MASTER THESIS

Multi-class Fork-Join queues & The
stochastic knapsack problem

Sihan Ding

March, 2011

Supervisor UL:
Dr. Floske Spieksma

Supervisors CWI:
Drs. Chrétien Verhoef
Prof.dr. Rob van der Mei

Centrum Wiskunde & Informatica

Universiteit Leiden

Preface

This thesis is a result of my internship at the Centrum Wiskunde en Informatica
(CWI). It is also an important part of my master study in Leiden University (UL).

First of all, I want to give my special thanks to Chrétien Verhoef for all the daily
advices and help from the beginning to the very end. I came to CWI with very
little pre-knowledge about queueing theory and programming. His patience and
clear explanation have helped me a lot. Also, I want to thank Floske Spieksma,
my supervisor in Leiden, who spent a lot of time to correct my thesis and provided
me with her solid theoretic knowledge. I also want to thank Rob van der Mei, who
gave me the opportunity to do my internship in CWI. Rob, Floske and Sandjai
Bhulai always inspired me with their professional and insightful thinking. They
are all very dedicated researchers. I learned not only from their knowledge, but
also from their active working attitudes.

I want to thank all the colleagues in PNA2, and Bram de Vries who shared the
office with me, all of you made this period of my life colorful and special. All
those ping-pong playing times and interesting lunch talks are unforgettable for
me. Through my experience in CWI, I re-define the term ”research”, because it
brought so much joy and happiness everyday.

Last but not least, I want to thank my parents, who are loving me and supporting
me all along. T also give my thanks to Stella, who always has faith in me and our
future.

Sihan Ding

Amsterdam, March 2011

ii

Summary

This thesis consists of two topics:

1. Performance analysis of multi-class Fork-Join queueing systems

2. Call admission control policy of stochastic knapsack problem

The multi-class Fork-Join queueing system is an extension of the single-class Fork-
Join queueing system. In such a system, different types of jobs arrive, and then
split into several sub-jobs. Those sub-jobs go to parallel processing queues. Sub-
jobs from different types may go to the same queue, and we call this overlapping.
There is a server in front of each queue. After all sub-jobs of one job are completed,
they synchronize in the synchronization buffer and then leave the system. Many
communication and networking systems can be modeled as such systems. In the
literature, hardly any exact results are known for the expected sojourn time of the
multi-class Fork-Join queueing systems, and neither for the synchronization time.
In this thesis, we study the expected sojourn time for each job type. We further
investigate the expected synchronization time of each job type in order to optimize
the size of the synchronization buffer. We develop methods to approximate the
expected sojourn time and the expected synchronization time. Through extensive
numerical experiments, we show that our approximation method provides a close
approximation of the sojourn time. Evaluation results also lead to highly accurate
approximation of the optimal synchronization buffer size.

The stochastic knapsack model was first built as a model for cellular networks.
Nowadays it is also used for modeling other resource-sharing communication net-
works. The objective is to derive an optimal call admission control policy. The
theory of Markov decision processes can be applied to compute the optimal call
admission control policy. However, a large state space causes computational com-
plexity. Therefore, other policies are developed in the literature with less compu-
tational complexity, such as reservation and threshold policies. We compare these
types of policies with regard to reward performance. We show through examples
that the reservation policy can perform badly. We provide a method to improve
the reservation policy in a medium size state space.

iv

Contents

Preface
Summary

Contents

I Multi-class Fork-Join queueing system

1 Introduction to multi-class Fork-Join queues
1.1 Model description e
1.2 Related work
1.3 Goals and structure Lo Lo

2 Analysis of multi-class Fork-Join queues
2.1 Sojourn time analysis L.
2.1.1 The Maximum Order Statistic (MOS) model
2.1.2 Performance analysis
2.1.3 Conclusion
2.2 Synchronization time analysis
2.2.1 Order statistic (OS) approximation
2.2.2 Performance analysis
2.2.3 Conclusion
2.3 Future work

II Stochastic knapsack problem

3 Introduction to stochastic knapsack problem
3.1 Background oL
3.2 Model formulation and problem description
3.3 Goal and structure

4 Analysis of policies
4.1 Complete sharing policy
4.2 Optimal policy
4.2.1 Uniformization technique
4.2.2 Value iteration algorithm
4.3 Threshold policy
4.4 Reservation policy oo

vi

ii
iv

vi

32

33
33
34
35

4.4.1 One-dimensional case
4.4.2 Multi-dimensional case
4.5 Numerical results
4.6 Conclusion
4.7 Futurework

References
Appendix A: Programming code
Appendix B: Simulation and verification

Appendix C: Stochastic knapsack problem MDP

vii

48

50

63

64

Part 1

Multi-class Fork-Join
queueing system

Chapter 1

Introduction to multi-class
Fork-Join queues

Fork-Join queues arise quite often in computer networks and parallel processing
systems. For example, a certain type of product has to undergo a number of
operations requiring parallel processing in different machines. Once one operation
is completed, the product will be put into the warehouse waiting for subsequent
operations. As soon as all the operations of a product are completed, this product
will be delivered and subsequently leave the warehouse. However, this Fork-
Join queueing network has its limitations in practice. Consider the production
example again. In reality, often there is more than one type of product. Different
types of products may require processing on the same machine, and we call this
overlapping. Analyzing a problem with multi-type products is more complicated
than a problem with single-type products, but it has wide applications in industry.
Therefore, we are motivated to extend the one type product problem to the
multiple products problem, namely multi-class Fork-Join queues.

In this thesis, jobs are interpreted as products, and sub-jobs are interpreted as
operations. In this model, each sub-job needs to wait in the buffer for a certain
amount of time where synchronization can take place. As the number of job
types increases, the synchronization time may increase as well. In the previous
example, the waiting time in the warehouse might generate a certain penalty
per time unit. Therefore, people are interested in minimizing this penalty by
adjusting the service rate of the system. We will investigate this problem in this
thesis.

1.1 Model description

In this section, we will describe the multi-class queueing network that we will
study. N different classes of customers or jobs arrive according to a Poisson
process. The arrival processes are independent with rates A\;, i=1,2,... N. Fur-
thermore, there are M independent servers. The service times are exponentially
distributed with rate u;, 7=1,2,...,M. Each server has an infinite capacity queue.
When a job of class ¢ arrives, a pre-defined task matrix T = (;;) nx a prescribes

1.2. RELATED WORK 3

how it forks to different queues. The task matrix can be interpreted as a fixed
policy that tells a class 4 customer what queues to go to. In particular, ¢;; = 1
when a type i customer forks to queue j. The service discipline in each queue
is FIFO. When a sub-job is finished, it leaves the server and waits in the syn-
chronization buffer. When all sub-jobs of one given job are finished, they will
synchronize and leave the buffer, the job is then considered to be completed.

The following matrix is an example of 2 x 3 task matrix of a Fork-Join queue-
ing system with 2 classes and 3 queues. We show its corresponding system in

Figure 1.1.
1 10
= (0 1 1 >

Servers

Ania Sptpoint :ED:@\
—»Q

Buffer

Sojoum time

Synchronization time
I 1 1

Arival Earliest sub-job Departure

amival in the
buffer

Figure 1.1: System corresponding to task matrix T

Before proceeding, we first give the formal definition of the sojourn time and
synchronization time below.

Definition. The sojourn time of a job is defined as the duration between its
arrival and its departure from the synchronization buffer. The synchronization
time of a job is defined as the time between the arrival of its first sub-job in the
synchronization buffer and its last one.

We are interested in the following question: what is the average sojourn time of
customers from class i¢ For questions concerning the synchronization time, we
will make the concepts more precise later on.

1.2 Related work

A lot of scientific effort has been put into understanding and analyzing Fork-
Join queueing systems. This effort mainly focuses on the analysis of the sojourn
time. When there is only one customer class, such a system is called a Fork-Join
queueing system. An analytical expression for the sojourn time of the Fork-Join

1.3. GOALS AND STRUCTURE 4

queueing system is difficult to derive. In [10], Nelson and Tantawi derived such
an expression for the homogeneous Fork-Join queueing model with two servers.
Homogeneous means that all servers have the same service rate. However, in
heterogeneous Fork-Join queues (i.e., where servers can have different service
rates), the sojourn time is known to be intractable ([10]). However, there do exist
approximation methods. In [9], different methods are used to approximate the
average sojourn time of the system [5], and they extend their approximation to
more general service time distributions. In [2] and [8], upper bounds and lower
bounds for the sojourn time are derived.

Although there are various practical and theoretical results concerning one class
Fork-Join queues, we have been unable to find any result for the extended system.
As mentioned before, this type of system has many applications. Therefore, it is
important to develop a method to approximate the sojourn time of multi-class
queueing systems.

The analysis of the synchronization time provides the same difficulties as the
sojourn time. We have not found any results concerning the synchronization
time. However, we will show that it is an interesting topic with applications in
the fields of buffer optimization.

1.3 Goals and structure

In this thesis, we will try to develop approximation methods for the sojourn time
and the synchronization time in multi-class Fork-Join queueing systems. In an
other words, we will give answer to the following questions:

1. What is the average sojourn time of the class i customer?

2. How long do class i customers on average wait in the buffer?

The thesis is structured as follows. Chapter 2 is divided into three sections.
In section 2.1, we will first discuss an approximation method of the expected
sojourn time, then we will evaluate the method numerically, and compare the
results with computer experiments. In section 2.2, we will motivate why we
are interested in the synchronization time. The method for approximating the
synchronization time and its performance can be found in subsections 2.2.1 and
in 2.2.2 respectively. The conclusion of the synchronization time analysis is in
section 2.2.3. The future work is shown in section 2.3.

Chapter 2

Analysis of multi-class
Fork-Join queues

In this chapter, we present an approximation method for the expected sojourn
time as well as the expected synchronization time for the multi-class Fork-Join
queue. After introducing the method, we evaluate its performance in different
systems and under different scenarios. Performance is evaluated by comparing
simulation results with approximations. The numerical results will show that our
method provides a close upper bound of the real system.

2.1 Sojourn time analysis

In this thesis, we will use an approximation method based on the Mazimum Order
Statistics (MOS). We will first build a new model based on the original model
by assuming the independent arrival processes for the queues. Then we use MOS
to derive an expression for the sojourn time of the new model. In [9], Lebrecht
and Knottenbelt use MOS by assuming arrival independency to derive an upper
bound for single-class Fork-Join queues. They conclude that MOS performs well
in heterogeneous systems, and performs relatively badly in homogeneous systems.
In this chapter, we will first give the definition of MOS and its formula by con-
structing a new model called the MOS model. Then, we will extend MOS method
to the multi-class case. Then, we will compare its performance with simulation
results in several systems. For each system, we consider both the homogeneous
and heterogeneous cases. The numerical results for this approximation appear to
be close to simulation result. Conclusions are given after the comparison.

2.1.1 The Maximum Order Statistic (MOS) model

For every multi-class Fork-Join queueing system, we can always construct its
corresponding MOS model by taking the following steps:

First, the service rates of all servers remain the same. Second, take the arrival

2.1. SOJOURN TIME ANALYSIS 6

process of each queue being independent with arrival rate \;,i = 1,2,..., M.
where:

(A, A2y) = (AL Ay Aw) - T

This results in a new model with M independent M/M/1 queues. The expected
sojourn time of the MOS is used to approximate the expected sojourn time of
original model. However, in this model, sub-jobs of one job may arrive at dif-
ferent time, while sub-jobs of one job arrive at the same time in original model.
Therefore, there are time gaps between arrival of a job’s sub-jobs. This leads
to the following question: how to define the sojourn time in MOS model? We
developed the following measurement of sojourn time in the MOS model. Each
arriving job gets an id and a class type. The id is assigned in order of arrival,
namely id = 1 for the first arrival, id = 2 for the second, etc. The class type
is assigned according to the probability P; = Z’ where /\j is the arrival rate to
queue j, and \; is the arrival rate of class i jobs in the original system. After a job
finishes service, it leaves the system. Figure 2.1 are an example of an multi-class
Fork-Join model and its corresponding MOS model.

Arrival Split pnn(/

Servers

k) > Synchronization 3
Buffer

Servers

oW

Amival

A+ Ao -
> 1t Synchronization
Buffer
Az
> My

Figure 2.1: Multi-class Fork-Join model and corresponding MOS model

In the MOS model, sub-jobs of one job can arrive at different times, while in
original model, sub-jobs of one job arrive at the same time. Therefore, in order
to have a close approximation to the original sojourn time, it would be logical to
ignore the time gap between arrival of sub-jobs that belong to one job. Therefore,
we use the following way to measure the sojourn time of MOS model. After a job
completes its service, we will record the response time (waiting time + service
time) of this job. For those jobs with same id and same class type, we take the
maximum response time as the sojourn time of this class type.

2.1. SOJOURN TIME ANALYSIS 7

Since the arrival and service of each queue behaves independently, we can use
the Maximum Order Statistics to derive an exact expression for the sojourn time
of such system. We will first give the definition of Maximum Order Statistics

(cf. [9)).

Definition. Any finite sequence of random variables, X1, Xa,--- X, can be or-

dered as X(l), X(g), X(n), where X(l) < X(g) <. < X(n). Then X(l), X(g),
- X(n) are the order statistics of X1, X, -+ Xp.

We denote by X; the sojourn time of ith queue in the stationary situation, and
we let F; represent the cumulative distribution function (cdf) of the sojourn time
of ith queue in stationary situation, i.e. X; ~ exp(u; — A\;), F; = exp(p; — \i),
i=1,2,...,M. The cdf of maximum order statistic X,y can be calculated [9]
by following formula:

By the previous assumption, we have:
Fx,, () =[] Fi(x).

i=1

The mean sojourn time of X, is then

where f;(z) is the probability density function (pdf) of the sojourn time of ith
queue in stationary distribution.

In [6], it is shown that:

1

Bma{ X} => (D™ ¥

k=1 (il,...,ik)esk

(2.1)

where St = {(i1,...,0k) 11, .. ig €{1,..., N} i1 <ig < -+ <ig}.

Formula (2.1) gives us an exact expression for the sojourn time of the MOS model.
We apply this formula to approximate the original model.

2.1.2 Performance analysis

In this section, we will focus on analyzing the performance of MOS in multi-class
Fork-Join queueing system for homogeneous and heterogeneous system respec-
tively. In this thesis, the definition of homogeneous and heterogeneous is different
from most of other papers in queueing theory. This is due to the fact that arrivals
from the ith and jth class may both require processing by the kth server. This

2.1. SOJOURN TIME ANALYSIS 8

means overlapping exists in some queues. For the purpose of comparison it would
therefore be more convenient if we use following definitions.

Definition. Homogeneous systems are systems for which all queues have the same
work load, i.e. p; = p, for alli =1,2,..., M. Heterogeneous systems are systems
for which at least one queue have a different work load, i.e. there exist i, j,1 # j,
such that p; # p;j, where p; = %, i=1,2,..., M.

Before proceeding, we will list the notation that will be used in this section in
Table 2.1.

Variable Description

Py Work load of the jth queue
i Arrival rate of the ith customer
Hj Service rate of the jth server

E[SZ-(Sim)] Expected sojourn time of ith class customer acquired by
simulation

E[Si(ap)] Expected sojourn time of ith class customer by using the
MOS approximation

€ Relative difference (error) between simulation and approx-
imation of ith class

Table 2.1: Notation of sojourn time analysis

According to the definition of €;, we have:

E[Si(app)] . E[Si(sim)]

7

€; :100% X|

Here below, we will first show two systems as examples, and evaluate the perfor-
mance of MOS method under such systems. System 1 is a simple system with
2 job classes and 3 servers. In order to gain more insight of the performance,
system 2 is a more complicated system with 3 job classes and 8 servers. Then
we show more systems in a structured way to study the influence of number of
servers on performance.

System 1

We first analyze Fork-Join queueing system with 2 classes and 3 servers with
A1 = A2 = 1. (see Figure 2.2)

For this system, we will investigate the performance of both the homogeneous
case (Table 2.2) and the heterogeneous case (Table 2.3). In the homogeneous
case, the load p varies between 0.1 and 0.9. In the heterogeneous case, we let
p1, P2, ps take the values 0.25, 0.5 and 0.75, standing for ”Low”, ”Medium”, and
”High” work load respectively.

System 1: homogeneous case

Since the work load for each queue is the same, this queueing system is symmetric.
This leads to the same sojourn times for class 1 and class 2. As we can see

2.1. SOJOURN TIME ANALYSIS 9

Amival Split point m\
cass 1 /

D
1o

Figure 2.2: Performance analysis system 1

p | O 2o) [EBISP™] | EISI™P] | EISE™] | BISS™)] | 1% | e2%

0.1 (1, 1) 0.129 0.130 0.128 0.130 0.78% | 1.56%
0.2 (1, 1) 0.289 0.292 0.288 0.292 1.04% | 1.39%
03] (1,1) 0.494 0.505 0.496 0.505 2.23% | 1.81%
04 (1,1) 0.767 0.778 0.767 0.778 1.43% | 1.43%
05| (1, 1) 1.140 1.167 1.145 1.167 2.37% | 1.92%
06| (1,1) 1.706 1.744 1.710 1.744 2.23% | 1.99%
0.7 (1, 1) 2.627 2.713 2.653 2.713 3.27% | 2.26%
0.8 | (1,1) 4.481 4.667 4.490 4.667 4.15% | 3.94%
091 (1, 1) 10.082 10.501 10.041 10.501 4.16% | 4.58%

Table 2.2: Performance analysis of homogeneous Fork-Join queue with 2 classes
and 3 servers

(Table 2.2) the MOS approximation is quite close to the original system, with
largest error less than 5% for all cases. Another observation is that MOS performs
better with lower work load than with higher work load.

System 1: heterogeneous case

‘ (pl, P2, p3) ‘ ()\1,)\2) ‘]Esiszm) ‘ }Esiapp) ‘]ES&S“TL) ‘]Eséapp) ‘ 81% ‘ 52%
(0.25, 0.5, 0.75) | (1, 1) 0.622 0.633 3.047 3.074 1.77% | 0.89%
(0.75,0.25,0.5) | (1,1) | 2990 | 3.009 |1.017 |1.024 | 0.64% | 0.69%
(0.5, 0.75, 0.25) | (1, 1) 1.855 1.899 1.550 1.560 2.37% | 0.65%

Table 2.3: Performance analysis of the heterogeneous Fork-Join queue with 2
classes and 3 servers

Table 2.3 shows that the MOS performs well with maximum error 2.37% for the
expected sojourn time of all classes. Comparing Tables 2.2 and 2.3, we can see
that MOS performs better in the heterogeneous case than in the homogeneous
with in general a smaller error.

System 2

In the previous system, we fixed A = 1. However, what we see quite often in reality

2.1. SOJOURN TIME ANALYSIS 10

is that different classes have different arrival rates. Therefore, we are interested
in how different arrival rates influence performance of the approximation. In
this system (Figure 2.3) we will analyze a system that has 3 customer classes
with different arrival rates (A\; = 1, \y = 2, A3 = 4). Furthermore, in order to
investigate the performance of the MOS method in more complicated systems, we
add more queues for each class, and more overlapping of queues between different
classes.

Processors

Arrival Split point :
= = 4:[[@\;

T 1O—

—’<] Synchronization
3 O] bufter

Tmo—
=, AT
ST

Figure 2.3: Performance analysis system 2

In this system, we investigate the performance of three cases. The homogeneous
case (Table 2.4), the structured heterogeneous case (Table 2.5) and General case
with 10 sets of random numbers are considered. In the homogeneous case, the
work load varies from 0.1 to 0.9. In the structured heterogeneous case, the p;
are linearly located in the open interval (0,1), i.e. p; = é,pg = %, e, pg = % in
the first scenario, and p; = %, s, P8 = % in the second scenario. In the General
case, we used Matlab to generate 10 sets of random numbers from the uniform
distribution U(0, 1). The 10 sets of random numbers stand for 10 sets of different
work loads. The random numbers are given in Table 2.6. The corresponding

values of the per-class expected sojourn times are shown in Table 2.7.

System 2: homogeneous case

o A E[S™) | Blsir?) | Bis$™) | BISSP] | BISET™] | BISS7P) | e1% | 2% e3%
01 (1,2, 4)]0172 0.173 0.061 0.061 0.048 0.049 0.58% | 0.00% | 2.08%
02| (1,2, 4) | 0.382 0.390 0.135 0.138 0.108 0.111 2.09% | 2.22% | 2.78%
0.3 (1,2, 4) | 0.653 0.669 0.229 0.236 0.182 0.190 2.45% | 3.06% | 4.40%
0.4 | (1,2, 4) | 1.007 1.040 0.353 0.367 0.280 0.295 3.28% | 3.97% | 5.36%
0.5 | (1,2, 4) | 1.486 1.561 0.524 0.550 0.415 0.443 5.06% | 4.96% | 6.75%
0.6 | (1,2, 4) | 2.202 2.341 0.781 0.825 0.613 0.664 6.31% | 5.63% | 8.32%
0.7 | (1,2,4) | 3.455 3.641 1.199 1.283 0.940 1.033 5.38% | 7.01% | 9.89%
0.8 | (1,2,4) | 5.735 6.243 2.028 2.200 1.607 1.771 8.86% | 8.48% | 10.21%
0.9 | (1,2,4) | 12.797 14.061 4.486 4.955 3.601 3.987 9.88% | 10.45% | 10.72%

Table 2.4: Performance analysis of homogeneous Fork-Join queue with 3 classes
and 8 servers

From Table 2.4, we see that in this more complicated system, the error in general
is larger than in system 1. However, the performance is still acceptable with
largest error being 10.72%. In the scenario of a low work load, M OS has a error

2.1. SOJOURN TIME ANALYSIS 11

less than 5%.

System 2: heterogeneous case

‘ o A]E[Sisim)] E[S}“"”)] JE[SZS‘“"’"')]]E[séapp)]]E[Sésirn)]]E[Sé‘””’)] % 2% 3%
1/9~8/9 | (1, 2, 4) | 0.450 0.462 0.502 0.525 2.214 2.293 2.67% | 4.58% | 3.57%
8/9~1/9 | (1,2,4) | 8.784 9.083 0.799 0.838 0.177 0.183 3.40% | 4.88% | 3.39%

Table 2.5: Performance analysis of heterogeneous Fork-Join queue with 3 classes
and 8 servers

Comparing Table 2.4 with Table 2.5, we can observe that MOS performs better
in the heterogeneous case than in the homogeneous case. This is in accordance
with system 1.

General cases

Set | p

(0.158, 0.971, 0.957, 0.485, 0.800, 0.142, 0.422, 0.916)
(0.792, 0.960, 0.656, 0.036, 0.849, 0.934, 0.679, 0.758)
(0.743, 0.392, 0.656, 0.171, 0.706, 0.032, 0.277, 0.046)
(0.097, 0.824, 0.695, 0.317, 0.950, 0.034, 0.439, 0.382)
(0.766, 0.795, 0.187, 0.490, 0.446, 0.646, 0.709, 0.755)
(0.276, 0.680, 0.655, 0.163, 0.119, 0.498, 0.960, 0.340)
()
()
()
()

0.585, 0.224, 0.751, 0.255, 0.506, 0.699, 0.891, 0.959
0.547, 0.139, 0.149, 0.258, 0.841, 0.254, 0.814, 0.244
0.929, 0.350, 0.197, 0.251, 0.616, 0.473, 0.352, 0.831
0.585, 0.550, 0.917, 0.286, 0.757, 0.754, 0.380, 0.568

= © 00O Uik Wi+

Table 2.6: p for 8 queues drawing from U(0,1)

Set | A E[SE™) | B[S | B[] | B[S | B[S | B[S | 2% % | es%

1 (1,2,4) | 31411 34.699 7.281 7.524 2.838 2.854 10.47% | 3.34% | 0.56%
2 (1,2,4) | 23.345 24.314 2.600 2.708 2.636 2.793 4.15% 4.15% | 5.96%
3 (1,2,4) | 3.062 3.090 0.775 0.791 0.414 0.419 0.91% 2.06% | 1.21%
4 (1,2,4) | 4.551 4.781 3.263 3.333 3.146 3.201 5.05% 2.15% | 1.75%
5 (1,2,4) | 5.046 5.375 0.477 0.490 1.025 1.087 6.52% 2.73% | 6.05%
6 (1,2,4) | 2.287 2.303 0.663 0.671 5.836 5.959 0.70% 1.21% | 2.11%
7 (1, 2, 4) 1.792 1.849 1.103 1.130 6.132 6.415 3.18% 2.45% | 4.62%
8 (1,2,4) | 1.232 1.235 0.892 0.896 1.401 1.489 0.24% 0.45% | 6.28%
9 (1,2,4) | 12.951 13.180 0.338 0.349 1.224 1.290 1.77% 3.25% | 5.39%
10 (1,2,4) | 4192 4.285 3.795 3.800 0.792 0.852 2.22% 0.13% | 7.58%

Table 2.7: Performance analysis of homogeneous Fork-Join queue with 3 classes
8 servers

Since the work loads are all random numbers, no regularity is observed in this
case (Table 2.7). However, we can see that MOS has acceptable performance
with a maximum error being 10.47%. We notice that this maximum error occurs
in type 1 jobs of set 1. In Table 2.6, we can see that service rates of two servers
of type 1 jobs in set 1 are 0.971 and 0.957. These high work loads result in a high
€rror.

More systems

2.1. SOJOURN TIME ANALYSIS 12

In order to gain more insight of influence of the number of servers on sojourn time.
We consider the 3 more systems with more servers and more overlapping. The
systems are constructed in the following way. We consider 2 types of jobs with
A1 =1, =2 in all 3 systems. The first system is a queueing system of 2 classes
and 9 servers with 3 servers overlapping. The second system is a queueing system
of 2 classes 12 servers with 4 servers overlapping. The final system is a queueing
system of 2 classes and 15 servers with 5 server overlapping. As we did before, for
each system, we will evaluate the MOS approximation in the homogeneous case
and the heterogeneous case with different work load scenarios.

P A ES{™] | EISIP) | BISE™] | BISS™)] | 1% | e2%
0.1 (1, 2) | 0.206 0.209 0.114 0.116 1.46% 1.75%
0.2 | (1,2) | 0.458 0.470 0.253 0.262 2.62% 3.56%
0.3] (1,2) | 0.772 0.806 0.428 0.448 4.40% 4.67%
04| (1,2) | 1.190 1.252 1.653 0.698 5.20% 6.89%
0.5 | (1,2) | 1.758 1.878 0.964 1.047 5.21% 8.60%
0.6 | (1,2) | 2.590 2.804 1.428 1.573 8.26% 10.15%
0.7 (1,2) | 3.972 4.367 2.186 2.454 9.94% 12.26%
0.8 | (1,2) | 6.705 7.512 3.659 4.186 12.40% | 14.40%
0.9 (1,2) | 15.070 17.072 8.308 9.514 13.28% | 14.52%

Table 2.8: Performance analysis of homogeneous Fork-Join queue with 2 classes
and 9 servers

[p |2 | B | ES(™) | ElSS™] | EISS) | e1% | %
1/10~9/10 | (1, 2) | 0.798 0.835 5.020 5.269 4.64% | 4.96%
9/10~ 1/10 | (1, 2) | 9.649 10.507 0.668 0.709 8.89% | 6.14%

Table 2.9: Performance Analysis of heterogeneous Fork-Join queue with 2 classes
and 9 servers

p [x| ESE™] | ESE) | EBISS™) | BISEPP) | ei% | e0%
0.1 (1,2)] 0.232 0.235 0.127 0.130 1.29% | 2.36%
0.2 | (1,2) | 0.511 0.529 0.280 0.291 3.52% 3.93%
0.3] (1,2) | 0.863 0.909 0.470 0.499 5.33% 6.17%
04| (1,2) | 1.323 1.412 0.717 0.777 6.73% 8.37%
0.5 | (1,2) | 1.961 2.117 1.060 1.165 7.96% 9.91%
0.6 | (1,2) | 2.851 3.161 1.569 1.751 10.87% | 11.60%
0.7 | (1,2) | 4.391 4.924 2.411 2.733 12.14% | 13.36%
0.8 | (1,2) | 7.464 8.469 4.037 4.661 13.46% | 15.46%
09| (1,2) | 16.755 19.248 8.921 10.592 14.88% | 18.73%

Table 2.10: Performance analysis of homogeneous Fork-Join queue with 2 classes
and 12 servers

Based on the evaluation of these 3 systems, we can see that the performance of
the MOS method is relatively bad while the queueing system has more servers.
Specifically, in the system with 15 servers, the largest error is appeared in Ta-
ble 2.12. However, in all the heterogenous cases, the MOS method still performs

2.1. SOJOURN TIME ANALYSIS 13

‘ p ‘ A ‘ E[Sgszm)] ‘]E[Sgapp)] ‘]E[Séstm)] ‘ E[Séapp)} ‘ 61% ‘ 52%
‘ 1/13~ 12/13 ‘ (1,2) ‘ 0.889 ‘ 0.938 ‘ 6.882 ‘ 7.141 ‘ 5.51% | 3.76%

12/13~ 1/13 | (1,2) | 13.617 | 14.270 | 0.760 0.810 7.70% | 6.58%

Table 2.11: Performance analysis of heterogeneous Fork-Join queue with 2 classes
and 12 servers

p | E[S¢™) | EIS{™) | E[88™™) | E[SS*P] | ex% | 2%
0.1 (1, 2) 0.252 0.257 0.137 0.140 1.98% 2.19%
0.2 (1, 2) 0.557 0.578 0.302 0.315 3.77% 4.30%
0.3 (1, 2) 0.940 0.991 0.506 0.539 5.43% 6.52%
0.4 | (1,2) | 1.432 1.540 0.771 0.840 7.54% | 8.95%
0.5 (1, 2) 2.112 2.310 1.132 1.259 9.37% 11.22%
0.6 (1, 2) 3.086 3.484 1.668 1.893 12.90% | 13.49%
0.7 (1, 2) 4.715 5.372 2.557 2.954 13.93% | 15.53%
0.8 (1, 2) 8.012 9.240 4.333 5.037 15.33% | 16.25%
0.9 (1, 2) 17.808 21.000 9.824 11.448 17.92% | 16.53%

Table 2.12: Performance analysis of homogeneous Fork-Join queue with 2 classes
and 15 servers

‘ P ‘ A ‘]E[Sgei,m,)] ‘]E[SYIM})] ‘ E[Sésun)] ‘ E[Séapp)} ‘ 51% ‘ 62% ‘
1/16~ 15/16 | (1, 2) | 0.956 1.022 8.662 9.018 6.90% | 4.11%
15/16~ 1/16 | (1, 2) | 17.283 18.031 0.824 0.893 4.33% | 8.37%

Table 2.13: Performance analysis of heterogeneous Fork-Join queue with 2 classes
and 15 servers

2.2. SYNCHRONIZATION TIME ANALYSIS 14

well with largest error less than 9%. Furthermore, in homogeneous cases with low
work load (p < 0.5), the performance of MOS method is acceptable with largest
error being 11.22%.

2.1.3 Conclusion

According to the performance results, in general, the MOS method provides a
tight upper bound of the real multi-class Fork-Join queueing system. However,
in the homogeneous systems, this method performs better in low work load than
in high work load. In addition, the MOS method performs well in a multi-class
Fork-Join queueing system with up to 4 servers for each job class with maximum
relative difference less than around 10%. We extended to system with more
servers. The numerical results show that the MOS performs relatively badly
in systems with up to 10 servers for each job class with a maximum relative
difference less than around 18%. This confirms also experiments for single-class
Fork-Join queues ([9]). Therefore, we conclude that this method performs better
in queueing systems with less servers. In the heterogeneous systems, the MOS
method has a close approximation to the real system regardless the number of
servers. Furthermore, through all the systems with different arrival rates, it seems
that the arrival rates of the jobs have very little influence to the performance of
the MOS method.

We also conjecture that MOS will provide a good approximation if we allow
general service times. This conjecture is based on [9]: we have experimentally
found that the MOS methods extends to more general distributions, e.g. Erlang
distribution, and will have better performance than exponential distribution.

Besides the tightness and the potential to extend to general distributions, an
other advantage of MOS is that it is easy to implement.

2.2 Synchronization time analysis

In this section we will study the synchronization time for the multi-class Fork-
Join queueing network. In the literature we have not found any existing result on
the synchronization time in Fork-Join queueing systems. Therefore we will first
explain the purpose of considering the synchronization time. Then we will develop
a method to approximate the synchronization time. At last we will evaluate this
approximation.

So far, people have been mainly interested in the sojourn time of the Fork-Join
queueing system. Measuring of the occupancy of the synchronization buffer is
also an important thing to consider. Take data transmission as an example. Data
is transmitted through different networks (servers). When sub-data from one
network is completed, it will wait in the synchronization buffer for other sub-data
to complete. Data are from different hosts. As the number of hosts increases, the
buffer size also increases. This means that in order to handle many different types
of data, the buffer needs to be very large. This large buffer will require high cost
for construction and maintenance. This motivates us to think about a flexible
way of constructing the system, such that the buffer does not have to be infinite

2.2. SYNCHRONIZATION TIME ANALYSIS 15

large and data transmission is still at a satisfactory speed. Another example
is in computer networks, where sub-jobs are processed by different processors.
Then those sub-jobs wait in the memory (synchronization buffer). However, the
memory has limited size, i.e. when too many sub-jobs wait in the memory, it will
be fully occupied. It is important to consider a method to construct the system
that can reduce the occupancy of the memory. We will illustrate this in more
detail by the following example.

Consider the Fork-Join example in Figure 2.4. The first question arising to us
is the relation between service rate and synchronization time. To study this, we
do the following experiment: fix A = 1, u; = 2, and we simulate this system for
different values of us. The synchronization time of type one jobs and its 95%
confidence interval are plotted in Figure 2.5. As a matter of fact, us has no
influence to the synchronization time of type one jobs. Therefore, the expected
synchronization time of type one jobs only depend on ps.

Armrival Split point j]]:@\
dass 1 /
— <l
\ ::[@__’ Synchronization >

L
S

Figure 2.4: A simple 2 classes and 3 servers Fork-Join queueing system

The graph in Figure 2.5 shows that the synchronization time first decreases and
then increases when po increases from 1.5 to 9. The graph has a unique minimum

13-

As a surprising conclusion, it is not always beneficial to take the service rates of
other servers as large as possible, while one server has a fixed service rate. It
is also interesting to observe from figure 2.5 that the minimum synchronization
time is not achieved by taking pe = ;.

We provide an intuitive argument. When s is relatively small, jobs in the first
queue execute much faster than jobs in the second queue. Therefore, sub-jobs in
the first queue have to wait in the buffer for the sub-jobs in the second queue.
This leads to a decrease of the synchronization time. As ps starts to increase,
sub-jobs from queue 1 wait shorter in the buffer. However, as us continues to
increase, the situation reverses: queue 2 jobs execute faster, and they have to
wait for the first sub-jobs in the buffer. The faster the second server becomes, the
longer sub-jobs from the second queue have to wait. This leads to an increase of
the sojourn time. So, followed by this intuition, there exists an optimal point u3,
such that:

nllli2n E[Tsyn (n2)] =]E[Tsyn (13)]

2.2. SYNCHRONIZATION TIME ANALYSIS 16

15 T T T T T T T
il —F— upper interéal
168F 4 sim) |
| —EI—E[T(SW I
I .
1.4+ |I lower interval | |
I
13F 'I |
— i
EAR - S |
&
= 1r d
i
1k d
09y e giaia
ner d
0.7 1 L 1 1 1 1 1
1 2 3 4 5 5 7 a 9

Figure 2.5: Expected synchronization time of type one jobs as a function of ug
for the model in Figure 2.4 (u1 = 2,7 = 1)

According to the definition of the synchronization time (T,), we have

Tsyn = max{Si, So} — min{Sy, S>},

In general, for a system with n servers

Tsyn = max {S;} — min {S;}. (2.2)

1<i<n 1<i<n

Now the objective is to find the minimum synchronization time and its corre-
sponding service rates. However, the difficulty to solve the above equation is
caused by dependence of the queues. Therefore, similarly to the sojourn time
analysis, we want to find an approximation for the minimum. In the next sub-
section, we will use the order statistic to approximate T,y,.

2.2.1 Order statistic (OS) approximation

In section 3.1, we defined the Mazimum Order Statisticc Now we will use it

together with Minimum Order Statistics to approximate the synchronization time
(Tsyn)-

If we assume independent arrival processes and exponential service times distri-
butions, the queues are independent M/M/1 queues, for which it is known that
the sojourn time S has an exponential distribution with mean E[S;] = H%A,z =
1,2,..., M.

2.2. SYNCHRONIZATION TIME ANALYSIS 17

The memoryless property of the exponential distribution has the following con-
sequence.

Property. In a system with M independent queues,

1

E[min{51, 52, ..., Sm}] = (1 = A1) + (2 — Ag) + -+ (kar — Amr)

(2.3)

Therefore, in formula (2.2), the part maximum sojourn time maxi<;<n {S;} is ap-
proximated by formula (2.1), and the part minimum sojourn time ming<;<, {S;}
is approximated by formula (2.3). We derive the following approximation for
Tsyn-

M
1
Tiyn :(Z(_l)kH Z Liv — Niy 4 i, — A)=
k=1 (1,..0ik)ESK " " e tk (24)
1

(1 = A1) + (p2 = A2) + -+ (s — Aur)’

where Sy, is defined in formula (2.1).

This yields the following unconstrained continuous optimization problem:

. /
min Tsyn(lj’% K3yt MM)
K2yt s M

Thus, the approximation of p* is obtained by minimizing this continuous function.

Remark. Similar to the sojourn time analysis, formula (2.4) does not calculate
the synchronization time of the independent system. This is because of the time
gap between arrival of sub-jobs. Formula (2.4) does not take this time gap into
consideration.

Using formula (2.4) to system in Figure 2.4, we plot our OS approximation curve
and the simulation results and 95% confidence interval in graph 2.6.

2.2.2 Performance analysis

In this subsection, we evaluate the quality of the OS approximation for several
systems. By comparing the simulation result and OS approximation, we will show
that the OS is a good method for approximating the real optimum. We will also
compute differences in the sojourn time when we compare large p;,¢ = 2,3,..., M
and the optimum one.

We will evaluate the performance of the OS method in five systems. In the first
three systems, we fix the service rate of one server, and vary the service rates
of the other servers. In the last two systems, two of the service rates are fixed.
Furthermore, we will show through these experimental results that the optimum
expected synchronization time in OS approximation is achieved by putting the

2.2. SYNCHRONIZATION TIME ANALYSIS 18

1? T T T T T T T
= Sitm)
16 ETSn -
—F— upper interval
156k —&— |ower interval | |
_._E[T(say?npj]
141
1.3F
E
= 121
[}
1.1F
“] -
09
08
D? 1 1 1 1 1 1 1
1 2 3 4 =3 B 7 g 9
Ha

Figure 2.6: Expected synchronization time simulation comparing OS approxima-
tion

unfixed service rates to be equal. We will give the proof for this in system 2 and
system 5. The proof for system 5 will also lead to the proof for system 3.

All the systems are constructed in the following way: we consider 9 scenarios by
varying the work load of the first queue p; from 0.1 to 0.9. The arrival rates
at all servers are the same, namely A = 1. For each scenario, we show the
simulation and the approximation results. Besides these two numerical results,
we will also compare the effect on the sojourn time and the synchronization time
when take the limit of the non-fixed service rates to infinity. In the performance
of synchronization time in this thesis, we only consider one type of jobs. The
synchronization time of other types of jobs is approximated through the same
method.

Before we proceed, the notation of this section is shown in Table 2.14.

According to the notation, we have

- E[Tsyn (w*)] — E[Tsyn(ﬂ*(os))]
A% = 100% x ETopn ()]

System 1 (N =1, M = 2, for fixed u,)
We first consider the simplest system (Figure 2.7).

Apply formula (2.4) to this system, then we get:

2.2. SYNCHRONIZATION TIME ANALYSIS 19

Variable Description

A Arrival rate

7% Service rate of server i
Optimal service rate acquired from simulation

: (0s) Optimal service rate of server ¢ in OS approximation

E[Tsyn(p)] Expected synchronization time by set u as service rate

E[S(u)] Expected sojourn time by set u as service rate

A% Relative difference of the expected synchronization time
between real optimum and the OS approximation

Vi Hi — A

Table 2.14: Notation for performance analysis for the synchronization time

Servers

Arrival Split point G>\A
class 1

—_— >
Figure 2.7: System 1 of synchronization time analysis

Synchronization
Buffer

1 1 2
Y12 Mt

In order to obtain u;(os), we take the derivative of Ts’yn7 and let it equal to O:

dE[T,,,) 1 2 B
dvye Y2 o (4 72)?

. . . *(0S
We rewrite it as an expression of Mz():

1 — A

=1+V2

p1— A
We can observe from Table 2.15 that, the OS approximation is a close approx-
imation for real optimum p*, especially in the case of high and low work load.
Furthermore, when the server has a high work load, when po increases, the de-
crease in sojourn time is smaller than the increase in synchronization time. It is

therefore more ”beneficial” to take puo = M;(OS).

System 2 (N =1, M = 3, for fixed u)

In this system (Figure 2.8), we add one more server to the previous system.

2.2. SYNCHRONIZATION TIME ANALYSIS 20
pr | s | | BTy (i) | BTayu(us'®) | A% | BS(na) | ES(c0)
0.1 | 10.0 | 22.0 | 22.7 0.091 0.091 0.00% | 0.124 0.111
0.2 | 5.0 9.6 10.7 0.203 0.203 0.00% | 0.278 0.250
0.3 | 3.3 5.9 6.7 0.343 0.345 0.58% | 0.476 0.429
04 |25 4.2 4.6 0.527 0.531 0.76% | 0.739 0.667
0.5 | 2.0 3.0 3.4 0.777 0.787 1.29% | 1.102 1.000
0.6 | 1.7 2.2 2.6 1.133 1.153 1.80% | 1.648 1.500
07114 1.7 2.0 1.736 1.773 2.13% | 2.565 2.333
0.8 | 1.3 1.4 1.6 2.929 2.966 2.39% | 4.370 4.000
09|11 1.2 1.3 6.389 6.662 4.27% | 9.722 9.000

Table 2.15: Performance analysis of Fork-Join queue with 1 class 2 servers (fixed

1)

Arrival

class 1

— |

Split point

™~

Servers

Synchronization
Buffer

T/

Figure 2.8: System 2 of synchronization time analysis

2.2. SYNCHRONIZATION TIME ANALYSIS 21

After applying formula (2.4), we obtain

111 1 1 1
ETS/n’)/g,’y?, =— 4+ —4+— - - - .
Loyn) Moo oMt ntr Rt

First, we will determine the stationary points of E[T7,,,] as functions of v, ©%) and

*(0s))

Vs

1

-5+ + !

“(on)2 *(05)\2 *(05) (052 0

2 gl (r1t+72 ") (v2 ") _

VE[Téyn] - _ 2 1 >+ f + 2 1 8 = . (25)
S T N e s

Notice that the this system is symmetric with respect to v and 3. It is therefore

(08) _ u;(os)

reasonable to assume p. . Therefore, by solving the previous equation,

we get:

1 =55 = VB + 3,
rewrite it as an expression of *(°®) we get:

*(0s) A

w

E 2 _—2/3+3. 2.6
P (2.6)

Now, the next question is: whether formula (2.6) return a global minimum? We
will present the following theorem which tell us that equation (2.6) is a strict
global optimum.

It is easy to show that this point is a unique stationary point.

Theorem 2.1. The point (u;(os), ,u;(os)) of E[Ty,,] is the unique stationary point

(OS)7 u;(OS)

with < oo in system 2.

Proof. We will prove this by contradiction. Suppose that there is another sta-

tionary point (u;(os),,u;(os)), with uz(os) + /,L;(OS). Without loss of generality we

(05) _

may assume that p ug(os) + 9, for some § > 0. This point satisfies equation

(2.5). Hence,
1 1 1
— + = 2.7
(13+0)? (m+r3+0)? (2v3+9)? @7)
1 1 1
L _ 2.8
7 (nts)? (21 +9)? 28)
We define g(9) := 7(73-}-5)2 + (71+713+5)2. According to previous equations, we

must have g(0) = g(9).

Take the derivative of g(4), we have:

2.2. SYNCHRONIZATION TIME ANALYSIS 22

'5) = 1 _ 1
T A T 2 s

Notice that v1,73 > 0. Therefore ¢’(§) > 0,¥6 > 0, and so ¢g(0) < g(d). A
contradiction.

O

An interesting question is whether this stationary point is a minimizer.
Theorem 2.2. Let f: R® — R be in C?. If Vf(z) = 0 and V2f(Z) is positive

definite, then the point T is a strict local minimizer of function f.

Noticing that VQIE[TS’W(M*(“), p*°9))] is positive definite, and VE[TY,,, (1), w09
is equal to 0, which implies that (p*(°*), ;i*(°%)) is a strict global minimum.

P1L_| M1 My = i3 o) ETyn(13) | ETsyn(0™®) | A% ES(uo®) | ES(c0)
0.1 | 10.0 | 58.0 (59.2, 59.2) | 0.107 0.107 0.00% | 0.115 0.111
02|50 | 250 (26.9, 26.9) | 0.240 0.241 0.42% | 0.259 0.250
03]33 | 150 (16.1, 16.1) | 0.410 0.410 0.00% | 0.442 0.429
04125 |95 (10.7,10.7) | 0.637 0.638 0.16% | 0.688 0.667
051]20 |6.0 (7.5, 7.5) 0.949 0.955 0.63% | 1.030 1.000
06|17 | 4.0 (5.3, 5.3) 1.412 1.423 0.78% | 1.537 1.500
0.7]14 |29 (3.8, 3.8) 2.178 2.204 1.19% | 2.386 2.333
08|13 |19 (2.6, 2.6) 3.699 3.763 1.73% | 4.086 4.000
0911 |14 (1.7, 1.7) 8.099 8.385 3.20% | 9.136 9.000

Table 2.16: Performance analysis of Fork-Join queue with 1 classes 3 servers
(fixing 1)

An interesting question is does u;(os) =... = u}‘v([os) hold for more queues? In
the following system we will use a simplex search to search all the grid point
in order to find the global minimum. This search method is called fminsearch
function in Matlab. Surprisingly, the experiments show that the global minimum

has property u;(os) == MR(JOS).

System 3 (N =1, M = 4, for fixed u)

For the system with 1 class 4 queues (see figure 2.9), the result is presented in the
table below (Table 2.17). In this system, we will only start with work load 0.4,
because 1*(°%) is already too high for low work load, which leads to inaccuracy in
the simulation result.

Again in this system, the OS approximation of optimum service rates has property
u;(os) = ,ug(os) = MZ(OS). We will give the proof that this is a global minimum

later after the proof of system 5.
System 4 (N = 1, M = 3, for fixed u1, uo, with g1 = p9)

In the previous systems, we fixed the service rate of one server and vary the
service rate of other servers. An interesting question to consider is whether OS
approximation is also useful if we fix service rates of two servers. To study this,

2.2. SYNCHRONIZATION TIME ANALYSIS 23

Servere

Arrival Split point

class 1 /
___,<] -

Synchronization
Buffer

11/

Figure 2.9: System 3 of synchronization time analysis

Loy | | | | ETsyn (") | ETsyn (p*Y) | A% | ES(p**) | ES(00) |
04 | 2.5 | 18.8 | (20.8, 20.8, 20.8) | 0.656 0.659 0.46% | 0.674 0.667
0.5 | 2.0 | 12.7 | (14.2, 14.2, 14.2) | 0.983 0.986 0.31% | 1.012 1.000
0.6 | 1.7 | 8.6 (9.8, 9.8, 9.8) 1.465 1.470 0.34% | 1.501 1.500
0714152 (6.7, 6.7, 6.7) 2.287 2.293 0.44% | 2.354 2.333
0.8 131 35 (4.3, 4.3, 4.3) 3.898 3.923 0.64% | 4.033 4.000
09|11 21 (2.5, 2.5, 2.5) 8.759 8.881 1.39% | 9.148 9.000

Table 2.17: Performance analysis of Fork-Join queue with 1 classes 4 servers
(fixing 1)

we first construct the following experiment: in system 4 (see Figure 2.10), we
fix u1 = pe = 2, A = 1, and we let pg varying from 1.9 to 9. The simulation
results with its 95% confidence interval and OS approximation result are draw in
graph 2.11.

Servers

Arrival Split point

Synchronization
Buffer

class 1]

N

Figure 2.10: System 4 of synchronization time analysis

T/

As one can observe from graph 2.11 that OS approximation is not close to the real
system in this case. However, both graphs have the same shape with minimizer
that are close to each other. Therefore, we still can use the OS method to help
us find the near minimizer of the synchronization time.

We now evaluate the performance of the OS method in system 4 with fixed service
rates of the first two servers. We again consider 9 different scenarios with different
work load of the first two queues. The performance is shown in table 2.18.

2.2. SYNCHRONIZATION TIME ANALYSIS 24
Lol \ i
Figure 2.11: Synchronization time of system 4

pr L m=po | g | 15 | BTy (u5) | BTy (p3) | A% | ES(u3%) | ES(c)
0.1 | 10.0 224 | 22.7 0.145 0.146 0.69% | 0.171 0.165
0.2 5.0 9.6 | 10.7 0.321 0.322 0.31% | 0.381 0.369
03133 5.6 | 6.6 0.540 0.542 0.37% | 0.647 0.627
04125 3.9 4.6 0.822 0.827 0.61% | 0.994 0.967
0.5 |20 2.8 34 1.206 1.218 1.00% | 1.475 1.438
0.6 | 1.7 2.2 2.6 1.765 1.795 1.70% | 2.195 2.138
0.71]14 1.8 |20 2.689 2.731 1.56% | 3.386 3.295
0.8 |13 1.5 1.6 4.508 4.592 1.86% | 5.729 5.600
09|11 1.2 1.3 9.740 10.222 4.78% | 12.664 12.489

Table 2.18: Performance analysis of Fork-Join queue with 1 classes 3 servers

(fixing p1 = pi2)

2.2. SYNCHRONIZATION TIME ANALYSIS 25

As we can see from table 2.18 that the OS method still provides a near minimizer
of the synchronization time.

System 5 (N = 1, M = 4, for fixed pu1, u2)

In system 5 (Figure 2.9), we first will prove that the minimizer of the OS approx-

imation has property ug(os) = uz(os). Then we verify whether this is also true in
the real system. The real system has two scenarios g1 = s and pp # ps. We
will present numerical result for both scenarios.

Theorem 2.3. In system 5 with fized p1 and ps, the global minimizer has prop-

erty w3 = py).
Proof. Apply formula (2.4), and take the derivative of E[Ty,,] = 0, we get
R D 1 B 2
v (m+s)? (e +e)? (et s)? (71 + 72 + 793 +74)?
1 1
h 3+ 2
(a+73)? (473 +7)
1
—_—.
(v2 + 73 + 74)?
(2.9)
S S 1 B 2
i (mAr)? (e +ya)? (v v+ ya)? (M1 + 72+ 793 +74)?
1 1
o 3 T 2
(3 +7)? (M +73 +71)
1
—_—
(72 + 73 +74)?
(2.10)

Assume pg, pa are the solutions to equations (2.9) and equation (2.10), with
p3 = pig +6,0 > 0.

_ 1 1 1 1 .
We let g(d) = T T i o T a0 T stz Notice that
the right side of the equation (2.9) and equation (2.10) are the same. Therefore,
we have

Now we will prove that g(d) # g(0) for any § > 0.

(8) = S L 1 |
g 2 (1 +0)°? (MmAra+0)? (et+rati)P (mtre+nut+d)>l

= ¢ and = d, we have:

=a

If we let —L
5

1 — 1 1
4+0 P y1+yatd T b, Y2 +yato Y1t+y2+ya+o

2.2. SYNCHRONIZATION TIME ANALYSIS 26

q(8) = %[(a —b)(a® + ab +b*) — (c — d)(c* + cd + d?)] > 0.

This is because (a — b) > (¢ — d) and (a? + ab + b?) > (¢ + cd + d?).

Therefore, we have a contradiction. In conclusion, the global minimizer has prop-
erty i3 = 4.

O

We have proved that the stationary point (us, 114) has property pus = pq. Now we
will show that there exists at least one such stationary point with us, gy < oco.

Apply formula (2.4), and let it equal to 0, we have

1 1 1 1 1

- 7% (71 +73)% (a+13)% (2 +13)? - (71 + 72 +3)?

1 1 2

+
Mm+rm+1)? (e+tn+ra)? (n+r2+y3+7)32

(2.11)

By theorem 2.3, know that v3 = 4. Therefore, equation (2.11) can also be written
as

3 1 1 1

43 (mtre+m)? (et tr0)? (s)2
1 1 2

+ + + =
(v1+73)% (2+13)2 (m+72+93+7)?

flys) =
(2.12)

__3_
473

- & > 0. This means f(v3) > 0, when 3 is

If v3 = 0, f(y3) = —oo. If ~3 is very large, then
1
(i+vs)?
large. Therefore, there must exist v < oo, such that f(v3) =0, and ps = pg =

5 — 1 is the stationary point.

and W are the

dominating terms, with

Remark. Using this theorem, we can extend the property to system 5 with fizing
only py. Specifically, in Figure 2.9 with fived py, assume u;(os) #+ ug(os) #+ uz(os).
According to theorem 2.3, we can further decrease the expected synchronization
time by setting p3 = pg. The same argument also leads to ps = us. Therefore,

1 = 13 = 15 should hold .

M1 = 2

Now we consider the system 5 with fixed service rates (u1 = p2) of the first two

servers. pg(os) and ,uz(os)

in table 2.19.

are obtained by fminsearch. The performance is shown

We can see that the OS method return a value which is close to minimizer of
the real system. Furthermore, it appears that the minimizer has the property

;(08) — qu(os) in all scenarios.

2.2. SYNCHRONIZATION TIME ANALYSIS 27

pr |ty = pe | (15, 1) (137, 13%%) | ETgyn (1) | ETgyn(u*%) | A% | ES(u**) | ES(o0)
0.1 10.0 (33.7, 33.7) | (35.6, 35.6) | 0.157 0.158 0.64% | 0.169 0.165
0250 (15.4, 15.4) | (16.4, 16.4) | 0.348 0.348 0.00% | 0.375 0.369
0333 (8.9,8.9) | (10.0, 10.0) | 0.589 0.592 0.51% | 0.639 0.627
04|25 (5.8,5.8) | (6.8,6.8) | 0.907 0.911 0.44% | 0.985 0.967
05| 20 (4.3,4.3) | (4.8,48) | 1.342 1.355 0.97% | 1.471 1.438
06| 1.7 (2.6,2.6) | (3.6,3.6) |1.982 2.003 1.06% | 2.167 2.138
07|14 (2.0,2.0) | (27,27) | 3.027 3.077 1.65% | 3.364 3.295
0813 (1.5,15) | (2.0,2.0) | 5.067 5.196 2.55% | 5.714 5.600
09| 1.1 (1.3,1.3) | (1.4,1.4) | 11.135 11.787 5.86% | 12.622 | 12.489

Table 2.19: Performance analysis of Fork-Join queue with 1 classes 4 servers
(1 = pa2)

P17 2

In this case, we will verify whether p5 = g} holds while fixing pq and po, with
1 # pa. We construct one experiment with parameters p; = 0.5, po = 0.8. They
stand for "High” and ”Medium” work loads. We did not do numerical experiment
with low work load. This is because it leads to inaccuracy of the simulation result.
For example, the expected synchronization time of experiment with parameters
p1=0.2,p2 =0.8,p3 = 0.4, pgy = 0.5 is almost equal to the expected synchroniza-
tion time of experiment with parameters p; = 0.2, p2 = 0.8, p3 = 0.5, p4 = 0.5.
The comparison of the OS approximation and the simulation result is shown in
Table 2.20. The detailed numerical result is shown in Table 2.21.

‘ P1 ‘ (ﬂgaHZ) ‘ (ME"S,MZOS) ‘]ETsyn(/v‘*) ‘ ETsyn(ﬂ*os) ‘ A% ‘
| (05,08) | (3,3) | (29,29) |3.981 | 3.983 | 0.05% |

Table 2.20: Performance analysis of Fork-Join queue with 1 classes 4 servers
(11 =2, 2 = 1.25)

h Halys 120 |30 [40 |50 |60 |70

15 4.264 | 4.129 | 4.232 | 4.335 | 4.375 | 4.407 | 4.431
2.0 4.134 | 3.915 | 3.987 | 4.054 | 4.046 | 4.099 | 4.102
3.0 4.230 | 3.987 | 3.981 | 3.997 | 4.008 | 4.028 | 4.053
4.0 4.300 | 4.027 | 3.995 | 4.019 | 4.014 | 4.039 | 4.054
5.0 4.366 | 4.081 | 4.022 | 4.025 | 4.013 | 4.012 | 4.041
6.0 4416 | 4.114 | 4.027 | 4.043 | 4.056 | 4.071 | 4.060
7.0 4408 | 4.123 | 4.057 | 4.071 | 4.054 | 4.055 | 4.052

Table 2.21: Expected synchronization time of Fork-Join queue with 1 classes 4
servers (fixing pu; = 2, ue = 1.25)

As we can observe from Table 2.21 that the real minimum is achieved by taking
13 = pg. This coincide with the OS approximation, where E[T7,] is achieved by

syn
x(0s) _ x(o0s)
3 = .

taking u Iy

2.2. SYNCHRONIZATION TIME ANALYSIS 28

More systems (N =1, M, for fixed p1, pa, ... ;)

For systems with more than four servers, we can not prove whether ,u;.iols) =
Mff;) =...= uj\/(los) holds. We state that it is only necessary to prove pﬁo_? =

,uj\/(]os) holds for systems with fixed parameters p1, pa, . . . ar—2. Despite the proof,
according to the results for systems showed previously, we formulate the following
conjecture.

Conjecture. In the OS approzimation, if we fized the service rates of i servers
(i > 1), the minimum expected synchronization time is achieved by taking other
service rates to be equal. This holds not only for the OS approximation, but also
for the real system.

2.2.3 Conclusion

In the previous subsection, we showed that the service rates play an important
role in synchronization buffer size optimization. This is also the reason why we
consider the synchronization time. We developed the OS approximation method
to approximate the synchronization time in order to helps us to allocate the ser-
vice rates, at which the minimum synchronization time is achieved. Through
numerical results of several systems, we see that this method provides both close
approximation to real system synchronization time and a close allocation of the
minimizer. However, this does not hold for all systems. In system 4 of this
section, we have seen that the OS method performs badly in approximation of
the synchronization time. However, this does not handicap that the OS method
provides a close allocation of the minimizer that reduce the real system synchro-
nization time. It is intuitively clear that less synchronization time leads to smaller
synchronization buffer size.

According to the experiments, another interesting fact is that the optimal service
rates of non-fixed servers are larger when less servers have fixed rates.

The systems we show include up till to 4 servers. Whether there exists a minimum
synchronization time in system with more servers still need to be investigated.

In all the systems in this thesis, it is surprising that if we fix service rates for
one or two servers, using the OS approximation, the minimum synchronization
time is achieved by setting other service rates to be equal. We gave the proof
that for system with one fixed service rate and two unfixed service rates, the
strict global minimizer has property ,uz(os) = ug(os). We also gave the proof that
for system with two fixed service rates and two unfixed service rates, the strict

1(09) _ x(o0)

global minimizer has property u . Furthermore, we verified that such

properties also hold in real systems.
Synchronization time vs. Sojourn time

Now the question is that whether it is beneficial to lessen the synchronization

time while raise the sojourn time. Clearly, there is a trade off. We let f =
|E[Tsyn (1)) —E[Tyyn (c0)]|
[E[S (00)]—E[S(u*(e=))]]

nization time and the decreases in sojourn time when we comparing p = p*(°%)
and 4 = oco. We observe from all the numerical results that we have g > 1.

, which stands for the ratio of the increases in synchro-

2.3. FUTURE WORK 29

Furthermore, if the fixed server has a high work load, the system has a higher 3.
This means that in a situation of high work load, it is more ”beneficial” to take
pu = 1*(°9) . In conclusion, the OS method offers us a way of reconstructing the
system to reduce buffer size without much increment of the sojourn time. This is
especially true if the fixed servers have a high work load.

In this thesis, we only consider the synchronization time of systems with one
job class. However, buffer size optimization has a larger significance in a multi-
class systems. This is because the buffer size will expand when all classes wait
in the buffer. Therefore, the OS method will offer more improvement to buffer
optimization in multi-class system.

2.3 Future work

In this section, we will discuss some questions that have not been answered in
this thesis.

First of all, it would be interesting to evaluate the performance of the MOS
method in more complicated systems, e.g. more customer classes or more servers
for each class. If the MOS method approximate badly in systems with more
servers, other methods of approximation are also of interest. Secondly, as men-
tioned in the conjecture, we think that MOS works well in the case of general
service time distributions, e.g. the Erlang distribution. It is important to vali-
date this conjecture, since other type of service time distributions arise regularly
in practice.

Regarding theoretical aspects of the sojourn time, we are eager to prove or dis-
prove that the MOS method provides an upper bound for the sojourn time of the
real system.

For the synchronization time analysis, we used the OS method to find the service
rates that minimize synchronization time in a system with less than five servers.
The case with more than five servers for each class remains an open problem.

As we presented in the numerical results, using the OS method, the minimum
expected synchronization time is achieved by set unfixed service rates to be equal
for systems with at most four servers. Whether this is true for system with more
servers needs further investigation.

The numerical results show that the approximating model with independent ar-
rivals provides an upper bound. It will be interesting to study whether this
approximation provides an upper bound for all systems.

As mentioned before, formula (2.4) does not return the synchronization time of
the independent system. Therefore, it is interesting to compare the independent
system and the original system in the ”synchronization” time. Here we formulate
the synchronization time in terms of the stationary distribution. To illustrate
this we consider a system with two servers. The dependent system is shown is
Figure 2.12 and the corresponding independent system is shown in Figure 2.13.

In system I, we assume the system is a positive recurrent Markov process. Then

the stationary distribution {m;, i, i, }ics exist. Here 41 stands for the number

2.3. FUTURE WORK

30

Arrival ? 1

Servers

) / iy
—_—> Sywchronization
\ Buffer
/2
s s
Figure 2.12: System I
Arrival i1 Servers
A
- 251
i3
i Synchronization
to Buffer
A —
—_— H2 —>
i4

Figure 2.13: System II

2.3. FUTURE WORK 31

of sub-jobs in the first queue plus the sub-job at the first server, is stands for the
number of sub-jobs in the second queue plus the sub-job at the second server, i3
stands for the number of sub-jobs in the synchronization buffer after having been
served by the first server, iy stands for the number of sub-jobs in the synchro-
nization buffer after having been served by the second server, i = (i1, 12, i3,%4), S
is the state space. Clearly, in system I, S = {(i1,92,13,44)|i; = Z4,V, i3 -4 =
0,41 +143 = i2+1i4}. It is well-known that m;, ;, 454, can be interpreted as the frac-
tion of time the system spends in state i. As a consequence, the synchronization

time TSIyn of system I can be expressed in the following way:

Tiyn = D Misinsiaia (i3 + ia)- (2.13)

K2

The notation in system II is similar. We denote by ¢; the number of sub-jobs
in the first queue plus the sub-job in the first server, by 75 the number of sub-
jobs in the second queue plus the sub-job in the second server, by 43 the number
of sub-jobs in the synchronization buffer after having been served by the first
server, by 74 the number of sub-jobs in the synchronization buffer after having
been served by the second server, i = (i,19,13,%4), S is the state space with
S = {(iy, 12,13, i4)|i; € Z4,Vj, i3 -i4 = 0}. System II has stationary distribution

i iz is.ia Jics- The "synchronization” time of system II can be written as:

Thin = D s ininia (1 +). (2.14)

K2

Comparison and computation of formula (2.13) and formula (2.14) are essential in
analyzing the synchronization time of Fork-Join queueing systems. Furthermore,
formula (2.14) might be another approach for approximating the expected syn-
chronization time of the original system. We are also interested in how formula
(2.14) related to OS approximation. We will leave these for future work.

Part 11

Stochastic knapsack problem

32

Chapter 3

Introduction to stochastic
knapsack problem

3.1 Background

We will now consider another problem called the stochastic knapsack problem.
This model was first introduced by Ross and Tsang in [14]. It is derived from
the famous knapsack problem, except for the fact that in this model the arrivals
processes are stochastic processes. This type of model has many applications. We
will give few examples.

Ezxample 1: In a mobile cellular system, a signal transmission base with limited
bandwidth to handle bandwidth request (i.e. phone call, cellular internet browse)
in its control area. Normally, each type of request has different properties, for
example, initiating a phone call has priority but gives little reward (charges) to
the system. On the other hand, internet users have less priority, it requests more
bandwidth than a phone call but gives more reward (charges) to the system.
Therefore, we are motivated to design a policy that maximizes the reward for
such a system while handling all different kinds of request.

Ezxample 2: In a circuit-switched telecommunication system, a central server sup-
ports a variety of traffic types (i.e. video, image, voice, etc). Each type of traffic
has a different bandwidth request and holding time distribution. The problem of
optimally accepting calls in order to maximize average revenue is equivalent to
the stochastic knapsack problem [14].

The stochastic knapsack problem was first studied in [14]. In [14], the authors
consider the MaxAcR and MinBIC criteria and derive the optimal coordinate
convez policy for this problem. This type of policy leads to a product-form
steady state distribution. Ross and Yao study the effect of changed parameter on
this policy in [15]. In [13], Ramjee, Towsley and Nagarajan extend the problem to
other objective functions and derive the optimal policy for each objective function
as well as some monotonicity properties. Feinberg and Reiman [4] study the
special case where the service rates and rewards do not depend on the customer
class. A fluid model approximation method is developed in [1]. In [11] and [12],

33

3.2. MODEL FORMULATION AND PROBLEM DESCRIPTION 34

two policies called threshold policy and reservation policy are studied.

3.2 Model formulation and problem description

Traffic from N classes shares B resources. Class i traffic arrives according to a
Poisson process with parameter \;, ¢ =1,..., N. Each class 7 customer demands
b; resources, with b; integer. After an exponentially distributed time with pa-
rameter pu;, these b; resources will be released simultaneously, and the customer
leaves the system. The state of the system is denoted by z =(z1,...,xn), where
x; stands for the number of class i customers in the system. There is no wait-
ing room, i.e. customers who do not find enough resources upon arrival, are
rejected automatically. Besides this, upon arrival of a customer, the system can
either accept or reject him according to a pre-determined Call Admission Control
(CAC) policy. A simultaneous reward r; is earned upon acceptance of a class i
customer (see Figure 3.1). We consider the total discounted reward criterion with
discount factor 8 € (0,1). This means that gaining reward r at time ¢ is worth
rBt now. The objective is to find a CAC policy, that optimizes the Quality of
Service (QoS).

PS5 node

Arrival

class 1
_> N

class 2

_} .

class N

Figure 3.1: Example of Stochastic Knapsack Problem

In [13], the QoS is measured in 3 different ways:

1. MaxAcR: Maximize the average reward of the system over an infinite time
horizon.

2. MinBIC: Instead of gaining rewards by accepting customers, it is also possible
to measure QoS by a penalty cost for rejecting customers. In this way, MinBIC
stands for minimizing the blocking costs.

3. MinBLOCK: For a given number of channels, this criterion minimizes the
overall blocking probability subject to the constraint that the blocking probability
of a certain type of customer may not exceed a given threshold.

In this thesis, we only investigate MaxAcR and MinBIC. As a matter of fact,

3.3. GOAL AND STRUCTURE 35

MaxAcR and MinBIC are equivalent ways of measuring QoS. This is directly
deduced from the objective functions.

MaxAcR MinBIC
R*:maxziri~(1—Bi)~/\i, R*:minzici-Bi-)\i

where B; is the blocking probability for the ith class customer.

3.3 Goal and structure

The objective of this part is to find a policy that maximizes the reward of the
system. We will present how we derive optimal policy. Furthermore, we will
compare two other policies which perform close to optimal with less computation
complexity. Although those methods are well developed, we will show the defects
of those policies through some examples.

This part is structured in the following way. In chapter 4, different types of
policies are presented. In section 4.1, we show the explicit expression of stationary
distribution of complete sharing policy. In section 4.2, we formulate the algorithm
to derive the optimal policy by using Markov decision process. Threshold policies
and reservation policies are discussed in section 4.3 and 4.4, respectively. The
performances of these policies are evaluated in section 4.5. The future work is
discussed in section 4.7.

Chapter 4
Analysis of policies

In this chapter, we will investigate four different types of policies for the stochastic
knapsack problem. First, we show how to derive such policies, and then compare
their performance. The four types of CAC policies studied are:

Complete Sharing policy
A customer is accepted whenever the system has sufficient resources, oth-
erwise he is blocked.

Optimal policy
The policy that returns the maximum long term average reward to the
system.

Reservation policies
Under a reservation policy, a class i customer is accepted if and only if
the number of occupied resources do not exceed a reservation parameter c;
(¢; < B) after acceptance. Formally, a class ¢ customer is accepted if and

only if Zjvzl zj - bj +b; <g¢;.

Threshold policies
Under a threshold policy, a class ¢ customer is accepted if and only if there
are available resources in the system and the number of class i customer
does not exceed a given threshold ¢; after acceptance. Specifically, a class 4
customer is accepted if and only if z; + 1 < ¢; and Zjvzl z;-b; +b; < B.

4.1 Complete sharing policy

The simplest policy is complete sharing policy. The system is well-known as the
Multi-Rate Model under a complete sharing policy. A complete sharing policy
leads to an aperiodic and irreducible Markov process [14] with product-form sta-
tionary distribution [14][11]. The steady state distribution is given by [11].

N
1 T

m(z) = n(z1,22,...,2N) = Ie H ZZ_' Vo € Q,
i=1 """

36

4.2. OPTIMAL POLICY 37

where Q is the state space, p; = %%, and G == Y, ¢ Yy, %, the normalizing
constant.

We denote by ; (£2; C Q) the set of states in which a class i customer will be
accepted. The blocking probability can be expressed in the following way:

N T T
Bi=1-Y n(z)=1- Zaco Lim 05’ /2 (4.1)

N i .
z€Q; Ywca Lo pj’ /25!

Having calculated the blocking probability for each customer class, we can cal-
culate the long-term average reward R under this policy. However, we need to
mention that although this formula is exact, in the case of a large state space, a
numerical overflow problem may occur when calculating the normalizing constant
G. Therefore, in the case of a large state space, one can apply Kaufman - Roberts
Recursion [7] to avoid computational problems.

4.2 Optimal policy

In this subsection, we introduce Markov Decision Processes (MDP) to derive the
optimal policy for this model. First we will describe the so-called value iteration
algorithm for discrete time MDP. To this end, we need to apply a uniformization
technique to reduce our continuous time model to discrete time. Then we will
compare the performance of optimal to complete sharing policy with respect to
the long term average reward R.

4.2.1 Uniformization technique

In each state z, we add a ”dummy” transition r4(z) from z to itself, such that all
the states get the same transition rate, 7 say. 7 should satisfy Ry (z) < 7,Vz € Q,
where R,,:(2) stands for the rate out of state x. Thus, in this thesis, we set 7 =

Zi]\il Ai +Zij\;1 LB/biJ © -

4.2.2 Value iteration algorithm

In MDP, a dynamic programming decision is made in each state to decide whether
it is beneficial to accept an arriving customer or not. The value iteration scheme
can be formally described as V,41(x) = T - Vi (z),Va € , where Q is the
state space, and V,,(x) stands for the maximum total reward in state x over a
time horizon of length n. In this model, the event operator T is a composition

of 3 different types: an arrival operator T4,, a departure operator Tg?, and a
constant operator I.. It is a result from Dynamic programming that for our model

Vi(x) — V,(0) = V(x) — V(0), where V is the average reward value function.

Arrival Operator
Stands for an arrival of a class ¢ (i = 1,..., N) customer, Ty, is defined by:

4.3. THRESHOLD POLICY 38

TA-; = max{?“i + Vn(w"'_ ei)a Vn(.’ﬂ)},

Departure Operator
Stands for departure of one of the k class i customers, (i = 1,...,N and k
=1,...,|B/b;]). it is defined by:

7 _ { Val(z— &), if ; <k
D, —

Vi), otherwise.

Constant Operator
This operator is an indicator function, which is used to avoid system putting
transitions leading out of , i.e. to avoid vazl b;x; > Bj; therefore, we
define:

. N
IC(LI?) _ { 0, lf Zi:l bll‘z S B,

—00, otherwise.

Using the definition above, the value iteration algorithm for MDP applied to our
problem has the following form:

Vig1(z) =TV, (2)
N N [B/bs]
= LVa(@) + BY NTaVa(@) + 8 i Y. T V()
=1 =1 k=1
+ B -ra(x) - Va(o)

4.3 Threshold policy

In order to develop a policy with amenable structure, it is necessary to find
a method to order the customer classes, such that when a low-class customer
can be accepted, then a high-class should also be accepted whenever there are
enough resources. Here we introduce the term revenue coefficient o; = %ﬁ”,i =
1,2,..., N [12]. One interpretation of «; is the reward gained by using one unit
of resource per unit time to serve a class ¢ customer. The customer class with a
higher revenue coefficient is considered to be more beneficial, hence we give it a

higher priority.

In this section we discuss the general idea of deriving a threshold policy. We will
not evaluate this method. For those readers who are interested, we refer to [11]
and [12].

Since threshold policies lead to a time reversible Markov chain, the steady state
distribution has a product-form ([14]) so that the blocking probability can be
calculated explicitly by (4.1). However, a direct calculation requires enumerating
all states. This is not efficient for large state space cases. In [16], a convolution
algorithm has been proposed to evaluate system performance under any thresh-
old policy. This convolution algorithm is more efficient and has computational
complexity of O(B?N log N).

4.4. RESERVATION POLICY 39

So far, we can evaluate the performance of a given threshold policy. The next task
is to find an efficient way to search for the optimal threshold policy. Intuitively,
brutal-force search (search all possible threshold policies) is feasible but a slow
search method. ICSA_THD is a searching algorithm proposed in [11] which is
a faster method. The experiments in [12] show that the policy obtained from
ICSA_THD search coincides with the optimal threshold policy, even though
ICSA_THD is a local search rather than a global search method.

4.4 Reservation policy

In this section, we discuss the general idea of reservation policy without a detailed
performance evaluation. In general, reservation policy does not lead to a product-
form stationary distribution. Consider the example: B = 5,b; = 1,0y = 2,41 =
ue = 1,71 =19 = 1, if we set reservation parameter as ¢; = 5, ¢ = 3, then there
is no transition rate from state z = (2,0) to state y = (2,1). However, there is
transition from y to x, because departures can not be blocked. We will show that
in the one-dimensional case a reservation policy leads to a product-form stationary
distribution. In multi-dimensional cases, we will present a scaling technique that
converts the system to one-dimension. Then we translate the optimal reservation
policy of one-dimensional system to the original system. Two examples are shown
to illustrate that the returned reservation policy can perform badly in the original
system.

4.4.1 One-dimensional case

We will consider a special case of the stochastic knapsack model, where all classes
have the same resource requirements (b; = b, =1,2,..., N, b can even be equal
to 1, without loss of generality) and mean service times (u; = i =1,2,...,N).
The reason why we call it the one-dimensional case is that it can be formulated
as a one-dimensional birth-death process. We will derive analytical results for
this special case under a reservation policy.

We first order the classes as 1,2, ..., N in a decreasing order of «. Let (B, Sy_1, - .-

denotes the reservation parameters for class (1,2,..., N) respectively. The system
under such policy can be described as a diagram below:

Ziy:l Ak Z]kvzl Ak ZkN:1 Ak ZkN:1 Ak 25:711 Ak Zi\’;ll Ak 2271 Ak A1

Iz 3 Sip (S1+Dp (S142)p Sn-1p (Sn—1+1l)p Bp

If we let m; denote the stationary probability of state ¢, by applying global balance
equation, we have:

4.5. NUMERICAL RESULTS 40

m:ﬁo(k%%)i% Vi=1,2,...,5
kN:_11)‘k il
Ty =T 1(1) 5
N N—1) 9 ’)
771_0(21@71)‘k)sli k=1)\’9)7,]‘
1 Sq! I i!
N—jt+ly 4
T = Wj—l(th)zﬁ
N \ . N—j+1)\) Vz:Sj71+1,Sj,1+2,...,Sj;
:WO(ZI@:I k)sli_“(k=1 k)ii
1% Sl' 1% 7!
N) N71A~ . .
m:m(zkzﬁk)sls%!(zk:; k)sas%!...(%)z% Vi=Sn_1+1,5v_1+2,...,B.

By using the above equations and the fact that mg + 7 + .-+ 73 = 1, we can
evaluate the performance of any given reservation policy.

Now the question is: How to find an optimal or nearly optimal reservation pol-
icy for an one-dimensional problem? 1In [11], the authors propose a algorithm
called ICSA_RSV, which returns a local optimal reservation policy for the one-
dimensional problem. In [12], more research has been done about the complexity,
convergence and quality of the ICSA_RSV algorithm. In a number of cases,
ICSA_RSYV turned our to coincide with the optimal policy.

4.4.2 Multi-dimensional case

As opposed to the threshold and complete sharing policies, a multi-dimensional
system under reservation policy is not a time reversible Markov chain. Therefore,
it does not lead to a product-form stationary distribution. This property leads us
to the thought: if we can convert all problems into a one-dimensional problem,
then we would have an easy way to calculate the blocking probability under the
reservation policy. In [11], the authors propose a scaling technique where they
reduce the multi-dimensional case to the one-dimensional equivalent discussed in
the previous subsection. Consider class-k customers: there are \g arrivals every
time unit, each arrival requires by resources. In the converted system, we let

N, = %, and b; =1, p; =1,Vi=1,2,..., N (see Figure 4.1).

After scaling, we can then apply the ICSA_RSV algorithm to get the local
optimal reservation policy.

4.5 Numerical results

In this section we first study the structure of the optimal policy through some
examples. The optimal policy does not always have an amenable structure. We
illustrate this by two examples (Table 4.2). Then we do experimental analysis

4.5. NUMERICAL RESULTS 41

PS node

Amrival

class N -

Arrival PS node

class 1 ’\151 .

dass2 Aabo s

class N Anba ‘/‘
i /
_

Figure 4.1: Conversion from multi-dimensional case to one-dimensional case

on reservation policy and threshold policy. The experiments will show that the
reservation policy can perform really bad. The detailed evaluation of threshold
policy and reservation policy can be found in [11].

In the first four examples (Table 4.1), we fix § = 1. We compare the performance
of complete sharing policy to the optimal policy. The experiments are constructed
in the following way. We only consider the case where A > p. This is because when
A < u, the system will almost always accept the arrival. Therefore, in parameter
set 1, we take p;1 =10, and p2 =2, p = % We variate all different combinations
of b and r. The label of analysis is in Table 4.2. All our examples have only two
customer classes, in order to have a convenient graphical presentation.

Note that in example 1, the complete sharing policy performs much worse than
the optimal policy. This is because class 2 customers are much more beneficial
than class 1 customers in this example. Therefore, as we can observe in Figure 4.3,
the optimal policy does not allow any acceptance of class 1 customer. In contrast,
in the complete sharing policy, a class 1 customer is always allowed as long as
there are enough resources.

4.5. NUMERICAL RESULTS 42

Accept both types
Accept 1st type
Accept 2nd type
Eejection region

Figure 4.2: Label

0] 10 15 20

Figure 4.3: Optimal policy of example 1

0 7] 10 15 20

Figure 4.4: Optimal policy of example 2

4.5. NUMERICAL RESULTS 43

Figure 4.5: Optimal pol- Figure 4.6: Optimal pol-
icy of example 3 icy of example 4

0 3 10 15 20

Figure 4.7: Optimal policy of example 5

0 i 10 15 20

Figure 4.8: Optimal policy of example 6

4.5. NUMERICAL RESULTS 44

‘ B ‘ o ‘ o ‘ r ‘ b ‘ Ropt ‘ Res ‘ Example ‘
20 | (10,2) | (1,5) | (1,5) | (1,5) | 45.24 | 10.29 | example 1
20 | (10,2) | (1,5) | (5,1) | (1,5) | 53.09 | 50.94 | example 2
20 | (10,2) | (1,5) | (1,5) | (5,1) | 51.93 | 41.85 | example 3
20 | (10,2) | (1,5) | (5, 1) | (5,1) | 23.11 | 22.49 | example 4

Table 4.1: Parameters set 1 for Optimal policy
‘B‘B ‘p ‘,u ‘7“ ‘b ‘Example‘
20 | 1 (5,10) | (2,1) | (10, 100) | (1, 5) | example 5
20 | 0.95 | (5,10) | (2,1) | (10, 100) | (1,5) | example 6

Table 4.2: Parameters set 2 for Optimal policy

In the first four examples, one class customers are always accepted as long as
there are sufficient resources available, while the other type is accepted up to a
certain threshold. This is intuitively clear, since we want to reserve resources for
the most beneficial customers. However, the example 5 and example 6 show that
not all cases have this property.

The advantage of the optimal policy is that it will return the highest reward to
the system. We can see from Table 4.1 that the optimal policy performs far better
than complete sharing policy in some cases. However, the optimal policy has a few
drawbacks. First of all, in cases with a large state space, MDP will have a huge
computation complexity which makes it hard to implement in practice. Secondly,
based on the results of example 5 (Figure 4.7) and example 6 (Figure 4.8), we
can see that the optimal policy may not have an amenable structure. We are
therefore motivated to develop other policies that are close to optimal, but at the
same time easy to implement.

Due to the fact that the converted system and the original one are not stochas-
tically equivalent, the method for finding reservation policy can be really bad.
We now illustrate this with the following examples. The parameters for the orig-
inal system are given in Table 4.3, the scaled parameters are given in Table 4.4.
The optimal policy and the policy obtained through the scaled approximation of
example 7 are shown in Figure 4.9 and Figure 4.10 respectively.

B 6s [n_|r __[b | Rop|Ros | Funa| Example |
20 | 1 (8 8/7) | (L,7) | (I,7) | (1,7) | 47.80 | 42.35 | 47.80 | example 7
20 | 1 | (8,8/10) | (1,10) | (1,20) | (1, 10) | 67.92 | 8.37 | 67.92 | example 8

Table 4.3: Original system

4.6. CONCLUSION 45

B [Blp |n |r [b [Rsv | Rpso |
20 [1| (88) | (1,1)] (1, 7) | (L, 1) (17, 20) | 40.96
20 | 1| (8,8) | (1,1) | (1,20) | (1,1) | (16, 20) | 8.02

=
=

10 15 20

Figure 4.9: Optimal policy of example 7

4.6 Conclusion

In this chapter, we have studied the call admission control policies for the stochas-
tic knapsack problem. We have presented four different types of policies. We have
showed the value iteration algorithm to derive the optimal policy. For a com-
plete sharing policy, we derived an explicit expression for calculating the blocking
probability of each customer class. Two examples are shown in this chapter to
illustrate that the optimal policy does not necessary have an amenable structure.
Also, the optimal policy leads to curve of dimensionality. These make the optimal
policy practically impossible to implement. Then, we showed other two types of
policies: threshold and reservation policies. They were proposed in [11]. The
reservation policy does not have a product-form stationary distribution. This
makes it difficult to evaluate the performance of the system under any given
reservation policy.

A scaling technique was shown to derive reservation policies. However, numerical
results show that the returned reservation policies have a bad performance when
using such a scaling method. We even found a case where reservation policy is
even worse than the complete sharing policy. In general, the threshold policy
performs better than the reservation policy. Especially in example 7 and example
8, the reward of the threshold policy is equal to the reward of the optimal policy.
However, the reservation policies are more robust than the threshold policies [11].

I)

Figure 4.10: Returned Reservation policy of example 7

4.7. FUTURE WORK 46

4.7 Future work

We are interested in finding a better reservation policy as future work. To do so,
we need to find an efficient way of calculating the stationary distribution.

Here we present a method to calculate the stationary distribution of a given reser-
vation policy for a problem with a medium size state space (around 5,000 states)
without performance evaluation. The method is to calculate the eigenvector cor-
responding to the eigenvalue 1.

A system under any feasible reservation policy is stable, and therefore has a
stationary distribution:

lim P} - g = limzx, =7
n n

where P is the transition matrix under reservation policy a, x¢ is any initial
state vector, and Z is the stationary distribution vector. From queueing theory
we know that 1 is a eigenvalue of transition matrix P, with its corresponding
eigenvector Z. This result leads us to the thought: For a transition matriz P, to

derive the stationary distribution, we only need to calculate the eigenvector of P,.

Regarding to finding eigenvectors, there are multiple ways, i.e. Gauss-Seidel and
Newton iteration.

In the stochastic knapsack problem, the transition matrix P, has the following
properties:

e P, is a large but sparse matriz.

e [is the dominant eigenvalue of P, always for aperiodic Markov processes.

Here we use Power method ([3]) to calculate the stationary distribution vector Z.
This method is described below:

1. Choose choose a random vector x(as the initial vector;
— _Pazi .
2 Thtd = R

3. Go to step 2, until ||zgpr1 — zx|| <e.

This method will converge linearly if the starting vector xy has a nonzero compo-
nent in the direction of an eigenvector associated with the dominant eigenvalue
([3]). Therefore, as long as the initial vector is correctly chosen, the Power method
can be implemented in Matlab or C++ and will converge to the stationary dis-
tribution vector.

In cases with a medium state space, using MDP to get the optimal policy already
confronts us with a computation problem. The calculation of the eigenvector
returns the exact result of the stationary distribution of such medium sized cases.
Having the exact result, we can apply ICSA_RSV algorithm to find the best
reservation policy. However, applying this method to a problem with a large

4.7. FUTURE WORK 47

state space is difficult. This is due to the fact that calculating the eigenvector of
a huge matrix is problematic.

Now, the only question is how to derive a reservation policy for a problem with a
large state space. Here we will propose a possible method that might be interest-
ing to study. This method is an approximation method to stationary distribution
which is easy to implement and compute.

The method is based on the following heuristic. We are interested in finding an
easy way to compute the blocking probability. We think that an approximation
will yield a nearly optimal reservation policy. Assume there are two classes cus-
tomers with o > ag. We can calculate By (B) and Ba(B), where B stands for
the reservation parameter of class two. We also can calculate B;(0) and By(0),
where 0 means complete blocking class two customers. Using data By (B) and
B1(0), one might use quadratic or exponential functions to estimate By (i), which
stand for the blocking probability of class 1 customers when set the reservation
parameter at i. We do the same for class 2 customers. We think if the close es-
timation functions were found, it would be easy to compute the a nearly optimal
reservation policy.

References

[1]

E. Altman, T. Jiménez, and G. Koole. On optimal call admission con-
trol in resource-sharing system. Communications, IEEE Transactions on,

49(9):1659-1668, 2002.

F. Baccelli, A. Makowski, and A. Shwartz. The fork-join queue and re-
lated systems with synchronization constraints: Stochastic ordering and com-
putable bounds. Advances in Applied Probability, 21(3):629-660, 1989.

B. Datta. Numerical linear algebra and applications. Society for Industrial
Mathematics, 2010.

E. Feinberg and M. Reiman. Optimality of randomized trunk reservation.
Probability in the Engineering and Informational Sciences, 8(04):463-489,
1994.

P. Heidelberger and K. Trivedi. Queueing network models for parallel
processing with asynchronous tasks. Computers, IEEE Transactions on,
100(11):1099-1109, 2006.

G. Hoekstra, R. van der Mei, and S. Bhulai. Optimal job splitting in parallel
processor sharing queues.

J. Kaufman. Blocking in a shared resource environment. Communications,
IEEFE Transactions on, 29(10):1474-1481, 2002.

A. Kumar and R. Shorey. Performance analysis and scheduling of stochastic
fork-join jobs in a multicomputer system. Parallel and Distributed Systems,
IEEE Transactions on, 4(10):1147-1164, 2002.

A. Lebrecht and W. Knottenbelt. Response time approximations in fork-
join queues. In 23rd UK Performance Engineering Workshop (UKPEW).
Citeseer, 2007.

R. Nelson and A. Tantawi. Approximate analysis of fork/join synchronization
in parallel queues. Computers, IEEE Transactions on, 37(6):739-743, 2002.

J. Ni, D. Tsang, S. Tatikonda, and B. Bensaou. Threshold and reservation
based call admission control policies for multiservice resource-sharing sys-
tems. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceedings IEEFE, volume 2, pages
773-783. IEEE, 2005.

48

[12]

[13]

[14]

[15]

J. Ni, D. Tsang, S. Tatikonda, and B. Bensaou. Optimal and structured call
admission control policies for resource-sharing systems. Communications,
IEEE Transactions on, 55(1):158-170, 2007.

R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne. Adaptive playout
mechanisms for packetized audio applications in wide-area networks. In
INFOCOM’94. Networking for Global Communications., 13th Proceedings
IEEE, pages 680-688. IEEE, 2002.

K. Ross and D. Tsang. The stochastic knapsack problem. Communications,
IEEE Transactions on, 37(7):740-747, 2002.

K. Ross and D. Yao. Monotonicity properties for the stochastic knapsack.
Information Theory, IEEE Transactions on, 36(5):1173-1179, 2002.

D. Tsang and K. Ross. Algorithms to determine exact blocking probabili-
ties for multirate tree networks. Communications, IEEE Transactions on,
38(8):1266-1271, 2002.

49

Appendix A: Programming code

Input of the code: N, b, ¢, M, A1, Ao, -+, AN, fh1, b2, -+ 5 p -

Output of the code: Input, Aver_sj, Aver_sj up, Aver_sj down, Aver_sj_jt[1],
Aver_sj_jt_up[l], Aver_sj_jt_down[1], - - - Aver_sj_jt[N], Aver_sj_jt_up[N], Aver_sj_jt_down[N],
Aver_syn, Aver_syn_up, Aver_syn_down, Aver_syn_jt[1], Aver_syn_jt_up[1], Aver_syn_jt_down[1],
-+, Aver_syn_jt[N], Aver_syn_jt_up[N], Aver_syn_jt_down[N].

Input variable Description

N Number of customer classes

b Number of sub-job of each class customer

c Number of overlapping between classes

M Number of servers

Aver_sj Average sojourn time of all classes
Aver_sj/syn_up/down 95% confidence interval

Aver_sj_jt[i] Average sojourn time of class i customer
Aver_syn Average synchronization time of all classes
Aver_syn_jtli] Average synchronization time of class i customer

Table 4.5: Input and output notations
#include <iostream>
#include <stdlib.h>
#include <math.h>
using namespace std;

enum kind {arrival , subjobdone };

struct event_node {

double time ;
kind type;
int id;

int qid;

int jobtype;

event_node *xnext;
}; // struct event_node

class EventList {
event_node xfirst ;

public:

EventList ();

"EventList ();

void schedule_event (double, kind, int, int, int);

bool get_next_event(double &, kind &, int &, int &, int &);
}; // class EventList

EventList :: EventList () {
first = NULL;

50

}; // EventList:: EventList

EventList:: " EventList () {
event_node *p;
while (first != NULL) {
p = first;
first = first —>next;
delete p;

}
}; // EventList::” EventList

void EventList::schedule_event

(double t, kind soort

if (nieuwe_node = NULL) {

)

cout << 7out of memory\n”;

exit (1);

bio /)it

nieuwe_node—>time = t;
nieuwe_node—>type = soort;
nieuwe_node—>id = x;
nieuwe_node—>qid =vy;
nieuwe_node—>jobtype = z;

if (first = NULL) {

first = nieuwe_node;

nieuwe_node—>next = NULL;

yo/) it

else if (t <= first —time)

{

nieuwe_node—>next = first;
first = nieuwe_node;

Y /) else if

else {
event_node xp = first;

event_node xq = NULL;
while (t > p—>time) {
q = P;
P = p—>next;
if (p = NULL)
break;
} // while

gq—>next = nieuwe_node;
nieuwe_node—>next = p;

Y /] else

}; // EventList::schedule_event

bool EventList::get_next_event

o1

int y, int z) {
event_node *xnieuwe_node = new event_node;

//

//

//

lege lijst

toevoegen aan begin

op juiste plaats tussenvoegen

toevoegen aan einde

(double &t, kind &soort, int &x, int &y, int &z)

if (first = NULL) // lijst leeg
return false;
else {

t = first —>time;
soort = first —>type;
x = first —id;

y = first —qid;

z = first —>jobtype;

event_node xp = first;
first = first —next;
delete p;
return true;

Y /] else

}; // EventList:: get_next_event

#include <iostream>
#include <stdlib .h>
#include <math.h>
#include <cmath>
#include <limits>
#include <cstdlib>
#include <ctime>
#include <fstream>
#include ”eventlist2.h”

using namespace std;

const int N = 2000000;

const double endtime = 5000000;

const int batch = 25;

const double T = 1.96;

const int warmup = N/50; //warm up time

int Njobtype, Noverlap, Nsubtask, Nqueue;
double x lambda, *x mu;
int *x taskmatrix;

EventList evt_list;

double t;

kind soort;

int x;

int y;

int z;

int q;

double RTa [N

int Rjobtype

int RN [N] = {

int Rid [N] = ;

double RTd [N] = {0
4]

Il
|-~
(an)

52

double RTIf [N] = {0};
int jobing [40] = {0};
double simtime = 0;
double total_lambda =100;

// for calculating usage
double final_time = 0;
double batch_time = 0;

int % batch_person_jt [batch];

int batch_start [batch]= {0};

int batch_person [batch] = {0}; // for all computation usage
double total_mean_sj = 0;

double std_sj = 0;

double batch_mean_sj [batch] = {0}; // Average sojourn time

double % batch_mean_sj_jt [batch];
double * total_mean_sj_jt;

double * std_sj_jt; // sojourn time for jobtype
double batch_mean_sy [batch] = {0};

double total_mean_sy = O0;

double std_sy = 0; // Average synchoronization time

double * batch_mean_sy_jt [batch];
double * total_mean_sy_jt;
double * std_sy_jt;

double draw_exp(double 1) {
long int dummy;

dummy = rand ()+1;
return —(1/1)xlog ((double)dummy/(RANDMAX));
b

int distribution (double total_-lambda) {
double i, k;
int result, j;
i = ((double) rand() / (RANDMAX));
k = 0;

for (j=0; j<3; j++) {
if (i <= ((k+lambda[j]) / total_lambda) && (i > (k/total_-lambda))) {
result = j;
break ;
}

k = k + lambda[j];

}
b

return result ;

int readmatrix(int jt) {
int j;

53

int NSB = 0;
if (jt > 4) cout<<"Z1<<jt <<\t ’;

for (j=0; j<Nqueue; j++) {
if (taskmatrix [jt][j] > 0) {
//for the class (type—1), (jth) ¢
jobing' [j]++;
// if taskmatrix[][]=1, a sub job goes to this q
NSB++;
// total sub jobs need to be done
}
}

return NSB;
i

int defmatrix () {

int i, j, ls;
taskmatrix = new int x[Njobtype];
for (i=0; i<Njobtype; i++) {

taskmatrix [i] = new int [Nqueue];
} //decide the size of the taskmatrix
for (i=0; i<Njobtype; i++) {

for (j=0; j<Nqueue; j++) {

taskmatrix [i][j] = 0;

}

} // initial 0 value for taskmatrix

Is = 0;
for (i=0; i<Njobtype; i++) {
for (j=ls; j<ls+Nsubtask; j++) {
taskmatrix [i][j] = 1;
}
ls = 1s — Noverlap + Nsubtask;
} // define the taskmatrix

int defpointer () {
int i, j;

for (i=0; i<batch; i++4) {
batch_mean_sj_jt [i] =new double [Njobtype];
batch_mean_sy_jt[i] =new double [Njobtype];

}

total_mean_sj_jt = new double [Njobtype];

std_sj-jt = new double [Njobtype];

total_mean_sy_jt = new double [Njobtype];

std_sy_jt = new double [Njobtype];

for (i=0; i<batch; i++) {
batch_person_jt[i] = new int [Njobtype];
}

54

//initial value
for (i=0; i<Njobtype; i++) {
total_mean_sj_jt[i] = 0;

std_sj_jt [i] = 0;

total_mean_sy_jt[i] = 0;

std_sy_jt [i] = 0;

for (j=0; j<batch; j++)
batch_mean_sj_jt [111
batch_mean_sy_jt [j][1
batch_person_jt [j][i

}
}
}

void initial () {
int a, b, i, j;
total_lambda = 0;
for (i=0; i<Njobtype; i++) {
total_lambda = total_lambda + lambda [i];

}
a = distribution (total_lambda);
evt_list.schedule_event (0, arrival, 0, a);
//(time, eventtype, id, qid, Jobtype)
}s
void handle_arrival (double t1, kind soortl, int x1, int yl, int zl) {
int i, j;
double a = draw_exp (total_lambda);
int ¢ = distribution (total_lambda);
RTa [x1] = t1;
Rid[x1] = x1;
Rjobtype [x1] = zl;
if (z1 > 4) cout<<"Z1"<<zl<<\t;
RN[x1] = readmatrix (zl);
for (i=0; i<Nqueue; i++) {
if (taskmatrix [z1] [i] = 1) {
if (jobingq [i] = 1) {
RTs [i][x1l] = t1;
} // if there is no one in g0, the
} // current job’s arrival time is the
} // start service time;

for (i=0; i<Nqueue; i++) {

if (taskmatrix [z1][i] = 1) {
if (jobing [i] = 1) {
double b = draw_exp (mu [i]);

evt_list.schedule_event (simtime+b, subjobdone, x1, i, zl);

}

55

}

}

if (simtime+a < endtime) { // schedule the next arrival
evt_list.schedule_event (simtime+a, arrival , x141, 50, c¢);

}

}s

void handle_subjobdone (double t2, kind soort2, int x2, int y2, int 2z2) {
int i, k, j, m;
double b = draw_exp (mu [y2]);

if (jobing [y2] > 1) {
for (j=x2+1; j<=N; j+4) {
m = Rjobtype [j];

if (taskmatrix [m][y2] = 1) {
RTs [y2][j] = t2;
break ;
}
}
} // record start time for next job in this queue

if (jobinq[y2] > 1) {
for (i=x2+1; i<=N; i++) {
k = Rjobtype [i];

if (taskmatrix [k][y2] = 1) {
evt_list.schedule_event (simtime+b, subjobdone, i, y2, k);
break ;
}
}
} // schedule next subjobdone, if there are more jobs in this q

if (RTf [x2] ==0) {
RTff [x2] = t2;

}
// record it’s first subjob finishing time
jobing [y2]——;
RN [x2]——;
if (RN [x2] = 0) {
RTd [x2] = t2;
}

}s

void handle_event (double t, kind soort, int x, int y, int z) {
// t=time, soort=eventtype, x=id, y=qid, z=jobtype

double a;
int b, ¢, d;
simtime = t;
a = t;

56

b = x;

c = z;

d =y;

switch (soort) {

case arrival: handle_arrival (a, soort, b, d, c¢); break;

case subjobdone: handle_subjobdone (a, soort, b, d, c); break;

}
}s

void cal_Aver_sj () {
int i, j;

if (RTd [N—1] > 0) {
final_time = RTd [N—1] — RTd[warmup |;
batch_time = final_time / batch;

}

for (j=0; j<batch; j++) {
for (i=warmup; i<N; i++) {
it (RTd [i] >= (batch_time + batch_time * j)) {
batch_person [j] =1 —1;
break ;
}
}

}
batch_person [batch—1] = N—1;

for (j=0; j<batch; j++) {
if (j = 0) {

batch_start [j] = warmup;
¥
else {batch_start [j] = batch_person [j—1] + 1;}
for (i=batch_start [j]; i<(batch_person [j]+1); i++) {
batch_mean_sj [j] = batch_mean_sj [j] + (RTd [i] — RTa [i]);
¥
batch_-mean_sj [j] = batch_mean_sj [j] /
(double)(batch_person[j] — batch_start[j] + 1);
}
total_mean_sj = 0;
for (i=0; i<batch; i++) {
total_mean_sj = total_mean_sj + batch_mean_sj [i];
}

total_mean_sj = total_mean_sj / (double)batch;

for (i=0; i<batch; i++) {

std_sj =std-sj + (batch.mean_sj[i] — total_-mean_sj) x
(batch_mean_sj[i] — total_mean_sj);
} // calculate the Average sojourn time (with CI 95%)

57

void cal_sj_jt () {
int i, j, k;

for (k=0; k<Njobtype; k++) {
for (i=0; i<batch; i++) {
for (j=batch_start[i]; j<=batch_person[i]; j++) {

if (Rjobtype[j] — k) {
batch_mean_sj_jt [i][k] =
batch_mean_sj_jt[i][k] + (RTd[j] — RTalj]);
batch_person_jt [i][k]++;

}
}
batch_mean_sj_jt[i][k] = batch_mean_sj_jt[i][k] /
} (double)(batch_person_jt[i][k]);

} // calculate batch mean for each jobtype

for (j=0; j<Njobtype; j++) {
for (i=0; i<batch; i++) {
total_mean_sj_jt[j] = total_mean_sj_jt[j] + batch_mean_sj_jt[i][]];
¥
total_mean_sj_jt[j] = total_mean_sj_jt[j] / (double)(batch);
} // calculate total mean of batches for each jobtype

for (j=0; j<Njobtype; j++) {
for (i=0; i<batch; i++) {
std_sj_jt[j] = std_-sj_jt[j] + (batch_mean_sj_jt [i][]j] —
total _mean_sj_jt[j])=*
(batch_mean_sj_jt [i][j] — total_mean_sj_jt[j]);

}
} // calculate w (which similar to std) for each jobtype
}
void cal_Aver_sy () {
int i, j;

for (i=0; i<batch; i++) {
for (j=batch_start[i]
if (RTa [j] > RTd [j]
batch_mean_sy[i] = ba

}

batch_mean_sy[i] = batch_mean_sy[i] /
(double)(batch_person[i] — batch_start[i] + 1);

//calculate total average sychronization time

j<=batch_person[i]; j++) {
) { cout<<”haha, fault”’<<endl;}
tch_mean_sy[i] + (RTd [j] — RTIf [j]);

)

}
for (i=0; i<batch; i++) {

total_mean_sy = total_mean_sy 4+ batch_mean_sy [i];
}

total_mean_sy = total_mean_sy / (double)(batch);

58

for (i=0; i<batch; i++) {
std_sy = std_sy + (batch_mean_sy[i] — total_mean_sy) x

(batch_mean_sy[i] — total_mean_sy);
}
}
void cal_sy_jt () {
int i, j, k;

for (i=0; i<batch; i++) {
for (j=0; j<Njobtype; j++) {
for (k=batch_start[i]; k<=batch_person[i]; k++) {
if (Rjobtype[k] = j) {
batch_mean_sy_jt[i][j] = batch_mean_sy_jt[i][]]
+ (RId [k] — RTff [k]):
}
}

batch_mean_sy_jt[i][j] = batch_mean_sy_jt[i][]j] /
(double)(batch_person_jt[i][j]);
// average Synchronization time for each jobtype

}
}

for (i=0; i<batch; i++) {
for (j=0; j<Njobtype; j++) {
total_mean_sy_jt[j] = total_mean_sy_jt[j]
+ batch_mean_sy_jt[i][]j];
}
}

for (i=0; i<Njobtype; i++) {
total_mean_sy_jt[i] = total_mean_sy_jt[i] / (double)batch;
}

for (i=0; i<batch; i++) {
for (j=0; j<Njobtype; j++) {

std_sy_jt[j] = std_sy_jt[j] + (batch_mean_sy_jt[i][j]—total_mean_sy_jt[]j])
x(batch_mean_sy_jt[i][j]—total_mean_sy_jt[j]);
}
}
}
void report () {
int i, j;

cout <<"Rid”"<<"\t'<<"RTa” <<’\t'<<"RTd’<<endl;
for (i=0; i<N; i++) {
cout <<Rid[i]<<’\t'<<RTa [i]<<’\t'<<RTd [i]<<endl;
}
b

void del() {

int 1i;

59

for (i=0; i<Njobtype; i++) {
delete [] taskmatrix [i];

}

delete [] taskmatrix;
delete [] lambda;
delete [] mu;

for (i=0; i<batch; i++) {
delete [] batch_mean_sj_jt [i];
}

delete [] total mean_sj_jt;

delete [] std_-sj-jt;

for (i=0; i<batch; i++) {
delete [] batch_person_jt [i];

}

}

void output () {
int i, j;

9.9,

cout << Njobtype<<”;” << Nsubtask<<”;”<<Noverlap <<”;”<<Nqueue<<”;”;
for (i=0; i<Njobtype; i++) {

cout<<lambda[i]<<”;”;
}

for (j=0; j<Nqueue; j++) {
cout<<mul[j]<<”;7;
} // output lambda and mu

cout<<total_mean_sj<<”;"<<total_mean_sj+Tx

sqrt (std_sj / (double)(batchx(batch—1)))<<”;”

<<total_mean_sj—Txsqrt (std_-sj / (double)(batchx*(batch—1)))<<”;”;
// output total average sojourn time

for (i=0; i<Njobtype; i++) {
cout<<total_mean_sj_jt [i]<<”;"<<total_mean_sj_jt[i] +
Txsqrt (std_sj_jt[i] / (double)(batchx(batch—1)))<<”;”
<<total_mean_sj_jt[i] —
Txsqrt (std_sj_jt[i] / (double)(batchx(batch—-1)))<<”;”;
} // output sojourn time for each jobtype

cout<<total_mean_sy <<”;’<<total_mean_sy+Txsqrt(std_sy /
(double) (batch*(batch—1)))<<”;”
<<total_mean_sy—-Txsqrt(std_sy / (double)(batch*(batch—1)))<<”;";

for (i=0; i<Njobtype; i++) {
cout<<total_mean_sy_jt [i]<<”;"<<total_mean_sy_jt[i] +
Txsqrt (std-sy_jt[i] / (double)(batch*(batch—1)
<<total_mean_sy_jt[i] — Txsqrt(std_sy_jt[i] /
(double) (batch*(batch —1)))<<”;7”;

))<<”;”

}

cout<<endl;

}

60

int main(int argc, charx argv([]) {
int i, j =0, d;
int s;

if (arge >= 5) {
d = atoi(argv|[1l]);
s = atoi(argv[4]);
lambda = new double [d];
mu = new double [s];

if (arge >=5 + d + s)
Njobtype =atoi(argv |1
Nsubtask = atoi(argv|
Noverlap = atoi(argv |
Nqueue = atoi(argv [4

b

)

{
1);
2])
3])
1);

for (i=0; i<d; i++) {
lambda [i] = atof(argv[b+i]);
}
for (j=0; j<s; j++4) {
[

mu [j] atof (argv [5+d+j]);
}
} // give value to mu and lambda;
else {cout<<’More input, man!!!!” < <endl;}
}
else {

Njobtype = 3;
Nsubtask = 1
Noverlap = 0
Nqueue = 3;
lambda = new double [Njobtype];
mu = new double [Nqueue];
for (i=0; i<Njobtype; i++) {
lambda [i] = 1;
}
for (i=0; i<Nqueue; i++) {
mu [i] = 2;

} // in case the input is not enough

defmatrix ();
defpointer ();
initial ();

srand ((unsigned)time (NULL));

while (evt_list.get_next_event (t, soort, x, y, z))
handle_event (t, soort, x, y, z);
}

cal_Aver_sj ();
cal_sj_jt ();

61

cal_Aver_sy ();

cal_sy_jt

output ();
del ();
return 0;

();

62

Appendix B: Simulation and verification

We will present the idea of how to simulate our model. The programming used
is C++. We use event based simulation, i.e. events (arrivals or departures) will
occur after exponentially distributed time. We simulate 2 million jobs in total.
For each job, 5 types of data are recorded in the simulation: Ty, T}, T4, Tso; and
Tsyn (Table 4.6).

Variable Description

Ty Arrival time of jobs

Tyy Time that the first sub-job finishes

Ty Time that a job leaves the system

Tso; The sojourn time of a job

Toyn The time a job spends in the synchronization buffer

Table 4.6: Variables

According to the definition, we have:

Tsoj =Ty — Ta7

Tsyn =Ta —Tyy

For these 2 million jobs, we divide the data into 26 segments. The first segment
includes % jobs. We will not use these data, because the system is not
stable at the beginning of the simulation. Each of the other segments consists
of Zmillion=2 million/50 5,1 We calculate the mean of each segment, denoted as

me;, i =2,3,...,26. The total mean Me can be calculated by:

26
M@ _ ZiZQ me;
25

with a 95% confidence interval (Me+1.96 x %, Me—1.96x% 4/ %)

where W = 2?22 (me; — Me).

Here we show some verification of multi-class Fork-Join model through few ex-
amples. For each example, we compare the simulation result and exact solution.

| example | exact | sim \
M/M/1(A=1,1=2) |1 1.00408
M/M/1(A=1,p=11) | 10 | 10.4437
M/M/1 (A=10,u=20) | 0.1 | 0.100024

Table 4.7: Sojourn time verification

63

Appendix C: Stochastic knapsack problem MDP

#include <iostream>
#include <stdlib .h>
#include <math.h>
#include <cmath>
#include <limits>
#include <cstdlib>
#include <ctime>
#include <fstream>

#define min(a,b) (((a)
#define max(a,b) (((a)

using namespace std;

const int Njobtype = 2;

const int L = 100000000;

const double beta = 1;

const double epsilon = 1.0E-S;

int B;

double tao;

int Niterate = 0;

double lambda[Njobtype];
double mu[Njobtype];

int reward[Njobtype];
int request [Njobtype];
int row, col;

double =*x Vn;
double =*x Vnpl;
int *x opt_policy;

void initialize (void){
int i, j;
row = (int) (B/request[0]) + 1;
col = (int) (B/request[1]) + 1;
Vn = new double * [row];
Vnpl = new double x [row];
opt_policy = new int * [row];

for (i=0; i<row; i++) {

Vn [i] = new double [col];
Vonpl [i] = new double [col];
opt_policy [i] = new int [col];

for (int x1 = 0; x1 < row; x1++) {
for (int x2 = 0; x2 < col; x2+4) {

64

Vn [x1][x2] = 0.0;
Vopl [x1][x2] = 0.0;
opt_policy [x1][x2] = 0.0;

}

}
}

void iterate (void) {
for (int x1 = 0; x1 < row; x1++) {
for (int x2 = 0; x2 < col; x2++) {
Vn [x1][x2] = Vuopl [x1][x2];
}
}
}

double V(int x1, int x2) {
int i, j;
double C, value;
double arrival_terml , arrival_term2, arrival_term;
double departure_-terml = 0.0, departure_term2 = 0.0;
double departure_term = 0.0;
double uniform_term = O0;
double rate = 0.0;

if ((xlsrequest[0]+x2xrequest[1]) > B) {
C =L;

else {
C = 0;

}

if (x1 = row—1) {
arrival_terml = lambda[0] *Vn[x1][x2];
}

else {
arrival_terml = lambda[0] * max (Vn[x1][x2], Vn[xl1+1][x2]+reward [0]);
}
if (x2 = col-1) {
arrival_term2 = lambda[l] * Vn[x1][x2];
}

else {
arrival_term2 = lambda[l] smax (Vn[x1][x2], Vn[xl][x2+4+1]+reward[1]);
}

arrival_term = beta * (arrival_terml + arrival_term?2);
rate = (lambda[0] + lambda[1l]);

if (x1 = 0) {

departure_terml =(double) (int)(B/request[0]) *Vn[x1l][x2];
rate = rate + mu[0] * (int)(B/request[0]);

65

else {
departure_terml =(double) x1 *(Vn [x1-1][x2])

+(double) (((int)(B/request[0]) — x1)) *(Vn[x1][x2]);

rate = rate + mu[0] x (int)(B/request[0]);

}

departure_terml = departure_terml * mu[0];

if (x2 =10) {
departure_term2 =(double)((int)(B/request[1])) x Vn[x1][x2];
} rate = rate + mu[l] x (int)(B/request[1]);
else {
departure_term2 = (double) x2 % Vn [x1][x2-1] +
(double) (((int)(B/request[1]) — x2))
x (Vn[x1][x2]);
} rate = rate + mu[1] * (int)(B/request[1]);

departure_term?2 = departure_term2 * (mu[l]);
departure_term = beta * (departure_terml + departure_term?2);

uniform_term = beta * (tao — rate) x Vn[xl][x2];
value = —C 4 arrival_term + departure_term + uniform_term

value = value / tao;

return value;

double optpolicy (int x1, int x2) {
double tempO, templ, temp2, temp3;
int policy;
double a, b, c;

if (x1 % request[0] + x2 % request[1] >= B) {
policy = 0;

else if ((x141)xrequest[0]>B && (x2+1)xrequest[1]>B) {

policy = 0;

}

else if ((x1+1)*request[0]<=B && (x2+1)x request[1]>B) {
temp0 = lambda[0] * Vnpl[xl][x2] + lambda[l] * Vnpl[x1l][x2];

templ = lambda[0] * (Vnpl[x1+41][x2] + reward[0]) +
lambda [1] * Vnpl[x1l][x2];
if (tempO > templ) {

policy = 0;
else {
policy = 1;

}

66

else if ((x141)xrequest[0]>B && (
temp0 = lambda[0] * Vnpl[x1][x2
lambda [1] * Vnpl[xl][x2];
temp2 = lambda[0] * Vnpl[x1][x2] +lambda[l] =«
(Vopl[x1][x2+1] + reward[1]);
if (tempO>temp2) {

x2+1)xrequest[1]<=B) {
] +
|
]

policy = 0;
else {
policy = 2;
}
}
else {
temp0 = lambda [0] * Vnpl[x1][x2] + lambda[l] % Vnpl[x1][x2];
templ = lambda[0] x (Vnpl[x1+1][x2]+reward[0]) +
lambda [1] * Vnpl[x1][x2];
temp2 = lambda[0] * Vnpl[x1][x2] 4 lambda[1l] =
(Vopl[x1][x2+1] + reward[1]);
temp3 = lambda[0] * (Vnpl[xl+1][x2]+reward[0]) + lambda[l] =
(Vopl [x1][x24+1]4+reward [1]);
a ax(temp0, templ);
b = max(temp2, temp3);

¢ = max(a, b);
if (¢ = temp0) { policy = 0;}
else if (¢ = templ) { policy = 1;}
else if (¢ = temp2) { policy = 2;}
else { policy = 3;}
}

return policy;

}

void valueiteration (void) {
double Mn, mn;

do {
Mn = —10000;
mn = 10000;

Niterate —++;
iterate ();
for (int x1 = 0; x1 <= row—1; x1++) {
for (int x2 = 0; x2 <= col—1; x2++) {
Vnpl [x1][x2] = V(x1, x2);
Mn = max(Vnpl[x1][x2] — Vn[x1][x2], Mn);
mn = min(Vopl[x1][x2] — Vn[x1][x2], mn);
¥
}
} while (Mn — mn > epsilon);
cout<< (Mn + mn)xtao / 2.0 <<endl;

}

67

void setparameter (int B_total, double LAMBDA.1, double LAMBDA 2,
double MU_1, double MU_2,
int R.1, int R_2, int b.1, int b_2) {

B = B_total;
lambda [0] = LAMBDA_1;
lambda [1] = LAMBDA 2;
mu[0] = MU._1;

mu[l] = MU2;

reward [0] = R_1;
reward [1] = R_2
request [0] = b_
request [1] = b_

)

O — -

)

tao = lambda[0] + lambda[l] 4+ (double) ((int)(B / request[0])) x mu[0] +
(double) ((int)(B / request[1])) % mu[l];
cout<<tao<<endl;

cout<<B<<”;"<<lambda[0]<<”;” <<lambda[l]<<”;” < <mu[0] < <”;” < <mu[1] < <7;”
<<reward[0]<<”;” <<reward[l]<<";"<<request[0]<<”;"<<request [1] < <’;;
}

void del () {

int 1i;

for (i=0; i<row; i++) {
delete [] Vn [i];
delete [] Vnpl [i];
delete [] opt-policy [i];

}

delete [] Vn;

delete [] Vnpl;

delete [] opt_policy;

int main(int argc, charx argv([]) {
int x1, x2;

if (arge < 10) {
cout<<’more input is required!”<<endl;
}

else if (arge > 10) {
cout<<’too much input, I can’t handle!!!” <<endl;
}

else setparameter (atoi(argv[l]), atof(argv([2]), atof(argv[3]),
atof (argv[4]), atof(argv[5]), atoi(argv|[6]),
atoi(argv[7]), atoi(argv[8]), atoi(argv[9]));

initialize ();

valueiteration ();

for (int x1 = 0; x1 <= row—1; x1++) {
for (int x2 = 0; x2 <= col—1; x2++) {

68

opt_policy [x1][x2] = optpolicy (x1, x2);
¥
}
for (int x1 = 0; xl<row; x1++) {
for (int x2 = 0; x2 < col; x2++) {

if (x2 = col-1) {
cout<<opt_policy [x1][x2];

else {
cout<<opt_policy [x1][x2] <<’ ;

}
}

cout<<endl;
}
del ();

return 0;

69

	Preface
	Summary
	Contents
	I Multi-class Fork-Join queueing system
	Introduction to multi-class Fork-Join queues
	Model description
	Related work
	Goals and structure

	Analysis of multi-class Fork-Join queues
	Sojourn time analysis
	The Maximum Order Statistic (MOS) model
	Performance analysis
	Conclusion

	Synchronization time analysis
	Order statistic (OS) approximation
	Performance analysis
	Conclusion

	Future work

	II Stochastic knapsack problem
	Introduction to stochastic knapsack problem
	Background
	Model formulation and problem description
	Goal and structure

	Analysis of policies
	Complete sharing policy
	Optimal policy
	Uniformization technique
	Value iteration algorithm

	Threshold policy
	Reservation policy
	One-dimensional case
	Multi-dimensional case

	Numerical results
	Conclusion
	Future work

	References
	Appendix A: Programming code
	Appendix B: Simulation and verification
	Appendix C: Stochastic knapsack problem MDP

