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A Berry-Esseen bound of order n-~ is established for linear 

combinations of order statistics. The theorem extends pre

vious results for the case of bounded weights to a cl ass 

of L-statistics with unbounded weight functions. 

1. INTRODUCTION AND RESULT 

Let x1,x2, ... ,Xn be independent random variables {r.v.) with corrrnon distribution 

function {df) F and let Xl:n ~ ... ~ Xn:n be the corresponding order statistics. Let 

J be a fixed real-valued weight function on (0,1). We consider L-statistics (or 

linear combinations of order statistics) of the form: 

n i/n 

( 1.1) T n . l J J ( s) ds Xi : n 
l=l i-1 

Let n 

( 1. 2) for - co < x < co 

where 

In the past decade there has been considerable interest into the asymptotic dis

tribution theory for L-statistics. It is well-known that T~ is asymptotically 

normally distributed under quite general conditions. A survey of such results was 

given by Serfling (1980). We also refer to a recent paper of Mason (1981), which 

contains the best result so far obtained in this area. 

More recently attention has been paid to the problem of establishing Berry-Esseen 

bounds for L-statistics. We mention the work of Bjerve (1977), Helmers (1977,1981, 

1982), Serfling (1980) and van Zwet (1983). These authors obtained Berry-Esseen 

bounds for L-statistics for the case of bounded weights. The purpose of this paper 

is to derive a Berry-Esseen bound for L-statistics with unbounded weight functions. 
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Let <1> denote the standard normal df and define F-l by 
F-1(s) = inf{x:F(x) 2 s} for O < s < 1. 

THEOREM 1. Suppose there exists numbers o > 0, E: > 0 and K > 0 such that 
(I) the function J satisfies a Lipschitz condition of order 1 on [i;;,l-i;;J, whereas 

on neighbourhoods (0,i;;) and (l-i;;,l) of zero and one, J is twice differentiable 

with second derivative J", satisfying 

( 1. 4) I J" ( s ) I s K[ s ( 1-s) J -2 

(II) the inverse F-l satisfies 

(1.5) IF-1(s) I ,,; K(s(l-s) )-!+a for 0 < s < 1 

and 

(1.6) 
-~ +o -~ +o 

IF- 1(s 1}-F-1(s2)i ,,; Kls 1-s2i[(s1(1-s 1}} 4 +(s 2(1-s 2)) 4 J 

2 for 0 < s 1,s2 < e and 1-i;; < s1,s2 < 1. Then a (J,F) > 0 where 
00 00 

(1.7) o2(J,F) J J J(F(x))J(F(y))(F(min(x,y))-F(x}F(y})dxdy 

( 1. 8} 

impiies that 

suplF*(x) - ~(x} I = O(n-,}, 
x n 

as n 

The theorem allows weight functions J tending to infinity in the neighbourhood 
of O and 1 at a logarithmic rate. An example is provided by the weight function 
~-l, the normal quantile function. Then Tn is an asymptotically efficient L
estimator of normal scale. 

Our method of proof resembles those of van Zwet (1977) and Does (1982) as these 
authors also combine smoothing techniques with appropriate conditioning arguments. 

In section 2 we prove the theorem. The proofs of a number of lemmas are omitted, 
but these may be found in Helmers & Hu~kova (1984). 

2. PROOF 

Let, for any n 2 1, (Ul:n•···•Un:n} denote the order statistics corresponding 
to a sample of size n from the uniform distribution on (0,1). For any integer 

1 s m,,; [enJ, let V = (Vl:m-1•···•Vm-l:m-l), Z = (Zl:n-2m' ... ,Zn-2m:n-2m) and 
W = (Wl:m-l'" .. ,Wm-l:m-l) be vectors of order statistics corresponding to samples 
of sizes m-1, n-2m, and m-1 from the uniform distribution on (0,1) and let 
V ,Zand W, Um:n' and Un-m+l:n be independent. Then the joint distribution of 
(Ul:n,. .. ,Un:nl is the same as that of 

12-1) um:n vl:m-1•····um:n vm-l:m-l'um:n' 
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(Un-m+l:n-Um:n)Zl:n-2m + Um:n•· .. ,(Un-m+l:n-Um:n)Zn-2m:n-2m + 

+ Um:n' Un-m+l:n'{l-Un-m+l:n)Wl:m-1 + Un-m+l:n•· .. , 

{l-Un-m+l:n)Wm-l:m-1 + Un-m+l:n. 

Since the joint distribution of Xi:n' i = 1, ... ,n is the same as that of 
F-1(ui:n), i = 1, ... ,n it follows directly from (2.1) that the distribution of 
Tn {cf.{1.1)) can be iden!j~ied with that of 

<2·2) Tln(Um:nl + f J(s)ds F-l(Um:n) + T2n(Um:n'Un-m+l:n) 
m-1 

n-m+l n 

+ 

n-m 
n 

where 

(2. 3) 

n 

(2 .4) 

i+m 
n-2m n 

= .~ J J(s)ds. 
i-l i+m-1 

n 

and i+n-m+l 

-1 
F (Zi :n-2m 

m-1 n 

(2·5) T3n(Un-m+l:n) = i~l .J J(s)ds F-l(Wi :m-l(l-Un-m+l:n)+Un-m+l:n). 
1+n-m 

n 

Clearly, the r.v.'s T1n(Um:n),T2n(Um:n'Un-m+l:n) and r3n(Un-m+l:n) are conditional
ly independent, conditionally given Um:n = u and Un-m+l:n = v for any 
0 < u < v < 1. This fact will be crucial in what follows. 

Define, for~ s s s n-m, the function ijin by n n 

(2 .6) 

n-m 
n 

I 
s 

n-m 

n-m nJ J(y)dy - (..,,.-- - s) 
ll-2m 
-n- m 

n 

J(y )dy 

and note that iji (~) = iji (n-m) = 0. Let rn-2m denote the empirical df based on 
n n n n _1 (Z·) 

z1, .•. ,Zn-2m; i.e. rn-2m(s) = (n-2m) IV:~m I(O~s) for 0 < s < 1, where 
z1, ... ,Z 2 are independent uniform (0,1) r.v.'s corresponding to the order n- m 
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statistics Zl:n-2m' .... zn-2m:n-2m. Here and elsewhere IA~·) denotes the !ndicator 
of a set A. For any r.v. X, with 0 < a{X) < w, we write X for X-EX and X for 
(X-EX)/a(X). 

Similarly as in Helmers (1981;1982) we can write 

(2•7> T2n(Um:n'Un-m+l:n> = 

1 

= f wn(~ + n~2m rn-2m(s))d F-l(Um:n+(Un-m+l:n-Um:n)s) + 
0 ~m 

n 
-1 n-2m -1 f 

+ (n-2m) I F (Um:n+(Un-m+l:n-Um:nlZi)· J(y)dy. 
i=l m 

n 

To proceed we note that, as J is Lipschitz of order 1 on [t,1-EJ (cf. assumption 
(I)), we can approximate r2n from above and below for sufficiently large n by 
r.v.'s T2n+ and T2n- defined by 

1 
= f {$ (!!!. + n-2m s) + n-2111 (r (s)-s)w' (!!!. + n-2m s) 1 n n n n n-2m n n n 

0 

+ 2-l(n-2m)2(r (s)-s)21P"(!!1. + n-2m s)I (s) 
n n-2m n n n (0,E:)u(l-t,1) 

+ 6""1(n~2m)3(rn-2m(s)-s)31P~(W + n~2m (>.s+(l-:>..)rn-2m(s)). 

-1 
1 (0,2)u(l-~,l)(s)}d F (Um:n+(Un-m+l:n-Um:n)s) 

n-m 
n~m n 

+ (n-2m)-1 i~l F-l(Um:n+{Un-m+l:n-Um:n)Zi) f J(y)dy 
m 
n 

where Lis the Lipschitz constant and:>.. a random point in [0,lJ; i.e. 

Define (cf.(2.2)) 

(2.10) 
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In the following lemma we relate T~ with T~+ and T~- ( cf. Helmers ( 1981) ; { 1982) 
for a similar approach). 

LEMMA 2.1. If the assumptions of Theorem 1 are satisfied, then 

(2 .11) P(T*:sx) :s P(T* s:x ) n n- n+ 

and 

(2 .12) 

for appropriate sequences xn+' n = 1,2, ... and xn-' n 1,2, ... satisfying 

(2.13) 

uniform'ly in x. 

PROOF. See Helmers & Huskova (1984). o 

In view of Lemma 2.1 it obviously suffices to show 

(2.14) I * _1 s~p P(Tn+s:x)-~(x)J= O(n 2 ) 

instead of (1.8). To prove (2.14) we show that for some sufficiently small y > 0 

( 2 • 15) 

and 

f Jtl-llP~+(t)Jdt = O(n-~), 
nY<ltJs:n~ 

(2.16) 

where P~+ denotes the characteristic function (ch.f) of T~+· An application of 
Esseen's-smoothing lemma (see, e.g., Feller (1971), p.538)-will then complete 
the proof of (2.14). 

We first prove (2.15). To start with we note that (2.1)-(2.5) and the remark 
following (2.5) directly yields 

(2.17) 

2 2 where on+= o (Tn+l and, for any r.v. X with EIXI < ~. 
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(2.18) 

Note that the expression within square brackets in (2.17) is precisely equal to 

the conditional ch.f. of T~+· where the conditioning is on Um:n and Un-m+l:n· 
The expectation operator Cin (2.17) refers to the expected value taken w.r.t. 

(Um:n'Un-m+l:n). 

We continue with the analysis of P~+(t). In the next lemma we derive asymptotic 
approximations for the first and thTrd factor within square brackets in (2.17); 

i.e. for $~ln(u)(t) and $~ 3n(v)(t) for 0 < u < c and 1-f: < v < 1 

LE~A 2.2. If the asSU(1lptions of Theorem 1 are satisfied, then for any reaZ 

t and 0 < u < € 

(2 .19) 

(2.20) 

The relations (2.19) and (2.20) remain valid if we repZaee T1n(u) by T3n(v) 
and u by 1-v. 

PROOF. See Helmers & Hu~kova (1984). D 

We also need an asymptotic approximation for $*T ( )(t) for O<U<E,l-c<v<l. 2n+ u,v 
Note that r.v. Sn(u,v) appearing in the following-lemma corresponds to the 
leading term in the stochastic expansion (2.8), conditional on Um:n = u and 

un-rn+l:n = v. 

LEMMA 2.3. If the assumptions of Theorem 1 are satisfied, then for any 
I tl s ni and 0 < U < E, 1-E < v < 1. 

(2.21) I * 2 -2 2 $T (u v)(t) - exp(-~t on+ a {Sn(u,v)))I 
2n+ ' -

= O(n-~(t2 +iti 3 )exp(- i t2a~~a 2 (Sn(u,v))) 

+ n-1t2((F .. 1 (u)) 2+{F-1 (v)),~+n-~rn-;ltl (IF-1(u) +IF-1(v)I)) 

where 
1 

(2.22) n-2m) r m n-2m -1 
(-n d J(n + -n- s)(rn-2m(s)-s)dF (u+(v-u)s). 
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PROOF. Taylor expanding the ch.f. of T2n+{u,v) yields for any t and 0 < u < v < 1 

* -1 -1 ~ 
(2.23) ~T2n+(u,v)(t) = E[exp{iton.:!:_ Sn{u,v)l(l+iton±_ Qn(u,v))J+ 

2--2 2 -1 
+~t on+o (Qn(u,v)+ltlon+ EIRn{u,v) I 

- -
Here Sn is defined in (2.22), whereas Qn and Rn are the quadratic and third order 
terms in (2.8). Exploiting the von-t1ises statistic structure of Qn(u,v) and 
employing a bound for large deviation probabilities for the empirical df, due to 
Lai (1975), p.827, for the estimation of EIR (u,v)J we arrive at (2.21). For 

v n 
details of the proof see Helmers & Huskova (1984). D 

To deal with the fourth factor within square brackets in {2.17) it will be con
venient to have 

LEMMA 2.4. If the assumptions of Theorem 1 a.r>e satisfied, then 

( 2 .24) 3 
EiE(Tn.:!:_IUm:n'Un-m+l:nl-ETn.:!:_1 1{0,E)(Um:n) 1(1-c,l)(Un-m+l:n) 

= O{n-3/2(~)3/4+3o(logn)3). 

PROOF. See Helmers & Hu~kova (1984). D 

We are now in a position to complete the proof of (2.15). Take m = [n113J. 

Application of an exponential bound for uniform order statistics (see, e.g., 
Lemma A2.1 of Albers, Bickel and van Zwet (1976)) yields 

f -l * itT~+ 
ltl IPn+(t) - Ee -I(O,e)(Um:n)I(l-e,l)(Un-m+l:n)ldt 

ltlsnY -
(2.25) 

= O(n-~). 

Also we obtain with the aid of Theorem 1 of Mason (1981) that 

( 2. 26) 0 < lim no 2 = a2(J,F) < "'· n+ n--

Using (2.17), (2.26) and the Lemma's 2.2, 2.3 and 2.4 we find after some elemen

tary computations for all ltl :s; rrY for some sufficiently small y > O 

itT~+ -~t2 
(2. 27) I Ee - I (O,e) (Um: n)I (1-e '1) (Un-m+l :n) - e I 

2 -2 2 2 -2 
:s; IEC(l-~t on.:!:_o (T1n(Um:n)\Um:n)) (1-it on±_ 

2 2 -2 2 ) ) ) I 
0 (T3n(Un-m+l:n> IUn-m+l:n)Xexp(-it 0 n±.0 (Sn(Um:n'Un-m+l:n 

Um:n'Un-m+l:n) (l+it(E(T~±.\Um:n'Un-m+l:n) - it2 

(E(T~!\Um:n'Un-m+l:n)) 2 ) 1 (0,e)(Um:n> 1 (1-e,l)(Un-m+l:n)J 
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Combining now (2.25) through (2.27) we arrive after some calculations involving 
conditional moments (cf. Helmers & Hu~kova (1984)) at (2.15). 

Next we prove (2.16). Take m =[~En]. Using (2.17) once more we find for all 
It I 5 n~ 

Ip~+ ( t) I 5 EI q,~ ( u u ) ( t) I . 
- 2n+ m:n' n-m+l:n 

( 2. 28) 

Clearly T2n+(u,v) is the sum of a non-degenerate U-statistic of degree 2 with a 
kernel, whiCh is bounded by C( IF- 1(u) l+IF- 1(v) I) for some constant C > 0, and a 

-3/2 -1 -1 remainder term satisfying E!Rn(u,v)I = O(n (IF (u)l+IF (v)I)). Hence the 
argument given in Helmers and van Zwet (1982), p.504-505, cf. their relation (3.lG 
can essentially be repeated to find that for some sufficiently small y > 0 

(2.29) 

f -1 * 
o> It! Elq,T (U U )(t)!dt 

Y i 2n+ m:n' n-m+l:n n <Jtl5n 2 

+ (F-l(Um:n))2 + (F-l(Un-m+l:n))2 + (IF-l(Um:n)I + 

+ IF-l(Un-m+l:n)l)J) 

= O(n-~) 

which proves (2.16). This completes the proof of Theorem 1. 
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