Generic Architecture and State of the Art

ture recommended in Chapter 3 provides an infrastructure for the application layers to
communicate their data preferences to the network.

2.3 Distributed Synchronization
Distributed synchronization of the primary media streams is required in the architecture
in order to provide common ground during synchronous social experiences [98]. Tradi-
tionally, research on media synchronization is divided into two subtopics: intra-media,
intermedia [75]. The first one, intra-media, refers to the correct temporal display of
a single stream of media items (e.g., audio and video). The second one, intermedia,
refers to the synchronization between several, possibly multiplexed media streams (in-
cluding multicast) and the dependencies on the devices buffer lengths and the network
jitter, among other issues. In recent years a third form of synchronization event-based
has appeared. Event-based synchronization refers to the delivery of events across mul-
tiple nodes in a way that consistency of the media application is maintained. A subset
of event-based synchronization is application-to-media synchronization, which allows
(interactive) applications to be delivered in sync with the piece of content they refer to
by adding triggers into the broadcast video stream which are parsed at the end user. In
this specific case the event is not a user event, but a media event, whose timing can be
known in advance (e.g., a commercial within a television program) or unknown (e.g.,
a goal by a football team). Table 2.1 shows the different use cases of media synchro-
nization, together with a representative example, and its relevance for this thesis.

Table 2.1: Types of synchronization

Synchronization type Example Relevance to this work
Intra-stream Video rendering Not relevant
Interstream Multiplexed stream audio and video in the same stream (one rendering component and one source) Not relevant

Multisource video (IPTV) and subtitles (internet portal) Relevant
Group synchronous video watching across different locations Relevant

Event-based Distributed gaming: playing across different locations Partially relevant
Social communication: audio chat, while watching television Relevant

Figure 2.5 complements Table 2.1 and demonstrates also the level of research in
each of these subfields. From the figure it becomes clear why it is important to address
the topics of group synchronization from multiple-sourced media streams.

Intra-stream synchronization refers to maintaining timing relationships within a
particular stream. For example, for a 30 fps video this means that the renderer must
display every next frame within 0.033s. The inherent difficulty in doing so is due
to (1) network delays and loss of ordering and (2) the fact that hardware is typically

Distributed Synchronization 33

Figure 2.5: Figure demonstrating level of research effort in each of the topics under
media synchronization

quantized, i.e. most rendering hardware devices handle chunks of data which may or
may not align correctly with a frame size of the media item. This issue can be resolved
by buffering and providing play-out feedback [74] to the sender to adjust send rate
accordingly. The issue then resolves to making sure that problems of underflow or
overflow do not occur, which is in the domain of QoS issues. Barring certain specific
cases intra-stream synchronization is no longer considered a major research topic, as
shown in Figure 2.5.

Interstream synchronization refers to synchronization between two separate streams
of media, for example, audio-video lip synchronization [57]. In the case of interstream
synchronization, we can identify three subcases:

• multiplexed streams (e.g., audio and video in the same transport stream)

• group synchronization (e.g., synchronized viewing across multiple destinations),
also known as InterDestination Media Synchronization(IDMS [89])

• multisource synchronization (i.e., distinct per-stream-item transport streams)

34 Generic Architecture and State of the Art

The first case is handled at the multiplexing codec container level, and its similarity
with intra-stream synchronization makes it less relevant for this thesis. The other two
use cases impose a number of challenges that fit within the scope of our scenario.

Group synchronization refers to a shared viewing experience of peers in different
locations. For example, to provide video playback to a number of friends in different
locations: one using a mobile phone and another one using the IPTV connection. A
number of synchronization algorithms exist. These can be divided into three types (1)
master-slave, (2) synchronization maestro, and (3) distributed control. In the master-
slave scheme [44] the master receiver multicasts its play-out position to the slave re-
ceivers which have to adjust accordingly. The maestro scheme [39] on the other hand
is a more client-server based approach in which each receiver reports its play-out status
to a central synchronization server or maestro. The maestro then calculates appropri-
ate adjustments for each player and sends these a control message. In the distributed
scheme [43], all receivers exchange messages to perform the job of the maestro in a
more distributed fashion. A comparison between the distributed and the centralized
scheme is presented in [41].

Multisource synchronization is a subset of group synchronization, see Figure 2.5.
multisource synchronization considers the case in which media elements are sourced
from different servers and possibly from different networks. Some examples include
the provisioning of subtitles from an Internet portal synchronously with video served
from an IPTV provider. Other examples might be the synchronization of a video broad-
cast from a mobile phone with Google maps that indicate the location of the video.
Multisource synchronization has not been well studied so far, primarily because the
infrastructure and the scenarios for doing so were missing. However, as can be seen
in Figure 2.1, users need not belong to the same service provider and may stream the
same video content via different providers. In such a case group media synchroniza-
tion schemes, which assume a central node in the media delivery path, would not work.
The realization for the need of such an algorithm is slowly but steadily dawning on
the research community. As an example, while ETSI TISPAN introduced IPTV ser-
vices in Release 1 of its NGN specifications [54], it neglected explicit media stream
synchronization aspects. With Release 2 specifications, the need for synchronization
of IPTV media/content was recognized. Recently, a standard for synchronizing shared
IPTV services using the RTCP-XR block is being defined at the IETF [89] as a parallel
development with contributions from this thesis and the TISPAN NGN specification
[54].

Finally, the last class of synchronization is called event synchronization. There are
a number of relevant scenarios such as distributed gaming, instant messaging solutions
and VCR-like distributed control execution while watching streaming video. Event
synchronization can be considered as a subclass of group synchronization. The basic

Distributed Synchronization 35

problem arises from the differences in event delivery time (jitter) seen by participating
nodes. This leads to inconsistent copies across the nodes playing the same media. In
this area [59, 104] proposed an algorithm called local lag with time-warp to handle this
inconsistency in distributed games. The general approach is to estimate the worst delay
in the network for a participating node and to enforce this delay on all participating
nodes, including itself. If an inconsistency is found at a participating node then the
events are rolled back to the last known consistent state and played fast forward to
reach the current time. A similar concept based on the local lag mechanism is used in
synchronizing distributed games, called bucket synchronization, is presented in [7]. In
this thesis we will adapt this algorithm to media playback in our architecture, phrased
as Question 1.5. We then use this algorithm to study user tolerance to differences in
synchronization levels in a synchronized social video watching environment, thereby
addressing Question 1.4.

2.3.1 Media Synchronization Across Domains
One of the challenges addressed by this thesis is to provide a converged view on syn-
chronization across several network domains (e.g., Web and mobile). Such synchro-
nization is not restricted to content consumption (i.e., intermedia) but also includes
interactivity between users (i.e., event based). Moreover, we consider both the play-
back/media on demand model as well as real-time broadcast.

The target domains of this thesis (i.e. the Internet, IMS, 3G/Mobile) use different
media delivery carriers:

• RTP streaming as used in the Internet in various media and communication ap-
plications, including mobile applications.

• Broadcast streaming used by IPTV (DVB-IP, also using RTP but with a different
adaptation layer compared to native RTP)

• HTTP streaming used in the home domain and for Video on Demand (VoD)
delivery on the Internet (e.g. progressive HTTP streaming)

RTP is appropriate for both interactive (human-to-human) communication (for exam-
ple, VoIP applications) and non-interactive media delivery such as streaming (for ex-
ample, VoD using RTSP, or interactive voice or video responders using SIP or H.248).
RTP is tailored to be resilient to common QoS degradations of the Internet, using
packet-loss concealment procedures that can be specialized per codec. RTP, in con-
junction with its peer control protocol (RTCP) also provides built-in interstream time
synchronization mechanisms as long as all the streams pass through a common RTP

36 Generic Architecture and State of the Art

mixer. In this respect RTP alone is not sufficient for this work, since we include syn-
chronizing streams originating from entirely different sources.

HTTP streaming is suitable for non-interactive non-real-time media delivery, such
as file sharing. However, it has met considerable success in single end user video-
streaming as well. Classical examples are seen on the Internet, the most popular of
which is YouTube.

2.4 User Mobility
As can be seen in Figure 2.1 end users in synchronous shared experiences are increas-
ingly surrounded by varying devices which connect to the Internet using different tech-
nologies and service providers. In such a situation users may want to move their media
from one device to another for various reasons identified in [58]. These reasons include
cost effectiveness, better user experience, and physical movement of the user amongst
others. This is called session mobility. Furthermore acceptance of newer standards in
structured content, such as NCL [86] and SMIL4, presentation will lead to more com-
plex media which may be composed of many individual media sessions. In such cases
it is important to talk of user mobility separately from session mobility.

Session mobility is an ongoing research problem. Previous research [58] has pro-
posed two parallel solutions: the network-centric and the device-centric approach. The
network-centric approach delegates the responsibility of transferring the presentation
to the network, thus, the user may explicitly or implicitly initiate a transfer call. The
advantage of this approach is that it would work with the broad variety of user devices
currently in the market. The device centric transfer on the other hand requires the target
or the originating device to discover the other device and then push or pull the session.
Both these approaches, however, do not take into account the type and the complexity
of the media presentation. While these architectures would work for live media, more
coordination between the devices would be required for media playback. Historically
it has been assumed that synchronization would later be solved by the underlying net-
work layer. This, however, reduces the user experience of the presentation during and
some time after transfer since the presentation is not synchronized then.

In [52], the authors present how MPEG-21 digital items can be used to realize
session mobility between two devices and how it can adapt the session to different
devices according to their capabilities. In their method, they use two kinds of digital
items: CDI (content digital items) to carry the content and XDI (context digital items)
to carry the context information. However, it is not straightforward using digital items
to express complex intermedia temporal and spatial relationships.

4http://www.w3.org/AudioVideo

Time Synchronization 37

The issues of user mobility for multiple related session (distributed rendering) was
solved by [14] as an aggregate of multiple session mobility requests. The authors pro-
posed a SIP-based mechanism by extending the user agent to split a session over multi-
ple devices. Specifically, they proposed a SIP extension header “Mobility” to improve
the call transfer mechanism and make it transparent to the remote party. To solve the
problem that the user needs to terminate all devices separately when a session was split
over multiple devices, they proposed the concept of “Association” in the correspond-
ing note. The association record contains the set of all call-IDs that belong to the same
session. As an answer to Question 1.7, this thesis presents a much simpler approach to
solve the same problem by delegating the presentation consistency responsibilities to
the media player on the target device in Chapter 5. Chapter 5 argues that user mobility
must be handled at the presentation layer and not at the sessions layer, and presents
some advantages of doing so.

Papers [81, 79] look at transferring media sessions (typically RTP streams) for live
conferencing systems. The authors in [82] present in detail media session transfer to
various devices based on the Session Initiation Protocol (SIP) for signaling and Ses-
sion Description Protocol (SDP) for session description. Transferring sessions in live
media sessions as mentioned before, in Section 2.2.2 does not require detail state in-
formation of the presentation as it is live and incorporates limited user interactions.
This is different in media playback, especially in complex presentation, where alterna-
tive media encoding may be available at the streaming server, which may be especially
suited to the new device. As mentioned before maintaining state for a complex media
presentation while transferring the session is an important requirement. Lastly, media
presentations may have complex user interactions, which need to be recorded within
the state. Thus, the basic drawback of using this solution arises from the fact that the
state of the session before it is transferred is stored as a Session Description Protocol
(SDP) file. While SDP is extremely powerful in describing a range of sessions, media,
and device characteristics, it isn’t powerful enough to describe the complete state of a
complex presentation. In addition, the problems of time synchronization and adapting
media to appropriate device without transcoding remain.

2.5 Time Synchronization
The architecture presented in Figure 2.1 implicitly assumes some level of time syn-
chronization. The de facto standard of time synchronization over the Internet is the
Network Timing Protocol (NTP). NTP [60] works by creating multiple possibly cross-
linked multicast tree hierarchies over the Internet. At the root of these tree is always
a high accuracy hardware timer such as an atomic clocks GPS-based timer, or radio
clocks. Time “flows” down the NTP multicast tree using a packet exchange method

38 Generic Architecture and State of the Art

Figure 2.6: NTP message exchange

shown in Figure 2.6. Other protocols, such as, Precision Time protocol (IEEE 1058)
[23], also exist but are not widely used over the Internet.

The other option for time synchronization is, of course, to fit all computers with
accurate hardware clocks such as radio or GPS receivers. However, both these methods
require line of sight to radio transmission towers/ GPS satellites to be effective. This
is not always possible. Recently, gossip based protocols have appeared [20] including
a protocol for time synchronization, the gossiping time protocol (GTP) [47]. Given
master node in the network the protocol sets up an ad hoc multicast tree using random
NTP like packet exchange. In O(log n) this random exchange of packets leads to most
of the network being synchronized with the master node. A variation of the gossip
based protocol as a supplementary contribution of this thesis is presented in Appendix
B.

Time synchronization in infrastructure networks using NTP like protocols typically
relies on the bounded round trip time of network messages. However, in cross-domain
networks the RTT may experience high jitter and local NTP servers may be absent or
unavailable. Wireless ad hoc network protocols have similar properties. The similari-
ties include a distributed approach, low network overhead, overcoming unreliability in
round trip times. We can thus look at wireless ad hoc network synchronization algo-
rithms and adapt them here.

Algorithms presented in the IEEE 802.11 standard and subsequent enhancements
presented in [85, 77, 105] work well for ad hoc networks. These algorithms synchro-

Summary 39

nize clocks using a global signaling mechanism (beacon method), are distributed and
achieve (especially [105]) very high synchronization results. They, however, suffer
from some disadvantages, in particular: they do not have the capability of choosing a
particular node to follow. The beacon broadcast present in all these algorithms is also
hard to extend for non-homogeneous networks.

Synchronous shared experiences, however, will run over the Internet. And even
though a number of other time synchronization algorithms exist, NTP remains the pre-
dominant one over the Internet. Chapter 6 surveys the NTP network to answer Question
1.7. Similar surveys have been performed before in [68], the last one being five years
ago. In the last five years, however, significant changes have happened to the Inter-
net and the survey in Chapterchap:tsync highlights these differences with the previous
works.

2.6 Summary
The goal of this chapter was to identify a generic architecture for synchronous shared
experiences. Furthermore, this chapter specified the responsibilities of each of the
components in the architecture, with respect to achieving coherence in synchronous
shared experiences. The questions were classified into four main topics: quality of
service, distributed media synchronization, user mobility and time synchronization.
For each topic a review of the state of the art was presented and the shortcomings
highlighted. Each of the following four chapters in this thesis will handle each of these
topics and answer the questions raised therein.

40 Generic Architecture and State of the Art

CHAPTER 3

Quality of Service:
Estimated Service1

Data transmitted by applications providing communication solutions in a synchronous
shared experience, such as video and audio conferencing, is termed in this thesis as
communication stream. These communication streams require time-bounded delivery,
with end-to-end bounds of the order of 150ms [46] (real-time transmission). This
chapter illustrates that the current Internet does not efficiently support communication
streams and presents extensions to improve this efficiency. The future Internet must
remain best-effort and thus real-time bounds cannot be guaranteed. The architecture
of the Internet, however, can be made more efficient - in terms of throughput for the
communication streams - measured as the amount of data that successfully makes its
deadlines. The current approach of doing this is to over-provision the network making
QoS mechanisms unnecessary. Thus, first, it is important to understand why quality of

1This chapter is based on publications

• I.Vaishnavi, D. C. A. Bulterman.Estimate and serve: scheduling soft real-time packets for delay sen-
sitive media applications on the internet. Proceedings of ACM workshop on Network and Operating
Systems Support for Digital Audio Video, 2009.

• I. Vaishnavi, P. Cesar, D. C. A. Bulterman, and O. Friedrich. From iptv services to shared expe-
riences: Challenges in architecture design. Proceedings of IEEE Conference on Multimedia and
Expo, 2010.

41

42 Quality of Service: Estimated Service

service (QoS) mechanisms are needed in the Future Internet.
It is commonly perceived that the bandwidth available in the Internet far exceeds

the demand [78] and thus QoS mechanism are unnecessary. Instead, this chapter ar-
gues that the reality is in fact the opposite of this perception: Internet today gives an
appearance of over-provisioning, since applications that cannot be supported simply
do not become popular. In this way the current Internet acts as a bottleneck for fur-
ther development of applications [70, 92], and of particular relevance to this work,
communication streams. For example: the Internet22 between University of Illinois at
Urbana-Champaign (UIUC) and the University of California at Berkeley (UCB) was
designed to provide a high speed (Gbps) data link between various universities. Stud-
ies conducted within this thesis show that Internet2 connection between UIUC and
UCB currently provides an average 8Mbps per-connection to TCP and about 50Mbps
to UDP. This makes Internet2 already unable to support a single instance of the tele-
immersive application [101] being developed at UIUC and UCB. Similarly, bandwidth
studies between Centrum Wiskunde & Informatica in Amsterdam (10Gbps uplink to
its service provider) and UIUC (Intermet2 uplink) at Urbana-Champaign show a TCP
bandwidth of less than 1Mbps on an average and a UDP bandwidth of 5Mbps. Despite
the high bandwidth uplink connections to their individual service providers, an end-to-
end connection results in bandwidths that are barely enough to hold two instances of
SD (standard definition) quality video conferencing sessions.

To overcome these limitations at the application level, various bandwidth adapta-
tion mechanisms have been designed, such as scalable video coding for efficient video
distribution over the Internet, progressive 3D streaming mechanisms [65] and priori-
tized view transmission [100] for 3D immersive applications. These bandwidth adapta-
tion mechanisms are important for keeping the network stable. Bandwidth adaptation
mechanisms, however, consider the network itself as a black box and try to adapt to
it. Considering the network as a black box implies that these adaptation methods can
not know anything about the actual state of the network. This results in inefficient end-
to-end functioning of the application, in particular, the end-to-end throughput, as will
be demonstrated in this chapter. This loss of end-to-end throughput due to bandwidth
adaptation and congestion control mechanisms [76, 22] is a well-understood problem.

At the network level, in the current Internet, the only way of transporting real-time
traffic across continents is by providing for the maximum bandwidth required (over-
provisioning). This is because newer communication applications do not present a uni-
form bandwidth requirement profile as shown in Figure 3.13. They further need to meet
end-to-end deadline bounds of about 150ms. If the network is not overprovisioned, the
occurrence of bandwidth peaks result in dropped packets, triggering bandwidth adapta-

2http://www.internet2.edu/
3Measured using Eureka, Appendix A

43

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35

B
a

n
d

w
id

th
(M

b
p

s
)

Time(s)

a) Low motion video conferencing session (used for experiments in this work)

BW required

 0

 2

 4

 6

 8

 0 20 40 60 80 100 120

B
a

n
d

w
id

th
(M

b
p

s
)

Time(s)

b) Bandwidth usage in tele-immersive environment (developed by UIUC) with multiple users

No user Single user Two users Three users

BW required by 1 3D camera

Figure 3.1: Measured bandwidth requirements for newer communication applications.

tion mechanisms (or congestion, flow control, if TCP-like protocols are used) causing
the application to use even lesser bandwidth, further reducing bandwidth utilization.

Real-time traffic from conferencing streams requires priority over other traffic, due
to short delay and predictable jitter requirements. This prioritization blocks out other
traffic creating an overprovisioned link for real-time traffic. The current standard for
providing prioritization is the Differentiated services (Diffserv) networks architecture
[36]. Differentiated networks work by classifying packets into behavior classes, known
as per-hop behaviors. All packets in a class (per-hop behavior group) require a similar
type of service. The real-time group (or Expedited Forwarding Class, EF) is recom-
mended for communication streams and has priority over other classes of traffic. How-
ever, Diffserv-EF was designed to provide an overprovisioned network by blocking the
non-priority traffic out. Thereby Diffserv inherently assumes the right balance in band-

44 Quality of Service: Estimated Service

Figure 3.2: Diffserv Internet architecture: ER = Edge Router, CR = Core Router

width availability and demand. If the demand is much too low then Diffserv altogether
is unnecessary. If the demand is much too high an overprovisioned priority link will
not be possible. In practice this balance is difficult to achieve. Thus one must study the
behavior of Diffserv in networks that are not overprovisioned.

Furthermore, overprovisioned links are not always feasible, predominantly because
of economic reasons. The current Internet is split into domains as shown in Figure 3.2.
Typically each of these domains is maintained by a company or a public institution and
is connected to other domains or access networks via edge routers (ER). From a busi-
ness viewpoint domains, which are connected to each other, need to negotiate service
level agreements (SLAs). The addition of new users or higher bandwidth applications
to any one network will in effect then require an update of all SLAs throughout the
network. This is practically unfeasible. Hence, while Diffserv imposes a requirement
of an overprovisioned link, this requirement cannot be blindly assumed. Therefore, for
practical acceptance, it is still important to study its performance in a network that is
not overprovisioned, in particular:

45

Question 1.1 How efficient is the Diffserv network towards communication
streams, such as video conferencing, in networks that are not
overprovisioned?

Section 3.2 describes the experiments and the results thereof performed over a Diff-
serv link to study its performance in networks that are not overprovisioned. In links
that are not overprovisioned bandwidth adaptation methods become significant again.
Measurements presented in Section 3.2 indicate a loss in end-to-end throughput due
to adaptation mechanisms. The future Internet architecture must be able to maintain
end-to-end throughput efficiency even in non-overprovisioned links, in particular:

Question 1.2 How can Diffserv-EF be extended to ensure efficient behavior
of the future Internet in links that are not overprovisioned while
maintaining scalability provided by the Diffsev architecture?

The Diffserv standard provides a scalable, best-effort prioritization scheme. Any
new additions to this architecture should be evolutionary in nature. Thus, this work
provides an extension to the Diffserv-EF channel that makes it more efficient in terms
of bandwidth utilization. Unless otherwise specified in this chapter, only data that
meets it deadlines is counted towards bandwidth calculations.

Lastly, only ensuring efficiency is not enough. It is also important to ensure that ap-
plications get minimum bandwidth service guarantees, or are refused admission if the
real-time channel is too crowded. This is known as connection admittance. Connection
admittance is required since communication applications cannot work under a certain
minimum bandwidth. Such applications are known as inelastic applications. Previous
work on connection admittance, done in the integrated service networks [8] architec-
ture did provide connection admittance but failed in keeping the system scalable and
economically efficient [3].This chapter addresses the question

Question 1.3 Is it possible to provide connection admittance in the future ar-
chitecture, while still maintaining scalability provided by the
Diffserv architecture?

The goal is to achieve better efficiency for bandwidth utilization as well as connec-
tion admittance for time-bounded applications. And doing so without maintaining any
per-connection memory structures at the routers, thus keeping the architecture scalable.

The next section presents a generic test scenario used to evaluate performance of
existing and proposed network architectures throughout this chapter. Section 3.2 looks
at the performance of an non-overprovisioned Diffserv link answering the first ques-
tion. It shows that the Diffserv architecture inefficiently utilizes available provisioned

46 Quality of Service: Estimated Service

bandwidth for real-time applications and is therefore not scalable. This is followed
by our solution, Estimated service (Estserv) in Section 3.3. Section 3.3.5 presents the
results of our new architecture, Estimated service, and shows that Estserv utilizes the
available bandwidth efficiently even in under-provisioned links and provides scalable
connection admittance in an over crowded network.

3.1 Generic Test Scenario
This section presents a scenario and the related test setup used to evaluate various
network architectures in this chapter. Two students, Caroline and Kate, share an apart-
ment. Their maximum Internet usage is when they simultaneously each have a video
conferencing session with their families, while their P2P client is downloading videos
from the Internet. When they decide to obtain a new Internet connection they are pre-
sented choices4 for the bandwidth: 3Mbps, 5Mbps, 10Mbps or 25Mbps, each with half
of the bandwidth reserved for real-time traffic and the other half for best-effort.

Figure 3.1a) shows that a typical video conferencing session requires an average
of 2.5Mbps. Therefore, a 5Mbps real-time channel for Caroline and Kate should
be enough. Our experiments with Diffserv-EF, presented later in Section 3.2, will
show that due to bursts in the video stream, packets are dropped. This triggers band-
width adaptation mechanisms, resulting in under-utilization of the available bandwidth.
Thus, either the ISP has to actually provision for a 6Mbps on a 5Mbps real-time chan-
nel or Kate and Caroline need to buy a 25Mbps total connection instead of 10Mbps
(5Mbps real-time, 5 best-effort) total connection. In the first case the ISP can serve
fewer customers and in the second the users have to pay for more than what they actu-
ally use. Both scenarios are undesirable. This is termed as over-provisioning. Further
it is important to provide some sort of best-effort connection admittance mechanism
to prevent a collapse of their real-time connection in case they decide to start a large
number of conferencing streams simultaneously.

While the scenario talks about only two end users, it scales to system administrators
of larger institutions and companies. While the core of most ISPs may have more than
sufficient bandwidth they will only expose bandwidth at the edges that has been paid
for. Thus the edge nodes incorporate a policing function to limit the incoming as well as
the out going traffic according to the agreed upon terms in the Service Level Agreement
(SLA). The following test network setup used for experiments throughout this chapter
replicates this edge node behavior.

4Symmetrical in upload and download for simplicity

Generic Test Scenario 47

3.1.1 Test Network Setup

Figure 3.3: Overall network setup

In the experimental setup Linux machines are interconnected in a linear topology
as shown in Figure 3.3. Machines 2 and 3 are the edge router (ERs) between an access
domain pseudo clients on (machine 1) and an ISP core router machine 4. For simplic-
ity, machine 4 is also the destination for machine 1 clients. The experiment measures
the application’s bandwidth behavior across the edge. Using the tc linux utility on the
machine 2 and 3 a Diffserv edge routers are set up. Figure 3.4 shows this setup. Vari-
ous network queueing disciplines are known as qdiscs in Linux terminology. The box
marked as QDISC in the figure is a FIFO for Diffserv-EF. The figure shows a prio (pri-
ority) qdisc for ctrl/NTP traffic followed by a DSMARK (Diffserv) qdisc with a tcindex
filter (a Diffserv Code Point (DSCP) classification filter) followed by an hierarchal to-
ken bucket (htb) qdisc of maximum bandwidth ceiling 10Mbps. An htb is normally
chosen over a simple token bucket so that the bandwidth unused by higher classes can
be appropriately redistributed amongst the lower ones. Smaller bandwidths are chosen
for the experiments in this chapter so that the delays on one computer are not signifi-
cant and the bandwidths are in accordance with the scenarios in Section 3.1. The htb
qdisc consists of 2 classes the Expedited Forwarding (EF) class and the Best-Effort
(BE) class. The EF and the BE classes are given a reserved bandwidth of χEF and
χBE Mbps. The values are decided on a per-experiment basis. At first BE TCP traffic

48 Quality of Service: Estimated Service

Figure 3.4: Packet classification for providing QoS used in eth1 of machine 2 and 3
(Figure 3.3): For traditional Diffserv: QDISC = FIFO, for Diffserv extended to Estserv
: QDISC = Estserv

is sent using the nuttcp utility from node 1 to node 4 representing the best-effort non
real-time P2P connection. nuttcp, is a linux bandwidth measurement utility tries to
send TCP packets to machine 4 from 1 and reports the approximate throughput (±0.5
Mbps).

Two video conferencing (C++) client programs on machine 1 (Kate, Caroline),
compete for the real-time bandwidth by sending the next frame every 1/(f.p.s.) sec-
onds to machine 4 of the video belonging to the profile shown in Figure 3.1a). The
deadlines are 100ms = d − Tapp − Tcap. This video, same as the one in Figure 3.1a),
requires an average bandwidth of 2.5 Mbps. The video conferencing application use
UDP as the transport protocol as explained in the next section.

3.1.2 Transport Protocol Used
This section justifies the choice in transport protocol used over the test network setup
presented in the previous section. The problem of under-utilization of available band-
width is due to either bandwidth adaptation mechanisms (with UDP) or reliability and
congestion/flow control mechanism (TCP). TCP is not meant for real-time traffic and
is therefore not studied in this work. Datagram Congestion Control Protocol (DCCP)

Generic Test Scenario 49

[22] is a recent protocol recommended for real-time applications. DCCP is in essence
UDP with congestion control, since normal UDP is aggressive and excessive use may
cause the Internet to fail. Preliminary experiments with DCCP are presented later in
Section 3.3.8. This chapter focuses on the traditional protocol recommended for real-
time traffic: UDP. UDP is typically used with application level bandwidth adaptation
mechanisms, such as scalable video coding [71]. Therefore, to perform this study an ad
hoc bandwidth adaptation mechanism based on frame skipping [38, 30] was developed.
this adaptation mechanism is presented in the following section.

Table 3.1: List of symbols used in this Chapter

Symbols Explanation
χ Bandwidth
N Number of hops
ψ Transmission speed of a router
C Channel utilization
d Deadline
µ, qlen Queue length at a router
Tapp, PB Receiving side processing time, P is probability

distribution of T
Tcap, PA Capture and sender processing time, P is probabil-

ity distribution of T
tfwd Forwarding time at a router
P Generic probability density function
g Function that yields the probability density func-

tion for the end-to-end time
p(t = x) Probability that t = x
pi(t = x) Probability that per hop time, t = x at router i
pest Minimum time for a router to forward packets
tdl Absolute time stamp of the deadline
tnow Time now
tfor Time taken to forward a packet
pj (not as a function) Available per hop time for packet j
f Estimate of end-to-end time
pcon Congestion estimate at a router
fincr, fdecr Increment and decrement functions for pcon

50 Quality of Service: Estimated Service

3.1.3 Bandwidth Adaptation Mechanism
This section presents an ad hoc bandwidth adaptation method used in the tests based
on the on the frame skipping mechanism [38, 30]. All multimedia applications have
a minimum bandwidth requirement below which they cannot function and an ideal
bandwidth at which the user experience is optimal. This allowance is used by various
applications to adapt themselves to the estimated network bandwidth availability. For
the video in the experiment a frame rate of optimal 30fps and a minimum 10fps is used.
There are two parts to any bandwidth adaptation: congestion detection and quality
reduction.

In our mechanism congestion is detected when the acknowledgement for a heart-
beat packet sent out every M data packets is not received within 500ms or if the heart-
beat packet misses its associated deadline. The heartbeat packet is just another data
packet with a special label marked on it. When this congestion situation is detected
quality reduction is performed by a probabilistic dropping procedure is engaged at the
client. Every time congestion is detected the video conferencing application reduces
the video quality by reducing the frame rate uniformly in steps of 5 frames per-sec.
These frames are never sent onto the wire by the client. This is done until a minimum
of 10fps is reached, below which a connection loss is said to have taken place. The
frame rate is increased by 5fps, if two consecutive heartbeat packets are properly ac-
knowledged. More advanced ways of dropping the bandwidth requirement based on
congestion control techniques, video encodings can be used but are not the focus of this
work. The bandwidth adaptation mechanism described here is in someways similar to
[38].

3.2 Performance of Diffserv-EF in non-overprovisioned
links

This section presents the performance studies done on a non-overprovisioned Diffserv-
EF link. Non-overprovisioned links are defined as links where the bandwidth avail-
ability in the network is below that of the maximum bandwidth requirement of the ap-
plication. Non-overprovisioned networks can therefore be further classified into three
categories based on average bandwidth requirement of the application: (1) above aver-
age bandwidth availability, (2) average bandwidth availability, and (3) below average
bandwidth availability. This section examines the performance of a Diffserv EF link
under these three conditions.

Previous work [37, 88, 33, 28] also studies the performance of various Diffserv
implementations for various traffic loads. While these papers study Diffserv perfor-
mance under heavy load, none of them study the performance of Diffserv-EF in non-

Performance of Diffserv-EF in non-overprovisioned links 51

overprovisioned conditions. Furthermore, most previous work does not perform the
tests in combination with bandwidth adaptation mechanisms, which are used by de-
fault in all modern multimedia applications. All previous work considers short queue
lengths for the Diffserv-EF class to ensure end-to-end predictability. However, the
actual values used vary from 5-500 packets in [28] to ensuring 25ms deadlines in a
closed network [88]. The Diffserv-EF standard [19] also recognizes the influence of
queue lengths on delay. However, the standard is silent on what the recommended
queue length is for an ISP system administrator on the Internet. The next section inves-
tigates this value mathematically. A number of symbols will be used in the discussions
that follow. An overview of all the symbols used in this Chapter is presented in Table
3.1.

3.2.1 Setting up Diffserv EF - Short Queue Lengths
Short queue lengths are recommended to ensure end-to-end delay predictability. The
length of the queues for closed networks can be determined based on the targeted delay,
since the maximum hop count and the topology is known. However, for system admin-
istrators of ISPs this is unknown. The practice, therefore, is to assign very short queue
lengths (less than 5 packets) for the EF class to ensure end-to-end delay predictability.
This practice can be mathematically justified as follows. Let us assume that the queue
length at a router is µ Mbit, the number of hops in the connection is N and the deadline
is d, the physical connection speed of the router is ψ, Tapp is the time required by the
end application processing, Tcap is the time required for source capture and processing.
If the deadline is divided over all routers equally then

d − Tapp − Tcap

N
>

µ

ψ
(3.1)

µ <
(d − Tapp − Tcap)ψ

N
(3.2)

Diffserv is a generic architecture and cannot be adapted to each application require-
ment individually. Assuming generalized worst case values:

• d = 150ms, an acceptable [21] value of delay for interactive multimedia appli-
cations.

• N = 50 is the high end hop count seen in networks (the standard TTL is even
higher at 128 or 256).

• Tapp + Tcap = 50ms worst case capture, processing and reconstruction time for
3D immersive applications

52 Quality of Service: Estimated Service

yields Equation 3.3.

µ <
(d − Tapp − Tcap)ψ

N
= .002ψ (3.3)

According to Equation 3.3, each router in the Diffserv network on the Internet should
assign the queue length based on the outgoing bandwidth available to its Diffserv-EF
class if weighted fair queuing (WFQ) is used to schedule between various classes.
However, if the EF class is given absolute priority over all other classes, then the total
outgoing bandwidth of all the classes together must be used. Thus, for an outgoing
home connection, policed at 10Mbps5 total upload the maximum queue length that it
can have is 2 (1500B) packets to ensure any end-to-end deadline is met. Thus while a
5Mbps EF connection should be able to support two of the video conferencing sessions
of bandwidth profile shown in Figure 3.1a)6, the short queue length means that it can
only effectively support one at full quality. While in the future better connection speeds
will become cheaper, there will also be newer applications such as 3D immersion that
require equally more bandwidth. Lastly, the future Internet must be incorporative and
consider countries that are less well connected to the Internet. In the future these coun-
tries will account for a higher percentage of the Internet bandwidth usage.

3.2.2 Results
Utilizing the setup detailed in the above sections three tests were conducted to analyze
the performance of Diffserv-EF under non-overprovisioned networks for:

• Case 1) above average provisioning,

• Case 2) average provisioning and

• Case 3) below average provisioning.

The videos used in the experiment require an average of 2.51Mbps and a maximum of
2.63 Mbps for their entire duration. Thus, for these two videos the values used are

• Case 1) χBE = 4.7Mbps, χEF = 5.3Mbps

• Case 2)χBE = 5Mbps, χEF = 5Mbps and

• Case 3) χBE = 5.75Mbps, χEF = 4.25Mbps.

All packet sizes used in the experiment are 1024B, therefore in accordance with Equa-
tion 3.3 the EF class has a three packet queue length.

5This value is unaffected by the actual physical network capability at an average, which may be in more
than 100s of Mbps, since the IP level policer will not enqueue packets on the physical transmit queue if they
violate the 10Mbps upper-limit.

6assuming other classes are full

Performance of Diffserv-EF in non-overprovisioned links 53

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35
 0

 1

 2

 3

 4

 5

 6

Fr
am

e
ra

te
 u

se
d

by
 th

e
ap

pl
ic

at
io

n

R
eq

ui
re

d
B

an
dw

id
th

(M
bp

s)

Time(s)

BW Required at 30 fps(y2 axis)
Provisioned Bandwidth(y2-axis)

Video1
Video2

a) Case 1: Bandwidth provision above average
but below maximum requirement = 5.3Mbps

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35
 0

 1

 2

 3

 4

 5

 6

Fr
am

e
ra

te
 u

se
d

by
 th

e
ap

pl
ic

at
io

n

R
eq

ui
re

d
B

an
dw

id
th

(M
bp

s)

Time(s)

Connection Loss
 Video1

Connection Loss
 Video2

BW Required at 30 fps(y2 axis)
Provisioned Bandwidth(y2-axis)

Video1
Video2

b) Case 2: Bandwidth provisioned at close to average requirement = 5Mbps

Figure 3.5: Results with non-overprovisioned Diffserv-EF. Case 3 on next page...

54 Quality of Service: Estimated Service

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35
 0

 1

 2

 3

 4

 5

 6

Fr
am

e
ra

te
 u

se
d

by
 th

e
ap

pl
ic

at
io

n

R
eq

ui
re

d
B

an
dw

id
th

(M
bp

s)

Time(s)

Connection Loss
 Video1

Connection Loss
 Video2

BW Required at 30 fps(y2 axis)
Provisioned Bandwidth(y2-axis)

Video1
Video2

c) Case 3: Bandwidth provisioned at below average requirement = 4.25Mbps

Figure 3.5: ...Continued from previous page: Results with non-overprovisioned
Diffserv-EF

The results of the experiment are presented in Figure 3.5 and Table 3.2. The figures
show the bandwidth adaptation mechanisms behavior under the three cases, while the
table shows the overall throughput for the session. The results answer Question 1.1
raised in Chapter 1. For cases 2 and 3 the results are similar, demonstrating that the
loss of packets due to bursts triggers the bandwidth adaptation mechanism ultimately
resulting in connection loss of both the videos conferencing sessions. Results for case
1 are mildly better and show that connection loss does not take place and towards the
end the frame rate seems to recover a bit. The throughput, measured as the number
of packets that successfully make their deadline, is shown in Table 3.2. Out of the 23
MB sent, a meager amount makes it successfully to the destination (machine 4) in all
three cases. The third column in the table measures the channel utilization efficiency,
C. This number is defined as:

C =

�
χmeasured/χEF if χEF < χRequested

χmeasured/χRequested if χEF > χRequested
(3.4)

where χmeasured is the average measured bandwidth from the experiment, χEF is
the bandwidth provisioned in the EF class and χRequested is the average bandwidth
required by the application at 30 fps. Thus a channel in the experiment is more efficient

Estimated Service 55

Table 3.2: Results with Diffserv-EF for 2 simultaneous video conferencing connections
Video 1 (Total stream size = 12M) and Video 2 (Total stream size = 11M).

Received sizes Received sizes Channel utilization
for Video 1. for Video 2. efficiency

Case 1 4.4M 3.6M .348
Case 2 2.2M 2M .189
Case 3 2M 1.9M .2

if the value of C is closer to 1. This can happen either if it uses all the provisioned
bandwidth or the application receives the complete bandwidth requested for. Note that
for the purposes of calculation of utilization efficiency average bandwidth values over
the measured period are used.

The loss of throughput, illustrated by the low channel efficiency values shown in
Table 3.2, is unacceptable for the future Internet. To improve this inefficiency, and
answer Question 1.2, this chapter proposes an architecture for real-time data transmis-
sion, called Estimated service (Estserv), as an evolutionary extension to the current
Diffserv-EF class. Estserv makes the EF class aware of the timing constraints of the
respective application data. These timing constraints are used to create a scheduling
and an estimation mechanism over the real-time packets. The EF class can now have
longer queues with “per-hop” earliest deadline first scheduling, while the estimation
mechanism is used for “connection admittance”. This scheduling mechanism results
in the EF class being able to prioritize/reject packets on a per-packet basis. This pri-
oritization is independent of the flow, does not maintain state or separate queues and
performs efficiently in non-overprovisioned networks. Note that in adequately provi-
sioned networks this architecture automatically resolves to the normal Diffserv-EF as
there are no queues and therefore no scheduling is performed.

3.3 Estimated Service
The previous section demonstrates the dismal performance of the Diffserv-EF channel
in non-overprovisioned networks towards real-time applications. To solve this prob-
lem this work looks at the single most defining characteristic of real-time applications:
timeliness. This work draws from what the real-time community has been doing for
years: earliest deadline first (due date) scheduling [56, 55]. This work adapts the earli-
est due date first scheduling mechanism to multi-hop networks. Similar ideas were pre-
sented before in [27]. The major difference between [27] and this work is the strict ad-

56 Quality of Service: Estimated Service

herence of the mechanism presented here to best-effort principles. Best-effort implies
that the intermediate routers cannot maintain connection or queue states and cannot
pre-reserve resources. The idea of earliest due date scheduling seems straightforward
but it needs to be adapted to take other factors into account: firstly, deadlines are not
the sole concern in networks, path lengths also play an important role. Secondly, there
has to be a mechanism of connection admittance inbuilt in the architecture (Question
1.3), to ensure the network does not get over-crowded. Finally, multiple hops need to
be time synchronized to each other.

With regards to time synchronization, in 1989 a study was conducted in [61] on
the accuracy of clock synchronization provided by NTP over 100000 nodes distributed
across the world. It found that the majority (> 50%) of the clocks in the NTP network
where within 10ms of each other, Enterprise networks, LANs, and WANs can do much
better. These surveys of the current health of the NTP network in the Internet are re-
updated in this work (Question 1.5). This is presented later in Chapter 6. The deadlines
for end-to-end transport of communication streams are in the order of 150ms. This
one order of difference in magnitude is inline with the principles of Time Triggered
Architectures (TTA) [53], that are used real-time systems. Section 3.3.9 will consider
cases with synchronization failure.The next section presents the theoretical overview
behind the design of the estimated service architecture. It is worth pointing out that
the theory is significantly different from its implementation to account for scalability
issues. However, to understand the implementation, a general understanding of the
theoretical framework is important.

3.3.1 Theory
Let us imagine a task with minimum deadline time from creation d. Let us say the task
is created at node nA to be executed at node nB . Assume that there are N+1 hops from
node nA to nB (thus N nodes in between). Each node takes tfwd time to forward a
packet. PA and PB are processing times at nA and nB . Thus, if

d > Ntfwd + PA + PB + (N + 1)C where y = max(y) (3.5)

where C is some transmission constant per-link. Then hard-real-time guarantees can
be provided that the process will be executed. This implies

N <
(d − C − PA − PB)

(tfwd + C)
. (3.6)

This equation is similar to Equation 3.2. It implies that if the deadline characteristics
and the other aforesaid upper-bounds are known, one can design a distributed net-
work of longest path N+1 with guaranteed hard real-time processing, where N is the

Estimated Service 57

highest integer value satisfying Equation 3.6. In practice, these upper-bounds are not
guaranteed, therefore a hard real-time system cannot be designed. However, can the
probability of a deadline miss be computed? If so, a distributed soft real-time system
with a known probability of deadline miss can be designed.

The probability density function for the time taken to communicate and process a
network packet is a multi-variate N+2 dimensional function, g, given by

P (time taken(t)) = g(tfwdl
, PA, PB)

where l = 1...N (3.7)

At a macroscopic level the probability of the total time taken being less than the dead-
line, d, needs to be calculated. Since individual times are added to compute the end-
to-end time and each of these time variables is independent7 the probability density
function is given by

p(t = x) =

� x

0

p1(tfwd = t1)...

� x

0

pi(tfwd = ti)...

� x

0

pN (tfwd = tN)

� x

0

p(PA = tA)...

p(PB = x − (
N�

i=1

ti + tA))dt1...dti...dtNdtA (3.8)

Thus the cumulative probability is then simply

p(t < di) =

� di

0

p(t = x)dx (3.9)

Thus if these distributions are known, then the system can estimate the reliability for a
given value of deadline or conversely minimum deadline required to give the user some
system reliability. This probability distribution for a node is termed as Node Network
Forwarding Character (NNFC).

For practical implementation, the algorithm is split in two parts: (1) Scheduling
and (2) Estimation. The scheduling part answers the question “Which packet to send
first?” while the estimation part answers the query “Is there a point in sending this
packet?”. The following sections explain this division in detail.

3.3.2 Scheduling
The idea behind the scheduling mechanism is that each packet’s IP header is marked at
the sender with its associated deadline. Further its TTL field is set to the exact number

7The time taken by a router to transfer a packet is independent of the time taken by other routers at that
particular time instant. This assumption is relaxed later.

58 Quality of Service: Estimated Service

of hops to the destination8. When a router receives the packet, it checks how much
time the packet has left per-hop to meet its deadline. If this value is below a certain
threshold, then this packet is dropped. Otherwise it is insert-sorted in the delivery
queue based on this time. More formally:

• Network control packets including time synchronization algorithm packets (such
as NTP packets) have highest priority.

• Real-time packets are second. Within the real-time packets queue packets are
scheduled as a partial order
O = {p1, ...pi, ..pj , ...pn} over packets,
A = {1..i, ..j, ..n} such that

pi ≤ pj ⇔ (tdli − tnow)

TTLi
≤ (tdlj − tnow)

TTLj
∀i, j ∈ P (3.10)

• In case of routers running a real-time OS, such as special purpose networks, the
deadline, d, before which the next packet must be dequeued is

d = f(pest, tfor, R) − (tdl − tnow)

TTL
(3.11)

where f is an estimate on the required end-to-end time. The function f depends on
minimum time required for processing per-hop, pest; the forwarding time of the router
in question, tfor; and the required reliability for the connection, R9

Equations 3.12 and 3.10 implicitly imply that the network needs to be time syn-
chronized. This can be achieved using the existing time synchronization algorithms,
the most prominent being NTP [60]. Note that this architecture requires synchroniza-
tion packets to be marked as control flow packets.

3.3.3 Estimation
The theoretical framework describes a revolutionary approach to the future Internet,
which requires major router modification and overhaul. In the short term, however, for
any new architecture to be successful it needs to present an evolutionary path to the fu-
ture Internet. It is for example difficult to assume that all nodes in the current Internet
will be time synchronized. Further, it is not scalable to maintain an estimate per-router
of all the real-time connections that pass through the router. It also requires further

8The connection setup procedure returns the number of hops, see Section 3.3.4
9This is a connection oriented approach, which is later evolved to a connection-less approach.

Estimated Service 59

study on how to maintain such estimates in a distributed scalable fashion without se-
rious overhead, such as maintaining an estimate per-destination instead of per-flow.
This chapter first presents the theoretical estimation algorithm. Then our solution to
the scalability issue is presented. The approach is made scalable by splitting both the
estimation part and the network to congestion estimate and 0-hop network, respectively

• During connection setup phase a client “estimates” the total delay to its destina-
tion node and calculates the number of hops10. If the estimate is unacceptable
or the connection requesting packet is lost (not acknowledged), the client ap-
plication rejects the application’s connection request. This is how connection
admittance is performed.

• During the communication phase, each node11 including the client, maintains
a minimum acceptable per-hop estimate, pest required to transmit the packet.
Each router further adds an estimate of the routers time to process and forward
the packet, tfor . Packets may be rejected if:

(tdl − tnow)

TTL
≤ f(pest, tfor, R) (3.12)

i.e. it is impossible for the packet to make its deadline given the estimated processing
times of the remaining routers.

Dropping packets that are “unlikely” to meet their deadlines is only required when
there is congestion at the router. Maintaining the estimates on a free router is unnec-
essary. Furthermore, when congestion occurs it is important that packets that are less
likely to meet their deadlines are dropped first. To solve this issue the estimate, pest

from Equation 3.12, is spilt into two different estimates a congestion estimate, pcon

and a path estimate, ppath. In the implementation, presented later only the user client
maintains path estimates to each destination. A router maintains the congestion esti-
mate that is a measure of how congested it is itself. This is a scalable approach since
routers do not need to know about the destination or flow characteristics of each partic-
ular packet. The following subsections explain what the role of each of these estimates
is, and how they are calculated in our implementation.

Providing Scalability: The Congestion Estimate

The role of the congestion estimate is in some ways analogous to the window size in
the TCP sliding window protocol or the congestion window of the congestion control

10How this is done is presented later in Section 3.3.4
11Not a scalable approach. Further in Section 3.3.3 will show that instead of every node only the client

needs to maintain these estimates.

60 Quality of Service: Estimated Service

protocols. If a router experiences congestion it is better to drop packets with shorter
deadlines per-hop than random packets as RED [29] does. According to Equation 3.12
this implies that packets with short deadline requirements or long path lengths begin
to get dropped before other packets. This is done using the congestion estimate, pcon.
Starting with pcon = 0, if, congestion occurs (subject to various criteria), then the es-
timate is increased according to an increment function, fincr. If the congestion has
alleviated then the estimate is decremented according to the decrement function, fdecr.
The combination of various increment and decrement functions and congestion and de-
congestion criterion were studied by experimentation. The following linear functions
gave the desirable behavior in terms of the congestion estimate value.

pconnew = fincr(pconold
) = pconold

+ δ

iff dqlen/dt > 0 and qlen > .8qmax (3.13)

pconnew = fdecr(pconold
) = pconold

− δ

iff dqlen/dt < 0 and pconold
> δ

(3.14)

Equation 3.13 implies that pcon is incremented, if and only if, the current queue-
length is greater than 80% of the total length and is increasing with time. Equation 3.14
implies that pcon is decremented, if and only if, the queue length is decreasing.

Thus all packets in a queue whose per-hop deadline is less than the pcon will be
dropped. This approach is scalable as no connection states are maintained. It is fair as
when there are two identical connections, each with the same deadline and the same
number of hops, the packets whose per-hop deadline is lesser than pcon are dropped for
both connections.

Providing Admission Control: The Path Estimate

Connection admittance control is provided using the path estimate, ppath. In the orig-
inal theory, each node in the network, for each route in its routing table, maintains a
estimate of how long it takes to the destination. If the remaining time to deadline is
smaller than the estimate to the packet’s destination the packet is dropped, rejecting
the connection. Maintaining these estimates at each router, however, is not a scalable
approach. As a solution to this problem, a concept of 0-complete networks is created.

The 0-Complete Network
Estserv networks that support the ppath estimate up to n-hops from the client, are

termed as n-complete. Networks all of whose nodes support the ppath estimate are
simply called Hop-complete Estserv networks. This distinction makes sense because it

Estimated Service 61

allows various institutions or service providers to implement this on the “outside core”
and entry/exit routers. Thus, according to this definition “0-hop complete” networks
support the ppath estimate only on the clients, i.e., the client maintains all its estimates
to all the nodes it makes a real-time connection to. Similarly, “1-hop networks” are
networks where every possible one hop from every client node (all access network
ERs) in the network supports ppath estimation.

0-hop networks are not intended as an approximation to hop-complete Estserv net-
works. Instead they are the current solution to the scalability, economic and backward
compatibility issues in the acceptance hop-complete networks. The usage of 0-hop
networks in current solutions is recommended, since they require only the addition of
a new module to the current OS’ network stacks. The rest of this work only refers to
0-hop complete Estserv networks until otherwise mentioned. Hop-complete networks
can, however, be used in smaller fixed route dedicated networks.

Authors in [26, 5] present the Real-time Channel Admission Protocol (RCAP)
which also looked at connection admittance mechanisms for earliest due date based
scheduling algorithm in multi-hop networks presented in [27]. The approach was based
on estimating the end-to-end deadline using a control protocol and on the way reserv-
ing resources at each intermediate router. In doing so they violate the principles of
best-effort design for the Internet. This is now known not to be a scalable approach and
is the primary difference between this work and the previous approach.

3.3.4 Implementation
The scheduling algorithm presented in Section 3.3.2, including the congestion esti-
mate, was implemented as a module in the Linux kernel. The scheduling algorithm
is accessed via the tc (traffic controller) utility. For a detailed explanation of Linux
forwarding and QoS concepts please refer [2]. All Linux qdiscs must implement a
number of functionalities. The important ones for our explanation are the enqueue and
the dequeue function. A detailed explanation of the other functions can be found in
[2]. Thus, a FIFO qdisc would enqueue at the tail, dequeue from the head and drop
when the queue is full. The Estserv scheduling module’s enqueue function is imple-
mented as an insertion sort over the calculated per-hop time for each packet. While the
dequeue function simply dequeues from the head of the queue. The module is inserted
using the linux tc utility at the end of the Diffserv-EF PHB, as shown in Figure 3.4.
This shows how estserv is an evolution of the current Diffserv architecture. Except
for the QDISC field in Figure 3.4 the rest of the setup is exactly the same. The video
conferencing application presented in Section 3.1.1 is reused including the bandwidth
adaptation mechanism described in Section 3.1.3.

Figure 3.6 shows the packet flow of the system. When a new real-time connection

62 Quality of Service: Estimated Service

Figure 3.6: Steps of execution: notice that the routers only perform deadline based
scheduling i.e. just insertion sort on the EF queue based on deadline.

is required (steps 1-6 in Figure 3.6) the client sends a setup packet to the destination.
This packet is marked with the required deadline and a special connection setup re-
quest label. The TTL of this packet is set to the IP standard. The intermediate router

Estimated Service 63

recognizes the label as a connection setup request.
Routers always append this packet at the end of the EF queue (step 2)12. If the

required deadline has expired or the congestion estimate cannot be met, the request
packet is dropped by the router. This gives preference to connections that already exist
over newer ones. This implements the connection admittance, answering Question 1.3,
just by properly scheduling and dropping the request packet. In Figure 3.6 step 4 the
destination calculates the difference between the current time and the timestamp on
the packet, and the hop count as the difference between standard IP TTL (128/256)
and the TTL on the packet. The destination then replies to this packet with this time
difference and the hop difference added in data fields. The client on receiving the reply
can now calculate the time the packet took to the destination and the number of hops.
If this time is less than the required deadline then the client starts sending data packets
to the destination (step 7 onwards) with the TTL field set to the number of reported
hops. This process is in essence very similar to RSVP [99] used in integrated service
architectures. However, unlike RSVP the routers do not need to perform any processing
on the packets and no bandwidth reservation is made. The connection admittance is
therefore on a best-effort basis to transfer the connection setup request packet.

As explained previously in Section 3.1.1 a set of the data packets are marked with
a reply label (Figure 3.6, step ia). These packets are acknowledged by the destination
in a similar way as the connection setup packet. This packet is transmitted at constant
intervals and is always the last packet in that particular frame transmission. These
packets, called heartbeat packets, are normal data packets with a special reply label. If
the replies to these heartbeat packets are not received by the client then a connection
loss is said to have taken place. This engages applications adaptation mechanism at the
client (explained in Sec 3.1.3). As long as a stable connection cannot be established,
the client keeps sending heartbeat packets with exponentially higher intervals between
packets. The application is intimated of a lost connection if the replies to the heartbeat
packets are not received for H tries. Conversely, if two consecutive heartbeat packets
receive replies within a specified time, (3 ∗ deadline), then the application thinks that
more bandwidth is now available and moves back up to a better media quality, if not at
the highest already.

Note that almost all actions are performed by the client or destination machines
while the routers only follow a scheduling mechanism based on insertion sort into the
forwarding queue. This makes the architecture scalable.

12The connection request packet is not scheduled according to the scheduling mechanism presented in Sec
3.3.2

64 Quality of Service: Estimated Service

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35
 0

 1

 2

 3

 4

 5

 6

Fr
am

e
ra

te
 u

se
d

by
 th

e
ap

pl
ic

at
io

n

R
eq

ui
re

d
B

an
dw

id
th

(M
bp

s)

Time(s)

BW Required at 30 fps(y2 axis)
Provisioned Bandwidth(y2-axis)

Video1
Video2

a) Case 1: Bandwidth provision above average
but below maximum requirement = 5.3Mbps

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35
 0

 1

 2

 3

 4

 5

 6

Fr
am

e
ra

te
 u

se
d

by
 th

e
ap

pl
ic

at
io

n

R
eq

ui
re

d
B

an
dw

id
th

(M
bp

s)

Time(s)

BW Required at 30 fps(y2 axis)
Provisioned Bandwidth(y2-axis)

Video1
Video2

b) Case 2: Bandwidth provisioned at close to average requirement = 5Mbps

Figure 3.7: Results with non-overprovisioned Estserv-EF. Case 3 on next page...

Estimated Service 65

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35
 0

 1

 2

 3

 4

 5

 6

Fr
am

e
ra

te
 u

se
d

by
 th

e
ap

pl
ic

at
io

n

R
eq

ui
re

d
B

an
dw

id
th

(M
bp

s)

Time(s)

BW Required at 30 fps(y2 axis)
Provisioned Bandwidth(y2-axis)

Video1
Video2

c) Case 3: Bandwidth provisioned at below average requirement = 4.25Mbps

Figure 3.7: ...Continued from previous page: Results with non-overprovisioned
Estserv-EF

3.3.5 Results
The experimental setup for looking at the performance of Estserv is exactly the same as
the one used for Diffserv-EF as presented in Section 3.1.1. The QDISC in Figure 3.3 is
replaced by the estserv qdisc described in the previous section. The three cases of non-
overprovisioned network are identical to the three used in the Diffserv-EF experiment
vis-a-vis:

• Case (1) χBE = 4.7Mbps, χEFEstserv
= 5.3Mbps

• Case (2)χBE = 5Mbps, χEFEstserv
= 5Mbps and

• Case (3) χBE = 5.75Mbps, χEFEstserv
= 4.25Mbps

All packet sizes used in the experiment are 1024B thus the EF class has a packet queue
length of three.

The results presented in Figure 3.7 and Table 3.3 show a better channel utilization
for the EF channel in the Estserv architecture and compared to the standard Diffserv-
EF channel in Figure 3.5 and Table 3.2. Thus Estserv provides an answer to question
1.2, however, the question remains if this utilization can be improved. These results

66 Quality of Service: Estimated Service

still do not answer the question of scalability and connection admittance, which are
presented in the next section. Lastly, these experiments are carried out in a simplified
laboratory environment; how do they behave in the real Internet is presented in Section
3.3.7

Table 3.3: Results with Estserv-EF for 2 simultaneous video conferencing connections
Video 1 (Total stream size = 12M) and Video 2 (Total stream size = 11M).

Received sizes Received sizes Channel utilization
for Video 1. for Video 2. efficiency

Case 1 11M 10M .91
Case 2 9.7M 11M .9
Case 3 7.3M 7.8M .78

3.3.6 Connection Admittance and Scalability
To evaluate connection admittance and scalability the same experiments where re-
peated with 5 and 10 clients instead of 2. The results are shown only with Case (2)
χBE = 2Mbps, χEF = 5Mbps in Table 3.4 for 5 clients and 3.5 for 10 clients. Each
client is started 2 seconds after the previous client.

Table 3.4: Results with Diffserv-EF for 5 simultaneous video conferencing connections
Video 1 (Total stream size = 12M) and Video 2 (Total stream size = 11M).
Video 3 (Total stream size = 11M) and Video 4 (Total stream size = 10M).
Video 5 (Total stream size = 9M)

Received sizes for Channel utilization
Video 1, 2, 3, 4, 5 efficiency

Diffserv EF 5 clients 2.1M, 2.1M, 2.3M, 2.5M, 2.6M .42
Estserv EF 5 clients 9.8M, 5M, 10M, 0, 0 .95

The results show that Diffserv seems to equally divide bandwidth amongst all the
connection while the overall efficiency still remains low. This is a waste since confer-
encing streams cannot work below a certain bandwidth availability. In effect Diffserv
results in all the connections being lost. In such cases it is useful to give preference
to existing connections over newer incoming ones. As can be seen from the Tables
3.4 and 3.5, the connection admittance mechanism presented in Section 3.2 for Estserv

Estimated Service 67

Table 3.5: Results with Diffserv-EF for 10 simultaneous conferencing connections
Video 1 (Total stream size = 12M) and Video 2 (Total stream size = 11M).
Video 3 (Total stream size = 11M) and Video 4 (Total stream size = 10M).
Video 5(9M), Video 6(9M), Video 7(8M), Video 8(7M), Video 9(7M), Video 10(7M)

Received sizes for Channel utilization
Video 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 efficiency

Diffserv EF 10 clients 1.2M, 1.4M, 1.4M, 1.5M, .8M, .4
1.2M, 1.6M, .85M, 1.4M, 1.7M

Estserv EF 10 clients 9.7M, 6M, 11M, 0, 0, 0, 0, 0, 0, 0 .8

seems to do this reasonably well. Only the first three connections are accepted in both
the cases. This is better since now at least three people can utilize the Internet to some
level of satisfaction, whereas Diffserv leads to a congestion collapse. The utilization in
Estserv as compared is somewhat low for the 10 client case. This is because, as shown
in Figure 3.8, video client 1 ends at t = 37s freeing up bandwidth for other videos.
This results in an increase in the frame rate of video client 2. At this point some of this
bandwidth remains partially unused resulting in a slightly lower utilization.

With regards to scalability, CPU and Memory usage was measured for machine 2
for the cases of 2 clients, 5 clients and 10 clients; with both Estserv and Diffserv. Ma-
chine 2 showed only small fixed amount of increased CPU (2%) and memory usage
(100M) from Diffserv, this amount was independent of the number of clients sending
packets through the connection. Since this memory and CPU usage is independent of
the number of clients it demonstrates that Estserv maintains the constant order scala-
bility of Diffserv.

3.3.7 Backward Compatibility and the Internet.
The design of the future Internet must be evolutionary in nature for economic reasons.
It then becomes important to understand how Estserv interacts with the current Internet
(Case a) and with Diffserv (Case b).

For Case (a) assume that the access network that acts as the main bottleneck, as in
[13]. Then all that is required is to install the edge link to ISP as an Estserv link. Fur-
thermore, time synchronization is only required over this edge, leaving the remainder
of the Internet as is. Under this assumption home computers now only need to syn-
chronize to the service provider’s gateway router The rest of the Internet can simply
ignore the deadline headers on the IP packet. Experiments with the setup shown in
Figure 3.9 were performed between access network at CWI Amsterdam and the UIUC

68 Quality of Service: Estimated Service

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25 30 35 40
 0

 5

 10

 15

 20

F
ra

m
e

 r
a

te
 u

s
e

d
 b

y
 t

h
e

 a
p

p
lic

a
ti
o

n

R
e

q
u

ir
e

d
 B

a
n

d
w

id
th

(M
b

p
s
)

Time(s)

Connections
 not admitted

End of
 Video1

BW Required at 30 fps(y2 axis)
Provisioned Bandwidth(y2-axis)

Video1
Video2
Video3
Video4
Video5
Video6
Video7
Video8
Video9

Video10

Figure 3.8: Results with 10 clients Estserv demonstrating connection admittance

network with the access router as Diffserv router (Case a.1) and then Estserv router
(Case a.2) . The results were very similar to those presented above and demonstrated
high utilization for Estserv.

For Case b), the interaction of Estserv with Diffserv, two experiments were per-
formed. The setup is same the as in Figure 3.3. In the first experiment (Case b.1),
machine 2 in Figure 3.3 was setup as a Diffserv router and machine 3 as an Estserv
router. For the second case (Case b.2) the ordering was reversed. Then all the earlier
experiments were repeated, with results in Case (b.1) almost identical to results from
experiments with just the Diffserv router, as in Section 3.2.2. In Case (b.2) there was a
minor loss in utilization as compared to the results with just the Estserv routers, as in
Section 3.3.5. The result are similar enough to not be presented here again.

These experiments demonstrate that Estserv is backward compatible to both the
current Internet as well as Diffserv. This eases its adoption in the future.

Estimated Service 69

ACCESS
NETWORK

192.168.1.3 192.168.3.7eth0:192.168.1.2
eth1:192.16.201.34
eth1 in CWI Network

Machine 1 Machine 2

Client 1
Caroline

Client 2
Kate

Destination
Server 1

Destination
Server 2

Application
connections

IP level
connection

Competing Realtime
Connections

nuttcp
nuttcp
server

Background Non-RT
TCP Traffic

Machine 4

ERCLIENT CR

INTERNET
128.174.247.62
UIUC network

Figure 3.9: Experimental setup with the real Internet

3.3.8 DCCP
In recent work, Datagram Congestion Control Protocol(DCCP) [22] has been recom-
mended for Real time transport. Using the linux iperf tool a DCCP connection is set
up from machine 1 to machine 4 in Figure 3.3 with a total bandwidth demand of 4
Mbps. Every 2 seconds an additional 2Mbps burst is created that lasts for 2 seconds.
Figure 3.10 shows this bandwidth requirement profile. DCCP kernel code is modified
to include the estimation algorithm.

Figure 3.10 shows the results. It shows clearly that the saw-tooth behavior of TCP-
friendly protocols is eliminated when using Estserv. Instead the Estserv bandwidth
profile follows the actual requirement profile exactly subject to the limit imposed by the
provisioning. The bandwidth profile while using Diffserv on the other hand oscillates
considerably. At every burst a lot of packets are dropped this is followed immediately
with a back-off period thereby causing under-utilization.

At the time of writing of this thesis the DCCP implementation in linux is not very
reliable. During experiments unforced connection losses often occurred. Further, the
implementations of various linux kernel versions were incompatible with each other.
Thus, experiments were repeated for three different linux kernel versions with identical
results. It was also not possible to set up a DCCP connection via a NAT gateway. Fixing
these issues is out of the scope of this work. However, the results shown here along
with the results for bandwidth adaptation, suffice to demonstrate the increase in channel

70 Quality of Service: Estimated Service

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35 40

M
b
p
s

Time(s)

Diffserv with DCCP
Estserv with DCCP

Actual Bandwdith Requirement
Provisioning Limit at ER (Machine 2 and 3)

Figure 3.10: Results for Datagram Congestion Control Protocol (DCCP) using CCID2

efficiency with Estserv.

3.3.9 Overhead
This section discusses a peripheral issue of Estserv’s design: overhead. The overhead
associated with Estserv can be divided into two threads of discussion: the extra bytes
sent in the header and processing delay at routers.

The header consists of a 4 byte label that differentiates between the setup, heartbeat
(piggybacked on normal data packets) and normal packets. In addition the deadline
timeval structure costs 8 bytes. The hop count is contained within the TTL field. In
total 12 bytes extra per-packet are sent. This adds a 0.8% bandwidth overhead on 1400
byte packets. This is small compared to the amount of bandwidth utilization it provides.

The processing delay encountered at the router is only due to reading the headers.
Routers do not have to write back to the packets except for the normal decrementing of

Summary 71

the TTL field. Thus including the hop count in the TTL field avoids any new recalcula-
tion of the checksums. Further more routers do not maintain any per-flow state/queues.

3.4 Summary
The goal of this chapter was to evaluate the feasibility of the current Internet QoS
standard Differentiated services towards supporting real-time communication over the
Internet in the form of communication streams. The Differentiated service per-hop be-
havior that supports real-time communication is the Expedited Forwarding (EF) class.
The Diffserv-EF standard assumes over-provisioning. In practice over-provisioning is
not always possible. The first objective of this chapter was to perform actual tests to
investigate the performance of the current Diffserv-EF standard over network links that
are not overprovisioned. In particular:

Question 1.1 How efficient is the Diffserv network towards communication
streams, such as video conferencing, in networks that are not
overprovisioned?

Experiments presented in this chapter demonstrated that Diffserv-EF is inefficient
in terms of bandwidth utilization over links that are not overprovisioned. This work de-
fined channel utilization as the ratio of bandwidth utilized successfully to the minimum
of the available bandwidth or the required bandwidth. The experiments demonstrated
very low channel utilization (<0.4) for non-overprovisioned links. This leads to the
next question:

Question 1.2 How can Diffserv-EF be extended to ensure efficient behavior
of the future Internet in links that are not overprovisioned while
maintaining scalability provided by the Diffserv architecture?

This chapter then presented an extension to the Diffserv architecture, named Es-
timated Service, which added deadline based scheduling to the Differentiated service
architecture. Experiments performed with this new extension demonstrated high chan-
nel utilization (>0.8). However, a high utilization is not sufficient for communication
streams. Communication streams cannot function below a certain minimum band-
width. Thus if the channel is too busy it must reject newer incoming connections in
favor of existing ones. This is known as connection admittance. Connection admittance
was previously studied as a part of the integrated Services architecture: RSVP. How-
ever, RSVP requires each router in the connection path to know every connection’s
state and other requirements. This is incompatible with the best-effort requirement

72 Quality of Service: Estimated Service

within the Diffserv design. The question in particular was:

Question 1.3 Is it possible to provide connection admittance in the future ar-
chitecture, while still maintaining scalability provided by the
Diffsev architecture?

This chapter provided a scalable connection admittance packet by introducing a
path delay estimating mechanism between the client and its destination for every half
connection. Each router in the connection path schedules the connection request packet
from a client requesting a new connecting at the end of its EF queue. Doing so gives
the least priority to newer incoming connection requests over existing ones. Results of
experiments performed using this mechanism presented in this chapter show that the
first connections were given preference over the later ones. The connections succeeded
as long as there was bandwidth available to support them. After which no new con-
nection were established. Furthermore this chapter showed that the estimated service
extension is as scalable as the Diffserv mechanism. Lastly it is worth noting that in
overprovisioned networks Estimated Service resolves to the standard Diffserv mecha-
nism, thereby not influencing its functioning in properly provisioned networks.

CHAPTER 4

Media Synchronization
Over The Internet1

In shared synchronous experiences, it is important that all users in the session expe-
rience the shared media content together, in a synchronized way. Further, these users
may have different Internet service providers and varied geographical locations, thus
placing them in different network domains. This chapter addresses this issue of syn-
chronized media play out across network domains on the Internet. For coherence, all
participants in a synchronous shared experience must experience the media content

1The work presented in this chapter is a contributed to:

• I. Vaishnavi, , P. Cesar, O. Friedrich, S. Gunkel and D. Geerts. From IPTV to Synchronous Shared
Experiences: Challenges in Design: Distributed Media Synchronization. Accepted for publication
in Elsevier Journal of Signal Processing: Image Communication, 2011.

• D. Geerts, I. Vaishnavi, R. Merkuria, P. Cesar, and O. van Deventer. Are we in Sync? Synchronization
Requirements for Watching Online Video Together. Accepted for publication at CHI 2011, Vancouver.
For this paper the need for user tests, the system design and the implementation of the experiment
itself were contributed by this thesis. Other aspects without which the experiments would not be
possible, such as designing and conducting the tests, were contributed by experts from KU Leuven.

Work done in this chapter also contributed to IETF draft:

• H. Stokking, M. van Deventer, O. Niamut, F. Walraven, R. van Brandenburg, I. Vaishnavi, F. Boronat,
M. Montagud. RTCP-XR block type for inter-destination media synchronization. IETF Draft, 2011

73

74 Media Synchronization Over The Internet

together. This implies that the nodes in different service provider networks, even in
different domains, need to be able to co-ordinate the play out of the media content.
The first question that arises is the quantification of ”same time”, in particular:

Question 1.4: What levels of distributed play-out synchronization does a dis-
tributed media system need to achieve?

The minimum skew in the play out of the media, which the users can detect, is
an unknown value. This value depends on a number of factors, such as the type of
communication stream, or the media stream content. To investigate this value user
tests need to be performed. Performing user tests requires the development and vali-
dation of a synchronization algorithm. This leads to the second challenge: to develop
a synchronization algorithm that would work over the Internet for synchronous shared
experiences. This chapter investigates the possibility of re-utilizing synchronization
algorithms used in existing synchronous shared experiences, in particular distributed
gaming. Specifically, the second question addressed in this chapter is:

Question 1.5: Can event synchronization, as used in gaming, be extended to
synchronize user actions and to achieve distributed media play-
out synchronization in synchronous shared experiences?

The main challenge that differentiates implementing a cross-domain media syn-
chronization algorithm from typical distributed media synchronization algorithms is
that different users may exist in different service provider domains and access the same
content located at different sources. In this cross-domain use case, implementing a dis-
tributed synchronization mechanism requires time-synchronization, accurate content
timelines, cross-domain media content identification, cross-domain user sessions, and
a cross-domain signaling mechanism. To implement the synchronization algorithm,
this work utilizes the innovations in distributed synchronization used in gaming and
distributed media applications [40, 7]. In particular, the local lag mechanism [59] is
implemented over a distributed control signaling architecture [43]. Implementation of
this local lag mechanism requires the ability of the nodes to signal their respective
playout status to each other. Based on this signaling the play out of the media at other
node can be adjusted. These signaling messages are called synchronization control
messages. The working of the synchronization algorithm is validated using two clients
over the Internet, one in Amsterdam and the other in Seoul. Our experiments between
Amsterdam and Seoul achieve accuracies to within 500ms.

Given our cross-domain media synchronization algorithm, user tests were per-
formed to answer Question 1.4. Two sets of user tests were performed to investigate
user tolerance to synchronization level differences. The first ran over a seven day pe-

75

riod and tested users in different environments: TV, mobile, and PC. The results of
this sets of experiments were not conclusive. The number of factors that influenced
the test were far too many to draw concrete conclusions. Learning from the experi-
ence of these first tests, a second set of tests was then performed to identify the user
tolerance for play-out differences in identical situations, both using a PC. The only pa-
rameter that changed was communication stream between audio and text for various
levels of synchronization. The detailed setup and results from this set of experiments
is presented in Section 4.2.

This chapter uses the work reported in other chapters as building blocks to achieve
cross-domain media synchronization. The synchronization control messages intro-
duced in this chapter are marked as control packets in the Estimated service architec-
ture (presented in Chapter 3) and are transmitted via the highest priority channel over
the Internet, as discussed later in Chapter 7. Proper understanding of these messages
requires the client nodes to be time-synchronized within acceptable bounds. Later,
Chapter 6 surveys the health of the NTP network and shows that a majority of properly
maintained nodes over the Internet are within 100 ms of each other. Given end-to-end
deadline guarantees and time-synchronized networks (both within certain bounds), it
becomes possible to apply previously developed synchronization schemes to our shared
experience architecture. Throughout this chapter social TV [16] is used as a particular
case of synchronous shared experience. Social TV involves two or more non-co-located
users watching the same TV content (media stream) while communicating with each
other using audio, video or text chat (communication stream).

User to user communication in

Experiment

1) text chat 2) voice chat

Figure 4.1: User test setup

This chapter is organized as follows. The next section presents the adaptation of the

76 Media Synchronization Over The Internet

event synchronization algorithm to achieve media synchronization for the social-TV
[16] use case. An adaptation of this algorithm is then used to find the minimum accept-
able user tolerance to differences in media stream synchronization levels for social-TV
in Section 4.2. Finally, Section 4.2.3 presents the the results of these user tests. A brief
summary of this chapter is presented in Section 4.3.

4.1 Media Synchronization
Newer shared experiences over the Internet present a challenge of cross-domain me-
dia synchronization. This section describes how synchronization algorithms, typically
used in distributed gaming, can be adapted to other synchronous shared experiences
over the Internet. In particular, we look at the scenario shown in Figure 4.1, where
users are watching a video at two geographically separated locations while communi-
cating with each other synchronously. The videos need not originate from the same
source, but must have a temporal relation to each other. A number of simplifying as-
sumptions are enlisted below:

• The communication stream can be extended to send status update messages.
• The rendering devices are capable of running the synchronization algorithm and

are powerful enough to process events within time bounds.
• Sessions can be set up across domains. Our implementation utilizes iSessions

[34].
• The participating nodes can be time-synchronized within certain bounds.

Assuming time-synchronization within certain bounds, the ”Local Lag with Time Warp”
[59] algorithm can be adapted to achieve event synchronization. Event synchronization
is required between nodes so that when one of the users performs an action this is con-
sistently reflected to all other users, similar to a distributed gaming infrastructure. For
example: if the main media stream is paused at one end then the pause should be exe-
cuted at other nodes, within a bounded tolerance limit. The algorithm consists of two
parts: (1) local lag to compensate for short term inconsistencies and (2) time warp to
undo inconsistencies that may still occur due to various network delay and jitter factors.

The concept of local lag is illustrated in Figure 4.2. Instead of executing the user
action as soon as possible, an event execution time in the future is chosen. This ensures
that the event can travel to all destinations and can be executed simultaneously depend-
ing on the skew in time-synchronization. This delay value is the local lag. The value of
the local lag needs to be small enough so that the user does not notice the delayed exe-
cution, but large enough that the event has enough time to travel to other users. In [59]
authors recommend a value of 150ms for applications that span the globe. These event
updates need to reach their destinations before this specified delay. Since these events

Media Synchronization 77

User Event
Transmission

Display

Event

Execution

Node 1 Node 2 Node 3

enqueue event

to execute at

(t + t')

enqueue event
to execute at

(t + t')
enqueue event
to execute at

(t + t')t + t'

t

Execution without local lag

Execution with local lag

Figure 4.2: Local inconsistencies can be avoided by using local lag

are sporadic in nature and require very little bandwidth they can be sent as network
control message that have strict priority on the Internet over other messages.

The local lag technique only attempts to resolve small term inconsistencies; it does
not provide any guarantees on consistency. Time warp is the process of rolling back
changes to the last known consistent state in case, inconsistencies are detected. Time
warping is therefore application dependent and thus not directly addressed here. For
our specific scenario of distributed video watching, time warp resolves to jumping back

78 Media Synchronization Over The Internet

or forward in the playout time. This, however, implies that the renderer needs to store
frames, which have already been played out for a short period of time to facilitate the
jumping back.

4.1.1 Signaling Architectures
Previous research in distributed synchronization mechanisms recommends 3 different
signaling architectures: (1) master-slave [44] (2) sync-maestro [39] and (3) distributed
control [43]. In the chosen scenario there are significant argumentative reasons not to
choose sync-maestro. Sync-maestro requires the maintenance of a central sync-server
which receives position updates from all the nodes, re-calculates their individual ad-
justments and signals them to accordingly re-adjust their play out speed or position.
This technique requires the maintenance of a dedicated sync server, which is not scal-
able [41]. Furthermore, it assumes that all nodes can contact this server directly, which
may not be the case in cross-domain applications. This architecture is typically used in
distributed games to maintain a worldwide view of the game, as a single server greatly
simplifies problems relating to causality and replication consistency.

The other two approaches, master-slave and distributed control, are quite similar
and more feasible. In the master slave approach one of the nodes is considered a mas-
ter and multicasts playout update messages to all other nodes in the system, whereas
in a distributed control system all nodes can send playout position updates. Each re-
ceiving node chooses to follow one of these update packets as the reference timeline.
As long as all the nodes choose the same reference timeline the system will remain
synchronized. The choice between these two architectures is largely application de-
pendent. For example: in an e-classroom environment the teacher should be the master
node which directs the student nodes as to what part of the presentation to play out. In
a distributed friends watching football scenario the distributed control scheme is more
appropriate, since there is no need for master re-election if the current master drops
out.

Lastly a fourth network architecture, which is a hybrid between the sync-maestro
and the distributed control approach, can also be used. In this approach a sync-maestro
in the local domain collects the status updates from all the end-nodes in that domain and
controls their play out. In a cross-domain session, each of the domain sync-maestros
further run a distributed control signaling based algorithm amongst themselves. This
approach is suitable if a very large number of nodes belong to the same session, such as
massively multiplayer online games. Within either of the, master-slave or distributed
control architectures, network architectures, the local lag and time warp algorithm [59]
can be used to achieve event synchronization. In our validation experiments, presented
later in Section 4.1.3, both, master-slave and distributed control, signaling architectures

Media Synchronization 79

are implemented. The results from experiments with both these signaling architectures
are identical.

4.1.2 Execution
Given event synchronization, media synchronization can be achieved by replacing the
event message by playout position updates. The generation of the playout position
updates is made periodic. The value of this periodicity depends on the particular ap-
plication. Since these events are not user generated, the local lag is determined by the
period of updates and the particular application semantics, rather than user tolerance to
local event execution.

When two or more users join a session to watch media content together, a dis-
tributed session needs to be set up. A number of steps are required to achieve media
synchronization during the session setup. In particular, a multicast channel needs to be
setup and the users need to negotiate on a time-synchronization sources. The multicast
channel can be set up re-utilizing the communication stream infrastructure. The control
messages of the communication stream can be extended to create a multicast channel.
In our implementation XMPP was used to signal user presence and XMPP IQ extended
to include position updates.

During execution the synchronization agent at each node acts as an smart event
queuing and handling thread. All events are placed in a queue, insertion sorted over
execution time. When the execution time of a particular event is reached, the associated
event is executed. For periodic position updates in the distributed signaling architec-
ture, all nodes send position updates but only one, the reference node’s update needs to
be executed. In our implementation the reference node is the node that has the smallest
media buffer size.

A common timeline needs to exist amongst the various versions of the content being
viewed. For a stored media case, such as VoD, it is the current play-out time into the
session. For broadcast video content, the standard [25] describes auxiliary streams that
carry this timing information. For more complex presentation structures, such as those
which are written in descriptive languages solutions or extensions that maintain state,
such as SMIL state [49] can be used.

4.1.3 Implementation and Validation
Two reference implementations were developed. The first one was implemented in
Java, using Java Media Framework as the media renderer component. All nodes played
the identical video file located at different sources. This implementation was used for
testing with clients in Amsterdam and Seoul for a 30-minute video clip. Every 30 sec-
onds each client logged on the current play position, CPTi, along with the NTP time,

80 Media Synchronization Over The Internet

NTPi, at that moment. Figure 4.3 plots the results of CPTAmsterdam −CPTSeoul +
{NTPseoul − NTPAmsterdam} for two runs; 1st run: with the master-slave signaling
architecture and 2nd run: with distributed control signaling architecture. A total of
five repetitions for each signaling architecture were carried out with indistinguishable
results. The graph suggests a constant error in play out of around 300ms ± 100ms.
A further uncertainty in these measurements due to error in NTP measurements is
< ±100ms resulting in an overall worst case error of 300ms ± 200ms. This constant
skew value is observed due to constant differences in seeking into the video file at every
position update by the renderer. The boundedness of this seek operation was assumed
at the start of Section 4.1. Nonetheless this worst case error of 500ms is acceptable as
will be shown by user tests presented in Section 4.2.

-1

-0.5

 0

 0.5

 1

 0 5 10 15 20 25 30

E
s
ti
m

a
te

d
 d

if
fe

re
n

c
e

 i
n

 t
h

e
 p

la
y
o

u
t

p
o

s
it
io

n
 r

e
p

o
rt

e
d

 (
s
)

Time(s)

First Run
Second Run

Figure 4.3: Validation results: 1strun) master-slave signaling, 2ndrun) distributed con-
trol signaling.

User Perception 81

A second implementation for three different clients in three different domains was
developed. The three clients were a PC, an unmanaged TV and a mobile phone. The
PC version was implemented using .NET and with VLCplayer used as the media ren-
derer. A Philips NET TV was used to implement an unmanaged TV case and was
coded in javascript and the in built renderer used for media rendering. The mobile
phone was implemented using HP’s reference implementation of the JSR 309 standard
http://jcp.org/. This work also lead to the enhancement of the JSR 309 standard. Figure
4.4 shows the screenshots of this implementation.

a) SIP Client (Laptop) b) TV Client c) 3G Mobile Client

Synchronized

video play out

Figure 4.4: Example implementation in the iNEM4u project

4.2 User Perception
An important requirement for synchronous shared experiences is that the media needs
to be synchronized in order to have some common ground to talk about [98]. It is, how-
ever, theoretically impossible to exactly synchronize media play out over a network.
The test results in the previous section shows an estimated error in synchronization in
video playout to be around 300ms ± 200ms. Is this tolerable to users? Therefore an
important research question is to know which synchronization level still enables users
to have a satisfying shared experience, impacting the design of future social systems.

Currently, 150ms [46] is used as a rule of thumb, a value drawn from telecommu-
nications research. This rule states that maximum end-to-end, one-way delay when
talking remotely should not be over 150ms [46]. Below this value users cannot per-
ceive the delay in communication. Based on this result, one can conclude that 150ms

82 Media Synchronization Over The Internet

is the lower bound for synchronizing shared video content. However, no actual user
studies have been done to determine the range of acceptable synchronization levels for
social video watching. This maybe, in part, because of the large number of parameters
that this value may depend on.

This section presents a study to answer this question (Question 1.4). It reports on
the results of a user study using the implementation from the previous section. To
isolate some of the parameters, the study focuses in users watching a quiz show in a
Social TV viewing environment. Based on the user study acceptable synchronization
levels for Social TV [16] are determined.

4.2.1 Setup
A within-subjects lab experiment was conducted with 18 couples (partners, friends, or
family), so a total of 36 people took part in the tests, consisting of 12 males and 24
females. The age ranged from 15 to 68 years old, reflecting the broad potential target
audience of shared video watching.

In each experiment, the two participants were placed in two different observation
rooms. Both participants were shown two episodes of a popular local quiz show at dif-
ferent locations simultaneously, with varying amount of play-out skew. The show was
chosen because a quiz is a very sociable genre [31]. The content was carefully edited
to offer consistent content during the test. During the first episode, participants could
voice chat with each other using a headset. The headset was also used for listening
to the audio track of the quiz show. Thus, participants could not hear the noise from
the audio track of their partners show. During the second episode, participants could
only text chat with each other. The order of text chat and voice chat conditions was
randomized over the different test sessions, in order to remove any habituation effects.

Without informing the participants, every seven minutes the synchronization level
of the videos was changed. This length was chosen in order to allow participants
enough time for having a substantial conversation, as well as being able to present
several conditions to participants during a two-hour test session. In each condition
(voice chat and text chat), five synchronization levels were presented to users: 0 sec-
onds (perfect sync), 500 milliseconds, 1 second, 2 seconds and 4 seconds. These values
were chosen during a pilot test with two experts, in which it was discovered that syn-
chronization difference becomes detectable between 500ms and 2s. Based on these
expert results, 500ms, 1s, and 2s were taken as test condition, and 0s and 4s were cho-
sen to test the more extreme cases. These levels were presented in a randomized order
for each set of participants and each condition. As a difference in synchronization be-
tween two participants implies that (the video of) one person is ahead (leading), and
one person is behind (lagging), the order of who is leading and who is lagging was also

User Perception 83

randomly varied.
After each seven minutes (before the next synchronization change), the participants

were asked to fill in a web-based questionnaire, asking a series of questions related
to togetherness, noticeability and annoyance of the synchronization differences. In
total each participant filled in 10 questionnaires (5 during each condition), resulting
in 360 unique measurements. After the first questionnaire it would become clear that
synchronization was one of the issues which was questioned. Therefore the participants
were instructed in advance to only talk about the content of the show, and not discuss
the test itself nor explicitly try to figure out the synchronization difference of the videos.

4.2.2 Measurement Error Bounds
In order to control the play-out skew during the user tests, a system is required that can
play media synchronized in two locations and can be manipulated by the observers.
A simplified version of the implementation presented in the previous section was used
to achieve the chosen level of play-out skew. One of the participants computers was
chosen as a master, which continuously sent out position updates to the other computer
(the slave). The slave computer received these updates and jumped to the recommended
position.

Prior to the tests, this mechanism was validated within the test environment and
a margin of error was established for the play-out skew levels. It was found that the
error in the skew levels was maximum 150ms with an average of 8ms difference and
a standard deviation of 59ms. Thus in this experiment a synchronization level of x
implies an interval of x ± 0.15 seconds.

This value is different from the 500ms error in validation results for the synchro-
nization algorithm presented in Section 4.1.3, since the both the participant clients were
almost identical in hardware and software configuration and were placed across a LAN
instead of the Internet.

4.2.3 Results
This section focuses on the results of noticeability and annoyance caused due to play-
out skew in the user tests. Results for other surrounding issues, such as togetherness,
can be found in [32]. As both, noticeability and annoyance, are closely related, they
will be discussed together. To measure the noticeability and annoyance of play-out
skew, the Degradation Category Rating (DCR) MOS score as described in [45], used
for degraded speech signals, was adapted with values ranging from 1 (not noticeable) to
5 (noticeable and very annoying). Figure 4.5 shows the plot of this rating for both text
and voice conditions. In the voice chat condition, synchronization difference becomes

84 Media Synchronization Over The Internet

Play-out skew (sec)

-4 -2 0 1 2 40.5-0.5-1 -4 -2 0 1 2 40.5-0.5-1

Lagging

users

Leading

users

Lagging

users

Leading

users

Users found it

noticeable

Users found it

annoying

Figure 4.5: Noticeability and annoyance results for varying skew levels

noticeable around 1 second for the leading participant, and around 4 seconds for the
lagging participant. This is visible from the strong difference the ratings from 2 to 4
seconds for the lagging participant and from 0.5 to 1 second for the leading participant.

People in the text chat condition give rather random answers, not correlated with the
play-out skew, indicating that they do not notice a difference based on synchronization
level (play-out skew). This randomness in rating can, probably, be attributed to other
factors (such as reaction time of the other participants). However, this difference in
between voice chatters and text chatters is mainly attributed to non-active chatters.
To test the effect of text chat activity on making the synchronization difference more
noticeable, the participants were divided into an active group (more than 400 words
per session), with N=15 participants, and a non-active group (less than 400 words per

User Perception 85

Figure 4.6: Fast typing text chatters notice differences in synch level similar to in the
video case

session), with N=21 participants.
In all cases there is a set of users who are perfectly in sync (0s play-out skew, in

the middle of both the text and voice chat graphs) but still feel out-of-sync. This is
an important aspect of synchronization research, implying that while most user cou-
ples feel in-sync in the interval {-1s,1s} there can be other factors that influence their
experience. Thus while designers of synchronous shared experiences should aim at a
{-1s,1s} interval for play-out skew it is vitally important to provide users with a “skew
level adjustment knob”. This “knob” can be utilized to adjust play-out skew based on
the users’ feel of the shared synchronous experience. A point worth mentioning here
is that this knob can only be provided for shared experiences where the correct and fair
functioning of the experience does not depend on causality of user actions.

86 Media Synchronization Over The Internet

4.3 Summary
The goal of this chapter was to address distributed media synchronization in syn-
chronous shared experiences. Distributed media synchronization is required so that
users in a synchronous shared experience can coherently communicate about the me-
dia stream(s) they experience.

Perfect synchronization is theoretically impossible, which leads to the first ques-
tion:

Question 1.4: What levels of distributed play-out synchronization does a dis-
tributed media system need to achieve?

This chapter reported on the results of user tests that investigated the tolerance
of users to different synchronization levels. A particular case of synchronous shared
experiences, Social TV, was used. Five different synchronization levels were used:
{0, 0.5, 1, 2, 4} seconds. The results demonstrated that a significant number of users
noticed the synchronization difference at the 1s mark using audio communication. With
text communication the results were not conclusive. However, the results for active text
chatters (words per session > 400) were similar to the audio communication case, with
a significant percentage of users noticing a difference in play out around the 1-second
mark.

The second question addressed in this chapter looked at designing a distributed
synchronization mechanism across the Internet. Chapter 1 identified that distributed
games were the first popular synchronous shared experiences to exist across the Inter-
net. This previous work in synchronization research can be re-utilized. In particular
the question addressed was:

Question 1.5: Can event synchronization, as used in gaming, be extended to
synchronize user actions and to achieve distributed media play-
out synchronization in synchronous shared experiences?

This chapter presented our experiences in the adaptation, design and implementa-
tion of the event synchronization algorithm used in distributed games. Two reference
implementations of this adaptation were created. The execution of the implementation
was tested with one client in Amsterdam and a second one in Seoul. The results demon-
strated a synchronization skew of 300 ± 200ms between the two locations irrespective
of the signaling architectures. User studies presented within this chapter shows that
this value is within acceptable limits of user tolerance.

An important result that can be drawn from this chapter is that while most users will
not notice a play-out skew below 1s, the perceptibility of the users varies quite a bit.

Summary 87

During user experiment it was observed that this depended on a lot of factors, such as
the age difference between the two users, the difference in familiarity with computers
and the differences in general levels of responsiveness. Thus, while for developers of
shared synchronous experiences it is important to lie within this 1s value of play-out
skew, it is also important to expose some level of play-out adjustability. This will help
users adjust their play-out speeds, until they feel they are in sync with each other.

88 Media Synchronization Over The Internet

CHAPTER 5

User Mobility1

During the last decade, users are surrounded by an increasing number of small, pow-
erful and always-connected devices. This connectedness is fueling the desire to stay in
touch even while traveling. Thus, synchronous shared experiences over the future Inter-
net will span multiple devices, networks and modalities all surrounding a single moving
user. Coherence within an environment where the user may constantly move from one
network to another, or one device to another, would imply that his synchronous shared
experience moves with him. This movement and adaptation of the shared experience
with the user is termed user mobility. As an example, a user might want to transfer
his shared experience from his high-definition television screen at home to his mo-
bile device while leaving his home. This means that the media and the communication

1The work presented in this chapter contributed to publications:

• I. Vaishnavi, P. Cesar, A. J. Jansen, B. Gao, and D. C. A. Bulterman. A presentation layer mechanism
for multimedia playback mobility in service oriented architectures. In ACM conference on Mobile
Ubiquitous Multimedia, 2008.

• P. Cesar, I. Vaishnavi, R. Kernchen, S. Meissner, C. Hesselman, M. Boussard, A. Spedalieri, D. C.
A. Bulterman, and B. Gao. Multimedia adaptation in ubiquitous environments: benefits of structured
multimedia documents. In ACM Symposium on Document Engineering, 2008.

• R. Kernchen, S. Meissner, K. Moessner, P. Cesar, I. Vaishnavi, M. Boussard, and C. Hesselman. In-
telligent multimedia presentation in ubiquitous multi-device scenarios. IEEE Journal on Multimedia,
2010.

89

90 User Mobility

stream, which are a part of the shared experience, also need to be transferred in a seam-
less manner. Further the shared experience needs to adapt to the new user’s context.
For example, he may only resort to audio communication stream on the mobile phone
to save screen space while on the high-definition TV he would want both audio and
video.

This implies that shared experiences must move as well as adapt with the user.
Each device, however, provides its own user interface, rendering and connection ca-
pabilities. This requires re-negotiation of the session parameters to adapt to the new
target devices and networks. The traditional approach is to consider user mobility as a
collection of session mobility requests. This means that each session in the shared ex-
perience, i.e. each stream in the media content and each session in the communication
stream is independently re-routed and adapted to the new network and the new device’s
capabilities. Since these adaptations are independent of each other, re-synchronizing
them with the other participants is complex, involves identical repetitive signaling in
the control plane and is therefore inefficient. The question addressed in this chapter is:

Question 1.6 How user mobility can be achieved in a simpler,
scalable and in turn more efficient manner?

Synchronous shared experiences consist of media streams and synchronous com-
munication streams. There is an inherent difference in the requirements of these two
streams with respect to session mobility. This is shown in Table 5.1. The difference
stems from the fact that communication streams are live, unlike stored media streams.
Further unlike broadcast live media streams communication streams cannot be delay
rendered. In essence this fruitlessness of re-transmitting communication streams makes
session mobility somewhat easier, in that, no state information needs to be stored. As
shown in Table 5.1, user interactions are limited for communication streams, while for
media playback and bufferable live broadcast there are VCR-like controls, hyperlinks,
advanced preferences and so on which need to be preserved. Next, while commu-
nication streams are simple multiplexed audio video streams, media streams can be
quite complex with intermedia spatial and temporal relationships. Thus the expression
of media state becomes more complex than the traditional simple time-stamp into the
stream. The media state may now consist of user interactions, preferences and complex
intermedia relationships, which need to be preserved for a better user experience.

Temporally efficient transfer is an important requirement in communication, since
the user may miss out on content. This, however, can be relaxed for media streams,
since the user may pause the presentation. Transcoding is the only option for live
communication streams because alternative versions do not exist. However, for media
streams in service-oriented architectures the same media is usually present with the
service provider in multiple formats. These formats may be better suited for the tar-

91

Table 5.1: A comparison of requirements for transferring user presentations
between communication and media stream

Communication
Stream

Media Stream

User interaction
with Stream

Limited, almost non
existent

Can be complex

Media Complexity Not complex May have complex inter-
media relationships

Stream state Inexistent as trans-
missions are real-
time

Can be complex, may in-
clude user interactions and
intermedia relationships

Temporally Required Nice to have
efficient transfer
Transcoding Only option. Other

formats do not exist
(real-time stream)

Not required, more suit-
able alternate media en-
codings may exist

Device Required Required
discovery and
description
Selection of media
best suited for the
device

Not required, media
is transcoded

Required, for enhanced
user experience

get device and thus provide a better user experience while also reducing the network
overhead due to absence of transcoding. For example, imagine a user transferring a
session from his mobile phone to HDTV: no matter how advanced the transcoding
function, there is bound to be serious loss of video quality. Both mechanisms require
target device descriptions and discovery mechanisms. Live applications require decid-
ing which formats to transcode the live stream to, while in playback (in our solution)
this is required to select the map media format to the target device.

The de facto standard for providing session mobility, SIP-refer call with SDP (Ses-
sion Description Protocol) description [82], was only intended for communication
streams and not for media presentations. The factors enlisted above and in Table 5.1
make it unsuitable for use with shared experiences, which are in essence an integra-
tion of media presentations with communication. Extensions to incorporate complex
presentation-state semantics and dynamic content selection into SDP can be made.
SDP, however, is a session level description protocol and a mechanism would be re-

92 User Mobility

quired to communicate media relationships typically expressed at the higher layers.
Currently, however, the only way of achieving user mobility using the SIP-SDP mech-
anism would be to integrate multiple identical session mobility requests, for each media
item in the presentation. This is inefficient in terms of signaling and does not utilize
the known intermedia relationships.

The solution presented here is to consider the entire shared experience as one pre-
sentation. This presentation can be expressed in languages, such as SMIL2 and NCL
[86]. When a user mobility request is received, the current state of the presentation is
saved in same presentation description languages using solutions, such as [49] . When
a rejoin request is received the presentation is re-started at the target network. This
restart means that presentation is automatically adapted to the new target network. The
state file is fetched and this state is re-applied to the current presentation restoring syn-
chronous view of the shared experience.

This chapter presents this procedure in detail, in particular: (1) How is the presen-
tation adapted to the new device? (2) How can the state of the current presentation be
restored at the new target device? (3) What are the network level issues, if any, in doing
so? It shows that this procedure is significantly simpler requiring much less signaling
overhead and therefore much more scalable and efficient, and can provide better user
experience.

This chapter is organized as follows. The next section presents the assumptions
used throughout this chapter, followed by the presentation of the architecture itself in
Section 5.1.1. Presentation-layer continuity as a solution to the above mentioned prob-
lem is presented in Section 5.2. Section 5.3 presents the reference implementation of
the presentation-layer continuity mechanism and discusses the results thereof. Section
5.4 presents a overall concluding summary of this chapter and possible directions of
future work.

5.1 Assumptions
This section presents the assumptions made on the service provider network. These
are:

• The service provider network provides multimedia services for a range of device
capabilities from HDTVs to mobile devices.

• For doing so it possesses pre-encoded media formats in terms of size and encod-
ing already available at the media server targeted to specific devices. Thus, the
same presentation may be present on the server in different coding formats, like
the mobile phone version and the cable TV version.

2http://www.w3.org/AudioVideo

Assumptions 93

• The service provider network has a mechanism of discovering and appropriately
describing the devices it serves. Methods of doing this are presented in a previ-
ously in [12].

5.1.1 Architecture
Based on the assumptions, this section considers the conceived architecture. Figure
5.1 shows the overall generic architecture of the system with the relevant components
highlighted. The main focus in this chapter is on the mobility manager’s functionality
and how it interacts with the other related components in the generic shared experience
architecture, Chapter 2.

User1's

Service Provider Domain

User1

Access Network

Client Application

Parent Renderer

Synchronisation

Agent

Primary
Stream

Renderer

Shared
Experience
Renderer

Session

Manager

Mobility

Manager

 Sessions

Server

Content

Guide

Content

Selection

Device

Discovery

and

Content

Adaptation

Content

Adaptation

Multiple

Internal and External

Media Servers

Figure 5.1: Our architecture

The device to content adaptation runs in the back end and maps the devices acces-

94 User Mobility

Figure 5.2: An algorithm for session transfer.

sible to the user to the appropriate media content format available at the media server.
This mapping considers multiple factors, such as screen size, resolution, supported for-
mats and so on. An in depth explanation of its working and the algorithms used is
shown in [51].

The content guide server abstracts the raw media stored in the media servers into
higher-level authored presentations, which can be enlisted and played out in the media
stream renderer.

The mobility manager is invoked by the session manager or the parent renderer
depending on whether the system decides to push the media to a new location based on
changes in user context or whether the user pulls the media at his new destination.

Presentation-Layer Continuity 95

5.2 Presentation-Layer Continuity
One of the key issues to transfer a session from one device to another is to keep a con-
sistent and comprehensive description of the current state of the presentation. Previous
work on this topic focused on solutions for atemporal documents [87, 72]. These solu-
tions store a detailed representation of the information of the web browser, such as the
current site being viewed and the user interactions. The broad steps to transfer state in
the web, as presented in [87, 72], are:

• Pause the current presentation
• Store the current state of the presentation
• Adapt the content to the new device
• Transfer of the content to the new device(s)
• Restore the state in the new device

A solution along similar lines is to keep the current detailed state of the presentation
(at the time the transfer is requested), as shown in Section 5.2.1, to stop the current
session, and to start a new session that includes the media stream better suited for the
new device in accordance with the saved state information. This solution requires an
abstract representation of the multimedia service, so the system can conclude that the
new content stream is indeed the same as the previous content stream. This state may
then be transferred by appropriate means to the target device as shown in Figure 5.2.

So far an overview of how this mechanism would work has been provided. The
questions that were raised at the beginning still need to be answered. Each of those
questions will be answered in the following subsections in detail. Before going into
details of each one of these steps a brief overview of a typical service oriented archi-
tecture is presented. This will put the terms used in the rest of the chapter into context.
Section 5.2.1 shows with simple examples how the presentation is adapted to the se-
lected device, whilst abstracting out the network details. Section 5.2.2 then talks about
the network level messaging whilst abstracting out the presentation layer details. This
chapter then looks at some limitations and presents the results obtained from imple-
mentation and compare them with previous approaches.

5.2.1 Presentation Adaptation Mechanism
This section discusses the mechanism of adapting the presentation while transferring it
from one device to another. Each available encoding on the media server is compared
to device specifications of each of the rendering devices accessible to the user. Based
on the user profile and other heuristics a media encoding best matched to each device
is selected. This mechanism of mapping appropriate media to devices is presented in

96 User Mobility

[51]. To transmit the presentation from one device to another a high-level description
of the presentation is used, with the SMIL3 standard, in which different media elements
are temporally and spatially synchronized. In addition, SMIL state functionality is used
in order to save and restore the current status of the presentation and thus making the
transfer as smooth as possible. In [12] the syntactical and semantical issues relevant
to presentation encoding are presented in detail. The following is a description of the
issues important for this thesis.

Source Code 1 shows a presentation composed of a video and of subtitles. The seq
tags mean that their child nodes must be played sequentially, while par stands for par-
allel. In this case, the presentation is intended to the high-definition television display.
The video file comes to the home using the cable connection, while the subtitles are
coming from an Internet subtitles provider because the mother tongue of the user is
not a common one. The home server at home is in charge of synchronizing the media
elements based on the given description. At some point the user decides to transfer the

Source Code 1 Original Presentation Description.
3 <layout>
4 <region id="v" width="1024" height="800"/>
5 <region id="s" width="200" height="220"/>
6 </layout>
...
09 <seq>
10 <par>
11 <video region="v" src=".../video.mov"/>
12 <text region="s" src=".../sub.rt"/>
13 </par>
14 </seq>

presentation from the television display to his mobile device. At that point, our system
follows the next steps: (1) store the current state, (2) adapt the media content to the new
platform, (3) transfer the modified presentation to the new device, and (4) restore the
presentation in the new platform. Source Code 2 shows how the result of modifying
the state of the presentation. If the presentation transfer takes place after 30 seconds of
watching the video, a new presentation is generated in which the clipBegin and clipEnd
attributes are added. These attributes point to the time offset into their respective media
items for beginning and ending the play-out, respectively. In addition, a state variable
indicating that the first par has been already displayed is added4.

Finally, the content needs to be adapted to the new device; this includes the layout
description as well. For example, the platform might decide to deliver another ver-
sion of the same video with the saved state information that has been professionally

3www.w3.org/AudioVideo/
4This is shown for clarity. Actual SMIL syntax is slightly different.

Presentation-Layer Continuity 97

Source Code 2 State Modification.
09 <seq>
10 <par state="disregard">
11 <video region="v" src=".../video.mov" clipEnd="30s"/>
12 <text region="s" src=".../sub.rt" clipEnd="30s"/>
13 </par>
24 <par >
25 <video region="v" src=".../video.mov" clipBegin="30s"/>
26 <text region="s" src=".../sub.rt" clipBegin="30s"/>
27 </par>
28 </seq>

produced for the specific new device in terms of video resolution and encoding. Fur-
thermore based on the current state of the presentation while transferring the session it
will re-contact the subtitling service on the Internet and fetch the appropriate subtitles.
All network and service provider related negotiations are performed at the back end
hidden to the user’s application layer. Source Code 3 shows the result of such modifi-
cation. A more in depth process of choosing the right content-device adaptations that
is executed at the back-end is presented in [51].

Source Code 3 Content Adapt. and State Modification.
4 <region id="v" width="176" height="220"/>
5 <region id="s" width="200" height="80"/>
...
24 <par>
25 <video region="v" src=".../video.3gp" clipBegin="30s"/>
26 <text region="s" src=".../sub_small.rt" clipBegin="30s"/>
27 </par>
28 </seq>

Synchronization is now achieved as the target device(s) re-negotiates the content
from the respective sources. In case the presentation is split across multiple devices
then a distributed synchronization algorithm, such as the one presented in [95] may be
used. For more details on how SMIL-State can be used to store complex presentation
data please refer to [49].

5.2.2 Network Details
This chapter has so far presented how the state of the shared experience can be saved,
adapted and applied using SMIL as an example. This way cleanly separates the pre-
sentation level details from the network level details. Such a separation allows the
presentation level to work independent of the network layer and vice versa. The same
can not be said for the case in [82] where SDP is “used” also to store presentation states

98 User Mobility

and device descriptions. Firstly, as stated earlier, presentation state is non-existent in
conferencing streams thus the SIP-SDP based approach works fine, however, extending
that approach to media playback is not optimal. Secondly, abstracting presentation and
transport heuristics implies that the system can be designed to function with any type of
network, Wi-Fi, Bluetooth or IMS infrastructures across the Internet. Lastly, this mod-
ular approach adheres to the increasingly popular service provider model. Different
servers on the Internet can provide different services, such as a server for discovery an-
other for media sources another for adaptation and so on, thus retaining the scalability
for the future Internet.

This section will talk about how the transport level must behave to facilitate this
transfer. Both the network models of presentation continuity, namely; the push and
the pull model, are presented. Both these models are well understood in computer net-
works. The two models, which address two different use cases, are presented separately
for clarity. The network level at which this exchange takes place is obscured by inten-
tion. This exchange can be implemented in the application layer or as an automatic
transfer protocol in the transport layer. The choice is left to the particular implemen-
tations. All the presentation layer user mobility mechanisms are independent of the
technologies used to achieve this transfer.

Assume for the purposes of this discussion that the user initiates a media presen-
tation session on a device A. This is done in the architecture presented before using a
content guide, similar in functionality to electronic programming guides. The selected
presentation is then adapted to the device the user is currently using, with the help of
the adaptation engine. Since the aim of this chapter is to focus on the session transfer
part initialization details are omitted.

Push Model

In a ubiquitous setting, the service must be aware of the different devices surrounding
the user and possess the device descriptions for each of them. Assuming there is a way
to determine which device the user is currently using, the service may automatically
initiate presentation transfers from one device to another following the user. In this
method the service pushes the presentation to the new target device. The network
interactions between the service and the devices are shown in Figure 5.3.

A change in the device being used, as shown in the figure, initiates an interrupt
call informing the service that the user has shifted from device A to B (Step 1). After
authorizing the user on device B and obtaining it description (Step 2, 3), the service
asks device A to stop rendering the current session and to save the current state of the
presentation as a SMIL file (4). Device A replies to the service with this SMIL file
attached (5A). The service then asks the adaptation engine to re-adapt the presentation
(6), while preserving its state, with appropriate media encoding and screen size, pro-

Presentation-Layer Continuity 99

Figure 5.3: Messages while pushing session. DD stands for device description.

viding it with the current presentation state and B’s device description. On receiving
the new presentation file from the adaptation engine the service sends this SMIL file to
B (7). B then renders this presentation. Meanwhile, device A may stop its presentation
(5B).

Pull Model

In a more mobile setting, and in the absence of automated device discovery and user
detection mechanisms, the user may be provided with an interface to facilitate trans-
ferring the presentation from device A to B. The network details for this are shown in
Figure 5.4. Here the user voluntarily pulls the presentation to his device.

As shown, the user logs into the service on his target device (Step 1). The service

100 User Mobility

Figure 5.4: Network messages while pulling session. DD stands for device description.

after authorizing him presents him with information about his presentation running on
device A (2). The user then asks the service to pull the session to his new device (4).
This results in B sending a transfer request to the service with its device description
(5). The service then asks device A to close its presentation while sending back the
current presentation state (6, 7A). The service then adapts the presentation using the
adaptation engine to device B as in the previous subsection (8). This new presentation
is sent to B for rendering (9).

Note: In both the cases it was assumed that an adaptation mechanism exists and
the service is aware of it. This, however is not a requirement. The service may simply
send the presentation state it receives from A to B and then B may re-negotiate the
appropriate media content with each individual media source. The advantage of doing
this is that then the service need not be aware of the alternative media-encoding present

Implementation and Results 101

Figure 5.5: Actual experimental setup

at each media server.

5.2.3 Limitations
Even though the solution presented in this chapter is versatile and powerful, a couple
of limitations in this approach can be identified, namely:

• This method cannot provide continuous stream transfer. The presentation needs
to be stopped and re-negotiated at the new destination.

• Transferring sessions across service provider networks requires that the same
media sources/servers are accessible in the other network. Chapter 4 and [34]
show how universal sessions including unique universal content identifiers can
be provided by service providers.

5.3 Implementation and Results
In the first experiment, an HTTP server running on a Mac mini (with a HDTV attached)
was used to fetch the SMIL file to the user’s device. This is shown in Figure 5.5 part
1. Thus the user pulled the session to a device he already possesses. To do so the
user accesses a pre-configured web page, using the target device, where he fetches the
SMIL file with the current state of the presentation. This SMIL file is then launched
on a compatible player on his device. On all devices a version of the Ambulant5 media

5www.cwi.nl/projects/Ambulant/distPlayer.html

102 User Mobility

Table 5.2: Devices used in experiments

Experiment Source Device Target Device
1A Mac mini Portege m400
1B Mac mini HP Ipaq
2A Mac mini HP Ipaq
2B Nokia 770 Mac mini
2C Mac mini Portege m400

player with integrated IMS client (for Part 2) called minisip6 is installed. Dynamic
adaption of the presentation is performed at the webserver. Sessions are transferred
from the Mac mini screen shown in the figure to the HP IPAQ mobile device and to
another laptop, as presented in Table 5.2. Figure 5.6 shows an actual screen shot of this
session transfer.

In the second experiment our architecture was adapted to the IP Multimedia Sys-
tems (IMS). When the user transfers his current session from a host device to a target
device, the host device saves the current state of the presentation in a SMIL file. The
SMIL file is then pushed to these new renderers as an instant message using IMS. The
IMS server is pre-configured to intercept this presentation and then adapt it to the tar-
get device. The new device then takes this SMIL file and plays it. This setup is shown
in Figure 5.5 part 2 and explained in Table 5.2. A presentation was started on device
macmini@open-ims.test fetching RTSP streams from an RTSP server (not in the dia-
gram). A transfer request was then sent to this device to transfer the session to device
laptop@open-ims.test. This initiates an IMS message to “laptop” with the request to
transfer the corresponding SMIL file with the appropriate state information. “Laptop”
then simply has to render this file and send an acknowledgement to “ Mac mini”. Sim-
ilar steps were carried out with ipaq@open-ims.test, the HP IPAQ mobile device, and
are shown in the figure.

Another advantage of the presentation layer mechanism is that partial transfers
where different component streams are transferred to different user devices can also
be achieved. An experiment in which only one of the component streams of the pre-
sentation is transferred to another device, while the second continues playing on the
originating device was also performed. The time taken to split and transfer the pre-
sentation was similar to the time taken in each of the individual cases. The distributed
synchronization algorithm presented in Chapter 4 is then used to synchronize not just
between users but also between the various component streams of the shared experi-
ence at the same user’s end.

6www.minisip.org

Implementation and Results 103

Figure 5.6: Screen shot of presentation transfer from a television screen to a mobile
device.

Table 5.3: Max. time (in ms) taken to transfer presentation (50 runs). Experiment 1

Max Time taken (over
50 runs) to

Exp 1A Exp 1B

Save state and Dwnld.
file after adaptation

50 100

Restart RTSP 700 1200
Total 750 1300

Table 5.4: Max. time (in ms) taken to transfer presentation (50 runs). Experiment 2

Max Time taken
(over 50 runs) to

Exp 2A Exp 2B 2C

Save state and
IMS transfer

50 50 50

Restart RTSP 1200 650 700
Total 1250 700 750

The results in Table 5.3 and 5.4 show the time taken during various stages of the
presentation transfer for Experiment 1 and 2 respectively. It can be seen that the amount
of time it takes is dependent on the processing capabilities of the device. The network
time to transfer the message from one device to another was too small to measure since
a dedicated wireless network without any other network traffic was used.

Assuming the results in [82, 52] provide acceptable time transfer limits, the time
taken here to transfer presentations is acceptable, validating our method. The results
are intended only to demonstrate the ability to acceptably implement this method and

104 User Mobility

are not intended to show a faster or a more efficient method.
Apart from signifying the differences in requirements in live and media playback

mode, the true targets of the chapter were achieved as

• Control plane calls are simply a request to the target devices to play the attached
SMIL file (with last previous state information)

• Trans-coding need not be performed since the target device now starts a new
session with the servers, thus re-negotiating the content. Alternatively, a central
server may match the content to device.

• The player (maybe distributed) is now responsible for ensuring media consis-
tency in the new target device

• additional content maybe stored at the media servers, which maybe better suited
to the target devices or target context, thereby enhancing user experience.

An added advantage of our approach from a user-centric view is that the user may
choose to start the presentation on the target device as per his convenience.

5.4 Summary
The goal of this chapter was to design an efficient user mobility mechanism for coher-
ence in synchronous shared experiences in the Future Internet. Given that synchronous
shared experiences in the future will be composed of complex multimedia presentation
involving a composition of multiple media components, the current standards achieve
user mobility by breaking it down into a number of composing session mobility re-
quests. This involves repetitive identical signaling which is inefficient in the control
plane. In particular the question that was addressed was:

Question 1.6 How user mobility can be achieved in a simpler,
scalable and in turn more efficient manner?

As an answer this chapter presented a presentation layer user mobility mechanism.
This mechanism abstracts the individual media sessions, thereby making control plane
signaling more efficient. The mechanism essentially works by saving the state of the
current presentation prior to mobility, restarting the presentation at the new location in
a context-aware manner and then re-applying the stored state. The main advantages
of doing this were that the new presentation is automatically adapted to the new user
context since it is initiated there and elimination of redundant signaling in the control
plane.

Summary 105

The chapter presented the details of the mobility mechanism with both push and
pull control mechanism. Further, two scenarios of session transfer, each using different
underlying infrastructures, were implemented to show the underlying network indepen-
dence. One scenario utilizes the IMS subsystem and the other uses HTTP. The work
presented here is general enough to be plugged into any future form of synchronous
shared experience, provided there exists a method to save and re-apply states for that
shared experience. In the future, however, a standard needs to evolve for interfaces,
signaling and varied messaging formats. These standards must also consider user pref-
erences and context.

106 User Mobility

CHAPTER 6

Time Synchronization:
Accuracy in the NTP Network

This chapter examines the assumption of time synchronization made throughout this
thesis. In its ideal form Estimated service, presented in Chapter 3, assumes that it is
possible to synchronize clocks within tens of milliseconds. Further, distributed media
synchronization and presentation layer mobility for synchronized shared experiences,
presented in Chapter 4 and 5 respectively, assume the existence of time synchronized
clocks typically to hundreds of milliseconds. The question then arises:

Question 1.7 What are the bounds on time difference that can be as-
sumed between any two nodes in the NTP network?

This chapter surveys the current NTP network using a technique known as “spider-
ing”. This technique has been used in previous works that surveyed the NTP network
in 1989 [61], 1999 [63] and more recently in 2005 [68]. This chapter presents a com-
parison with the results from these previous works. The results of the present survey
demonstrate that in general NTP performs well over the Internet and its performance
is steadily improving. Almost 90% of the surveyed nodes are within 100ms of each
other. Further, the survey shows 90% of the nodes estimate that they are within 10ms
of their synchronization peers. This chapter assumes basic familiarity with NTP. For
the purposes of this chapter, it is assumed that all nodes in the synchronous shared ex-

107

108 Time Synchronization: Accuracy in the NTP Network

perience can access NTP servers. In case this is not possible or the respective use case
desires a more ad hoc setup, Appendix B presents a solution for time synchronization,
called neighbourCast.

The next section presents the technique of spidering the NTP network. This is
followed by Section 6.2 that explains the implementation of this technique used in this
work. Section 6.3 then presents the results in terms of offset and dispersion found in
the surveyed network. The results are presented in comparison with the results from
previous works. Finally, the answer to the question raised in the beginning of this
chapter is summarized in Section 6.4.

6.1 Spidering
Spidering the NTP network consists of two steps: a breadth first search for NTP nodes
and inquiring the time synchronization status of each of the NTP nodes. The method
used to search for nodes is known as walking the tree, first presented in [61]. Similar
to breadth first search in graphs, walking the tree starts from a known NTP node. It
then creates a list of NTP nodes by inquiring the IP addresses of the other NTP nodes
connected to the known NTP node. The connected nodes are the parent node, child
nodes, peer nodes, and the list of nodes monitoring the known node. Please refer to
[60] for their definitions. It then recursively asks the nodes in the newly created list the
IP addresses of their parent, child, peer and monitoring nodes. This process discovers
all the connected nodes in the NTP tree. This is done using two standard ntpdc queries
shown in Command Execution 1 and 2.

Command Execution 1 Inquiring about the peer nodes for ntp.uiuc.edu.
[root@localhost ˜]# ntpdc -pn ntp.uiuc.edu

remote local st poll reach delay offset disp
===
+130.126.24.53 130.126.24.44 2 1024 377 0.00040 -0.000762 0.15822
+128.255.32.25 130.126.24.44 2 512 176 0.00764 -0.000308 0.12134
=127.127.1.0 127.0.0.1 13 64 377 0.00000 0.000000 0.03064

*128.174.38.133 130.126.24.44 1 1024 377 0.00044 -0.000031 0.12175
=192.5.41.40 130.126.24.44 1 1024 377 0.04317 0.003274 0.13667
+130.126.24.24 130.126.24.44 2 1024 376 0.00032 0.000321 0.18315

Command execution 1 shows the list of peers to the NTP node ntp.uiuc.edu. Of
these the peer node beginning with the “*”, in this case 128.174.38.133, is chosen as the
synchronization peer (or the parent node). This is the node ntp.uiuc.edu is synchroniz-
ing to. The command also enlists other hosts that are being monitored by ntp.uiuc.edu
as potential fallback synchronization peers. Command execution 2 gives the list of

Spidering 109

Command Execution 2 Inquiring about the list of nodes monitoring ntp.uiuc.edu.
[root@localhost ˜]# ntpdc -n -c monlist ntp.uiuc.edu
remote address port local address count m ver code avgint lstint
===
76.224.127.173 61153 130.126.24.53 62849 3 1 590 31 0
32.106.77.48 123 130.126.24.53 2 3 1 590 64 0
12.110.169.7 423 130.126.24.53 385251 3 2 590 1 0
222.106.135.33 123 130.126.24.53 5 3 1 590 64 0
208.4.155.36 406 130.126.24.53 303036 1 2 590 4 0
98.214.170.136 97 130.126.24.53 25 3 1 590 64 0
69.28.122.206 12 130.126.24.53 3720 3 4 590 14 0
58.10.64.234 123 130.126.24.53 9 3 1 590 64 0
<...590 more similar lines>

NTP clients that are currently monitoring or have previously attempted to synchro-
nize with “ntp.uiuc.edu”. Using these two commands, a further lists of nodes in the
NTP network is found. These commands are then recursively applied to these nodes to
eventually generate a complete connected list of NTP nodes.

Command Execution 3
[root@localhost ˜]# ntpdc -c sysinfo ntp.uiuc.edu
system peer: truechimer.cites.illinois.edu
system peer mode: sym_active
leap indicator: 00
stratum: 2
precision: -20
root distance: 0.00043 s
root dispersion: 0.01720 s
reference ID: [128.174.38.133]
reference time: d0636c34.dd620170 Fri, Oct 15 2010 20:11:32.864
system flags: auth monitor ntp kernel stats
jitter: 0.000854 s
stability: 0.000 ppm
broadcastdelay: 0.003998 s
authdelay: 0.000001 s

For each node in this list a second command is used to inquire about the NTP
related statistics of the node. This is done using Command Execution 3. The values
reported by this command can be used to understand various factors, such as: the NTP
network topology, distance from root, synchronization errors jitter values. The purpose
of this study is to focus on the precision of reporting time in the NTP network. Thus
this chapter focuses on two values directly related to determining this precision: offset
and dispersion. The results for these values are presented in Section 6.3. The next
section first presents a brief description of the implementation.

110 Time Synchronization: Accuracy in the NTP Network

6.2 Implementation
A C++ application is developed that uses the system commands described in the previ-
ous section to survey the NTP network. There are 2 threads in the application, the first
one “walks the tree” generating a list of IP address in the NTP network. This thread
begins a breadth first search of the nodes in the NTP network, starting with an initial list
of level 11 and level 22 NTP servers enlisted on Wikipedia. This way all major known
NTP networks can be covered. The second thread gathers the relevant NTP statistics
from the discovered nodes. The program ran on a Linux system possessing the IP ad-
dress 192.16.204.88 for about 2 months (Mar, Apr) in 2010. During its search it found
1033295 unique IP addresses. However, in a stark difference from the earlier works
only 64682 replied to the info request. The next section identifies possible reasons for
this drop and presents results from this experiment.

6.3 Results
Table 6.1 shows a comparison of the number of hosts found and the number of replies
received with respect to this and previous studies. There is a minor drop in the num-
ber of hosts found but a significant drop in number of replies received with respect
to the last study in 2005 [68]. A major reason for this drop is believed to be the de-
fault configuration of the newer releases of popular operating systems, which refuses
ntpdc from unknown IP addresses. Furthermore, various level 1 time sources, such as
GPS and radio have now become affordable, creating a possibility of independent and
disconnected NTP trees. The only way of finding the nodes in those trees would be
to do a brute force check of all the hosts assigned address blocks in the IANA. This,
however, borders on rogue Internet behavior and thus was not performed. The other
reasons why hosts wouldn’t reply are because they are behind a firewall, an NTP ver-
sion mismatch with the spidering node, some may not have the ntpd daemon running,
and other network factors, such as loss of the querying packet.

Table 6.2 shows the distribution of the surveyed nodes according to their stratum in
percentages. Comparison to previous recent works is also presented. The comparison
does not demonstrate any significant change in the organization of the NTP network.
Lower stratum nodes are usually deeper in the local networks hidden behind firewalls
and thus more difficult to reach. Stratum 2 and 3 form the majority of surveyed nodes
which is logical, since, these strata are the ones exposed to the end users. There seems
to be an increase in the number of level 1 nodes, pointing to the easy availability of
time sources, such as GPS or Radio.

1http://support.ntp.org/bin/view/Servers/StratumOneTimeServers
2http://support.ntp.org/bin/view/Servers/StratumTwoTimeServers

Results 111

Table 6.1: A comparison of the size of various NTP network surveys

Reference Year hosts found replies received
[61] 1989 8455 946 (11.2%)
[35] 1993 15000 7251 (48.3%)
[62] 1995 Unknown 38722 (-)
[63] 1999 647401 175527 (27.1%)
[68] 2005 1290819 147251 (11.4%)

This work 2010 1033295 64682 (6.2%)

Table 6.2: Distribution (in percentages) of the surveyed nodes over stratum

Stratum 1999 2005 This work
1 0.55 0.38 1.46
2 15.29 20.6 27.2
3 48.61 58.98 50.5
4 21.84 17.73 12.44
5 4.06 1.28 2.6

6-15 1.49 1.03 0.8
16 2.77 0 5

The following sections present the results in terms of time offsets and dispersion of
the various nodes.

6.3.1 Offset
Clock offset is the estimated amount of time that needs to be adjusted to match a client’s
clock to its synchronization peer. Thus a smaller offset represents better synchroniza-
tion. Offset is considered to be one of the most important indicators of the performance
of NTP. Figure 6.1 shows the cumulative graph of the absolute offset values recorded.
The figure shows that about 90% of the nodes estimate themselves to be within 10ms
of their synchronization peers. This result on performance of the NTP network shows
that it is possible to assume the high level of synchronization accuracy required for an
adapted version Estimated service presented in Chapter 3. In particular, when the user
client nodes are synchronized only to their service provider edge node, which is their

112 Time Synchronization: Accuracy in the NTP Network

physical neighbor. This adaptation still results in a significant improvement in chan-
nel utilization. This was presented with an experiment in Section 3.3.7 Offsets are,
however, only estimates of the synchronization skew and not strict bounds. The figure
also shows that almost 98% of the nodes are within 128ms, after which a very long tail
exists. To look at actual theoretical upper bounds across the entire NTP network, we
must look at the root dispersion metric presented in the next section.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1e-05 0.0001 0.001 0.01 0.1 1

C
D

F
(p

e
rc

e
n

ta
g

e
)

offset(s)

Complete NTP Network

Figure 6.1: Cumulative graph of client to synchronization peer offsets

A comparison with earlier surveys in Table 6.3 demonstrates a slight improvement
in the overall mean while the median remains similar. Thus within this 128ms the
time differences between nodes are getting smaller, due to advances communication
technology.

6.3.2 Dispersion
Dispersion is the maximum possible theoretical bound on time skew at a client. It can
be measured with respect to the time at the root reference node or the client’s synchro-

Results 113

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.0001 0.001 0.01 0.1 1

C
D

F
(p

e
rc

e
n

ta
g

e
)

dispersion(s)

Complete NTP Network
NTP Network with Stability=0

Figure 6.2: Cumulative graph of client to root dispersion

nization peer. Clients compute the root dispersion by summing up the dispersion to
their synchronization peers recursively up through to the root node. Two sets of results
are presented in this case. The first includes all the nodes in the network and the second
with NTP reported clock stability of the nodes equal to zero. Clock stability is the ex-
ponential average of root mean square (RMS) frequency differences and is measured in
parts per million (PPM). Stability value of zero signifies that the frequency variations
in the clocks are largely insignificant i.e. the clock is stable. A large value of stability
implies a variation in the frequency of the clock. Such variations could occur in nodes
that may be old, exposed to environmental elements or just ill maintained. Thus, the
results for clocks with stability equal to zero are shown separately from the overall
results.

Figure 6.2 shows the cumulative graph of client to root dispersion. Interestingly
90% of the nodes surveyed are bounded within 100ms of each other. This validates our
assumption of time synchronization in Chapters 4 and 5. With respect to Chapter 3 this

114 Time Synchronization: Accuracy in the NTP Network

Table 6.3: Mean and median for offset values for offsets < 128ms

Year Median (ms) Mean (ms)
1999 1.8 8.2
2005 0.7 7

This work 0.9 4.8

results does not prove or disprove the assumption of 10-20ms maximum error across
the Internet. It is, however, significant that NTP nodes can themselves calculate the
maximum possible error in time they may have. If this value is less than the acceptable
error they can use the Estserv architecture and, if not, the nodes may dynamically revert
back to standard Diffserv. In the future, improvements in technology will reduce errors
due to asymmetry in round trip times thereby improving this performance. One such
improvement could be classifying NTP packets as control flow in the Internet. This
reduces the differences in network traversal times of the NTP query and reply packets.
This asymmetry in the to and from times is the main cause for synchronization errors
in NTP.

Table 6.4: Mean and medians of dispersion in various studies (without tail)

Year Median (ms) Mean (ms)
1999 39 88
2005 40 74

This work 37 44
This work(stability=0) 35 39

Table 6.4 shows a comparison to previous surveys, ignoring the tail component.
As in the previous section a significant improvement in the mean can be seen demon-
strating the better performance of the current NTP network. Figure 6.2 and Table 6.4
also demonstrate a noticeable better performance for nodes with high clock frequency
stability (= 0ppm) when compared to the normal network.

Summary 115

6.4 Summary
The goal of this chapter was to investigate the clock accuracy that can be assumed over
a node synchronized using NTP on the Internet. In particular, the question was:

Question 1.7 What are the bounds on time difference one can assume
between any two nodes in the NTP network?

To answer this question this chapter presented the results of surveying the existing
NTP network using a technique known as spidering. Spidering involves a breadth first
search of the entire NTP network starting from a given list of known nodes while in-
quiring each node about its status. The results presented in this chapter show that close
to 90 percent of the surveyed nodes are within 100ms of each other. Thus, conversely
one may assume that any two nodes on the Internet, synchronized using NTP, are within
100ms of each other with a probability of about 0.9. This level of accuracy is sufficient
for the work presented in other chapters of this thesis: distributed synchronization and
the presentation layer mobility mechanism, Chapters 4, 5 respectively.

Estimated service (Chapter 3) however, requires accuracy to within 10 ms to work
across the Internet. The results of this chapter show that this currently cannot be as-
sumed on an Internet-wide scale. However, the peer-to-peer offset as presented in this
chapter is bounded to within 10 ms for greater than 90 percent of the cases. This im-
plies that, without assuming any improvement in the performance of NTP, in the future
Internet all user clients can be synchronized to their neighboring service provider edge
routers within 10ms with a high probability. Section 3.3.7 presented an adaptation to
the Estimated service architecture where the queuing/scheduling mechanism is only
activated on the service provider edge routers. This adaptation to Estimated service
is implementable for the current as well as the future Internet. This adaptation yields
similar results to normal Estimated service as shown in Section 3.3.7.

In the future, however, spidering may become an inaccurate technique to query
the health of the network. Using this technique nothing can be said about the nodes
which did not reply or were not queried. With more and more nodes refusing NTP
management-query reply to unknown nodes and newer disconnected NTP trees due to
the easy availability of level 0 time sources, the majority of the network will not be
available for study. Thus, sooner or later an alternative mechanism to study the time
dispersion of the nodes in the NTP network must evolve.

116 Time Synchronization: Accuracy in the NTP Network

CHAPTER 7

Conclusions

In the future services will appear that integrate synchronous communication streams
with other applications to form synchronous social experiences. Groups of people in
synchronous shared experiences can interact and share services independently of their
location and the network they are using. This thesis explored certain technical chal-
lenges of synchronous shared experiences. Currently, multimedia-based services are
designed for one specific device and network. We envision a future in which friends
and family in different domains can converse when watching multimedia content to-
gether. The change of paradigm from single end-user consumption to a group shared
experience imposes a number of challenges in the way services are designed. This
work described a generic architecture and highlighted three particular areas of research
for achieving coherence in shared synchronous experiences, namely: quality of service,
distributed media synchronization and user mobility.

Unhindered user interaction requires Quality of Service guarantees over the com-
munication streams in synchronous shared experiences. However, the future Internet
must stay best effort in nature. This implies that guarantees can never be provided. This
thesis, thus, looked at the performance of the existing solutions. The current standard
for providing Quality of Service is the Differentiated services (Diffserv) network archi-
tecture. Diffserv assumes overprovisioning, but in practice an overprovisioned network
cannot always be guaranteed. Thus, this work studied the performance of the Diffserv
architecture in networks that are not overprovisioned. The thesis recommends an evo-

117

118 Conclusions

lutionary extension to the Diffserv architecture, in particular the Expedited forwarding
(EF) class. This extension is named Estimated service (Estserv). Results from identical
experiments with Diffserv and Estserv demonstrated significantly improved bandwidth
utilization in Estserv networks. Furthermore, high bandwidth utilization is not suffi-
cient. Communication streams cannot function below a certain bandwidth limit. There-
fore in over-crowded networks, connection admittance needs to be provided to avoid
congestion failures. This thesis presented scalable connection admittance mechanism
within the Estserv architecture. Our experiments demonstrated that this mechanism
only admitted connections in till there was bandwidth available to support them. The
connection admittance mechanism was found to be scalable and routers do not need to
maintain any per connection memory structures.

Given unhindered communication, media streams need to be rendered in a syn-
chronized manner across users. This thesis adapted the algorithms and architecture
for synchronization in distributed games to distributed media playback. A particular
case of synchronous shared experiences, Social TV [16], was studied. User tests were
performed to identify the tolerance of users to differences in synchronization levels.
The user tests concluded that most active users in a social TV setting do not detect
differences in play-out under 1s. This value was previously unknown. Validation ex-
periments on the synchronization algorithm found a worst case bound on skew to be
500ms between clients based in Amsterdam and Seoul.

Finally this thesis considered user mobility. Coherent movement of user’s syn-
chronous shared experiences from one user device or network to another is required in
future networks. User mobility is a requirement that is distinct from session mobility,
since each synchronous shared experience may contain multiple media and commu-
nication sessions. Each session needs to be moved and re-adapted to the new user’s
context. The previous approaches involved treating a user mobility request as a com-
posite of these session mobility requests. This requires repetitive signaling in the con-
trol plane, which is inefficient. This work presented a presentation layer mechanism
for achieving user mobility. The mechanism involves saving the state of the presenta-
tion in a descriptive language, such as SMIL1. This presentation state file can then be
transferred using any appropriate means to the new location. The presentation is then
re-initiated at the new location and the state reapplied. Re-initiating the presentation
automatically ensures the best possible user experience for the new location. The repet-
itive signaling mechanism required in previous solutions is now avoided, making our
approach more efficient and less prone to synchronization errors within the composite
streams.

A total of seven research questions were addressed in this work. Section 7.1 restates
these questions and summarizes the lessons learnt. The implications of the answers for

1http://www.w3.org/AudioVideo

Summary 119

the future of synchronous shared experiences and the Internet as a whole are analyzed.
Section 7.2 then discusses some limitations and possible opportunities arising out of
this work.

7.1 Summary
Synchronous shared experiences of the future will utilize a congregation of work done
in multiple disciplines, including: media codecs, models for 3D rendering, bandwidth
optimization, scheduling, synchronization, human computer interaction and causality.
The contributions of this thesis have focused on three areas relevant to coherence of
synchronous shared experiences: quality of service, distributed synchronization and
user mobility. The developments in each of these individual areas, amongst others,
will determine the architecture of the future Internet. This thesis recommends a new
architecture that improves the efficiency of Diffserv-EF class while maintaining its
scalability in non-overprovisioned networks. It further recommends a scalable con-
nection admittance mechanism to maintain the usability of the Internet. Chapter 4
demonstrated how distributed synchronization can be designed and implemented in the
given network architecture. User studies also demonstrated the tolerance to differences
in synchronization level in a shared video watching scenario is about 1 second. Chapter
4 demonstrated how user mobility can be made more efficient for synchronous shared
experiences by handling it at the presentation level instead of the session layer (as is
currently done). During the course of this thesis, supplementary contributions were
made to the areas of bandwidth measurement and ad hoc time synchronization. These
are discussed in Appendix A and B. The contributions of this work are summarized in
the questions below:

• Question 1.1 How efficient is the Diffserv network towards communication ap-
plications, such as video conferencing, in network that are not overprovisioned?

Chapter 3 argued that the current Internet’s bandwidth availability acts as a bot-
tleneck in the development of many newer communication streams, such as tele-
immersion [69]. Furthermore, the assumption of overprovisioned networks in
practice cannot always be ensured, especially across cross domain links and
in the face of newer bandwidth-demanding communication applications. Thus
for practical purposes it is important to study the working of Diffserv in non-
overprovisioned links. Experiments with Diffserv routers in Chapter 3 show that
the current design for Diffserv-EF channel is inefficient in terms of channel ef-
ficiency under non-overprovisioned conditions. This naturally leads to question
1.2 in the search for more efficient architectures.

120 Conclusions

• Question 1.2 How can Diffserv be extended to ensure efficient behavior of the
future network in non-overprovisioned links while maintaining scalability within
the Diffserv architecture?

This extension in the Diffserv-EF architecture improves channel utilization effi-
ciency in Diffserv-EF in non-overprovisioned links, while maintaining its perfor-
mance and scalability otherwise. Chapter 3 presented Estimated Service archi-
tecture as an deadline based scheduling extension to Differentiated service archi-
tecture. The Estserv architecture involves the insertion of a scheduling compo-
nent at each intermediate router. This component schedules the incoming packets
in order of their increasing “per hop deadlines”. The results in Chapter 3 showed
that estimated service improves end-to-end bandwidth utilization efficiency in
non-overprovisioned links. In overprovisioned links, no queuing takes place,
thereby naturally resolving Estserv to the normal Diffserv mechanism. The re-
sults also demonstrated that the scalability of Estserv was comparable to that of
Diffserv. Experiments with DCCP also demonstrated and increased efficiency
in face of congestion control mechanisms. Communication streams like video
conferencing are, however, in-elastic applications, i.e. there is a minimum band-
width under which these applications cannot function. This lead to Question 1.3
to a newer congestion control mechanism that would work with this architecture.

• Question1.3 Is it possible to provide connection admittance control in the future
architecture, while still maintaining scalability within the Diffsev architecture?

Experiments with Diffserv-EF demonstrated a fair distribution of available band-
width to all incoming connections, even if this bandwidth was below the mini-
mum usability requirement of the respective multimedia applications. Instead,
existing multimedia connections must be prioritized over newer incoming con-
nections. This can be achieved via connection admittance. Chapter 3 presented
an RSVP-like mechanism to achieve connection admittance. However, unlike
RSVP the intermediate nodes did not need to know anything about the newer in-
coming or existing connections, making it more scalable. The idea presented in
Chapter 3 simply scheduled the connection request packet at the end of all other
existing data packets. The connection packets where identified by a deadline
value of -1 in their IP headers. This automatically gives existing connections
priority over newer incoming ones without requiring the routers to know any
connection specifics. The results in Chapter 3 demonstrated the effective work-
ing of the connection admittance mechanism. Given a smooth communication
stream the users now need to feel that they are interacting with each other about

Summary 121

the same media streams, implying the requirement of a distributed synchroniza-
tion mechanism on the media stream. This lead to a question about the levels of
user tolerance to the skew in synchronized media play out, Question 1.4.

• Question 1.4 What levels of distributed play out synchronization does a dis-
tributed media synchronization system need to achieve?

To evaluate the user tolerance to differences in synchronization play out levels of
the media stream, given fluent communication streams, first requires the imple-
mentation of an infrastructure to synchronize the respective streams, Question
1.5. Given this implementation, Chapter 4 presented the results of user studies
with 36 participants alternatively using voice chat and text chat as the commu-
nication stream. The experiments found that for a certain type of genre - in this
case a quiz show - the synchronization level at which a significant number of
users start to notice the skew is around a second. This value replaces the previ-
ous rule of thumb of 150ms that comes from tele-communication research [46].
This result has important implications for the design and development of social
video watching applications. While currently developers are struggling to meet
the 150ms rule of thumb for distributed media synchronization, this work shows
that they need to now look at the 1s mark. This makes it possible to implement
synchronization algorithms over networks with relatively large end-to-end sig-
naling jitter and across less powerful clients such as mobile phones, such as the
one presented as a answer to Question 1.5.

• Question 1.5 Can event synchronization as used in gaming be extended to syn-
chronize user actions and to achieve distributed media play out synchronization
in future shared experiences?

Chapter 1 identified that the first synchronous shared experiences across the In-
ternet were distributed games. Synchronization in distributed games is called
event synchronization, with existing techniques such as the local lag with time
warp and the bucket synchronization mechanism [59, 7]. Chapter 4 re-utilized
the local lag mechanism to synchronize user actions, such as “pause”, “play”
or “jump to scene” across all the shared experience participants. Furthermore,
by classifying play-out position update packets as periodic pseudo user events,
it became possible to achieve distributed media play out synchronization using
the same algorithms. Chapter 4 adapted this mechanism to previous research on
signaling architectures done in media synchronization. In particular, the chapter
recommends the use of distributed control [43] for cross domain synchronous
shared experiences. Validation results from the implementation of this system

122 Conclusions

showed an estimated worst case bound on skew level of about 500ms, which
according to the results of Question 1.4 is acceptable.

• Question 1.6 Can user mobility be more efficient than being considered as a col-
lection of individual session mobility request?

Synchronous shared experience sessions, such as iSession [34], are composed
of multiple individual media sessions. Research in mobility has so far focused
on moving one media session from a device to another. Solutions for such com-
posite presentations [14] involve complex mechanism of preserving associations
between sessions, and then reissuing all the individual session mobility requests
based on such associations. Chapter 5 argued that this is inherently inefficient,
and suffers a number of drawback in terms of synchronization. As a solution
Chapter 5 recommends a presentation layer mobility mechanism, where the en-
tire shared experience session is saved in a descriptive session language, such
as SMIL, and transferred via various available network mechanisms to the tar-
get device. In addition, various efficient modifications can be performed to the
presentation to better match the target device. The target device re-negotiates
the whole presentation and thus it is automatically adapted to the new environ-
ment of the user, including new service and content providers. The work done in
Chapter 5 demonstrated the feasibility of this approach.

• Question 1.7 How accurate are the clocks synchronized using NTP?

Throughout this work an assumption of time synchronization has been made.
While Chapter 3 assumes up to tens of milliseconds of synchronization across
the network, it also provides an alternative mechanism if this cannot be assumed.
Chapter 4 and Chapter 5 also inherently assume time synchronization to hun-
dreds of milliseconds. Are these assumptions justified? To answer this question
we conducted a survey to update the results presented in [68] to find the level of
synch spread in the NTP network. The survey showed that any two nodes on the
Internet, synchronized using NTP, are within 100ms of each other with a prob-
ability of about 0.9, thereby justifying the assumptions made in Chapters 4 and
5. Our work also demonstrated that the approach used in the this and previous
works, [61], [63], and [68], could soon become infeasible due to increasingly
closed networks and more disconnected NTP trees.

As an answer to the main question this work argues that the design of the existing
Internet has to evolve further to facilitate coherence in synchronous shared experi-
ences. More efficient QoS techniques, such as Estimated service that do not violate

Future Work 123

Weighted Fair Queuing

Based on existing

Diffserv schedulers

Incoming

Traffic

Control Flow

Expedited

Frowarding

Assured

Forwarding

Channels

Best Effort

Deadline

Based

Scheduling

Outgoing

Traffic

Inserted at

Head of Queue

Classifier

Figure 7.1: Router traffic prioritization in Estserv

the best-effort principles should be evaluated further for deployability on the existing
Internet. Every new design for the Internet must be evaluated in terms of the ease of
management, both, administratively and economically. Time synchronization should
be inherent to the design of the future Internet to facilitate synchronous user mobility
and distributed media synchronization mechanisms. Further, as a direct result of this
work, control flow should be prioritized and over-provisioned whereas data, including
real-time data, must have appropriate best-effort congestion avoidance mechanisms on
the edge routers in place. This difference in approach is because control flow occupies
a relatively small part of the bandwidth, unlike real-time data in future shared experi-
ences.

7.2 Future Work
The thesis presented solutions to certain technical issues towards the realization of
coherence in newer synchronous shared experiences over the Internet. As always, these
solutions, in turn, raise further questions with regards to various issues. Some of the
possible directions in further extending and refining this work are presented in the
following sections.

The next section presents the design of the future Internet. Section 7.2.2, 7.2.3,
7.2.4 discuss opportunities for future directions in QoS, distributed media synchro-
nization and user mobility. Section 7.3 presents brief concluding remarks.

7.2.1 The Future Internet
As a consequence of this work an evolutionary design for the future network can be
developed based on the Diffserv architecture. Figure 7.1 shows this prioritization. The

124 Conclusions

control channel has absolute priority and is always overprovisioned. The reasons for
this are that control flow occupies little bandwidth and is important to the working of
the synchronous shared experiences and other applications over the Internet. Each of
the other channels EF, AF and Best effort are allocated a reserved bandwidth based on
the requirements in the SLAs in each of the respective domains. In the edge routers
in each domain, the low delay classes EF and AF-low delay must use the Estimated
service architecture to improve efficiency in case of congestion. This requires them
to be time synchronized and thus connected edge routers must use agreed upon global
time sync source. This is even more so valid for access networks and their connecting
edge routers. Synchronization related messages (including position update messages,
user mobility control requests and time synchronization exchanges) should be assigned
control packet priority to achieve higher accuracy.

7.2.2 QoS
This thesis presents work that is the first step in conceptualizing Estimated service ar-
chitectures. A number of future opportunities of research appear from the work done
here. Using the Estimated Service architecture has one additional advantage that can be
utilized in the future. Packet drop can now occur at routers selectively and yet without
compromising scalability. This can be utilized to eliminate bandwidth adaptation pro-
cesses in which the client must reduce their transmission. Instead, client may simple
mark lower priority packets with a different deadline, thereby creating a difference in
how a congested router would treat those packets as compared to packets with normal
deadlines. For example, a typical mechanism for reducing video bandwidth usage is
dropping B/P frames over I frames at the client. In the new mechanism B/P frames can
be assigned a shorter deadline by the client than I frame packets when congestion is de-
tected. This should result in B/P frame packets being dropped before I frame packets.
The advantage of doing so is a further increase in channel utilization since the client
no longer estimates when to drop the packets. Instead, the routers are the ones that
actually drop them. Frames which the client would choose not be sent out earlier, are
sent out with shorter deadlines. In case the congestion situation alleviates these frames
might make their deadlines, thereby increasing channel utilization.

7.2.3 Media Synchronization
Future synchronous shared experiences will inevitably involve user interactions with
virtual objects. In such cases, not only is the synchronization important, causality must
also be addressed. Distributed real-time interactions with virtual objects might require
stricter bounds on causal correctness than distributed gaming does. Further mecha-

Final Remarks 125

nisms, such as time warp to correct inconsistent states may not always be possible.
Further research is required to study these specific cases.

Further user testing needs to be performed to understand the requirements of causal-
ity and distributed synchronization. These include parameters for user tolerance study
in Social TV that were not covered by this thesis, such as the influence of content on
synchronization levels.

7.2.4 Mobility
This thesis illustrated how structured media documents that possess state can be used
to make user mobility more efficient. While structured multimedia documents, such as
SMIL can enlist media sources including RTP sources, further standardization effort
is required to distinguish the behavior and handling of communication streams from
media streams, both of which might be RTP sources. An obvious distinction is that
communication streams do not incorporate state, as they are real-time. Media playback
on the other hand can be paused and at a later time replayed

7.3 Final Remarks
The work done in this thesis yielded the building blocks for creating shared experiences
of the future. In particular it distinguished the requirements of the two composing
parts of synchronous shared experiences: communication streams and media streams.
It looked at providing efficient bandwidth utilization for communication streams, dis-
tributed synchronization for media streams and overall mobility of the synchronous
shared experience. This thesis experimented with certain basic forms of synchronous
shared experiences, such as social TV. More work is required to create more complex
and compelling shared experiences. For example, synchronous shared experiences,
which incorporate 3D views of the user in virtual words where virtual objects may be
constructed together. A number of existing2 and upcoming projects address certain
aspects of such experiences.

2www.ta2.eu

126 Conclusions

APPENDIX A

Measuring bandwidth usage with EUREKA

This Appendix includes the publication [94] re-formatted to this thesis. The research
leading to these results has received funding (in part) from the European Communitys
Seventh Framework Programme (FP7/2007-2013) under grant agreement n 216647.
The publication has the following ISBN number 978-1-4244-7493-6/10/$26.00© 2010
IEEE.

127

APPENDIX B

Cross Domain Time Synchronization

This Appendix includes the publication [95] re-formatted to this thesis. The publica-
tion has the following ISBN number: 0-7695-3084-2/07 $25.00© 2007 IEEE.

143

References

[1] M. Allman, V. Paxson, W. Stevens, et al. Rfc 2581: Tcp congestion control.
1999.

[2] W. Almesberger. Linux network traffic control - implementation overview, 1999.

[3] G. J. Armitage. Revisiting ip qos: why do we care, what have we learned? acm
sigcomm 2003 ripqos workshop report. SIGCOMM Comput. Commun. Rev.,
33:81–88, October 2003.

[4] J. Bailenson, K. Patel, A. Nielsen, R. Bajscy, S. H. Jung, and G. Kurillo. The
effect of interactivity on learning physical actions in virtual reality. Media Psy-
chology, 2008.

[5] A. Banerjea, D. Ferrari, B. Mah, M. Moran, D. Verma, and H. Zhang. The Tenet
real-time protocol suite: Design, implementation, and experiences. Networking,
IEEE/ACM Transactions on, 4(1):1–10, 1996.

[6] J. Beerands and F. de Caluwe. The influence of video quality on perceived audio
quality and vice versa. Journal of the Audio Engineering Society, 47(5):355–
362, 1999.

[7] F. Boronat, J. Lloret, and M. Garca. Multimedia group and inter-stream syn-
chronization techniques: A comparative study. Information Systems, 34(1):108
– 131, 2009.

159

160 REFERENCES

[8] R. Braden, D. Clark, and S. Shenker. Rfc 1633 -integrated services in the internet
architecture: an overview.

[9] L. Burgstahler, K. Dolzer, C. Hauser, J. Jähnert, S. Junghans, C. Macián, and
W. Payer. Beyond technology: the missing pieces for qos success. In RIPQoS
’03: Proceedings of the ACM SIGCOMM workshop on Revisiting IP QoS, 2003.

[10] R. L. Carter and M. E. Crovella. Measuring bottleneck link speed in packet-
switched networks. In Proc. of Performance Evaluation, 1996.

[11] P. Cesar, D. Bulterman, and J. Jansen. Non-intrusive user interfaces for interac-
tive digital television experiences. Proceedings of EuroITV, 2007.

[12] P. César, I. Vaishnavi, R. Kernchen, S. Meissner, C. Hesselman, M. Boussard,
A. Spedalieri, D. C. A. Bulterman, and B. Gao. Multimedia adaptation in ubiq-
uitous environments: benefits of structured multimedia documents. In ACM
Symposium on Document Engineering, pages 275–284, 2008.

[13] S. Chandra. Wireless network interface energy conservation for bottlenecked
first mile networks. In Proceedings of the 20th international workshop on Net-
work and operating systems support for digital audio and video, NOSSDAV ’10,
pages 117–122, New York, NY, USA, 2010. ACM.

[14] M. Chen, C. Peng, and R. Hwang. SSIP: Split a SIP session over multiple
devices. Computer Standards & Interfaces, 29(5):531–545, 2007.

[15] CISCO. Cisco autoqos white paper. 2004.

[16] T. Coppens, L. Trappeniers, and M. Godon. AmigoTV: towards a social TV
experience. In Proceedings from the Second European Conference on Interac-
tive Television” Enhancing the experience”, University of Brighton, volume 36,
2004.

[17] B. Davie. Deployment experience with differentiated services. In RIPQoS ’03:
Proceedings of the ACM SIGCOMM workshop on Revisiting IP QoS, New York,
NY, USA, 2003. ACM.

[18] B. Davie, A. Charny, J. Bennett, K. Benson, J. L. Boudec, W. Courtney,
S. Davari, V. Firoiu, and D. Stiliadis. Rfc 2597 -assured forwarding phb.

[19] B. Davie, A. Charny, J. Bennett, K. Benson, J. L. Boudec, W. Courtney,
S. Davari, V. Firoiu, and D. Stiliadis. Rfc 3246 -an expedited forwarding phb
group.

REFERENCES 161

[20] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database main-
tenance. In Proceedings of the sixth annual ACM Symposium on Principles of
distributed computing, pages 1–12. ACM, 1987.

[21] M. Dick, O. Wellnitz, and L. Wolf. Analysis of factors affecting players’ per-
formance and perception in multiplayer games. In Proceedings of 4th ACM
SIGCOMM workshop on Network and system support for games, pages 1–7.
ACM, 2005.

[22] S. F. E. Kohler, M Handley. Designing dccp: Congestion control without relia-
bility. ACM Sigcomm, 2006.

[23] J. Eidson, M. Fischer, and J. White. IEEE 1588 standard for a precision clock
synchronization protocol for networked measurement and control systems. In
34 th Annual Precise Time and Time Interval (PTTI) Meeting, pages 243–254,
2002.

[24] C. Estan and G. Varghese. New directions in traffic measurement and account-
ing: Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst.,
21(3):270–313, 2003.

[25] T. ETSI. 102 823 v1. 1.1 (2005). Digital Video Broadcasting (DVB); Specifica-
tion for the carriage of synchronized auxiliary data in DVB transport streams.

[26] D. Ferrari. A new admission control method for real-time communication in an
Internetwork. Advances in Real-Time Systems. Prentice Hall, 1995.

[27] D. Ferrari and D. Verma. A scheme for real-time channel establishment in wide-
area networks. Selected Areas in Communications, IEEE Journal on, 8(3):368–
379, 1990.

[28] T. Ferrari and P. Chimento. A measurement-based analysis of expedited for-
warding PHB mechanisms. In Quality of Service, 2000. IWQOS. 2000 Eighth
International Workshop on, pages 127–137. IEEE, 2002.

[29] S. Floyd. Random early detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking (TON), 1(4):397–413, 1993.

[30] K.-T. Fung, Y.-L. Chan, and W.-C. Siu. Low-complexity and high-quality
frame-skipping transcoder for continuous presence multipoint video conferenc-
ing. Multimedia, IEEE Transactions on, 6(1):31 – 46, 2004.

162 REFERENCES

[31] D. Geerts and D. de Grooff. Supporting the social uses of television: sociability
heuristics for social TV. In Proceedings of the 27th international conference on
Human factors in computing systems, pages 595–604. ACM, 2009.

[32] D. Geerts, I. Vaishnavi, R. Merkuria, P. Cesar, and O. van Deventer. Are we in
sync? synchronization requirements for watching online video together. Pro-
ceedings of ACM Conference on Human Factors in Computing Systems, CHI,
2010.

[33] A. Ghaffar Pour Rahbar and O. Yang. Lgrr: A new packet scheduling algorithm
for differentiated services packet-switched networks. Computer Communica-
tions, 32(2):357–367, 2009.

[34] D. Goergen, J. Zoric, J. O’Connell, O. Friedrich, and B. Zachey. A session
model for cross-domain interactive multi-user iptv. In Proceedings of the 7th
IEEE conference on Consumer communications and networking conference,
CCNC’10, pages 306–311, Piscataway, NJ, USA, 2010. IEEE Press.

[35] J. Guyton and M. Schwartz. Experiences with a survey tool for discovering
Network Time Protocol servers, 1994.

[36] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Rfc 3260 -an architecture
for differentiated services.

[37] I. Hwang, B. Hwang, and C. Ding. Adaptive weighted fair queueing with priority
(AWFQP) scheduler for DiffServ networks. Journal of Informatics & Electron-
ics, 2(2):15–19, 2008.

[38] J. Hwang and C. Lin. Dynamic frame-skipping in video transcoding. In Mul-
timedia Signal Processing, 1998 IEEE Second Workshop on, pages 616–621.
IEEE, 2002.

[39] Y. Ishibashi and S. Tasaka. A media synchronization mechanism for live me-
dia and its measured performance. IEICE Transactions on Communications,
81(10):1840–1849, 1998.

[40] Y. Ishibashi and S. Tasaka. A comparative survey of synchronization algorithms
for continuous media in network environments. In Local Computer Networks,
2000. LCN 2000. Proceedings. 25th Annual IEEE Conference on, pages 337–
348. IEEE, 2002.

[41] Y. Ishibashi and S. Tasaka. Causality and media synchronization control for
networked multimedia games: centralized versus distributed. In Proceedings

REFERENCES 163

of the 2nd workshop on Network and system support for games, pages 42–51.
ACM, 2003.

[42] Y. Ishibashi, S. Tasaka, and H. Miyamoto. Joint synchronization between live
and stored media in multicast communications. lcn, 00:330, 2000.

[43] Y. Ishibashi, S. Tasaka, and Y. Tachibana. Adaptive causality and media syn-
chronization control for networked multimedia applications. In IEEE Interna-
tional Conference on Communications, 2001. ICC 2001, volume 3, 2001.

[44] Y. Ishibashi, A. Tsuji, and S. Tasaka. A group synchronization mechanism
for stored media in multicast communications. In Proceedings of the INFO-
COM’97. Sixteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Driving the Information Revolution, page 692. IEEE
Computer Society, 1997.

[45] R. ITU-T and I. Recommend. P. 800. Methods for subjective Determination of
Transmission quality, 18, 1998.

[46] R. ITU-T and I. Recommend. G. 114. One-way transmission time, 2003.

[47] K. Iwanicki, M. van Steen, and S. Voulgaris. Gossip-based clock synchronisa-
tion for large decentralized systems. SelfMan, Springer-Verlag Berlin Heidel-
berg, LNCS 3996(pp. 28-42), 2006.

[48] M. Jain and C. Dovrolis. End-to-end available bandwidth: measurement
methodology, dynamics, and relation with tcp throughput. SIGCOMM Comput.
Commun. Rev., 32(4):295–308, 2002.

[49] J. Jansen and D. C. Bulterman. Enabling adaptive time-based web applications
with smil state. In Proceeding of the eighth ACM symposium on Document
engineering, DocEng ’08, pages 18–27, New York, NY, USA, 2008. ACM.

[50] G. Jin, G. Yang, B. Crowley, and D. Agarwal. Network characterization service
(ncs). In Proc. of 10th HPDC, 2001.

[51] R. Kernchen, S. Meissner, K. Moessner, P. Cesar, I. Vaishnavi, M. Boussard, and
C. Hesselman. Intelligent multimedia presentation in ubiquitous multidevice
scenarios. IEEE Multimedia, 17:52–63, 2010.

[52] F. D. Keukelaere, R. D. Sutter, and R. V. de Walle. Mpeg-21 session mobil-
ity on mobile devices. In H. R. Arabnia and R. Joshua, editors, International
Conference on Internet Computing, pages 287–293. CSREA Press, 2005.

164 REFERENCES

[53] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the
IEEE, 91(1):112–126, 2003.

[54] T. Kovacikova and P. Segec. Ngn standards activities in etsi. 2007.

[55] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In Proceedings of the Real-
Time Systems Symposium, pages 166–171, 1989.

[56] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of ACM, 20(1), 1973.

[57] D. W. Massaro, M. M. Cohen, and P. Smeele. Perception of asynchronous and
conflicting visual and auditory speech. The Journal of the Acoustical Society of
America (J. Acoust. Soc. Am.) ISSN 0001-4966, vol. 100, 1996.

[58] S. Mate, U. Chandra, and I. D. D. Curcio. Movable-multimedia: session mobil-
ity in ubiquitous computing ecosystem. In MUM ’06: Proc. of the 5th Conf. on
Mobile and ubiquitous multimedia, page 8, 2006.

[59] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag and timewarp: Pro-
viding consistency for replicated continuous applications. IEEE Transactions
on Multimedia, 6(1):47, 2004.

[60] D. Mills. Network Time Protocol (Version 4) Specification, Implementation and
Analysis. Network, 2006.

[61] D. L. Mills. On the accuracy and stablility of clocks synchronized by the net-
work time protocol in the internet system. SIGCOMM Comput. Commun. Rev.,
20(1):65–75, 1990.

[62] D. L. Mills, A. Thyagarjan, and B. C. Huffman. Internet timekeeping around the
globe, 1997.

[63] N. Minar. A Survey of the NTP Network, 1999.

[64] J. M. Moh and B. Wei. Pqwrr scheduling algorithm in supporting of diffserv.
IEEE International Conference on Communications, Helsinki, 2001.

[65] S. Mondet, W. Cheng, G. Morin, R. Grigoras, F. Boudon, and W. T. Ooi. Stream-
ing of plants in distributed virtual environments. ACM Multimedia, 2008.

[66] M. Montpetit, N. Klym, and T. Mirlacher. The future of IPTV: Adding social
networking and mobility. In Telecommunications, 2009. ConTEL 2009. 10th
International Conference on, pages 405–409. IEEE, 2009.

REFERENCES 165

[67] B. Mukherjee and T. Brecht. Time-lined tcp for the tcp-friendly delivery of
streaming media. In ICNP ’00: Proceedings of the 2000 International Con-
ference on Network Protocols, page 165, Washington, DC, USA, 2000. IEEE
Computer Society.

[68] C. Murta, P. Torres Jr, and P. Mohapatra. Characterizing quality of time and
topology in a time synchronization network. In 49th IEEE Global Telecommu-
nications Conference, IEEE GLOBECOM, San Francisco, CA. Citeseer, 2006.

[69] K. Nahrstedt, R. Diankov, R. Bajscy, Z. Yang, B. Yu, and W. Wu. A study
of collaborative dancing in tele-immersive environments. IEEE Symposium on
Multimedia, 2006.

[70] Nemertes. The internet singularity delayed; why limits in internet capacity will
stifle innovation on the web. Nemertes Research, 2007.

[71] J. Ohm. Advances in scalable video coding. Proceedings of the IEEE, 93(1):42–
56, 2005.

[72] K. Ohta, T. Yoshikawa, T. Nakagawa, Y. Isoda, and S. Kurakake. Adaptive
terminal middleware for session mobility. In ICDCSW ’03: Proceedings of the
23rd International Conference on Distributed Computing Systems, page 394,
Washington, DC, USA, 2003. IEEE Computer Society.

[73] F. Pereira and T. Ebrahimi. The MPEG-4 book. Prentice Hall PTR Upper Saddle
River, NJ, USA, 2002.

[74] S. Ramanathan and P. Rangan. Feedback techniques for intra-media continuity
and inter-media synchronization in distributed multimedia systems. The Com-
puter Journal, 36(1):19, 1993.

[75] S. Ramanathan and P. V. Rangan. Adaptive feedback techniques for synchro-
nized multimedia retrieval over integrated networks. IEEE/ACM Trans. Netw.,
1(2):246–260, 1993.

[76] R. Rejaie, M. Handley, and D. Estrin. Quality adaptation for congestion con-
trolled video playback over the Internet. In Proceedings of the conference on
Applications, technologies, architectures, and protocols for computer communi-
cation, pages 189–200. ACM, 1999.

[77] C. Rentel and T. Kunz. Network synchronization in wireless ad hoc networks.
Carteton Univ., Systems and Computer Engineering, Technical Report SCE-04-
08, 2004.

166 REFERENCES

[78] L. G. Roberts. A radical new router. IEEE Spectrum Magazine, 2009.

[79] H. Schulzrinne and E. Wedlund. Application-layer mobility using sip. SIGMO-
BILE Mob. Comput. Commun. Rev., 4(3):47–57, 2000.

[80] F. B. Segui, J. C. G. Cebollada, and J. L. Mauri. Multimedia group synchroniza-
tion algorithm based on rtp/rtcp. In ISM ’06: Proceedings of the Eighth IEEE In-
ternational Symposium on Multimedia, pages 754–757, Washington, DC, USA,
2006. IEEE Computer Society.

[81] R. Shacham, H. Schulzrinne, S. Thakolsri, and W. Kellerer. Sip session mobility.
Internet Draft, 2006.

[82] R. Shacham, H. Schulzrinne, S. Thakolsri, and W. Kellerer. Ubiquitous device
personalization and use: The next generation of ip multimedia communications.
ACM Transactions on Multimedia Computing, Communications and Applica-
tions, Vol. 3, No. 2, Article 12, May 2007.

[83] S. Shalunov and B. Teitelbaum. Quality of service and denial of service. In
RIPQoS ’03: Proceedings of the ACM SIGCOMM workshop on Revisiting IP
QoS, pages 137–140, New York, NY, USA, 2003. ACM.

[84] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu. The effects on latency
on user performance in warcraft iii. In Proc. of Netgames, 2003.

[85] J.-P. Sheu, C.-M. Chao, and C.-W. Sun. A clock synchronization algorithm for
multi-hop wireless ad hoc networks. icdcs, 00:574–581, 2004.

[86] L. Soares, R. Rodrigues, and M. Moreno. Ginga-ncl: The declarative envi-
ronment of the brazilian digital tv system. Journal of the Brazilian Computer
Society, 12:37–46, 2007.

[87] H. Song, H. Chu, and S. Kurakake. Browser session preservation and migration.
Poster Session of WWW 2002, Hawai, USA. 7-11. May, 2002. pp. 2., 2002.

[88] G. Stattenberger, T. Braun, M. Scheidegger, M. Brunner, and H. St
”uttgen. Performance evaluation of a Linux DiffServ implementation. Computer
Communications, 25(13):1195–1213, 2002.

[89] H. Stokking, M. van Deventer, O. Niamut, F. Walraven, R. van Brandenburg,
and I. Vaishnavi. Rtcp xr block type for inter-destination media synchronization.
Internt Draft, IETF website, www.ietf.org, 2010.

REFERENCES 167

[90] J. Strauss, D. Katabi, and F. Kaashoek. A measurement study of available band-
width estimation tools. In Proc. of IMC, pages 39–44, New York, NY, USA,
2003. ACM.

[91] P. Svoboda, W. Karner, and M. Rupp. Traffic analysis and modeling for world
of warcraft. In Proc. of ICC, 2007.

[92] B. Swanson and G. Gilder. Estimating the Exaflood. The Impact of Video and
Rich Media on the Internet. A zettabyte by 2015.

[93] G. Tselentis, A. Galis, A. Gavras, S. Krco, V. Lotz, E. Simperl, B. Stiller, and
T. Zahariadis. Towards the Future Internet - Emerging Trends from European
Research. 2010.

[94] I. Vaishnavi, A. Arefin, D. Bulterman, K. Nahrstedt, and R. Rivas. Eureka:
A methodology for measuring bandwidth usage of networked applications. In
Multimedia and Expo (ICME), 2010 IEEE International Conference on, pages
1004–1009. IEEE.

[95] I. Vaishnavi, D. Bulterman, P. Cesar, and B. Gao. Media synchronisation in non-
monolithic rendering architectures. Proceedings of IEEE International Sympo-
sium on Multimedia, 2007.

[96] I. Vaishnavi, D. Bulterman, P. Cesar, B. Gao, and J. Jansen. Neighbourcast: A
synchronisation algorithm for ad hoc networks. 2007.

[97] V.Jackobson. Congestion avoidance and control. ACM Sigcomm, 88.

[98] J. Weisz, S. Kiesler, H. Zhang, Y. Ren, R. Kraut, and J. Konstan. Watching
together: integrating text chat with video. In Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages 877–886. ACM, 2007.

[99] J. Wroclawski et al. RFC 2210: The use of RSVP with IETF integrated services,
1997.

[100] Z. Yang, W. Wu, K. Nahrstedt, G. Kurillo, and R. Bajcsy. ViewCast: view
dissemination and management for multi-party 3d tele-immersive environments.
In Proceedings of the 15th international conference on Multimedia, pages 882–
891. ACM, 2007.

[101] Z. Yang, W. Wu, K. Nahrstedt, G. Kurillo, and R. Bajcsy. Enabling multi-party
3d tele-immersive environments with viewcast. ACM Transactions on Multi-
media Computing, Communications, and Applications (TOMCCAP), 6(2):1–30,
2010.

168 REFERENCES

[102] R. Yavatkar and K. Lakshman. Communication support for distributed collabo-
rative applications. Multimedia Syst., 2(2):74–88, 1994.

[103] K. N. Z. Yang, B. Yu and R. Bajcsy. A multi-stream adaptation framework for
bandwidth management in 3d tele-immersion. Proc. of NOSSDAV’06, Newport,
Rhode Island, 2006.

[104] Y. Zhang, L. Chen, and G. Chen. Globally synchronized dead-reckoning with
local lag for continuous distributed multiplayer games. In NetGames ’06. ACM,
2006.

[105] D. Zhou and T. Lai. A Compatible and Scalable Clock Synchronization Proto-
col in IEEE 802.11 Ad Hoc Networks. Proceedings of the 2005 International
Conference on Parallel Processing (ICPP’05)-Volume 00, pages 295–302, 2005.

